1
|
Peng CS, Zhang Y, Liu Q, Marti GE, Huang YWA, Südhof TC, Cui B, Chu S. Nanometer-resolution tracking of single cargo reveals dynein motor mechanisms. Nat Chem Biol 2025; 21:648-656. [PMID: 39090313 PMCID: PMC11785820 DOI: 10.1038/s41589-024-01694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Cytoplasmic dynein is essential for intracellular transport. Despite extensive in vitro characterizations, how the dynein motors transport vesicles by processive steps in live cells remains unclear. To dissect the molecular mechanisms of dynein, we develop optical probes that enable long-term single-particle tracking in live cells with high spatiotemporal resolution. We find that the number of active dynein motors transporting cargo switches stochastically between one and five dynein motors during long-range transport in neuronal axons. Our very bright optical probes allow the observation of individual molecular steps. Strikingly, these measurements reveal that the dwell times between steps are controlled by two temperature-dependent rate constants in which two ATP molecules are hydrolyzed sequentially during each dynein step. Thus, our observations uncover a previously unknown chemomechanical cycle of dynein-mediated cargo transport in living cells.
Collapse
Affiliation(s)
- Chunte Sam Peng
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yunxiang Zhang
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - Qian Liu
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, China
| | - G Edward Marti
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Yu-Wen Alvin Huang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Steven Chu
- Department of Physics, Stanford University, Stanford, CA, USA.
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Li L, Wang S, Fu S, Chen Z, Wang P, Zhao Y. Human ATP-binding proteins: Structural features, functional diversity, and pharmacotherapeutic potential in disease: A review. Int J Biol Macromol 2025; 308:142303. [PMID: 40118416 DOI: 10.1016/j.ijbiomac.2025.142303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
ATP-binding proteins (ABPs) form diverse and essential protein families across living organisms. Early life forms likely relied on simple chemical reactions for energy, but with the emergence of ABPs and their evolving functions, organisms became capable of more efficient energy storage and utilization, which drove the complexity of metabolic and life processes. By binding and hydrolyzing ATP through conserved structural motifs such as the Walker motifs, ABPs play critical roles in material transport, signal transduction, cellular structure maintenance, motility, and cell cycle regulation. Dysfunctions arising from mutations, deletions, or misregulation of ABPs are linked to a variety of human diseases, including cancer, neurodegenerative disorders, and cardiovascular diseases. The growing recognition of ABPs' significance in disease progression highlights their relevance not only in basic biology but also in clinical applications, particularly as biomarkers and therapeutic targets. This review provides a comprehensive overview of human ABPs, detailing their structural and functional roles, their involvement in disease mechanisms, and the latest advances in understanding their clinical relevance. Additionally, it identifies current research gaps and offers new perspectives for future investigations and therapeutic strategies.
Collapse
Affiliation(s)
- Letong Li
- School of Pharmacy, Health Science Center, Ningbo University, Ningbo 315211, PR China; Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Shanshan Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China.
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Zhen Chen
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China
| | - Pengjun Wang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, PR China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, PR China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, PR China; Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Xie P. Modeling Study of Effects of Tubulin Carboxy-Terminal Tails on Dynamics of Kinesin and Dynein Motors. Protein J 2025:10.1007/s10930-025-10267-8. [PMID: 40281262 DOI: 10.1007/s10930-025-10267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
The unstructured carboxy-terminal tails (CTTs) on tubulin α- and β-subunits can affect the motility of kinesin and dynein motors on microtubules. The CTTs can also affect the microtubule deoplymerase activity of kinesin motors. However, the underlying molecular mechanism of CTTs affecting the dynamics of kinesin and dynein motors is illusive. Here, a model for the effect of CTTs on the kinesin and dynein motors is presented, where it is proposed that the CTTs can affect both the activation energy for the ATPase activity of the kinesin and dynein motors and the microtubule-binding energy. With the model, the velocity and run length of human kinesin-1, human kinesin-2, C. elegans kinesin-2 and yeast cytoplasmic dynein as well as the microtubule depolymerization rate of kinesin-13 MCAK on microtubules with the deletion of CTT on α-subunit, the deletion of CTT on β-subunit and the deletion of both CTTs relative to those on microtubules with no deletion of CTTs are studied theoretically. With 18 parameter values the totally 27 published experimental data on the dynamics of the five types of the kinesin and dynein motors are reproduced well. The predicted results are also provided.
Collapse
Affiliation(s)
- Ping Xie
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, 100190, China.
| |
Collapse
|
4
|
Penocchio E, Gu G, Albaugh A, Gingrich TR. Power Strokes in Molecular Motors: Predictive, Irrelevant, or Somewhere in Between? J Am Chem Soc 2025; 147:1063-1073. [PMID: 39705514 PMCID: PMC11728019 DOI: 10.1021/jacs.4c14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/22/2024]
Abstract
For several decades, molecular motor directionality has been rationalized in terms of the free energy of molecular conformations visited before and after the motor takes a step, a so-called power stroke mechanism with analogues in macroscopic engines. Despite theoretical and experimental demonstrations of its flaws, the power stroke language is quite ingrained, and some communities still value power stroke intuition. By building a catalysis-driven motor into simulated numerical experiments, we here systematically report on how directionality responds when the motor is modified accordingly to power stroke intuition. We confirm that the power stroke mechanism generally does not predict motor directionality. Nevertheless, the simulations illustrate that the relative stability of molecular conformations should be included as a potential design element to adjust the motor directional bias. Though power strokes are formally unimportant for determining directionality, we show that practical attempts to alter a power stroke have side effects that can in fact alter the bias. The change in the bias can align with what power stroke intuition would have suggested, offering a potential explanation for why the flawed power stroke mechanism can retain apparent utility when engineering specific systems.
Collapse
Affiliation(s)
- Emanuele Penocchio
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Geyao Gu
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Alex Albaugh
- Department
of Chemical Engineering and Materials Science, Wayne State University, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States
| | - Todd R. Gingrich
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Woodhams LG, Bayly PV. Theoretical relationships between axoneme distortion and internal forces and torques in ciliary beating. Cytoskeleton (Hoboken) 2024; 81:605-617. [PMID: 38546291 DOI: 10.1002/cm.21856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 11/20/2024]
Abstract
The axoneme is an intricate nanomachine responsible for generating the propulsive oscillations of cilia and flagella in an astonishing variety of organisms. New imaging techniques based on cryoelectron-tomography (cryo-ET) and subtomogram averaging have revealed the detailed structures of the axoneme and its components with sub-nm resolution, but the mechanical function of each component and how the assembly generates oscillations remains stubbornly unclear. Most explanations of oscillatory behavior rely on the dynamic regulation of dynein by some signal, but this may not be necessary if the system of dynein-driven slender filaments is dynamically unstable. Understanding the possibility of instability-driven oscillations requires a multifilament model of the axoneme that accounts for distortions of the axoneme as it bends. Active bending requires forces and bending moments that will tend to change the spacing and alignment of doublets. We hypothesize that components of the axoneme resist and respond to these loads in ways that are critical to beating. Specifically, we propose (i) that radial spokes provide torsional stiffness by resisting misalignment (as well as spacing) between the central pair and outer doublets, and (ii) that the kinematics of dynein arms affect the relationships between active forces and bending moments on deforming doublets. These proposed relationships enhance the ability of theoretical, multifilament models of axonemal beating to generate propulsive oscillatory waveforms via dynamic mechanical instability.
Collapse
Affiliation(s)
- Louis G Woodhams
- Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Philip V Bayly
- Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Xie P. Modeling of Chemomechanical Coupling of Cytoplasmic Dynein Motors. J Phys Chem B 2024; 128:10063-10074. [PMID: 39382058 DOI: 10.1021/acs.jpcb.4c04554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cytoplasmic dynein homodimer is a motor protein that can step processively on microtubules (MTs) toward the minus end by hydrolyzing ATP molecules. Some dynein motors show a complicated stepping behavior with variable step sizes and having both hand-overhand and inchworm steps, while some mammalian dynein motors show simplistic stepping behavior with a constant step size and having only hand-overhand steps. Here, a model for the chemomechanical coupling of the dynein is presented, based on which an analytical theory is given on the dynamics of the motor. The theoretical results explain consistently and quantitatively the available experimental data on various aspects of the dynamics of dynein with complicated stepping behavior and the dynamics of dynein with simplistic stepping behavior. The very differences in the dynamic behavior between the two motors are due solely to different elastic coefficients of the linkage connecting the two dynein heads, with the dynein motors of the complicated and simplistic stepping behaviors having small and large coefficients, respectively. Moreover, it is analyzed that the ATPase rate of the dynein head with a docked linker being larger than that with an undocked linker is indispensable for the unidirectional motility of the motor, and the small free energy change for the linker docking in the strong MT-binding state facilitates the unidirectional motility.
Collapse
Affiliation(s)
- Ping Xie
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Qi A, Wang K, Li Y, Hu R, Hu G, Li Y, Shi G, Huang M. The degradation of α--synuclein is limited by dynein to drive the AALP pathway through HDAC6 upon paraquat exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116841. [PMID: 39128448 DOI: 10.1016/j.ecoenv.2024.116841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Lewy body disease (LBD), one of the most common neurodegenerative diseases (NDDs), is characterized by excessive accumulation of α-synuclein (α-syn) in neurons. In recent years, environmental factors such as exposure to herbicides and pesticides have been attributed to the development of this condition. While majority of the studies on neurotoxic effects of paraquat (PQ) have focused on α-syn-mediated neuronal damage in the early stages of α-syn accumulation in neurons, efforts to explore the key target for α-syn degradation are limited. Recent research has suggested that histone deacetylase 6 (HDAC6) might possibly regulate amyloid clearance, and that the metabolism of compounds in neurons is also directly affected by axonal transport in neurons. Dynein predominantly mediates reverse transportation of metabolites and uptake of signal molecules and other compounds at the end of axons, which is conducive to the reuse of cell components. However, the role of interaction of dynein with HDAC6 in metabolites transport is still unclear. Therefore, this study aimed to investigate the role of HDAC6 in α-syn accumulation/clearance in neurons and the associated possible influencing factors. The results revealed that HDAC6 could transport ubiquitinated α-syn, bind to dynein, form an aggresome, and relocate to the center of the microtubule tissue, ultimately reducing abnormal accumulation of α-syn. However, PQ treatment resulted in HDAC6 upregulation, causing abnormal aggregation of α-syn. Taken together, these findings indicated that PQ exposure caused abnormal accumulation of α-syn and decreased effective degradation of α-syn by HDAC6-mediated aggresome-autophagy-lysosome pathway.
Collapse
Affiliation(s)
- Ai Qi
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Kaidong Wang
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yujing Li
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Rong Hu
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Guiling Hu
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Yang Li
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Ge Shi
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| | - Min Huang
- School of Public Health, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
8
|
Osega CE, Bustos FJ, Arriagada G. From Entry to the Nucleus: How Retroviruses Commute. Annu Rev Virol 2024; 11:89-104. [PMID: 38848600 DOI: 10.1146/annurev-virology-100422-023502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Once inside host cells, retroviruses generate a double-stranded DNA copy of their RNA genomes via reverse transcription inside a viral core, and this viral DNA is subsequently integrated into the genome of the host cell. Before integration can occur, the core must cross the cell cortex, be transported through the cytoplasm, and enter the nucleus. Retroviruses have evolved different mechanisms to accomplish this journey. This review examines the various mechanisms retroviruses, especially HIV-1, have evolved to commute throughout the cell. Retroviruses cross the cell cortex while modulating actin dynamics and use microtubules as roads while connecting with microtubule-associated proteins and motors to reach the nucleus. Although a clearer picture exists for HIV-1 compared with other retroviruses, there is still much to learn about how retroviruses accomplish their commute.
Collapse
Affiliation(s)
- Camila E Osega
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| | - Fernando J Bustos
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| | - Gloria Arriagada
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| |
Collapse
|
9
|
Nasrin SR, Yamashita T, Ikeguchi M, Torisawa T, Oiwa K, Sada K, Kakugo A. Tensile Stress on Microtubules Facilitates Dynein-Driven Cargo Transport. NANO LETTERS 2024. [PMID: 38916205 DOI: 10.1021/acs.nanolett.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Mechanical stress significantly affects the physiological functions of cells, including tissue homeostasis, cytoskeletal alterations, and intracellular transport. As a major cytoskeletal component, microtubules respond to mechanical stimulation by altering their alignment and polymerization dynamics. Previously, we reported that microtubules may modulate cargo transport by one of the microtubule-associated motor proteins, dynein, under compressive mechanical stress. Despite the critical role of tensile stress in many biological functions, how tensile stress on microtubules regulates cargo transport is yet to be unveiled. The present study demonstrates that the low-level tensile stress-induced microtubule deformation facilitates dynein-driven transport. We validate our experimental findings using all-atom molecular dynamics simulation. Our study may provide important implications for developing new therapies for diseases that involve impaired intracellular transport.
Collapse
Affiliation(s)
- Syeda Rubaiya Nasrin
- Graduate School of Science, Department of Physics and Astronomy, Kyoto University, Kyoto, 606-8152, Japan
| | - Takefumi Yamashita
- Department of Physical University, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takayuki Torisawa
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Sokendai, Mishima, 411-8540, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Kazuki Sada
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Akira Kakugo
- Graduate School of Science, Department of Physics and Astronomy, Kyoto University, Kyoto, 606-8152, Japan
| |
Collapse
|
10
|
Singh H, Chenna A, Gangwar U, Dutta S, Kurur ND, Goel G, Haridas V. Bispidine as a promising scaffold for designing molecular machines. Org Biomol Chem 2023; 21:9054-9060. [PMID: 37937510 DOI: 10.1039/d3ob01406a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The development of artificial molecular machines is a challenging endeavor. Herein, we have synthesized a series of bispidine diamides D1-D6 that exhibit rotation reminiscent of a motor motion. Dynamic NMR, X-ray diffraction, quantum mechanical calculations, and molecular dynamics simulations provided insights into their rotational dynamics. All the diamides D1-D6 exhibited mutually independent rotation around the two bispidine arms. However, the rate of rotation and the presence or absence of directionality in amide bond rotation were found to depend on the solvent, temperature, and nature of substitution on the amide carbonyl. These engineered systems may aid in the development of biologically relevant synthetic molecular motors. Studies on homochiral and heterochiral bispidine-peptides revealed that the direction of rotation can be controlled by chirality and the nature of the amino acid.
Collapse
Affiliation(s)
- Hanuman Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Akshay Chenna
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Upanshu Gangwar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Souvik Dutta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Narayanan D Kurur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
11
|
Suber Y, Alam MNA, Nakos K, Bhakt P, Spiliotis ET. Microtubule-associated septin complexes modulate kinesin and dynein motility with differential specificities. J Biol Chem 2023; 299:105084. [PMID: 37495111 PMCID: PMC10463263 DOI: 10.1016/j.jbc.2023.105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Long-range membrane traffic is guided by microtubule-associated proteins and posttranslational modifications, which collectively comprise a traffic code. The regulatory principles of this code and how it orchestrates the motility of kinesin and dynein motors are largely unknown. Septins are a large family of GTP-binding proteins, which assemble into complexes that associate with microtubules. Using single-molecule in vitro motility assays, we tested how the microtubule-associated SEPT2/6/7, SEPT2/6/7/9, and SEPT5/7/11 complexes affect the motilities of the constitutively active kinesins KIF5C and KIF1A and the dynein-dynactin-bicaudal D (DDB) motor complex. We found that microtubule-associated SEPT2/6/7 is a potent inhibitor of DDB and KIF5C, preventing mainly their association with microtubules. SEPT2/6/7 also inhibits KIF1A by obstructing stepping along microtubules. On SEPT2/6/7/9-coated microtubules, KIF1A inhibition is dampened by SEPT9, which alone enhances KIF1A, showing that individual septin subunits determine the regulatory properties of septin complexes. Strikingly, SEPT5/7/11 differs from SEPT2/6/7, in permitting the motility of KIF1A and immobilizing DDB to the microtubule lattice. In hippocampal neurons, filamentous SEPT5 colocalizes with somatodendritic microtubules that underlie Golgi membranes and lack SEPT6. Depletion of SEPT5 disrupts Golgi morphology and polarization of Golgi ribbons into the shaft of somato-proximal dendrites, which is consistent with the tethering of DDB to microtubules by SEPT5/7/11. Collectively, these results suggest that microtubule-associated complexes have differential specificities in the regulation of the motility and positioning of microtubule motors. We posit that septins are an integral part of the microtubule-based code that spatially controls membrane traffic.
Collapse
Affiliation(s)
- Yani Suber
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Md Noor A Alam
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Konstantinos Nakos
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Priyanka Bhakt
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
12
|
Rangan KJ, Reck-Peterson SL. RNA recoding in cephalopods tailors microtubule motor protein function. Cell 2023; 186:2531-2543.e11. [PMID: 37295401 PMCID: PMC10467349 DOI: 10.1016/j.cell.2023.04.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/05/2023] [Accepted: 04/24/2023] [Indexed: 06/12/2023]
Abstract
RNA editing is a widespread epigenetic process that can alter the amino acid sequence of proteins, termed "recoding." In cephalopods, most transcripts are recoded, and recoding is hypothesized to be an adaptive strategy to generate phenotypic plasticity. However, how animals use RNA recoding dynamically is largely unexplored. We investigated the function of cephalopod RNA recoding in the microtubule motor proteins kinesin and dynein. We found that squid rapidly employ RNA recoding in response to changes in ocean temperature, and kinesin variants generated in cold seawater displayed enhanced motile properties in single-molecule experiments conducted in the cold. We also identified tissue-specific recoded squid kinesin variants that displayed distinct motile properties. Finally, we showed that cephalopod recoding sites can guide the discovery of functional substitutions in non-cephalopod kinesin and dynein. Thus, RNA recoding is a dynamic mechanism that generates phenotypic plasticity in cephalopods and can inform the characterization of conserved non-cephalopod proteins.
Collapse
Affiliation(s)
- Kavita J Rangan
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Samara L Reck-Peterson
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Shivalkar S, Chowdhary P, Afshan T, Chaudhary S, Roy A, Samanta SK, Sahoo AK. Nanoengineering of biohybrid micro/nanobots for programmed biomedical applications. Colloids Surf B Biointerfaces 2023; 222:113054. [PMID: 36446238 DOI: 10.1016/j.colsurfb.2022.113054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Biohybrid micro/nanobots have emerged as an innovative resource to be employed in the biomedical field due to their biocompatible and biodegradable properties. These are tiny nanomaterial-based integrated structures engineered in a way that they can move autonomously and perform the programmed tasks efficiently even at hard-to-reach organ/tissues/cellular sites. The biohybrid micro/nanobots can either be cell/bacterial/enzyme-based or may mimic the properties of an active molecule. It holds the potential to change the landscape in various areas of biomedical including early diagnosis of disease, therapeutics, imaging, or precision surgery. The propulsion mechanism of the biohybrid micro/nanobots can be both fuel-based and fuel-free, but the most effective and easiest way to propel these micro/nanobots is via enzymes. Micro/nanobots possess the feature to adsorb/functionalize chemicals or drugs at their surfaces thus offering the scope of delivering drugs at the targeted locations. They also have shown immense potential in intracellular sensing of biomolecules and molecular events. Moreover, with recent progress in the material development and processing is required for enhanced activity and robustness the fabrication is done via various advanced techniques to avoid self-degradation and cause cellular toxicity during autonomous movement in biological medium. In this review, various approaches of design, architecture, and performance of such micro/nanobots have been illustrated along with their potential applications in controlled cargo release, therapeutics, intracellular sensing, and bioimaging. Furthermore, it is also foregrounding their advancement offering an insight into their future scopes, opportunities, and challenges involved in advanced biomedical applications.
Collapse
Affiliation(s)
- Saurabh Shivalkar
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India.
| | - Pallabi Chowdhary
- Department of Biotechnology, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Tayyaba Afshan
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| | - Shrutika Chaudhary
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Anwesha Roy
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India.
| |
Collapse
|
14
|
Structure Composition and Intracellular Transport of Clathrin-Mediated Intestinal Transmembrane Tight Junction Protein. Inflammation 2023; 46:18-34. [PMID: 36050591 DOI: 10.1007/s10753-022-01724-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022]
Abstract
Tight junctions (TJs) are located in the apical region of the junctions between epithelial cells and are widely found in organs such as the brain, retina, intestinal epithelium, and endothelial system. As a mechanical barrier of the intestinal mucosa, TJs can not only maintain the integrity of intestinal epithelial cells but also maintain intestinal mucosal permeability by regulating the entry of ions and molecules into paracellular channels. Therefore, the formation disorder or integrity destruction of TJs can induce damage to the intestinal epithelial barrier, ultimately leading to the occurrence of various gastrointestinal diseases, such as inflammatory bowel disease (IBD), gastroesophageal reflux disease (GERD), and irritable bowel syndrome (IBS). However, a large number of studies have shown that TJs protein transport disorder from the endoplasmic reticulum to the apical membrane can lead to TJs formation disorder, in addition to disruption of TJs integrity caused by external pathological factors and reduction of TJs protein synthesis. In this review, we focus on the structural composition of TJs, the formation of clathrin-coated vesicles containing transmembrane TJs from the Golgi apparatus, and the transport process from the Golgi apparatus to the plasma membrane via microtubules and finally fusion with the plasma membrane. At present, the mechanism of the intracellular transport of TJ proteins remains unclear. More studies are needed in the future to focus on the sorting of TJs protein vesicles, regulation of transport processes, and recycling of TJ proteins, etc.
Collapse
|
15
|
Abstract
Cryo-electron microscopy (cryo-EM) has become the mainstream technique for studying macromolecular structures. Determining the structures of protein complexes is more accessible to structural biologists than ever before. Nevertheless, obtaining high-resolution structures of molecular motors like dynein is still an extremely challenging goal due to their troublesome behaviors in ice, their exceedingly flexible conformations, and their intricate architectures. Dynein is a large molecular machine that drives the movement of many essential cellular cargos and is also the key force generator that powers ciliary motility. High-resolution structural information of dyneins in different states is critical for the in-depth mechanistic understanding of their roles in cells. Here, we summarize the cryo-EM approaches that we have used to study the structures of outer-arm dynein arrays bound to microtubule doublets. Our approaches can be applied to other similar structures and further optimized to deal with even more complicated targets.
Collapse
|
16
|
Guo W, Ale TA, Sun S, Sanchez JE, Li L. A Comprehensive Study on the Electrostatic Properties of Tubulin-Tubulin Complexes in Microtubules. Cells 2023; 12:238. [PMID: 36672172 PMCID: PMC9857020 DOI: 10.3390/cells12020238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023] Open
Abstract
Microtubules are key players in several stages of the cell cycle and are also involved in the transportation of cellular organelles. Microtubules are polymerized by α/β tubulin dimers with a highly dynamic feature, especially at the plus ends of the microtubules. Therefore, understanding the interactions among tubulins is crucial for characterizing microtubule dynamics. Studying microtubule dynamics can help researchers make advances in the treatment of neurodegenerative diseases and cancer. In this study, we utilize a series of computational approaches to study the electrostatic interactions at the binding interfaces of tubulin monomers. Our study revealed that among all the four types of tubulin-tubulin binding modes, the electrostatic attractive interactions in the α/β tubulin binding are the strongest while the interactions of α/α tubulin binding in the longitudinal direction are the weakest. Our calculations explained that due to the electrostatic interactions, the tubulins always preferred to form α/β tubulin dimers. The interactions between two protofilaments are the weakest. Thus, the protofilaments are easily separated from each other. Furthermore, the important residues involved in the salt bridges at the binding interfaces of the tubulins are identified, which illustrates the details of the interactions in the microtubule. This study elucidates some mechanistic details of microtubule dynamics and also identifies important residues at the binding interfaces as potential drug targets for the inhibition of cancer cells.
Collapse
Affiliation(s)
- Wenhan Guo
- Computational Science Program, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Tolulope Ayodeji Ale
- Computational Science Program, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Shengjie Sun
- Computational Science Program, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Jason E. Sanchez
- Computational Science Program, University of Texas at El Paso, El Paso, TX 79902, USA
| | - Lin Li
- Computational Science Program, University of Texas at El Paso, El Paso, TX 79902, USA
- Department of Physics, University of Texas at El Paso, El Paso, TX 79902, USA
| |
Collapse
|
17
|
Fu J, Zhang J, Chen X, Liu Z, Yang X, He Z, Hao Y, Liu B, Yao D. ATPase family AAA domain-containing protein 2 (ATAD2): From an epigenetic modulator to cancer therapeutic target. Theranostics 2023; 13:787-809. [PMID: 36632213 PMCID: PMC9830439 DOI: 10.7150/thno.78840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
ATPase family AAA domain-containing protein 2 (ATAD2) has been widely reported to be a new emerging oncogene that is closely associated with epigenetic modifications in human cancers. As a coactivator of transcription factors, ATAD2 can participate in epigenetic modifications and regulate the expression of downstream oncogenes or tumor suppressors, which may be supported by the enhancer of zeste homologue 2. Moreover, the dominant structure (AAA + ATPase and bromine domains) can make ATAD2 a potential therapeutic target in cancer, and some relevant small-molecule inhibitors, such as GSK8814 and AZ13824374, have also been discovered. Thus, in this review, we focus on summarizing the structural features and biological functions of ATAD2 from an epigenetic modulator to a cancer therapeutic target, and further discuss the existing small-molecule inhibitors targeting ATAD2 to improve potential cancer therapy. Together, these inspiring findings would shed new light on ATAD2 as a promising druggable target in cancer and provide a clue on the development of candidate anticancer drugs.
Collapse
Affiliation(s)
- Jiahui Fu
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhiying Liu
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xuetao Yang
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhendan He
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yue Hao
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China.,✉ Corresponding authors: E-mail addresses: (Yue Hao); (Bo Liu), or (Dahong Yao). Tel./Fax. (+86)-28-85164063
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,✉ Corresponding authors: E-mail addresses: (Yue Hao); (Bo Liu), or (Dahong Yao). Tel./Fax. (+86)-28-85164063
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,✉ Corresponding authors: E-mail addresses: (Yue Hao); (Bo Liu), or (Dahong Yao). Tel./Fax. (+86)-28-85164063
| |
Collapse
|
18
|
Wu X, Yun D, Sang M, Liu J, Zhou L, Shi J, Wang L, Bu T, Li L, Huang Y, Lin D, Sun F, Cheng CY. Defects of microtubule cytoskeletal organization in NOA human testes. Reprod Biol Endocrinol 2022; 20:154. [PMID: 36329464 PMCID: PMC9632130 DOI: 10.1186/s12958-022-01026-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
The importance of actin and microtubule (MT) cytoskeletons in testis function in rodents is known to some extent, but its role in the etiology of azoospermia in humans remains unexplored. Here, we examined if MT cytoskeleton was defective in NOA (non-obstructive azoospermia) testes versus normal human testes based on histopathological, immunofluorescence (IF), and scRNA-Seq transcriptome profiling. Testis biopsy samples from n = 6 normal men versus n = 3 Sertoli cell only (SCO) and n = 3 MA (meiotic arrest) of NOA patients were used for histopathological analysis. IF analysis was also used to examine MT organization across the seminiferous epithelium, investigating the likely involvement of microtubule-associated proteins (MAPs). scRNA-Seq transcriptome profiling datasets from testes of 3 SCO patients versus 3 normal men in public domain in Gene Expression Omnibus (GEO) Sample (GSM) with identifiers were analyzed to examine relevant genes that regulate MT dynamics. NOA testes of MA and SCO patients displayed notable defects in MT organization across the epithelium with extensive truncation, mis-alignments and appeared as collapsed structures near the base of the tubules. These changes are in contrast to MTs in testes of normal men. scRNA-Seq analyses revealed considerable loss of spermatogenesis capacity in SCO testes of NOA patients versus normal men. An array of genes that support MT dynamics displayed considerable changes in expression and in spatial distribution. In summary, defects in MT cytoskeleton were noted in testes of NOA (SCO) patients, possibly mediated by defective spatial expression and/or distribution of MAPs. These changes, in turn, may impede spermatogenesis in SCO testes of NOA patients.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, 226001, Jiangsu, China
| | - Damin Yun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, 226001, Jiangsu, China
| | - Mengmeng Sang
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, 226001, Jiangsu, China
| | - Jianpeng Liu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Liwei Zhou
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, 226001, Jiangsu, China
| | - Jie Shi
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, 226001, Jiangsu, China
| | - Lingling Wang
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, 226001, Jiangsu, China
| | - Tiao Bu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, 226001, Jiangsu, China
| | - Linxi Li
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - YingYing Huang
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, 226001, Jiangsu, China
| | - Dengfeng Lin
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, 226001, Jiangsu, China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
| | - C Yan Cheng
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, 226001, Jiangsu, China.
- Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, 1230 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
19
|
Li W, Chen J, Xiong Z, Zhou H, Huang S, Ren J, Liu B, Zhou T, Hu K. Dynactin 2 acts as an oncogene in hepatocellular carcinoma through promoting cell cycle progression. LIVER RESEARCH (BEIJING, CHINA) 2022; 6:155-166. [PMID: 39958200 PMCID: PMC11791803 DOI: 10.1016/j.livres.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/30/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Dynactin (DCTN) can activate cytoplasmic dynein and drive intracellular organelle transport containing six family members (DCTN1 to DCTN6). The DCTN family has been studied as cancer-related genes or biomarkers in various cancers. Nevertheless, in hepatocellular carcinoma (HCC), the functions and prognostic roles of the DCTN family have been unexplored. METHODS We evaluated the diagnostic and survival effects of DCTN subunits in HCC through bioinformatics analysis and validated the results of bioinformatics by our data to address this problem. RESULTS The results of bioinformatics analysis found that DCTN2 was a significant prognostic factor in HCC, and high-level DCTN2 can predict poor patient survival in HCC. Cox regression analysis also suggested that DCTN2 (hazard ratio = 1.748, 95% confidence interval 1.190-2.568, P = 0.004) is an independent prognostic factor for patient survival. Western blot and quantitative reverse transcription-polymerase chain reaction assays confirmed that the protein and mRNA expression levels of DCTN2 were upregulated in HCC cell lines. The proliferation, invasion, and migration were decreased and cell apoptosis was enhanced after DCTN2 was knocked down in Huh7 and Hep3B cells. DCTN2 promoted the cell cycle progression through regulating the expression of cell cycle regulatory proteins cyclin-dependent kinase 4, Cyclin D1, and p21. CONCLUSIONS We propose that DCTN2 can serve as a prognostic marker for HCC. DCTN2 acts as an oncogene and promotes the cell cycle progression through the G1/S phase-related signaling pathway.
Collapse
Affiliation(s)
- Wenchao Li
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiehuan Chen
- Department of Ultrasound, Binhaiwan Central Hospital of Dongguan, Dongguan, Guangdong, China
| | - Zhiyong Xiong
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhou
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaozhuo Huang
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Ren
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Liu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Taicheng Zhou
- Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, Guangdong, China
| | - Kunpeng Hu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Liu N, Li M, Xie F, Lv J, Gao X, Zhang H, Gao J, Zheng A. Efficacy of mimetic viral dynein binding peptide binding nanoparticles in blood-brain barrier model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Dong Y, Wu M, Zhang Q, Fu J, Loiacono FV, Yang Y, Wang Z, Li S, Chang L, Bock R, Zhang J. Control of a sap-sucking insect pest by plastid-mediated RNA interference. MOLECULAR PLANT 2022; 15:1176-1191. [PMID: 35619559 DOI: 10.1016/j.molp.2022.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Expression of double-stranded RNAs in plastids offers great potential for the efficient control of chewing insects. However, many insect pests do not consume plant tissue but rather feed on the host plant by sucking sap from the vascular system. Whether or not plastid-mediated RNA interference (RNAi) can be employed to control sap-sucking insects is unknown. Here, we show that five species of sap-sucking hemipteran insects acquire plastid RNA upon feeding on plants. We generated both nuclear transgenic and transplastomic tobacco plants expressing double-stranded RNAs targeting the MpDhc64C gene, a newly identified efficient target gene of RNAi whose silencing causes lethality to the green peach aphid Myzus persicae. In a whole-plant bioassay, transplastomic plants exhibited significant resistance to aphids, as evidenced by reduced insect survival, impaired fecundity, and decreased weight of survivors. The protective effect was comparable with that conferred by the best-performing nuclear transgenic plants. We found that the proportion of aphids on mature leaves of transplastomic plants was significantly lower compared with that of nuclear transgenic plants. When aphids were allowed to infest only the mature leaves, transplastomic plants grew significantly faster and were overall better protected from the pest compared with nuclear transgenic plants. When monitored by electrical-penetration-graph analyses and aphid avoidance response experiments, the insects displayed remarkable alterations in feeding behavior, which was different in nuclear transgenic and transplastomic plants, likely reflecting specific avoidance strategies to toxic RNA molecules. Taken together, our study demonstrates that plastid-mediated RNAi provides an efficient strategy for controlling at least some sap-sucking insect pests, even though there is most likely no or only very little chloroplast RNA in the sap.
Collapse
Affiliation(s)
- Yi Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Mengting Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Qi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jinqiu Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - F Vanessa Loiacono
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zican Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ralph Bock
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
22
|
Woodhams LG, Shen Y, Bayly PV. Generation of ciliary beating by steady dynein activity: the effects of inter-filament coupling in multi-filament models. J R Soc Interface 2022; 19:20220264. [PMID: 35857924 PMCID: PMC9257587 DOI: 10.1098/rsif.2022.0264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/20/2022] [Indexed: 09/05/2023] Open
Abstract
The structure of the axoneme in motile cilia and flagella is emerging with increasing detail from high-resolution imaging, but the mechanism by which the axoneme creates oscillatory, propulsive motion remains mysterious. It has recently been proposed that this motion may be caused by a dynamic 'flutter' instability that can occur under steady dynein loading, and not by switching or modulation of dynein motor activity (as commonly assumed). In the current work, we have built an improved multi-filament mathematical model of the axoneme and implemented it as a system of discrete equations using the finite-element method. The eigenvalues and eigenvectors of this model predict the emergence of oscillatory, wave-like solutions in the absence of dynein regulation and specify the associated frequencies and waveforms of beating. Time-domain simulations with this model illustrate the behaviour predicted by the system's eigenvalues. This model and analysis allow us to efficiently explore the potential effects of difficult to measure biophysical parameters, such as elasticity of radial spokes and inter-doublet links, on the ciliary waveform. These results support the idea that dynamic instability without dynamic dynein regulation is a plausible and robust mechanism for generating ciliary beating.
Collapse
Affiliation(s)
- Louis G. Woodhams
- Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130-4899, USA
| | - Yenan Shen
- Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Philip V. Bayly
- Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130-4899, USA
| |
Collapse
|
23
|
Zhang Y, Zhang S, Zhou H, Ma X, Wu L, Tian M, Li S, Qian X, Gao X, Chai R. Dync1li1 is required for the survival of mammalian cochlear hair cells by regulating the transportation of autophagosomes. PLoS Genet 2022; 18:e1010232. [PMID: 35727824 PMCID: PMC9249241 DOI: 10.1371/journal.pgen.1010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 07/01/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Dync1li1, a subunit of cytoplasmic dynein 1, is reported to play important roles in intracellular retrograde transport in many tissues. However, the roles of Dync1li1 in the mammalian cochlea remain uninvestigated. Here we first studied the expression pattern of Dync1li1 in the mouse cochlea and found that Dync1li1 is highly expressed in hair cells (HCs) in both neonatal and adult mice cochlea. Next, we used Dync1li1 knockout (KO) mice to investigate its effects on hearing and found that deletion of Dync1li1 leads to early onset of progressive HC loss via apoptosis and to subsequent hearing loss. Further studies revealed that loss of Dync1li1 destabilizes dynein and alters the normal function of dynein. In addition, Dync1li1 KO results in a thinner Golgi apparatus and the accumulation of LC3+ autophagic vacuoles, which triggers HC apoptosis. We also knocked down Dync1li1 in the OC1 cells and found that the number of autophagosomes were significantly increased while the number of autolysosomes were decreased, which suggested that Dync1li1 knockdown leads to impaired transportation of autophagosomes to lysosomes and therefore the accumulation of autophagosomes results in HC apoptosis. Our findings demonstrate that Dync1li1 plays important roles in HC survival through the regulation of autophagosome transportation. Hearing loss is one of the most common sensorial disorders globally. The main reason of hearing loss is the irreversible loss or malfunction of cochlear hair cells. Identifying new hearing loss-related genes and investigating their roles and mechanisms in HC survival are important for the prevention and treatment of hereditary hearing loss. Cytoplasmic dynein 1 is reported to play important roles in in ciliogenesis and protein transport in the mouse photoreceptors. Here, we described the expression pattern of Dyncili1 (a subunit of cytoplasmic dynein 1) in the mouse cochlea and used knockout mice to investigate its specific role in the hair cell of cochlea.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| | - Han Zhou
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Mengyao Tian
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- * E-mail: (SZ); (XQ); (XG); (RC)
| |
Collapse
|
24
|
Kumari D, Ray K. Phosphoregulation of Kinesins Involved in Long-Range Intracellular Transport. Front Cell Dev Biol 2022; 10:873164. [PMID: 35721476 PMCID: PMC9203973 DOI: 10.3389/fcell.2022.873164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/29/2022] [Indexed: 12/28/2022] Open
Abstract
Kinesins, the microtubule-dependent mechanochemical enzymes, power a variety of intracellular movements. Regulation of Kinesin activity and Kinesin-Cargo interactions determine the direction, timing and flux of various intracellular transports. This review examines how phosphorylation of Kinesin subunits and adaptors influence the traffic driven by Kinesin-1, -2, and -3 family motors. Each family of Kinesins are phosphorylated by a partially overlapping set of serine/threonine kinases, and each event produces a unique outcome. For example, phosphorylation of the motor domain inhibits motility, and that of the stalk and tail domains induces cargo loading and unloading effects according to the residue and context. Also, the association of accessory subunits with cargo and adaptor proteins with the motor, respectively, is disrupted by phosphorylation. In some instances, phosphorylation by the same kinase on different Kinesins elicited opposite outcomes. We discuss how this diverse range of effects could manage the logistics of Kinesin-dependent, long-range intracellular transport.
Collapse
|
25
|
Huang L, Peng Y, Tao X, Ding X, Li R, Jiang Y, Zuo W. Microtubule Organization Is Essential for Maintaining Cellular Morphology and Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1623181. [PMID: 35295719 PMCID: PMC8920689 DOI: 10.1155/2022/1623181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/10/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022]
Abstract
Microtubules (MTs) are highly dynamic polymers essential for a wide range of cellular physiologies, such as acting as directional railways for intracellular transport and position, guiding chromosome segregation during cell division, and controlling cell polarity and morphogenesis. Evidence has established that maintaining microtubule (MT) stability in neurons is vital for fundamental cellular and developmental processes, such as neurodevelopment, degeneration, and regeneration. To fulfill these diverse functions, the nervous system employs an arsenal of microtubule-associated proteins (MAPs) to control MT organization and function. Subsequent studies have identified that the disruption of MT function in neurons is one of the most prevalent and important pathological features of traumatic nerve damage and neurodegenerative diseases and that this disruption manifests as a reduction in MT polymerization and concomitant deregulation of the MT cytoskeleton, as well as downregulation of microtubule-associated protein (MAP) expression. A variety of MT-targeting agents that reverse this pathological condition, which is regarded as a therapeutic opportunity to intervene the onset and development of these nervous system abnormalities, is currently under development. Here, we provide an overview of the MT-intrinsic organization process and how MAPs interact with the MT cytoskeleton to promote MT polymerization, stabilization, and bundling. We also highlight recent advances in MT-targeting therapeutic agents applied to various neurological disorders. Together, these findings increase our current understanding of the function and regulation of MT organization in nerve growth and regeneration.
Collapse
Affiliation(s)
- Lijiang Huang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, No. 291 Donggu Road, Xiangshan County, Zhejiang 315000, China
| | - Yan Peng
- Hangzhou Institute for Food and Drug Control, Hangzhou, Zhejiang, China
| | - Xuetao Tao
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaoxiao Ding
- Department of Pharmacy, The People's Hospital of Beilun District, Ningbo, Zhejiang 315807, China
| | - Rui Li
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, No. 291 Donggu Road, Xiangshan County, Zhejiang 315000, China
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongsheng Jiang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, No. 291 Donggu Road, Xiangshan County, Zhejiang 315000, China
| | - Wei Zuo
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, No. 291 Donggu Road, Xiangshan County, Zhejiang 315000, China
| |
Collapse
|
26
|
Braschi B, Omran H, Witman GB, Pazour GJ, Pfister KK, Bruford EA, King SM. Consensus nomenclature for dyneins and associated assembly factors. J Cell Biol 2022; 221:e202109014. [PMID: 35006274 PMCID: PMC8754002 DOI: 10.1083/jcb.202109014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/10/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Dyneins are highly complex, multicomponent, microtubule-based molecular motors. These enzymes are responsible for numerous motile behaviors in cytoplasm, mediate retrograde intraflagellar transport (IFT), and power ciliary and flagellar motility. Variants in multiple genes encoding dyneins, outer dynein arm (ODA) docking complex subunits, and cytoplasmic factors involved in axonemal dynein preassembly (DNAAFs) are associated with human ciliopathies and are of clinical interest. Therefore, clear communication within this field is particularly important. Standardizing gene nomenclature, and basing it on orthology where possible, facilitates discussion and genetic comparison across species. Here, we discuss how the human gene nomenclature for dyneins, ODA docking complex subunits, and DNAAFs has been updated to be more functionally informative and consistent with that of the unicellular green alga Chlamydomonas reinhardtii, a key model organism for studying dyneins and ciliary function. We also detail additional nomenclature updates for vertebrate-specific genes that encode dynein chains and other proteins involved in dynein complex assembly.
Collapse
Affiliation(s)
- Bryony Braschi
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, MA
| | - K. Kevin Pfister
- Cell Biology Department, School of Medicine University of Virginia, Charlottesville, VA
| | - Elspeth A. Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
27
|
Fan H, He Y, Shu Q, Wang X, Cui H, Hu Y, Wei G, Dong H, Zhang J, Hong N. Three-dimensional self-powered DNA walking machine based on catalyzed hairpin assembly energy transfer strategy. Anal Biochem 2021; 639:114529. [PMID: 34929152 DOI: 10.1016/j.ab.2021.114529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/01/2023]
Abstract
Herein, catalyzed hairpin assembly is implemented as an automated strategy, which can respond in living cells to detect specific target DNA. Using the principle of catalyzed hairpin assembly (CHA), the auxiliary chain connects the fuel and starting chain to form a triple-stranded DNA to complete such a single system. Hundreds of single systems are modified on gold nanoparticles as DNA orbitals. Through the specific recognition of base complementation, the target DNA can realize the automatic walking of the three-dimensional fluorescence machine. This is a novel walking nanomachine that has a simple structure and can independently exist in cells to achieve automatic operation.
Collapse
Affiliation(s)
- Hao Fan
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Yani He
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Qingxia Shu
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Xinru Wang
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Hanfeng Cui
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Yuping Hu
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Guobing Wei
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| | - Huanhuan Dong
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China.
| | - Jing Zhang
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China.
| | - Nian Hong
- Department of Pharmacy, JiangXi University of Traditional Chinese Medicine, Nanchang, JiangXi, 330004, China
| |
Collapse
|
28
|
Qiu R, Zhang J, Rotty JD, Xiang X. Dynein activation in vivo is regulated by the nucleotide states of its AAA3 domain. Curr Biol 2021; 31:4486-4498.e6. [PMID: 34428469 DOI: 10.1016/j.cub.2021.07.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Accepted: 07/29/2021] [Indexed: 01/02/2023]
Abstract
Cytoplasmic dynein is activated by the dynactin complex, cargo adapters and LIS1 (Lissencephaly 1). How this process is regulated in vivo remains unclear. The dynein motor ring contains six AAA+ (ATPases associated with diverse cellular activities) domains. Here, we used the filamentous fungus Aspergillus nidulans to examine whether ATP hydrolysis at AAA3 regulates dynein activation in the context of other regulators. In fungal hyphae, early endosomes undergo dynein-mediated movement away from the microtubule plus ends near the hyphal tip. Dynein normally accumulates at the microtubule plus ends. The early endosomal adaptor Hook protein, together with dynactin, drives dynein activation to cause its relocation to the microtubule minus ends. This activation process depends on LIS1, but LIS1 tends to dissociate from dynein after its activation. In this study, we found that dynein containing a mutation-blocking ATP hydrolysis at AAA3 can undergo LIS1-independent activation, consistent with our genetic data that the same mutation suppresses the growth defect of the A. nidulans LIS1-deletion mutant. Our data also suggest that blocking AAA3 ATP hydrolysis allows dynein activation by dynactin without the early endosomal adaptor. As a consequence, dynein accumulates at microtubule minus ends whereas early endosomes stay near the plus ends. Dynein containing a mutation-blocking ATP binding at AAA3 largely depends on LIS1 for activation, but this mutation abnormally prevents LIS1 dissociation upon dynein activation. Together, our data suggest that the AAA3 ATPase cycle regulates the coordination between dynein activation and cargo binding as well as the dynamic dynein-LIS1 interaction.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Jeremy D Rotty
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA.
| |
Collapse
|
29
|
Luo J, Hu Q, Gou M, Liu X, Qin Y, Zhu J, Cai C, Tian T, Tu Z, Du Y, Deng H. Expression of Microtubule-Associated Proteins in Relation to Prognosis and Efficacy of Immunotherapy in Non-Small Cell Lung Cancer. Front Oncol 2021; 11:680402. [PMID: 34660263 PMCID: PMC8517487 DOI: 10.3389/fonc.2021.680402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background Microtubule-associated proteins (MAPs) have been considered to play significant roles in the tumor evolution of non-small cell lung cancer (NSCLC). Nevertheless, mRNA transcription levels and prognostic value of distinct MAPs in patients with NSCLC remain to be clarified. Methods In this study, the Oncomine database, Gene Expression Profiling Interactive Analysis (GEPIA) database, and Human Protein Atlas were utilized to analyze the relationship between mRNA/protein expression of different MAPs and clinical characteristics in NSCLC patients, including tumor type and pathological stage. The correlation between the transcription level of MAPs and overall survival (OS) of NSCLC patients was analyzed by Kaplan–Meier plotter. Besides, 50 frequently altered neighbor genes of the MAPs were screened out, and a network has been constructed via the cBioPortal and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) dataset. Meanwhile, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis on the expression data of MAPs and their 50 frequently altered neighbor genes in NSCLC tissues. Furthermore, The Cancer Immunome Atlas (TCIA) was utilized to analyze the relationship between MAP expression and the response to immunotherapy. Finally, we used reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to verify the expression of MAPs in 20 patients with NSCLC. Results The present study discovered that the mRNA transcription levels of MAP7/7D2 were enriched in NSCLC tissues, while those of the MAP2/4/6/7D3 were lower in NSCLC specimens than those in control specimens. The mRNA transcription level of MAP6 was significantly associated with the advanced stage of NSCLC. Besides, survival analysis indicated that higher mRNA expressions of MAP2/4/6/7/7D3 were correlated considerably with favorable OS of NSCLC patients, whereas increased mRNA expression levels of MAP1A/1S were associated with poor OS. Moreover, the expression of MAP1A/1B/1S/4/6/7D1/7D3 was significantly correlated with immunophenoscore (IPS) in NSCLC patients. Conclusions Our analysis indicated that MAP1A/1S could serve as potential personalized therapeutic targets for patients with NSCLC, and the enriched MAP2/4/6/7/7D3 expression could serve as a biomarker for favorable prognosis in NSCLC. Besides, the expression of MAP1A/1B/1S/4/6/7D1/7D3 was closely related to the response to immunotherapy. Taken together, MAP expression has potential application value in the clinical treatment and prognosis assessment of NSCLC patients, and further verifiable experiments can be conducted to verify our results.
Collapse
Affiliation(s)
- Jieyan Luo
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Qipeng Hu
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Maling Gou
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoke Liu
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Qin
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Zhu
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengzhi Cai
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Tian
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zegui Tu
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yijia Du
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
30
|
Nandi R, Täuber UC, Priyanka. Dynein-Inspired Multilane Exclusion Process with Open Boundary Conditions. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1343. [PMID: 34682067 PMCID: PMC8534927 DOI: 10.3390/e23101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022]
Abstract
Motivated by the sidewise motions of dynein motors shown in experiments, we use a variant of the exclusion process to model the multistep dynamics of dyneins on a cylinder with open ends. Due to the varied step sizes of the particles in a quasi-two-dimensional topology, we observe the emergence of a novel phase diagram depending on the various load conditions. Under high-load conditions, our numerical findings yield results similar to the TASEP model with the presence of all three standard TASEP phases, namely the low-density (LD), high-density (HD), and maximal-current (MC) phases. However, for medium- to low-load conditions, for all chosen influx and outflux rates, we only observe the LD and HD phases, and the maximal-current phase disappears. Further, we also measure the dynamics for a single dynein particle which is logarithmically slower than a TASEP particle with a shorter waiting time. Our results also confirm experimental observations of the dwell time distribution: The dwell time distribution for dyneins is exponential in less crowded conditions, whereas a double exponential emerges under overcrowded conditions.
Collapse
Affiliation(s)
- Riya Nandi
- Department of Genetics and Evolution, University of Geneva, 1205 Geneva, Switzerland;
| | - Uwe C. Täuber
- Department of Physics (MC 0435) & Center for Soft Matter and Biological Physics, Faculty of Health Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Priyanka
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
31
|
Wei X, Sha Y, Wei Z, Zhu X, He F, Zhang X, Liu W, Wang Y, Lu Z. Bi-allelic mutations in DNAH7 cause asthenozoospermia by impairing the integrality of axoneme structure. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1300-1309. [PMID: 34476482 DOI: 10.1093/abbs/gmab113] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Indexed: 11/13/2022] Open
Abstract
Asthenozoospermia is the most common cause of male infertility. Dynein protein arms play a crucial role in the motility of both the cilia and flagella, and defects in these proteins generally impair the axoneme structure and cause primary ciliary dyskinesia. But relatively little is known about the influence of dynein protein arm defects on sperm flagella function. Here, we recruited 85 infertile patients with idiopathic asthenozoospermia and identified bi-allelic mutations in DNAH7 (NM_018897.3) from three patients using whole-exome sequencing. These variants are rare, highly pathogenic, and very conserved. The spermatozoa from the patients with DNAH7 bi-allelic mutations showed specific losses in the inner dynein arms. The expression of DNAH7 in the spermatozoa from the DNAH7-defective patients was significantly decreased, but these patients were able to have their children via intra-cytoplasmic sperm injection treatment. Our study is the first to demonstrate that bi-allelic mutations in DNAH7 may impair the integrality of axoneme structure, affect sperm motility, and cause asthenozoospermia in humans. These findings may extend the spectrum of etiological genes and provide new clues for the diagnosis and treatment of patients with asthenozoospermia.
Collapse
Affiliation(s)
- Xiaoli Wei
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Yanwei Sha
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital and School of Medicine, Xiamen University, Xiamen 361005, China
| | - Zijie Wei
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Xingshen Zhu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Fengming He
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Xiaoya Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| | - Wensheng Liu
- Obstetrics and Gynecology Center, Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yifeng Wang
- Obstetrics and Gynecology Center, Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
32
|
Three-color single-molecule imaging reveals conformational dynamics of dynein undergoing motility. Proc Natl Acad Sci U S A 2021; 118:2101391118. [PMID: 34326255 PMCID: PMC8346880 DOI: 10.1073/pnas.2101391118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Dynein, a dimeric motor protein, moves along microtubules through adenosine 5′-triphosphate- and thermal-driven motions of two large ring domains (AAA rings) and small microtubule-binding domains (MTBDs) separated by a long coiled-coil. Previous single-molecule studies have tracked the positions of the AAA rings during motility, but not the MTBDs. Here, we tracked the relative positions of both MTBDs and one AAA ring by three-color, nanometer-resolution imaging. The observation of both MTBDs provided a direct measurement of how dynein steps on the tubulin subunits, and the simultaneous observation of three fiducial markers revealed extraordinary flexibility and previously unknown conformational states of the motor during motility. The techniques presented here can be used to explore conformational dynamics of many other macromolecular complexes. The motor protein dynein undergoes coordinated conformational changes of its domains during motility along microtubules. Previous single-molecule studies analyzed the motion of the AAA rings of the dynein homodimer, but not the distal microtubule-binding domains (MTBDs) that step along the track. Here, we simultaneously tracked with nanometer precision two MTBDs and one AAA ring of a single dynein as it underwent hundreds of steps using three-color imaging. We show that the AAA ring and the MTBDs do not always step simultaneously and can take differently sized steps. This variability in the movement between the AAA ring and MTBDs results in an unexpectedly large number of conformational states of dynein during motility. Extracting data on conformational transition biases, we could accurately model dynein stepping in silico. Our results reveal that the flexibility between major dynein domains is critical for dynein motility.
Collapse
|
33
|
Huang S, Zhang T, Wang Y, Wang L, Yan Z, Teng Y, Li Z, Lou Q, Liu S, Cai J, Chen Y, Li M, Huang H, Xu Z, Zou Y. Association of DYNC1H1 gene SNP/CNV with disease susceptibility, GCs efficacy, HRQOL, anxiety, and depression in Chinese SLE patients. J Clin Lab Anal 2021; 35:e23892. [PMID: 34272765 PMCID: PMC8373356 DOI: 10.1002/jcla.23892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/17/2022] Open
Abstract
Background Systemic lupus erythematosus is a heterogeneous autoimmune disease characterized by multi‐system injuries and overproduction of autoantibodies. There are many genetic studies on SLE, but no report has considered the relationship between cytoplasmic dynein and SLE susceptibility. Objectives Our study intends to investigate whether DYNC1H1 gene SNP/CNV is related to SLE susceptibility, GCs efficacy, HRQOL, anxiety, and depression in Chinese SLE patients. Methods A total of 502 cases and 544 healthy controls were recruited into the case‐control study, and 472 subjects from the case group were followed up for 12 weeks to evaluate GCs efficacy, HRQOL, anxiety, and depression. Multiplex SNaPshot technique was applied to genotype the seven SNPs of DYNC1H1, and AccuCopyTM method was conducted to quantify the copy number of DYNC1H1. Anxiety and depression were evaluated using HAMA and HAMD‐24 scales, respectively. The SF‐36 scale was used to assess HRQOL. Results The significant association between SNP rs1190606 and SLE susceptibility was displayed in the dominant model (PBH = 0.004) as well as its allele model (PBH = 0.004). We also found that SNP rs2273440 was related to photosensitization symptom in SLE patients (PBH = 0.032). In the follow‐up study, SNP rs11160668 was connected with the improvement of BP in male patients (PBH = 0.011). However, no association of DYNC1H1 gene with GCs efficacy, anxiety, and depression was found. No CNV in DYNC1H1 was detected. Conclusions The study suggests that DYNC1H1 gene polymorphisms may have an effect on SLE susceptibility and BP improvement of HRQOL in Chinese SLE patients.
Collapse
Affiliation(s)
- Shunwei Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Tingyu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Yuhua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Linlin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Ziye Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Ying Teng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Zhen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Qiuyue Lou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| | - Shuang Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Cai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yangfan Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mu Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hailiang Huang
- Department of Laboratory Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Zhouzhou Xu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanfeng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,The Key Laboratory of Anhui Medical Autoimmune Diseases, Hefei, China
| |
Collapse
|
34
|
Harasztosi C, Klenske E, Gummer AW. Vesicle traffic in the outer hair cell. Eur J Neurosci 2021; 54:4755-4767. [PMID: 34043848 DOI: 10.1111/ejn.15331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022]
Abstract
The plasma-membrane marker FM1-43 was employed to reveal the relative significance of different types of endocytic and transcytic mechanisms in outer hair cells (OHCs) of the guinea-pig cochlea. A double-barrel local perfusion system was used to label independently the apical or synaptic pole of the isolated OHC to study mechanisms of vesicle uptake at the poles and of vesicle trafficking along and across the cell. Treatment with an inhibitor of macropino- and phagocytosis, phenylarsine oxide, or of clathrin-mediated endocytic activity, concanavalin A, significantly reduced the dye uptake at both the apical and the synaptic poles, indicating the presence of both clathrin-independent and clathrin-mediated processes at both poles. However, measurement of uptake speed in the presence of the inhibitors suggested that clathrin-independent processes contribute more extensively to endocytosis at the basal pole than the apical pole. Treatment with an inhibitor of myosin VI, 2,4,6-triiodophenol, significantly delayed both the apicobasal and the basoapical fluorescence signals. However, treatment with an inhibitor of kinesin, monastrol, or of dynein, ciliobrevin D, significantly delayed the signals only in the basoapical direction. The myosinVI inhibitor, but neither the kinesin nor dynein inhibitors, significantly delayed the signals to the subsurface cisternae. That is, myosin VI carries vesicles in both longitudinal directions as well as radially to the subsurface cisternae, whereas kinesin and dynein participate primarily in basoapical trafficking. This fundamental information is essential for elucidating recycling mechanisms of specific proteins involved in establishing, controlling and maintaining the electromechanical action of OHCs and, therefore, is vital for understanding auditory perception.
Collapse
Affiliation(s)
- Csaba Harasztosi
- Section of Physiological Acoustics and Communication, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Entcho Klenske
- Section of Physiological Acoustics and Communication, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anthony W Gummer
- Section of Physiological Acoustics and Communication, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
35
|
Jepps TA. Kv7 channel trafficking by the microtubule network in vascular smooth muscle. Acta Physiol (Oxf) 2021; 232:e13692. [PMID: 34021973 PMCID: PMC8365713 DOI: 10.1111/apha.13692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
In arterial smooth muscle cells, changes in availability of integral membrane proteins influence the regulation of blood flow and blood pressure, which is critical for human health. However, the mechanisms that coordinate the trafficking and membrane expression of specific receptors and ion channels in vascular smooth muscle are poorly understood. In the vasculature, very little is known about microtubules, which form a road network upon which proteins can be transported to and from the cell membrane. This review article summarizes the impact of the microtubule network on arterial contractility, highlighting the importance of the network, with an emphasis on our recent findings regarding the trafficking of the voltage‐dependent Kv7 channels.
Collapse
Affiliation(s)
- Thomas A Jepps
- Vascular Biology Group Department of Biomedical Sciences University of Copenhagen Blegdamsvej 3 2200 Copenhagen N Denmark
| |
Collapse
|
36
|
Microfilaments and microtubules alternately coordinate the multi-step endosomal trafficking of Classical Swine Fever Virus. J Virol 2021; 95:JVI.02436-20. [PMID: 33627389 PMCID: PMC8139654 DOI: 10.1128/jvi.02436-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cytoskeleton, as a ubiquitous structure in the cells, plays an important role in the process of virus entry, replication, and survival. However, the action mechanism of cytoskeleton in the invasion of Pestivirus into host cells remains unclear. In this study, we systematically dissected the key roles of the main cytoskeleton components, microfilaments and microtubules in the endocytosis of porcine Pestivirus, Classical swine fever virus (CSFV). We observed the dynamic changes of actin filaments in CSFV entry. Confocal microscopy showed that CSFV invasion induced the dissolution and aggregation of stress fibers, resulting in the formation of lamellipodia and filopodia. Chemical inhibitors and RNA interference were used to find that the dynamic changes of actin were caused by EGFR-PI3K/MAPK-RhoA/Rac1/Cdc42-cofilin signaling pathway, which regulates the microfilaments to help CSFV entry. Furthermore, co-localization of the microfilaments with clathrin and Rab5 (early endosome), as well as microtubules with Rab7 (late endosome) and Lamp1 (lysosome) revealed that microfilaments were activated and rearranged to help CSFV trafficking to early endosome after endocytosis. Subsequently, recruitment of microtubules by CSFV also assisted membrane fusion of the virions from late endosome to lysosome with the help of a molecular motor, dynein. Unexpectedly, vimentin, which is an intermediate filament, had no effect on CSFV entry. Taken together, our findings comprehensively revealed the molecular mechanisms of cytoskeletal components that regulated CSFV endocytosis and facilitated further understanding of Pestivirus entry, which would be conducive to explore antiviral molecules to control classical swine fever.IMPORTANCEEndocytosis, an essential biological process mediating cellular internalization events, is often exploited by pathogens for their entry into target cells. Previously, we have reported different mechanisms of CSFV endocytosis into the porcine epithelial cells (PK-15) and macrophages (3D4/21); however, the details of microfilaments/microtubules mediated virus migration within the host cells remained to be elucidated. In this study, we found that CSFV infection induced rearrangement of actin filaments regulated by cofilin through EGFR-PI3K/MAPK-RhoA/Rac1/Cdc42 pathway. Furthermore, we found that CSFV particles were trafficked along actin filaments in early and late endosomes, and through microtubules in lysosomes after entry. Here, we provide for the first time a comprehensive description of the cytoskeleton that facilitates entry and intracellular transport of highly pathogenic swine virus. Results from this study will greatly contribute to the understanding of virus-induced early and complex changes in host cells that are important in CSFV pathogenesis.
Collapse
|
37
|
Xia L, Zhang LJ, Tang HW, Pang DW. Revealing Microtubule-Dependent Slow-Directed Motility by Single-Particle Tracking. Anal Chem 2021; 93:5211-5217. [PMID: 33728900 DOI: 10.1021/acs.analchem.0c05377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microtubules (MTs) are the main component of cytoskeletons, providing long tracks for cargo trafficking across the cytoplasm. In the past years, transport along MTs was frequently reported to be rapid directed motions with speeds of several micrometers per second, but is that all the truth? Using single-particle tracking, we roundly and precisely analyzed the dynamic behaviors of three kinds of cargoes transported along MTs in two types of cells. It was found that during the transport processes, the directed motions of the cargoes were frequently interrupted by nondirected motions which greatly reduced the translocation rate toward the nucleus. What is more, in addition to the widely reported rapid directed motions, a type of directed motions with most speeds below 0.5 μm/s occurred more frequently. On the whole, these slow directed motions took longer than the rapid directed motions and resulted in displacements same as those of the rapid ones. To sum up, while travelling along MTs toward the cell interior, endocytosed cargoes moved alternately in rapid-directed, slow-directed and nondirected modes. In this process, the rapid- and the slow-directed motions contributed almost equally to the cargoes' translocation. This work provides original insights into the transport on MTs, facilitating a more comprehensive understanding of intracellular trafficking.
Collapse
Affiliation(s)
- Li Xia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Li-Juan Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Dai-Wen Pang
- College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
38
|
Pathak A, Clark S, Bronfman FC, Deppmann CD, Carter BD. Long-distance regressive signaling in neural development and disease. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e382. [PMID: 32391977 PMCID: PMC7655682 DOI: 10.1002/wdev.382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Nervous system development proceeds via well-orchestrated processes involving a balance between progressive and regressive events including stabilization or elimination of axons, synapses, and even entire neurons. These progressive and regressive events are driven by functionally antagonistic signaling pathways with the dominant pathway eventually determining whether a neural element is retained or removed. Many of these developmental sculpting events are triggered by final target innervation necessitating a long-distance mode of communication. While long-distance progressive signaling has been well characterized, particularly for neurotrophic factors, there remains relatively little known about how regressive events are triggered from a distance. Here we discuss the emergent phenomenon of long-distance regressive signaling pathways. In particular, we will cover (a) progressive and regressive cues known to be employed after target innervation, (b) the mechanisms of long-distance signaling from an endosomal platform, (c) recent evidence that long-distance regressive cues emanate from platforms like death receptors or repulsive axon guidance receptors, and (d) evidence that these pathways are exploited in pathological scenarios. This article is categorized under: Nervous System Development > Vertebrates: General Principles Signaling Pathways > Global Signaling Mechanisms Establishment of Spatial and Temporal Patterns > Cytoplasmic Localization.
Collapse
Affiliation(s)
- Amrita Pathak
- Department of Biochemistry and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Shayla Clark
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia
| | - Francisca C. Bronfman
- Institute of Biomedical Sciences (ICB), Faculty of Medicine, Faculty of Life Science, Universidad Andres Bello, Santiago, Chile
| | - Christopher D. Deppmann
- Departments of Biology, Cell Biology, Biomedical Engineering, and Neuroscience, University of Virginia, Charlottesville, Virginia
| | - Bruce D. Carter
- Department of Biochemistry and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
39
|
van der Horst J, Rognant S, Abbott GW, Ozhathil LC, Hägglund P, Barrese V, Chuang CY, Jespersen T, Davies MJ, Greenwood IA, Gourdon P, Aalkjær C, Jepps TA. Dynein regulates Kv7.4 channel trafficking from the cell membrane. J Gen Physiol 2021; 153:211752. [PMID: 33533890 PMCID: PMC7863719 DOI: 10.1085/jgp.202012760] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
The dynein motor protein transports proteins away from the cell membrane along the microtubule network. Recently, we found the microtubule network was important for regulating the membrane abundance of voltage-gated Kv7.4 potassium channels in vascular smooth muscle. Here, we aimed to investigate the influence of dynein on the microtubule-dependent internalization of the Kv7.4 channel. Patch-clamp recordings from HEK293B cells showed Kv7.4 currents were increased after inhibiting dynein function with ciliobrevin D or by coexpressing p50/dynamitin, which specifically interferes with dynein motor function. Mutation of a dynein-binding site in the Kv7.4 C terminus increased the Kv7.4 current and prevented p50 interference. Structured illumination microscopy, proximity ligation assays, and coimmunoprecipitation showed colocalization of Kv7.4 and dynein in mesenteric artery myocytes. Ciliobrevin D enhanced mesenteric artery relaxation to activators of Kv7.2–Kv7.5 channels and increased membrane abundance of Kv7.4 protein in isolated smooth muscle cells and HEK293B cells. Ciliobrevin D failed to enhance the negligible S-1–mediated relaxations after morpholino-mediated knockdown of Kv7.4. Mass spectrometry revealed an interaction of dynein with caveolin-1, confirmed using proximity ligation and coimmunoprecipitation assays, which also provided evidence for interaction of caveolin-1 with Kv7.4, confirming that Kv7.4 channels are localized to caveolae in mesenteric artery myocytes. Lastly, cholesterol depletion reduced the interaction of Kv7.4 with caveolin-1 and dynein while increasing the overall membrane expression of Kv7.4, although it attenuated the Kv7.4 current in oocytes and interfered with the action of ciliobrevin D and channel activators in arterial segments. Overall, this study shows that dynein can traffic Kv7.4 channels in vascular smooth muscle in a mechanism dependent on cholesterol-rich caveolae.
Collapse
Affiliation(s)
| | - Salomé Rognant
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA
| | | | - Per Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vincenzo Barrese
- St. George's, University of London, London, UK.,Department of Neuroscience, Reproductive Science and Dentistry, University of Naples "Federico II," Naples, Italy
| | - Christine Y Chuang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jespersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Medical Sciences, Lund University, Lund, Sweden
| | - Christian Aalkjær
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Thomas A Jepps
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Wang L, Yan M, Li H, Wu S, Ge R, Wong CKC, Silvestrini B, Sun F, Cheng CY. The Non-hormonal Male Contraceptive Adjudin Exerts its Effects via MAPs and Signaling Proteins mTORC1/rpS6 and FAK-Y407. Endocrinology 2021; 162:5936120. [PMID: 33094326 PMCID: PMC8244566 DOI: 10.1210/endocr/bqaa196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Adjudin, 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (formerly called AF-2364), is a nonhormonal male contraceptive, since it effectively induces reversible male infertility without perturbing the serum concentrations of follicle stimulating hormone (FSH), testosterone, and inhibin B based on studies in rats and rabbits. Adjudin was shown to exert its effects preferentially by perturbing the testis-specific actin-rich adherens junction (AJ) at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES), thereby effectively inducing spermatid exfoliation. Adjudin did not perturb germ cell development nor germ cell function. Also, it had no effects on Sertoli cell-cell AJ called basal ectoplasmic specialization (basal ES), which, together with tight junction constitute the blood-testis barrier (BTB), unless an acute dose of adjudin was used. Adjudin also did not perturb the population of spermatogonial stem cells nor Sertoli cells in the testis. However, the downstream signaling protein(s) utilized by adjudin to induce transient male infertility remains unexplored. Herein, using adult rats treated with adjudin and monitored changes in the phenotypes across the seminiferous epithelium between 6 and 96 h in parallel with the steady-state protein levels of an array of signaling and cytoskeletal regulatory proteins, recently shown to be involved in apical ES, basal ES and BTB function. It was shown that adjudin exerts its contraceptive effects through changes in microtubule associated proteins (MAPs) and signaling proteins mTORC1/rpS6 and p-FAK-Y407. These findings are important to not only study adjudin-mediated male infertility but also the biology of spermatogenesis.
Collapse
Affiliation(s)
- Lingling Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siwen Wu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China
| | | | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
- Correspondence: C. Yan Cheng, PhD, Senior Scientist, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065. E-mail:
| |
Collapse
|
41
|
Wang L, Yan M, Wong CKC, Ge R, Wu X, Sun F, Cheng CY. Microtubule-associated proteins (MAPs) in microtubule cytoskeletal dynamics and spermatogenesis. Histol Histopathol 2020; 36:249-265. [PMID: 33174615 DOI: 10.14670/hh-18-279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The microtubule (MT) cytoskeleton in Sertoli cells, a crucial cellular structure in the seminiferous epithelium of adult mammalian testes that supports spermatogenesis, was studied morphologically decades ago. However, its biology, in particular the involving regulatory biomolecules and the underlying mechanism(s) in modulating MT dynamics, are only beginning to be revealed in recent years. This lack of studies in delineating the biology of MT cytoskeletal dynamics undermines other studies in the field, in particular the plausible therapeutic treatment and management of male infertility and fertility since studies have shown that the MT cytoskeleton is one of the prime targets of toxicants. Interestingly, much of the information regarding the function of actin-, MT- and intermediate filament-based cytoskeletons come from studies using toxicant models including some genetic models. During the past several years, there have been some advances in studying the biology of MT cytoskeleton in the testis, and many of these studies were based on the use of pharmaceutical/toxicant models. In this review, we summarize the results of these findings, illustrating the importance of toxicant/pharmaceutical models in unravelling the biology of MT dynamics, in particular the role of microtubule-associated proteins (MAPs), a family of regulatory proteins that modulate MT dynamics but also actin- and intermediate filament-based cytoskeletons. We also provide a timely hypothetical model which can serve as a guide to design functional experiments to study how the MT cytoskeleton is regulated during spermatogenesis through the use of toxicants and/or pharmaceutical agents.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
42
|
CFAP45 deficiency causes situs abnormalities and asthenospermia by disrupting an axonemal adenine nucleotide homeostasis module. Nat Commun 2020; 11:5520. [PMID: 33139725 PMCID: PMC7606486 DOI: 10.1038/s41467-020-19113-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/25/2020] [Indexed: 11/08/2022] Open
Abstract
Axonemal dynein ATPases direct ciliary and flagellar beating via adenosine triphosphate (ATP) hydrolysis. The modulatory effect of adenosine monophosphate (AMP) and adenosine diphosphate (ADP) on flagellar beating is not fully understood. Here, we describe a deficiency of cilia and flagella associated protein 45 (CFAP45) in humans and mice that presents a motile ciliopathy featuring situs inversus totalis and asthenospermia. CFAP45-deficient cilia and flagella show normal morphology and axonemal ultrastructure. Proteomic profiling links CFAP45 to an axonemal module including dynein ATPases and adenylate kinase as well as CFAP52, whose mutations cause a similar ciliopathy. CFAP45 binds AMP in vitro, consistent with structural modelling that identifies an AMP-binding interface between CFAP45 and AK8. Microtubule sliding of dyskinetic sperm from Cfap45−/− mice is rescued with the addition of either AMP or ADP with ATP, compared to ATP alone. We propose that CFAP45 supports mammalian ciliary and flagellar beating via an adenine nucleotide homeostasis module. The mechanism by which adenosine monophosphate modulates dynein ATPase-mediated ciliary and flagellar beating remains obscure. Here the authors identify an axonemal module including cilia and flagella associated protein 45 that supports adenine nucleotide homeostasis and underlies a human ciliopathy
Collapse
|
43
|
Vasudevan A, Koushika SP. Molecular mechanisms governing axonal transport: a C. elegans perspective. J Neurogenet 2020; 34:282-297. [PMID: 33030066 DOI: 10.1080/01677063.2020.1823385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Axonal transport is integral for maintaining neuronal form and function, and defects in axonal transport have been correlated with several neurological diseases, making it a subject of extensive research over the past several years. The anterograde and retrograde transport machineries are crucial for the delivery and distribution of several cytoskeletal elements, growth factors, organelles and other synaptic cargo. Molecular motors and the neuronal cytoskeleton function as effectors for multiple neuronal processes such as axon outgrowth and synapse formation. This review examines the molecular mechanisms governing axonal transport, specifically highlighting the contribution of studies conducted in C. elegans, which has proved to be a tractable model system in which to identify both novel and conserved regulatory mechanisms of axonal transport.
Collapse
Affiliation(s)
- Amruta Vasudevan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
44
|
Ohashi KG, Han L, Mentley B, Wang J, Fricks J, Hancock WO. Load-dependent detachment kinetics plays a key role in bidirectional cargo transport by kinesin and dynein. Traffic 2020; 20:284-294. [PMID: 30809891 DOI: 10.1111/tra.12639] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022]
Abstract
Bidirectional cargo transport along microtubules is carried out by opposing teams of kinesin and dynein motors. Despite considerable study, the factors that determine whether these competing teams achieve net anterograde or retrograde transport in cells remain unclear. The goal of this work is to use stochastic simulations of bidirectional transport to determine the motor properties that most strongly determine overall cargo velocity and directionality. Simulations were carried out based on published optical tweezer characterization of kinesin-1 and kinesin-2, and for available data for cytoplasmic dynein and the dynein-dynactin-BicD2 (DDB) complex. By varying dynein parameters and analyzing cargo trajectories, we find that net cargo transport is predicted to depend minimally on the dynein stall force, but strongly on dynein load-dependent detachment kinetics. In simulations, dynein is dominated by kinesin-1, but DDB and kinesin-1 are evenly matched, recapitulating recent experimental work. Kinesin-2 competes less well against dynein and DDB, and overall, load-dependent motor detachment is the property that most determines a motor's ability to compete in bidirectional transport. It follows that the most effective intracellular regulators of bidirectional transport are predicted to be those that alter motor detachment kinetics rather than motor velocity or stall force.
Collapse
Affiliation(s)
- Kazuka G Ohashi
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania
| | - Lifeng Han
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona
| | - Brandon Mentley
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania
| | - Jiaxuan Wang
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania
| | - John Fricks
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona
| | - William O Hancock
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania
| |
Collapse
|
45
|
Johnson CM, Fenn JD, Brown A, Jung P. Dynamic catch-bonding generates the large stall forces of cytoplasmic dynein. Phys Biol 2020; 17:046004. [PMID: 32369788 DOI: 10.1088/1478-3975/ab907d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cytoplasmic dynein is an important molecular motor involved in the transport of vesicular and macromolecular cargo along microtubules in cells, often in conjunction with kinesin motors. Dynein is larger and more complex than kinesin and the mechanism and regulation of its movement is currently the subject of intense research. While it was believed for a long time that dynein motors are relatively weak in terms of the force they can generate, recent studies have shown that interactions with regulatory proteins confer large stall forces comparable to those of kinesin. This paper reports on a theoretical study which suggests that these large stall forces may be the result of an emergent, ATP-dependent, bistability resulting in a dynamic catch-bonding behavior that can cause the motor to switch between high and low load-force states.
Collapse
Affiliation(s)
- Christopher M Johnson
- Department of Physics and Astronomy, Ohio University, Athens, OH 45701, United States of America
| | | | | | | |
Collapse
|
46
|
Qiu R, Zhang J, Xiang X. The splicing-factor Prp40 affects dynein-dynactin function in Aspergillus nidulans. Mol Biol Cell 2020; 31:1289-1301. [PMID: 32267207 PMCID: PMC7353152 DOI: 10.1091/mbc.e20-03-0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The multi-component cytoplasmic dynein transports cellular cargoes with the help of another multi-component complex dynactin, but we do not know enough about factors that may affect the assembly and functions of these proteins. From a genetic screen for mutations affecting early-endosome distribution in Aspergillus nidulans, we identified the prp40AL438* mutation in Prp40A, a homologue of Prp40, an essential RNA-splicing factor in the budding yeast. Prp40A is not essential for splicing, although it associates with the nuclear splicing machinery. The prp40AL438* mutant is much healthier than the ∆prp40A mutant, but both mutants exhibit similar defects in dynein-mediated early-endosome transport and nuclear distribution. In the prp40AL438* mutant, the frequency but not the speed of dynein-mediated early-endosome transport is decreased, which correlates with a decrease in the microtubule plus-end accumulations of dynein and dynactin. Within the dynactin complex, the actin-related protein Arp1 forms a mini-filament. In a pull-down assay, the amount of Arp1 pulled down with its pointed-end protein Arp11 is lowered in the prp40AL438* mutant. In addition, we found from published interactome data that a mammalian Prp40 homologue PRPF40A interacts with Arp1. Thus, Prp40 homologues may regulate the assembly or function of dynein–dynactin and their mechanisms deserve to be further studied.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|
47
|
Brenner S, Berger F, Rao L, Nicholas MP, Gennerich A. Force production of human cytoplasmic dynein is limited by its processivity. SCIENCE ADVANCES 2020; 6:eaaz4295. [PMID: 32285003 PMCID: PMC7141836 DOI: 10.1126/sciadv.aaz4295] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/22/2020] [Indexed: 05/02/2023]
Abstract
Cytoplasmic dynein is a highly complex motor protein that generates forces toward the minus end of microtubules. Using optical tweezers, we demonstrate that the low processivity (ability to take multiple steps before dissociating) of human dynein limits its force generation due to premature microtubule dissociation. Using a high trap stiffness whereby the motor achieves greater force per step, we reveal that the motor's true maximal force ("stall force") is ~2 pN. Furthermore, an average force versus trap stiffness plot yields a hyperbolic curve that plateaus at the stall force. We derive an analytical equation that accurately describes this curve, predicting both stall force and zero-load processivity. This theoretical model describes the behavior of a kinesin motor under low-processivity conditions. Our work clarifies the true stall force and processivity of human dynein and provides a new paradigm for understanding and analyzing molecular motor force generation for weakly processive motors.
Collapse
Affiliation(s)
- Sibylle Brenner
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Florian Berger
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Lu Rao
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Matthew P. Nicholas
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Medical Scientist Training Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065, USA
- Corresponding author.
| |
Collapse
|
48
|
Kubo S, Shima T, Takada S. How Cytoplasmic Dynein Couples ATP Hydrolysis Cycle to Diverse Stepping Motions: Kinetic Modeling. Biophys J 2020; 118:1930-1945. [PMID: 32272056 DOI: 10.1016/j.bpj.2020.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 01/20/2023] Open
Abstract
Cytoplasmic dynein is a two-headed molecular motor that moves to the minus end of a microtubule by ATP hydrolysis free energy. By employing its two heads (motor domains), cytoplasmic dynein exhibits various bipedal stepping motions: inchworm and hand-over-hand motions, as well as nonalternating steps of one head. However, the molecular basis to achieve such diverse stepping manners remains unclear because of the lack of an experimental method to observe stepping and the ATPase reaction of dynein simultaneously. Here, we propose a kinetic model for bipedal motions of cytoplasmic dynein and perform Gillespie Monte Carlo simulations that qualitatively reproduce most experimental data obtained to date. The model represents the status of each motor domain as five states according to conformation and nucleotide- and microtubule-binding conditions of the domain. In addition, the relative positions of the two domains were approximated by three discrete states. Accompanied by ATP hydrolysis cycles, the model dynein stochastically and processively moved forward in multiple steps via diverse pathways, including inchworm and hand-over-hand motions, similarly to experimental data. The model reproduced key experimental motility-related properties, including velocity and run length, as functions of the ATP concentration and external force, therefore providing a plausible explanation of how dynein achieves various stepping manners with explicit characterization of nucleotide states. Our model highlights the uniqueness of dynein in the coupling of ATPase with its movement during both inchworm and hand-over-hand stepping.
Collapse
Affiliation(s)
- Shintaroh Kubo
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tomohiro Shima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
49
|
Nasrin SR, Afrin T, Kabir AMR, Inoue D, Torisawa T, Oiwa K, Sada K, Kakugo A. Regulation of Biomolecular-Motor-Driven Cargo Transport by Microtubules under Mechanical Stress. ACS APPLIED BIO MATERIALS 2020; 3:1875-1883. [DOI: 10.1021/acsabm.9b01010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Syeda Rubaiya Nasrin
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Tanjina Afrin
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | | | - Daisuke Inoue
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Takayuki Torisawa
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima 411-8540, Japan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Hyogo, Japan
| | - Kazuki Sada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Akira Kakugo
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| |
Collapse
|
50
|
Drum BM, Yuan C, de la Mata A, Grainger N, Santana LF. Junctional sarcoplasmic reticulum motility in adult mouse ventricular myocytes. Am J Physiol Cell Physiol 2020; 318:C598-C604. [PMID: 31967858 DOI: 10.1152/ajpcell.00573.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Excitation-contraction (EC) coupling is the coordinated process by which an action potential triggers cardiac myocyte contraction. EC coupling is initiated in dyads where the junctional sarcoplasmic reticulum (jSR) is in tight proximity to the sarcolemma of cardiac myocytes. Existing models of EC coupling critically depend on dyad stability to ensure the fidelity and strength of EC coupling, where even small variations in ryanodine receptor channel and voltage-gated calcium channel-α 1.2 subunit separation dramatically alter EC coupling. However, dyadic motility has never been studied. Here, we developed a novel strategy to track specific jSR units in dissociated adult ventricular myocytes using photoactivatable fluorescent proteins. We found that the jSR is not static. Instead, we observed dynamic formation and dissolution of multiple dyadic junctions regulated by the microtubule-associated molecular motors kinesin-1 and dynein. Our data support a model where reproducibility of EC coupling results from the activation of a temporally averaged number of SR Ca2+ release units forming and dissolving SR-sarcolemmal junctions. These findings challenge the long-held view that the jSR is an immobile structure and provide insights into the mechanisms underlying its motility.
Collapse
Affiliation(s)
- Benjamin M Drum
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Can Yuan
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Ana de la Mata
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Nathan Grainger
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California, Davis, California
| |
Collapse
|