1
|
Contreras-de la Rosa PA, De la Torre-Zavala S, O´Connor-Sánchez A, Prieto-Davó A, Góngora-Castillo EB. Exploring the microbial communities in coastal cenote and their hidden biotechnological potential. Microb Genom 2025; 11:001382. [PMID: 40178526 PMCID: PMC11968836 DOI: 10.1099/mgen.0.001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Bacterial secondary metabolites are crucial bioactive compounds with significant therapeutic potential, playing key roles in ecological processes and the discovery of novel antimicrobial agents and natural products. Cenotes, as extreme environments, harbour untapped microbial diversity and hold an interesting potential as sources of novel secondary metabolites. While research has focused on the fauna and flora of cenotes, the study of their microbial communities and their biosynthetic capabilities remains limited. Advances in metagenomics and genome sequencing have greatly improved the capacity to explore these communities and their metabolites. In this study, we analysed the microbial diversity and biotechnological potential of micro-organisms inhabiting sediments from a coastal cenote. Metagenomic analyses revealed a rich diversity of bacterial and archaeal communities, containing several novel biosynthetic gene clusters (BGCs) linked to secondary metabolite production. Notably, polyketide synthase BGCs, including those encoding ladderanes and aryl-polyenes, were identified. Bioinformatics analyses of these pathways suggest the presence of compounds with potential industrial and pharmaceutical applications. These findings highlight the biotechnological value of cenotes as reservoirs of secondary metabolites. The study and conservation of these ecosystems are essential to facilitate the discovery of new bioactive compounds that could benefit various industries.
Collapse
Affiliation(s)
- Perla A. Contreras-de la Rosa
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Susana De la Torre-Zavala
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, 66425, San Nicolás de los Garza, Nuevo León, Mexico
| | - Aileen O´Connor-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Alejandra Prieto-Davó
- Unidad de Química-Sisal, Facultad de Química. Universidad Nacional Autónoma de México, 97356, Sisal, Yucatán, México
| | - Elsa B. Góngora-Castillo
- CONAHCYT- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo 97205, Mérida, Yucatán, México
- CONAHCYT-Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 6. Antigua carretera a Progreso. Cordemex, 97310, Mérida, Yucatán, México
| |
Collapse
|
2
|
Huang J, Zhang A, Yang Q, Ding Y, Xiao Z. Degradation of nitrocellulose film under aerobic conditions by a newly isolated Rhodococcus pyridinivorans strain. BIORESOURCE TECHNOLOGY 2024; 413:131464. [PMID: 39278364 DOI: 10.1016/j.biortech.2024.131464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024]
Abstract
The explosive and biorefractory nature of nitrocellulose (NC) poses major risks to both humans and the environment. Expanding the range of microorganisms capable of degrading NC is essential, though the most effective known microorganisms, Desulfovibrio genera and Fusarium solani, achieve degradation rates of 5%-25%. Here, a novel strain, Rhodococcus pyridinivorans LZ1 was isolated, demonstrating the ability to degrade NC, with its growth potentially enhanced by the presence of NC. The degradation process was monitored by assessing changes in nitrate, nitrite, and ammonium. Notably, the -OH strength of NC increased over time, whereas the energetic functional groups (-NO2 and O-NO2) diminished. Furthermore, the presence of NC enhanced nitrate esterase activity 1-2-fold, indicating that ammonification was the primary pathway for NC biodegradation. By converting the nitrate ester of NC into hydroxyl, R. pyridinivorans LZ1 mitigates the harmful effects of NC, offering a promising approach for the treatment of NC waste and wastewater.
Collapse
Affiliation(s)
- Juan Huang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Jiangsu, Nanjing 210094, China; Key Laboratory of Special Energy Materials, Ministry of Education, Jiangsu, Nanjing 210094, China
| | - Alei Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Technology University, Jiangsu, Nanjing 211816, China
| | - Qi Yang
- Luzhou North Chemical Industry Co. Ltd, Sichuan, Luzhou 646605, China
| | - Yajun Ding
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Jiangsu, Nanjing 210094, China; Key Laboratory of Special Energy Materials, Ministry of Education, Jiangsu, Nanjing 210094, China.
| | - Zhongliang Xiao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Jiangsu, Nanjing 210094, China; Key Laboratory of Special Energy Materials, Ministry of Education, Jiangsu, Nanjing 210094, China
| |
Collapse
|
3
|
Andreani-Gerard CM, Cambiazo V, González M. Biosynthetic gene clusters from uncultivated soil bacteria of the Atacama Desert. mSphere 2024; 9:e0019224. [PMID: 39287428 PMCID: PMC11520301 DOI: 10.1128/msphere.00192-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Soil microorganisms mediate several biological processes through the secretion of natural products synthesized in specialized metabolic pathways, yet functional characterization in ecological contexts remains challenging. Using culture-independent metagenomic analyses of microbial DNA derived directly from soil samples, we examined the potential of biosynthetic gene clusters (BGCs) from six bacterial communities distributed along an altitudinal gradient of the Andes Mountains in the Atacama Desert. We mined 38 metagenome-assembled genomes (MAGs) and identified 168 BGCs. Results indicated that most predicted BGCs were classified as non-ribosomal-peptides (NRP), post-translational modified peptides (RiPP), and terpenes, which were mainly identified in genomes of species from Acidobacteriota and Proteobacteria phyla. Based on BGC composition according to types of core biosynthetic genes, six clusters of MAGs were observed, three of them with predominance for a single phylum, of which two also showed specificity to a single sampling site. Comparative analyses of accessory genes in BGCs showed associations between membrane transporters and other protein domains involved in specialized metabolism with classes of biosynthetic cores, such as resistance-nodulation-cell division (RND) multidrug efflux pumps with RiPPs and the iron-dependent transporter TonB with terpenes. Our findings increase knowledge regarding the biosynthetic potential of uncultured bacteria inhabiting pristine locations from one of the oldest and driest nonpolar deserts on Earth.IMPORTANCEMuch of what we know about specialized metabolites in the Atacama Desert, including Andean ecosystems, comes from isolated microorganisms intended for drug development and natural product discovery. To complement research on the metabolic potential of microbes in extreme environments, comparative analyses on functional annotations of biosynthetic gene clusters (BGCs) from uncultivated bacterial genomes were carried out. Results indicated that in general, BGCs encode for structurally unique metabolites and that metagenome-assembled genomes did not show an obvious relationship between the composition of their core biosynthetic potential and taxonomy or geographic distribution. Nevertheless, some members of Acidobacteriota showed a phylogenetic relationship with specific metabolic traits and a few members of Proteobacteria and Desulfobacterota exhibited niche adaptations. Our results emphasize that studying specialized metabolism in environmental samples may significantly contribute to the elucidation of structures, activities, and ecological roles of microbial molecules.
Collapse
Affiliation(s)
- Constanza M. Andreani-Gerard
- Millennium Institute Center for Genome Regulation (CRG)
- Bioinformatic and Gene Expression Laboratory, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Santiago, Chile
- Center for Mathematical Modeling (CMM) – Universidad de Chile, Santiago, Chile
| | - Verónica Cambiazo
- Millennium Institute Center for Genome Regulation (CRG)
- Bioinformatic and Gene Expression Laboratory, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Santiago, Chile
| | - Mauricio González
- Millennium Institute Center for Genome Regulation (CRG)
- Bioinformatic and Gene Expression Laboratory, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Santiago, Chile
| |
Collapse
|
4
|
Xie Q, Wu Y, Zhang H, Liu Q, He Y, Manners I, Guo J. Hydrogen-bonded supramolecular biohybrid frameworks for protein biomineralization constructed from natural phenolic building blocks. J Mater Chem B 2024; 12:10624-10634. [PMID: 39310922 DOI: 10.1039/d4tb01680g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Hydrogen bond-mediated supramolecular crystalline materials, such as hydrogen-bonded organic frameworks, offer a promising strategy for protein biomineralization, yet the intricate design and multi-step synthesis of specific orthogonal units in molecular building blocks pose a significant synthetic challenge. Identifying new classes of natural building blocks capable of facilitating supramolecular framework construction while enabling stable protein binding has remained an elusive goal. Here, we introduce a versatile assembly strategy enabling the organization of diverse proteins and phenolic building blocks into highly crystalline hydrogen-bonded supramolecular phenolic frameworks (ProteinX@SPF). The natural ellagic acid (EA) exhibits a centrosymmetric structure with catechol groups on each molecular side, facilitating hydrogen bonding with protein amino acid residues for primary nucleation. Subsequently, EA self-assembles into ProteinX@SPF through hydrogen bonding and π-π interactions. The multiple hydrogen-bonding interactions impart structural rigidity and directional integrity, conferring ProteinX@SPF biohybrids with remarkable resistance to harsh conditions while preserving protein bioactivity. Additionally, the supramolecular stacking induced by π-π interactions endows ProteinX@SPF with long-range ordered nanochannels, which can serve as the gating to sieve the catalytic substrate and thus enhance the biocatalytic specificity. This work sheds light on biomineralization with natural building blocks for functional biohybrids, showing enormous potential in biocatalysis, sensing, and nanomedicine.
Collapse
Affiliation(s)
- Qiuping Xie
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yue Wu
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Haojie Zhang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qinling Liu
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, BC V8W 3V6, Canada
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
5
|
Ando S, Tanaka R, Ito H. Activity examination of plant Mg-dechelatase and its bacterial homolog in plants and in vitro. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109073. [PMID: 39182428 DOI: 10.1016/j.plaphy.2024.109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Chlorophyll a serves as a photosynthetic pigment in plants. Its degradation is initiated by the extraction of the central Mg by the Mg-dechelatase enzyme, which is encoded by Stay-Green (SGR). Plant SGR is believed to be derived from bacterial SGR homolog obtained through horizontal gene transfer into photosynthetic eukaryotes. However, it is not known how the bacterial SGR homolog was modified to function in plants. To assess its adaptation mechanism in plants, a bacterial SGR homolog derived from the Anaerolineae bacterium SM23_63 was introduced into plants. It was found that the bacterial SGR homolog metabolized chlorophyll in plants. However, its chlorophyll catabolic activity was lower than that of plant SGR. Recombinant proteins of the bacterial SGR homolog exhibited higher activity than those of the plant SGR. The reduced chlorophyll catabolic activity of bacterial SGR homologs in plants may be associated with low hydrophobicity of the entrance to the catalytic site compared to that of plant SGR. This hinders the enzyme access to chlorophyll, which is localized in hydrophobic environments. This study offers insights into the molecular changes underlying the optimization of enzyme function.
Collapse
Affiliation(s)
- Saki Ando
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, 060-0810, Japan; Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan.
| |
Collapse
|
6
|
Guan J, Zhu J, Liu H, Yang H, Zhong S, Chen W, Yi X, Chen C, Tan F, Shen J, Luo P. Arogenate dehydratase isoforms strategically deregulate phenylalanine biosynthesis in Akebia trifoliata. Int J Biol Macromol 2024; 271:132587. [PMID: 38788880 DOI: 10.1016/j.ijbiomac.2024.132587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Arogenate dehydratase (ADT) is key for phenylalanine (Phe) biosynthesis in plants. To examine ADT components and function in Akebia trifoliata, a representative of Ranunculaceae, we first identified eight ADTs (AktADT1-8, encoding sequences varying from 1032 to 1962 bp) in the A. trifoliata reference genome and five proteins (AktADT1, AktADT4, AktADT7, AktADT8 and AktADT8s) with moonlighting prephenate dehydratase (PDT) activity and Km values varying from 0.43 to 2.17 mM. Structurally, two basic residue combinations (Val314/Ala317 and Ala314/Val317) in the PAC domain are essential for the moonlighting PDT activity of ADTs. Functionally, AktADT4 and AktADT8 successfully restored the wild-type phenotype of pha2, a knockout mutant of Saccharomyces cerevisiae. In addition, AktADTs are ubiquitously expressed, but their expression levels are tissue specific, and the half maximal inhibitory concentration (IC50) of Phe for AktADTs ranged from 49.81 to 331.17 μM. Both AktADT4 and AktADT8 and AktADT8s localized to chloroplast stromules and the cytosol, respectively, while the remaining AktADTs localized to the chloroplast stroma. These findings suggest that various strategies exist for regulating Phe biosynthesis in A. trifoliata. This provides a reasonable explanation for the high Phe content and insights for further genetic improvement of the edible fruits of A. trifoliata.
Collapse
Affiliation(s)
- Ju Guan
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China; Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 611130, China
| | - Jun Zhu
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Hao Liu
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Hao Yang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China; Sichuan Akebia trifoliata Biotechnology Co., Ltd., Chengdu 611130, China
| | - Shengfu Zhong
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Wei Chen
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China; Sichuan Akebia trifoliata Biotechnology Co., Ltd., Chengdu 611130, China
| | - Xiaoxiao Yi
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Chen Chen
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Feiquan Tan
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Jinliang Shen
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Peigao Luo
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Chengdu 611130, Sichuan, China.
| |
Collapse
|
7
|
Cereijo AE, Ferretti MV, Iglesias AA, Álvarez HM, Asencion Diez MD. Study of two glycosyltransferases related to polysaccharide biosynthesis in Rhodococcus jostii RHA1. Biol Chem 2024; 405:325-340. [PMID: 38487862 DOI: 10.1515/hsz-2023-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/23/2024] [Indexed: 05/04/2024]
Abstract
The bacterial genus Rhodococcus comprises organisms performing oleaginous behaviors under certain growth conditions and ratios of carbon and nitrogen availability. Rhodococci are outstanding producers of biofuel precursors, where lipid and glycogen metabolisms are closely related. Thus, a better understanding of rhodococcal carbon partitioning requires identifying catalytic steps redirecting sugar moieties to storage molecules. Here, we analyzed two GT4 glycosyl-transferases from Rhodococcus jostii (RjoGlgAb and RjoGlgAc) annotated as α-glucan-α-1,4-glucosyl transferases, putatively involved in glycogen synthesis. Both enzymes were produced in Escherichia coli cells, purified to homogeneity, and kinetically characterized. RjoGlgAb and RjoGlgAc presented the "canonical" glycogen synthase activity and were actives as maltose-1P synthases, although to a different extent. Then, RjoGlgAc is a homologous enzyme to the mycobacterial GlgM, with similar kinetic behavior and glucosyl-donor preference. RjoGlgAc was two orders of magnitude more efficient to glucosylate glucose-1P than glycogen, also using glucosamine-1P as a catalytically efficient aglycon. Instead, RjoGlgAb exhibited both activities with similar kinetic efficiency and preference for short-branched α-1,4-glucans. Curiously, RjoGlgAb presented a super-oligomeric conformation (higher than 15 subunits), representing a novel enzyme with a unique structure-to-function relationship. Kinetic results presented herein constitute a hint to infer on polysaccharides biosynthesis in rhodococci from an enzymological point of view.
Collapse
Affiliation(s)
- Antonela Estefania Cereijo
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| | - María Victoria Ferretti
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| | - Alberto Alvaro Iglesias
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| | - Héctor Manuel Álvarez
- Instituto de Biociencias de la Patagonia (INBIOP), 28226 Universidad Nacional de la Patagonia San Juan Bosco y CONICET , Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina
| | - Matías Damian Asencion Diez
- Laboratorio de Enzimología Molecular, 603337 Instituto de Agrobiotecnología del Litoral (UNL-CONICET) & Facultad de Bioquímica y Ciencias Biológicas , Santa Fe, Argentina
| |
Collapse
|
8
|
Labourel FJF, Daubin V, Menu F, Rajon E. Proteome allocation and the evolution of metabolic cross-feeding. Evolution 2024; 78:849-859. [PMID: 38376478 DOI: 10.1093/evolut/qpae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/21/2024]
Abstract
In a common instance of metabolic cross-feeding (MCF), an organism incompletely metabolizes nutrients and releases metabolites that are used by another to produce energy or building blocks. Why would the former waste edible food, and why does this preferentially occur at specific locations in a metabolic pathway have challenged evolutionary theory for decades. To address these questions, we combine adaptive dynamics with an explicit model of cell metabolism, including enzyme-driven catalysis of metabolic reactions and the cellular constraints acting on the proteome that may incur a cost to expressing all enzymes along a pathway. After pointing out that cells should in principle prioritize upstream reactions when metabolites are restrained inside the cell, we show that the occurrence of permeability-driven MCF is rare and requires that an intermediate metabolite be extremely diffusive. Indeed, only at very high levels of membrane permeability (consistent with those of acetate and glycerol, for instance) and under distinctive sets of parameters should the population diversify and MCF evolve. These results help understand the origins of simple microbial communities, such as those that readily evolve in short-term evolutionary experiments, and may later be extended to investigate how evolution has progressively built up today's extremely diverse ecosystems.
Collapse
Affiliation(s)
- Florian J F Labourel
- Univ Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive UMR5558, Villeurbanne, France
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Vincent Daubin
- Univ Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive UMR5558, Villeurbanne, France
| | - Frédéric Menu
- Univ Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive UMR5558, Villeurbanne, France
| | - Etienne Rajon
- Univ Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive UMR5558, Villeurbanne, France
| |
Collapse
|
9
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
10
|
Gupta MN, Uversky VN. Protein structure-function continuum model: Emerging nexuses between specificity, evolution, and structure. Protein Sci 2024; 33:e4968. [PMID: 38532700 PMCID: PMC10966358 DOI: 10.1002/pro.4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
The rationale for replacing the old binary of structure-function with the trinity of structure, disorder, and function has gained considerable ground in recent years. A continuum model based on the expanded form of the existing paradigm can now subsume importance of both conformational flexibility and intrinsic disorder in protein function. The disorder is actually critical for understanding the protein-protein interactions in many regulatory processes, formation of membrane-less organelles, and our revised notions of specificity as amply illustrated by moonlighting proteins. While its importance in formation of amyloids and function of prions is often discussed, the roles of intrinsic disorder in infectious diseases and protein function under extreme conditions are also becoming clear. This review is an attempt to discuss how our current understanding of protein function, specificity, and evolution fit better with the continuum model. This integration of structure and disorder under a single model may bring greater clarity in our continuing quest for understanding proteins and molecular mechanisms of their functionality.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and BiotechnologyIndian Institute of TechnologyNew DelhiIndia
- Present address:
508/Block 3, Kirti Apartments, Mayur Vihar Phase 1 ExtensionDelhiIndia
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
11
|
Schmutzer M, Dasmeh P, Wagner A. Frustration can Limit the Adaptation of Promiscuous Enzymes Through Gene Duplication and Specialisation. J Mol Evol 2024; 92:104-120. [PMID: 38470504 PMCID: PMC10978624 DOI: 10.1007/s00239-024-10161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Virtually all enzymes catalyse more than one reaction, a phenomenon known as enzyme promiscuity. It is unclear whether promiscuous enzymes are more often generalists that catalyse multiple reactions at similar rates or specialists that catalyse one reaction much more efficiently than other reactions. In addition, the factors that shape whether an enzyme evolves to be a generalist or a specialist are poorly understood. To address these questions, we follow a three-pronged approach. First, we examine the distribution of promiscuity in empirical enzymes reported in the BRENDA database. We find that the promiscuity distribution of empirical enzymes is bimodal. In other words, a large fraction of promiscuous enzymes are either generalists or specialists, with few intermediates. Second, we demonstrate that enzyme biophysics is not sufficient to explain this bimodal distribution. Third, we devise a constraint-based model of promiscuous enzymes undergoing duplication and facing selection pressures favouring subfunctionalization. The model posits the existence of constraints between the catalytic efficiencies of an enzyme for different reactions and is inspired by empirical case studies. The promiscuity distribution predicted by our constraint-based model is consistent with the empirical bimodal distribution. Our results suggest that subfunctionalization is possible and beneficial only in certain enzymes. Furthermore, the model predicts that conflicting constraints and selection pressures can cause promiscuous enzymes to enter a 'frustrated' state, in which competing interactions limit the specialisation of enzymes. We find that frustration can be both a driver and an inhibitor of enzyme evolution by duplication and subfunctionalization. In addition, our model predicts that frustration becomes more likely as enzymes catalyse more reactions, implying that natural selection may prefer catalytically simple enzymes. In sum, our results suggest that frustration may play an important role in enzyme evolution.
Collapse
Affiliation(s)
- Michael Schmutzer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pouria Dasmeh
- Center for Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
12
|
DeMars MD, O’Connor SE. Evolution and diversification of carboxylesterase-like [4+2] cyclases in aspidosperma and iboga alkaloid biosynthesis. Proc Natl Acad Sci U S A 2024; 121:e2318586121. [PMID: 38319969 PMCID: PMC10873640 DOI: 10.1073/pnas.2318586121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Monoterpene indole alkaloids (MIAs) are a large and diverse class of plant natural products, and their biosynthetic construction has been a subject of intensive study for many years. The enzymatic basis for the production of aspidosperma and iboga alkaloids, which are produced exclusively by members of the Apocynaceae plant family, has recently been discovered. Three carboxylesterase (CXE)-like enzymes from Catharanthus roseus and Tabernanthe iboga catalyze regio- and enantiodivergent [4+2] cycloaddition reactions to generate the aspidosperma (tabersonine synthase, TS) and iboga (coronaridine synthase, CorS; catharanthine synthase, CS) scaffolds from a common biosynthetic intermediate. Here, we use a combined phylogenetic and biochemical approach to investigate the evolution and functional diversification of these cyclase enzymes. Through ancestral sequence reconstruction, we provide evidence for initial evolution of TS from an ancestral CXE followed by emergence of CorS in two separate lineages, leading in turn to CS exclusively in the Catharanthus genus. This progression from aspidosperma to iboga alkaloid biosynthesis is consistent with the chemotaxonomic distribution of these MIAs. We subsequently generate and test a panel of chimeras based on the ancestral cyclases to probe the molecular basis for differential cyclization activity. Finally, we show through partial heterologous reconstitution of tabersonine biosynthesis using non-pathway enzymes how aspidosperma alkaloids could have first appeared as "underground metabolites" via recruitment of promiscuous enzymes from common protein families. Our results provide insight into the evolution of biosynthetic enzymes and how new secondary metabolic pathways can emerge through small but important sequence changes following co-option of preexisting enzymatic functions.
Collapse
Affiliation(s)
- Matthew D. DeMars
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| | - Sarah E. O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena07745, Germany
| |
Collapse
|
13
|
Zonnequin M, Belcour A, Delage L, Siegel A, Blanquart S, Leblanc C, Markov GV. Empirical evidence for metabolic drift in plant and algal lipid biosynthesis pathways. FRONTIERS IN PLANT SCIENCE 2024; 15:1339132. [PMID: 38357267 PMCID: PMC10864609 DOI: 10.3389/fpls.2024.1339132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024]
Abstract
Metabolic pathway drift has been formulated as a general principle to help in the interpretation of comparative analyses between biosynthesis pathways. Indeed, such analyses often indicate substantial differences, even in widespread pathways that are sometimes believed to be conserved. Here, our purpose is to check how much this interpretation fits to empirical data gathered in the field of plant and algal biosynthesis pathways. After examining several examples representative of the diversity of lipid biosynthesis pathways, we explain why it is important to compare closely related species to gain a better understanding of this phenomenon. Furthermore, this comparative approach brings us to the question of how much biotic interactions are responsible for shaping this metabolic plasticity. We end up introducing some model systems that may be promising for further exploration of this question.
Collapse
Affiliation(s)
- Maëlle Zonnequin
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Arnaud Belcour
- Univ Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
- Univ. Grenoble Alpes, Inria, Grenoble, France
| | - Ludovic Delage
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Anne Siegel
- Univ Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | | | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Gabriel V. Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), Roscoff, France
| |
Collapse
|
14
|
Bertolini E, Babbi G, Savojardo C, Martelli PL, Casadio R. MultifacetedProtDB: a database of human proteins with multiple functions. Nucleic Acids Res 2024; 52:D494-D501. [PMID: 37791887 PMCID: PMC10767882 DOI: 10.1093/nar/gkad783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
MultifacetedProtDB is a database of multifunctional human proteins deriving information from other databases, including UniProt, GeneCards, Human Protein Atlas (HPA), Human Phenotype Ontology (HPO) and MONDO. It collects under the label 'multifaceted' multitasking proteins addressed in literature as pleiotropic, multidomain, promiscuous (in relation to enzymes catalysing multiple substrates) and moonlighting (with two or more molecular functions), and difficult to be retrieved with a direct search in existing non-specific databases. The study of multifunctional proteins is an expanding research area aiming to elucidate the complexities of biological processes, particularly in humans, where multifunctional proteins play roles in various processes, including signal transduction, metabolism, gene regulation and cellular communication, and are often involved in disease insurgence and progression. The webserver allows searching by gene, protein and any associated structural and functional information, like available structures from PDB, structural models and interactors, using multiple filters. Protein entries are supplemented with comprehensive annotations including EC number, GO terms (biological pathways, molecular functions, and cellular components), pathways from Reactome, subcellular localization from UniProt, tissue and cell type expression from HPA, and associated diseases following MONDO, Orphanet and OMIM classification. MultiFacetedProtDB is freely available as a web server at: https://multifacetedprotdb.biocomp.unibo.it/.
Collapse
Affiliation(s)
- Elisa Bertolini
- Biocomputing Group, Dept. of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Giulia Babbi
- Biocomputing Group, Dept. of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Castrense Savojardo
- Biocomputing Group, Dept. of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Pier Luigi Martelli
- Biocomputing Group, Dept. of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Rita Casadio
- Biocomputing Group, Dept. of Pharmacy and Biotechnology, University of Bologna, Italy
| |
Collapse
|
15
|
Barona-Gómez F, Chevrette MG, Hoskisson PA. On the evolution of natural product biosynthesis. Adv Microb Physiol 2023; 83:309-349. [PMID: 37507161 DOI: 10.1016/bs.ampbs.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Natural products are the raw material for drug discovery programmes. Bioactive natural products are used extensively in medicine and agriculture and have found utility as antibiotics, immunosuppressives, anti-cancer drugs and anthelminthics. Remarkably, the natural role and what mechanisms drive evolution of these molecules is relatively poorly understood. The exponential increase in genome and chemical data in recent years, coupled with technical advances in bioinformatics and genetics have enabled progress to be made in understanding the evolution of biosynthetic gene clusters and the products of their enzymatic machinery. Here we discuss the diversity of natural products, incorporating the mechanisms that govern evolution of metabolic pathways and how this can be applied to biosynthetic gene clusters. We build on the nomenclature of natural products in terms of primary, integrated, secondary and specialised metabolism and place this within an ecology-evolutionary-developmental biology framework. This eco-evo-devo framework we believe will help to clarify the nature and use of the term specialised metabolites in the future.
Collapse
Affiliation(s)
| | - Marc G Chevrette
- Department of Microbiology and Cell Sciences, University of Florida, Museum Drive, Gainesville, FL, United States; University of Florida Genetics Institute, University of Florida, Mowry Road, Gainesville, FL, United States
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Cathedral Street, Glasgow, United Kingdom.
| |
Collapse
|
16
|
Gupta MN, Uversky VN. Moonlighting enzymes: when cellular context defines specificity. Cell Mol Life Sci 2023; 80:130. [PMID: 37093283 PMCID: PMC11073002 DOI: 10.1007/s00018-023-04781-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
It is not often realized that the absolute protein specificity is an exception rather than a rule. Two major kinds of protein multi-specificities are promiscuity and moonlighting. This review discusses the idea of enzyme specificity and then focusses on moonlighting. Some important examples of protein moonlighting, such as crystallins, ceruloplasmin, metallothioniens, macrophage migration inhibitory factor, and enzymes of carbohydrate metabolism are discussed. How protein plasticity and intrinsic disorder enable the removing the distinction between enzymes and other biologically active proteins are outlined. Finally, information on important roles of moonlighting in human diseases is updated.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612-4799, USA.
| |
Collapse
|
17
|
Ausserwöger H, Krainer G, Welsh TJ, Thorsteinson N, de Csilléry E, Sneideris T, Schneider MM, Egebjerg T, Invernizzi G, Herling TW, Lorenzen N, Knowles TPJ. Surface patches induce nonspecific binding and phase separation of antibodies. Proc Natl Acad Sci U S A 2023; 120:e2210332120. [PMID: 37011217 PMCID: PMC10104583 DOI: 10.1073/pnas.2210332120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/06/2023] [Indexed: 04/05/2023] Open
Abstract
Nonspecific interactions are a key challenge in the successful development of therapeutic antibodies. The tendency for nonspecific binding of antibodies is often difficult to reduce by rational design, and instead, it is necessary to rely on comprehensive screening campaigns. To address this issue, we performed a systematic analysis of the impact of surface patch properties on antibody nonspecificity using a designer antibody library as a model system and single-stranded DNA as a nonspecificity ligand. Using an in-solution microfluidic approach, we find that the antibodies tested bind to single-stranded DNA with affinities as high as KD = 1 µM. We show that DNA binding is driven primarily by a hydrophobic patch in the complementarity-determining regions. By quantifying the surface patches across the library, the nonspecific binding affinity is shown to correlate with a trade-off between the hydrophobic and total charged patch areas. Moreover, we show that a change in formulation conditions at low ionic strengths leads to DNA-induced antibody phase separation as a manifestation of nonspecific binding at low micromolar antibody concentrations. We highlight that phase separation is driven by a cooperative electrostatic network assembly mechanism of antibodies with DNA, which correlates with a balance between positive and negative charged patches. Importantly, our study demonstrates that both nonspecific binding and phase separation are controlled by the size of the surface patches. Taken together, these findings highlight the importance of surface patches and their role in conferring antibody nonspecificity and its macroscopic manifestation in phase separation.
Collapse
Affiliation(s)
- Hannes Ausserwöger
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Georg Krainer
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Timothy J. Welsh
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Nels Thorsteinson
- Research and Development, Chemical Computing Group, Montreal, QuebecH3A 2R7, Canada
| | - Ella de Csilléry
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Tomas Sneideris
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Matthias M. Schneider
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Thomas Egebjerg
- Global Research Technologies, Novo Nordisk A/S2760Måløv, Denmark
| | | | - Therese W. Herling
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Nikolai Lorenzen
- Global Research Technologies, Novo Nordisk A/S2760Måløv, Denmark
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Department of Physics, Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| |
Collapse
|
18
|
Schmitz E, Leontakianakou S, Adlercreutz P, Nordberg Karlsson E, Linares-Pastén JA. Novel Function of CtXyn5A from Acetivibrio thermocellus: Dual Arabinoxylanase and Feruloyl Esterase Activity in the Same Active Site. Chembiochem 2023; 24:e202200667. [PMID: 36449982 PMCID: PMC10107809 DOI: 10.1002/cbic.202200667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
Enzymes' uncharacterised side activities can have significant effects on reaction products and yields. Hence, their identification and characterisation are crucial for the development of successful reaction systems. Here, we report the presence of feruloyl esterase activity in CtXyn5A from Acetivibrio thermocellus, besides its well-known arabinoxylanase activity, for the first time. Activity analysis of enzyme variants mutated in the catalytic nucleophile, Glu279, confirmed removal of all activity for E279A and E279L, and increased esterase activity while removing xylanase activity for E279S, thus allowing the proposal that both reaction types are catalysed in the same active site in two subsequential steps. The ferulic acid substituent is cleaved off first, followed by hydrolysis of the xylan backbone. The esterase activity on complex carbohydrates was found to be higher than that of a designated ferulic acid esterase (E-FAERU). Therefore, we conclude that the enzyme exhibits a dual function rather than an esterase side activity.
Collapse
Affiliation(s)
- Eva Schmitz
- Biotechnology, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden
| | - Savvina Leontakianakou
- Biotechnology, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden
| | - Patrick Adlercreutz
- Biotechnology, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden
| | - Eva Nordberg Karlsson
- Biotechnology, Department of Chemistry, Lund University, P.O. Box 124, Lund, 22100, Sweden
| | | |
Collapse
|
19
|
Kinateder T, Drexler L, Straub K, Merkl R, Sterner R. Experimental and computational analysis of the ancestry of an evolutionary young enzyme from histidine biosynthesis. Protein Sci 2023; 32:e4536. [PMID: 36502290 PMCID: PMC9798254 DOI: 10.1002/pro.4536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
The conservation of fold and chemistry of the enzymes associated with histidine biosynthesis suggests that this pathway evolved prior to the diversification of Bacteria, Archaea, and Eukaryotes. The only exception is the histidinol phosphate phosphatase (HolPase). So far, non-homologous HolPases that possess distinct folds and belong to three different protein superfamilies have been identified in various phylogenetic clades. However, their evolution has remained unknown to date. Here, we analyzed the evolutionary history of the HolPase from γ-Proteobacteria (HisB-N). It has been argued that HisB-N and its closest homologue d-glycero-d-manno-heptose-1,7-bisphosphate 7-phosphatase (GmhB) have emerged from the same promiscuous ancestral phosphatase. GmhB variants catalyze the hydrolysis of the anomeric d-glycero-d-manno-heptose-1,7-bisphosphate (αHBP or βHBP) with a strong preference for one anomer (αGmhB or βGmhB). We found that HisB-N from Escherichia coli shows promiscuous activity for βHBP but not αHBP, while βGmhB from Crassaminicella sp. shows promiscuous activity for HolP. Accordingly, a combined phylogenetic tree of αGmhBs, βGmhBs, and HisB-N sequences revealed that HisB-Ns form a compact subcluster derived from βGmhBs. Ancestral sequence reconstruction and in vitro analysis revealed a promiscuous HolPase activity in the resurrected enzymes prior to functional divergence of the successors. The following increase in catalytic efficiency of the HolP turnover is reflected in the shape and electrostatics of the active site predicted by AlphaFold. An analysis of the phylogenetic tree led to a revised evolutionary model that proposes the horizontal gene transfer of a promiscuous βGmhB from δ- to γ-Proteobacteria where it evolved to the modern HisB-N.
Collapse
Affiliation(s)
- Thomas Kinateder
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of RegensburgRegensburgGermany
| | - Lukas Drexler
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of RegensburgRegensburgGermany
| | - Kristina Straub
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of RegensburgRegensburgGermany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of RegensburgRegensburgGermany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of RegensburgRegensburgGermany
| |
Collapse
|
20
|
Glycolytic flux control by drugging phosphoglycolate phosphatase. Nat Commun 2022; 13:6845. [PMID: 36369173 PMCID: PMC9652372 DOI: 10.1038/s41467-022-34228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Targeting the intrinsic metabolism of immune or tumor cells is a therapeutic strategy in autoimmunity, chronic inflammation or cancer. Metabolite repair enzymes may represent an alternative target class for selective metabolic inhibition, but pharmacological tools to test this concept are needed. Here, we demonstrate that phosphoglycolate phosphatase (PGP), a prototypical metabolite repair enzyme in glycolysis, is a pharmacologically actionable target. Using a combination of small molecule screening, protein crystallography, molecular dynamics simulations and NMR metabolomics, we discover and analyze a compound (CP1) that inhibits PGP with high selectivity and submicromolar potency. CP1 locks the phosphatase in a catalytically inactive conformation, dampens glycolytic flux, and phenocopies effects of cellular PGP-deficiency. This study provides key insights into effective and precise PGP targeting, at the same time validating an allosteric approach to control glycolysis that could advance discoveries of innovative therapeutic candidates.
Collapse
|
21
|
McBride JM, Eckmann JP, Tlusty T. General Theory of Specific Binding: Insights from a Genetic-Mechano-Chemical Protein Model. Mol Biol Evol 2022; 39:msac217. [PMID: 36208205 PMCID: PMC9641994 DOI: 10.1093/molbev/msac217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteins need to selectively interact with specific targets among a multitude of similar molecules in the cell. However, despite a firm physical understanding of binding interactions, we lack a general theory of how proteins evolve high specificity. Here, we present such a model that combines chemistry, mechanics, and genetics and explains how their interplay governs the evolution of specific protein-ligand interactions. The model shows that there are many routes to achieving molecular discrimination-by varying degrees of flexibility and shape/chemistry complementarity-but the key ingredient is precision. Harder discrimination tasks require more collective and precise coaction of structure, forces, and movements. Proteins can achieve this through correlated mutations extending far from a binding site, which fine-tune the localized interaction with the ligand. Thus, the solution of more complicated tasks is enabled by increasing the protein size, and proteins become more evolvable and robust when they are larger than the bare minimum required for discrimination. The model makes testable, specific predictions about the role of flexibility and shape mismatch in discrimination, and how evolution can independently tune affinity and specificity. Thus, the proposed theory of specific binding addresses the natural question of "why are proteins so big?". A possible answer is that molecular discrimination is often a hard task best performed by adding more layers to the protein.
Collapse
Affiliation(s)
- John M McBride
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, South Korea
| | - Jean-Pierre Eckmann
- Département de Physique Théorique and Section de Mathématiques, University of Geneva, Geneva, Switzerland
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, South Korea
- Departments of Physics and Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
22
|
Wang J, Rodin S, Saei AA, Zhang X, Zubarev RA. First Experimental Evidence for Reversibility of Ammonia Loss from Asparagine. Int J Mol Sci 2022; 23:ijms23158371. [PMID: 35955504 PMCID: PMC9368827 DOI: 10.3390/ijms23158371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Ammonia loss from L-asparaginyls is a nonenzymatic reaction spontaneously occurring in all proteins and eventually resulting in damaging isoaspartate residues that hamper protein function and induce proteinopathy related to aging. Here, we discuss theoretical considerations supporting the possibility of a full repair reaction and present the first experimental evidence of its existence. If confirmed, the true repair of L-asparaginyl deamidation could open new avenues for preventing aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jijing Wang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 65 Stockholm, Sweden; (J.W.); (S.R.); (A.A.S.); (X.Z.)
| | - Sergey Rodin
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 65 Stockholm, Sweden; (J.W.); (S.R.); (A.A.S.); (X.Z.)
- Department of Surgical Sciences, Uppsala University, SE-751 05 Uppsala, Sweden
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 65 Stockholm, Sweden; (J.W.); (S.R.); (A.A.S.); (X.Z.)
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Xuepei Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 65 Stockholm, Sweden; (J.W.); (S.R.); (A.A.S.); (X.Z.)
| | - Roman A. Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 65 Stockholm, Sweden; (J.W.); (S.R.); (A.A.S.); (X.Z.)
- Endocrinology Research Centre, 115478 Moscow, Russia
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
- Correspondence:
| |
Collapse
|
23
|
Long C, Cao H, Zhao B, Tan Y, He Y, Huang C, Guan Z. Merging the Non‐Natural Catalytic Activity of Lipase and Electrosynthesis: Asymmetric Oxidative Cross‐Coupling of Secondary Amines with Ketones. Angew Chem Int Ed Engl 2022; 61:e202203666. [DOI: 10.1002/anie.202203666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Chao‐Jiu Long
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Huan Cao
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Ben‐Kun Zhao
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Yu‐Fang Tan
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Yan‐Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Chu‐Sheng Huang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University Nanning 530001 China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| |
Collapse
|
24
|
Human cytosolic transaminases: side activities and patterns of discrimination towards physiologically available alternative substrates. Cell Mol Life Sci 2022; 79:421. [PMID: 35834009 PMCID: PMC9283133 DOI: 10.1007/s00018-022-04439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
Transaminases play key roles in central metabolism, transferring the amino group from a donor substrate to an acceptor. These enzymes can often act, with low efficiency, on compounds different from the preferred substrates. To understand what might have shaped the substrate specificity of this class of enzymes, we examined the reactivity of six human cytosolic transaminases towards amino acids whose main degradative pathways do not include any transamination. We also tested whether sugars and sugar phosphates could serve as alternative amino group acceptors for these cytosolic enzymes. Each of the six aminotransferases reacted appreciably with at least three of the alternative amino acid substrates in vitro, albeit at usually feeble rates. Reactions with L-Thr, L-Arg, L-Lys and L-Asn were consistently very slow-a bias explained in part by the structural differences between these amino acids and the preferred substrates of the transaminases. On the other hand, L-His and L-Trp reacted more efficiently, particularly with GTK (glutamine transaminase K; also known as KYAT1). This points towards a role of GTK in the salvage of L-Trp (in cooperation with ω-amidase and possibly with the cytosolic malate dehydrogenase, MDH1, which efficiently reduced the product of L-Trp transamination). Finally, the transaminases were extremely ineffective at utilizing sugars and sugar derivatives, with the exception of the glycolytic intermediate dihydroxyacetone phosphate, which was slowly but appreciably transaminated by some of the enzymes to yield serinol phosphate. Evidence for the formation of this compound in a human cell line was also obtained. We discuss the biological and evolutionary implications of our results.
Collapse
|
25
|
Janzen E, Shen Y, Vázquez-Salazar A, Liu Z, Blanco C, Kenchel J, Chen IA. Emergent properties as by-products of prebiotic evolution of aminoacylation ribozymes. Nat Commun 2022; 13:3631. [PMID: 35752631 PMCID: PMC9233669 DOI: 10.1038/s41467-022-31387-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 06/16/2022] [Indexed: 11/24/2022] Open
Abstract
Systems of catalytic RNAs presumably gave rise to important evolutionary innovations, such as the genetic code. Such systems may exhibit particular tolerance to errors (error minimization) as well as coding specificity. While often assumed to result from natural selection, error minimization may instead be an emergent by-product. In an RNA world, a system of self-aminoacylating ribozymes could enforce the mapping of amino acids to anticodons. We measured the activity of thousands of ribozyme mutants on alternative substrates (activated analogs for tryptophan, phenylalanine, leucine, isoleucine, valine, and methionine). Related ribozymes exhibited shared preferences for substrates, indicating that adoption of additional amino acids by existing ribozymes would itself lead to error minimization. Furthermore, ribozyme activity was positively correlated with specificity, indicating that selection for increased activity would also lead to increased specificity. These results demonstrate that by-products of ribozyme evolution could lead to adaptive value in specificity and error tolerance.
Collapse
Affiliation(s)
- Evan Janzen
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA, 93106, USA.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Yuning Shen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.,Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Celia Blanco
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Josh Kenchel
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA, 93106, USA.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.,Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Irene A Chen
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA, 93106, USA. .,Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA. .,Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
26
|
Long CJ, Cao H, Zhao BK, Tan YF, He YH, Huang CS, Guan Z. Merging the Non‐Natural Catalytic Activity of Lipase and Electrosynthesis: Asymmetric Oxidative Cross‐Coupling of Secondary Amines with Ketones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chao-Jiu Long
- Southwest University School of Chemistry and Chemical Engineering CHINA
| | - Huan Cao
- Southwest University School of Chemistry and Chemical Engineering CHINA
| | - Ben-Kun Zhao
- Southwest University School of Chemistry and Chemical Engineering CHINA
| | - Yu-Fang Tan
- Southwest University School of Chemistry and Chemical Engineering CHINA
| | - Yan-Hong He
- Southwest University School of Chemistry and Chemical Engineering CHINA
| | - Chu-Sheng Huang
- Guangxi Teachers Education University: Nanning Normal University School of Chemistry and Chemical Engineering CHINA
| | - Zhi Guan
- Southwest University School of Chemistry and Chemical Engineering No. 1, Tiansheng Rd. 400715 Chongqing CHINA
| |
Collapse
|
27
|
Bhayani J, Iglesias MJ, Minen RI, Cereijo AE, Ballicora MA, Iglesias AA, Asencion Diez MD. Carbohydrate Metabolism in Bacteria: Alternative Specificities in ADP-Glucose Pyrophosphorylases Open Novel Metabolic Scenarios and Biotechnological Tools. Front Microbiol 2022; 13:867384. [PMID: 35572620 PMCID: PMC9093745 DOI: 10.3389/fmicb.2022.867384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
We explored the ability of ADP-glucose pyrophosphorylase (ADP-Glc PPase) from different bacteria to use glucosamine (GlcN) metabolites as a substrate or allosteric effectors. The enzyme from the actinobacteria Kocuria rhizophila exhibited marked and distinctive sensitivity to allosteric activation by GlcN-6P when producing ADP-Glc from glucose-1-phosphate (Glc-1P) and ATP. This behavior is also seen in the enzyme from Rhodococcus spp., the only one known so far to portray this activation. GlcN-6P had a more modest effect on the enzyme from other Actinobacteria (Streptomyces coelicolor), Firmicutes (Ruminococcus albus), and Proteobacteria (Agrobacterium tumefaciens) groups. In addition, we studied the catalytic capacity of ADP-Glc PPases from the different sources using GlcN-1P as a substrate when assayed in the presence of their respective allosteric activators. In all cases, the catalytic efficiency of Glc-1P was 1-2 orders of magnitude higher than GlcN-1P, except for the unregulated heterotetrameric protein (GlgC/GgD) from Geobacillus stearothermophilus. The Glc-1P substrate preference is explained using a model of ADP-Glc PPase from A. tumefaciens based on the crystallographic structure of the enzyme from potato tuber. The substrate-binding domain localizes near the N-terminal of an α-helix, which has a partial positive charge, thus favoring the interaction with a hydroxyl rather than a charged primary amine group. Results support the scenario where the ability of ADP-Glc PPases to use GlcN-1P as an alternative occurred during evolution despite the enzyme being selected to use Glc-1P and ATP for α-glucans synthesis. As an associated consequence in such a process, certain bacteria could have improved their ability to metabolize GlcN. The work also provides insights in designing molecular tools for producing oligo and polysaccharides with amino moieties.
Collapse
Affiliation(s)
- Jaina Bhayani
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Maria Josefina Iglesias
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Romina I. Minen
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Antonela E. Cereijo
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Miguel A. Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States
| | - Alberto A. Iglesias
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| | - Matias D. Asencion Diez
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Santa Fe, Argentina
| |
Collapse
|
28
|
Diffusion control in biochemical specificity. Biophys J 2022; 121:1541-1548. [PMID: 35278424 PMCID: PMC9072584 DOI: 10.1016/j.bpj.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/28/2021] [Accepted: 03/04/2022] [Indexed: 11/20/2022] Open
Abstract
Biochemical specificity is critical in enzyme function, evolution, and engineering. Here we employ an established kinetic model to dissect the effects of reactant geometry and diffusion on product formation speed and accuracy in the presence of cognate (correct) and near-cognate (incorrect) substrates. Using this steady-state model for spherical geometries, we find that, for distinct kinetic regimes, the speed and accuracy of the reactions are optimized on different regions of the geometric landscape. From this model we deduce that accuracy can be strongly dependent on reactant geometric properties even for chemically limited reactions. Notably, substrates with a specific geometry and reactivity can be discriminated by the enzyme with higher efficacy than others through purely diffusive effects. For similar cognate and near-cognate substrate geometries (as is the case for polymerases or the ribosome), we observe that speed and accuracy are maximized in opposing regions of the geometric landscape. We also show that, in relevant environments, diffusive effects on accuracy can be substantial even far from extreme kinetic conditions. Finally, we find how reactant chemical discrimination and diffusion can be related to simultaneously optimize steady-state flux and accuracy. These results highlight how diffusion and geometry can be employed to enhance reaction speed and discrimination, and similarly how they impose fundamental restraints on these quantities.
Collapse
|
29
|
Using Steady-State Kinetics to Quantitate Substrate Selectivity and Specificity: A Case Study with Two Human Transaminases. Molecules 2022; 27:molecules27041398. [PMID: 35209187 PMCID: PMC8875635 DOI: 10.3390/molecules27041398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
We examined the ability of two human cytosolic transaminases, aspartate aminotransferase (GOT1) and alanine aminotransferase (GPT), to transform their preferred substrates whilst discriminating against similar metabolites. This offers an opportunity to survey our current understanding of enzyme selectivity and specificity in a biological context. Substrate selectivity can be quantitated based on the ratio of the kcat/KM values for two alternative substrates (the 'discrimination index'). After assessing the advantages, implications and limits of this index, we analyzed the reactions of GOT1 and GPT with alternative substrates that are metabolically available and show limited structural differences with respect to the preferred substrates. The transaminases' observed selectivities were remarkably high. In particular, GOT1 reacted ~106-fold less efficiently when the side-chain carboxylate of the 'physiological' substrates (aspartate and glutamate) was replaced by an amido group (asparagine and glutamine). This represents a current empirical limit of discrimination associated with this chemical difference. The structural basis of GOT1 selectivity was addressed through substrate docking simulations, which highlighted the importance of electrostatic interactions and proper substrate positioning in the active site. We briefly discuss the biological implications of these results and the possibility of using kcat/KM values to derive a global measure of enzyme specificity.
Collapse
|
30
|
Yadav A, Vagne Q, Sens P, Iyengar G, Rao M. Glycan processing in the Golgi: optimal information coding and constraints on cisternal number and enzyme specificity. eLife 2022; 11:76757. [PMID: 35175197 PMCID: PMC9154746 DOI: 10.7554/elife.76757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Many proteins that undergo sequential enzymatic modification in the Golgi cisternae are displayed at the plasma membrane as cell identity markers. The modified proteins, called glycans, represent a molecular code. The fidelity of this glycan code is measured by how accurately the glycan synthesis machinery realises the desired target glycan distribution for a particular cell type and niche. In this paper, we construct a simplified chemical synthesis model to quantitatively analyse the tradeoffs between the number of cisternae, and the number and specificity of enzymes, required to synthesize a prescribed target glycan distribution of a certain complexity to within a given fidelity. We find that to synthesize complex distributions, such as those observed in real cells, one needs to have multiple cisternae and precise enzyme partitioning in the Golgi. Additionally, for fixed number of enzymes and cisternae, there is an optimal level of specificity (promiscuity) of enzymes that achieves the target distribution with high fidelity. The geometry of the fidelity landscape in the multidimensional space of the number and specificity of enzymes, inter-cisternal transfer rates, and number of cisternae, provides a measure for robustness and identifies stiff and sloppy directions. Our results show how the complexity of the target glycan distribution and number of glycosylation enzymes places functional constraints on the Golgi cisternal number and enzyme specificity.
Collapse
Affiliation(s)
| | - Quentin Vagne
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, Paris, France
| | - Pierre Sens
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, Paris, France
| | - Garud Iyengar
- Industrial Engineering and Operations Research, Columbia University, New York, United States
| | - Madan Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bangalore, India
| |
Collapse
|
31
|
|
32
|
Neofunctionalization of Glycolytic Enzymes: An Evolutionary Route to Plant Parasitism in the Oomycete Phytophthora nicotianae. Microorganisms 2022; 10:microorganisms10020281. [PMID: 35208735 PMCID: PMC8879444 DOI: 10.3390/microorganisms10020281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
Oomycetes, of the genus Phytophthora, comprise of some of the most devastating plant pathogens. Parasitism of Phytophthora results from evolution from an autotrophic ancestor and adaptation to a wide range of environments, involving metabolic adaptation. Sequence mining showed that Phytophthora spp. display an unusual repertoire of glycolytic enzymes, made of multigene families and enzyme replacements. To investigate the impact of these gene duplications on the biology of Phytophthora and, eventually, identify novel functions associated to gene expansion, we focused our study on the first glycolytic step on P. nicotianae, a broad host range pathogen. We reveal that this step is committed by a set of three glucokinase types that differ by their structure, enzymatic properties, and evolutionary histories. In addition, they are expressed differentially during the P. nicotianae life cycle, including plant infection. Last, we show that there is a strong association between the expression of a glucokinase member in planta and extent of plant infection. Together, these results suggest that metabolic adaptation is a component of the processes underlying evolution of parasitism in Phytophthora, which may possibly involve the neofunctionalization of metabolic enzymes.
Collapse
|
33
|
Ovechkina VS, Zakian SM, Medvedev SP, Valetdinova KR. Genetically Encoded Fluorescent Biosensors for Biomedical Applications. Biomedicines 2021; 9:biomedicines9111528. [PMID: 34829757 PMCID: PMC8615007 DOI: 10.3390/biomedicines9111528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
One of the challenges of modern biology and medicine is to visualize biomolecules in their natural environment, in real-time and in a non-invasive fashion, so as to gain insight into their physiological behavior and highlight alterations in pathological settings, which will enable to devise appropriate therapeutic strategies. Genetically encoded fluorescent biosensors constitute a class of imaging agents that enable visualization of biological processes and events directly in situ, preserving the native biological context and providing detailed insight into their localization and dynamics in cells. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the obvious benefits of using genetically encoded fluorescent biosensors in drug screening. This review summarizes results of the studies that have been conducted in the last years toward the fabrication of genetically encoded fluorescent biosensors for biomedical applications with a comprehensive discussion on the challenges, future trends, and potential inputs needed for improving them.
Collapse
Affiliation(s)
- Vera S. Ovechkina
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Suren M. Zakian
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey P. Medvedev
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Kamila R. Valetdinova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.S.O.); (S.M.Z.); (S.P.M.)
- E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
34
|
Sadoine M, Ishikawa Y, Kleist TJ, Wudick MM, Nakamura M, Grossmann G, Frommer WB, Ho CH. Designs, applications, and limitations of genetically encoded fluorescent sensors to explore plant biology. PLANT PHYSIOLOGY 2021; 187:485-503. [PMID: 35237822 PMCID: PMC8491070 DOI: 10.1093/plphys/kiab353] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/12/2021] [Indexed: 05/03/2023]
Abstract
The understanding of signaling and metabolic processes in multicellular organisms requires knowledge of the spatial dynamics of small molecules and the activities of enzymes, transporters, and other proteins in vivo, as well as biophysical parameters inside cells and across tissues. The cellular distribution of receptors, ligands, and activation state must be integrated with information about the cellular distribution of metabolites in relation to metabolic fluxes and signaling dynamics in order to achieve the promise of in vivo biochemistry. Genetically encoded sensors are engineered fluorescent proteins that have been developed for a wide range of small molecules, such as ions and metabolites, or to report biophysical processes, such as transmembrane voltage or tension. First steps have been taken to monitor the activity of transporters in vivo. Advancements in imaging technologies and specimen handling and stimulation have enabled researchers in plant sciences to implement sensor technologies in intact plants. Here, we provide a brief history of the development of genetically encoded sensors and an overview of the types of sensors available for quantifying and visualizing ion and metabolite distribution and dynamics. We further discuss the pros and cons of specific sensor designs, imaging systems, and sample manipulations, provide advice on the choice of technology, and give an outlook into future developments.
Collapse
Affiliation(s)
- Mayuri Sadoine
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Yuuma Ishikawa
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Thomas J. Kleist
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Michael M. Wudick
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Masayoshi Nakamura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Guido Grossmann
- Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Wolf B. Frommer
- Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Cheng-Hsun Ho
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Author for communication:
| |
Collapse
|
35
|
Lou D, Liu X, Tan J. An Overview of 7α- and 7β-Hydroxysteroid Dehydrogenases: Structure, Specificity and Practical Application. Protein Pept Lett 2021; 28:1206-1219. [PMID: 34397319 DOI: 10.2174/0929866528666210816114032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/27/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022]
Abstract
7α-Hydroxysteroid dehydrogenase and 7β-hydroxysteroid dehydrogenase are key enzymes involved in bile acid metabolism. They catalyze the epimerization of a hydroxyl group through 7-keto bile acid intermediates. Basic research of the two enzymes has focused on exploring new enzymes and the structure-function relationship. The application research focused on the in vitro biosynthesis of bile acid drugs and the exploration and improvement of their catalytic ability based on molecular engineering. This article summarized the primary and advanced structural characteristics, specificities, biochemical properties, and applications of the two enzymes. The emphasis is also given to obtaining of novel 7α-hydroxysteroid dehydrogenase and 7β-hydroxysteroid dehydrogenase that are thermally stable and active in the presence of organic solvents, high substrate concentration, and extreme pH values. To achieve these goals, enzyme redesigning based on protein engineering and genomics may be the most useful approaches.
Collapse
Affiliation(s)
- Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Xi Liu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| |
Collapse
|
36
|
Barupal DK, Baygi SF, Wright RO, Arora M. Data Processing Thresholds for Abundance and Sparsity and Missed Biological Insights in an Untargeted Chemical Analysis of Blood Specimens for Exposomics. Front Public Health 2021; 9:653599. [PMID: 34178917 PMCID: PMC8222544 DOI: 10.3389/fpubh.2021.653599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/19/2021] [Indexed: 01/27/2023] Open
Abstract
Background: An untargeted chemical analysis of bio-fluids provides semi-quantitative data for thousands of chemicals for expanding our understanding about relationships among metabolic pathways, diseases, phenotypes and exposures. During the processing of mass spectral and chromatography data, various signal thresholds are used to control the number of peaks in the final data matrix that is used for statistical analyses. However, commonly used stringent thresholds generate constrained data matrices which may under-represent the detected chemical space, leading to missed biological insights in the exposome research. Methods: We have re-analyzed a liquid chromatography high resolution mass spectrometry data set for a publicly available epidemiology study (n = 499) of human cord blood samples using the MS-DIAL software with minimally possible thresholds during the data processing steps. Peak list for individual files and the data matrix after alignment and gap-filling steps were summarized for different peak height and detection frequency thresholds. Correlations between birth weight and LC/MS peaks in the newly generated data matrix were computed using the spearman correlation coefficient. Results: MS-DIAL software detected on average 23,156 peaks for individual LC/MS file and 63,393 peaks in the aligned peak table. A combination of peak height and detection frequency thresholds that was used in the original publication at the individual file and the peak alignment levels can reject 90% peaks from the untargeted chemical analysis dataset that was generated by MS-DIAL. Correlation analysis for birth weight data suggested that up to 80% of the significantly associated peaks were rejected by the data processing thresholds that were used in the original publication. The re-analysis with minimum possible thresholds recovered metabolic insights about C19 steroids and hydroxy-acyl-carnitines and their relationships with birth weight. Conclusions: Data processing thresholds for peak height and detection frequencies at individual data file and at the alignment level should be used at minimal possible level or completely avoided for mining untargeted chemical analysis data in the exposome research for discovering new biomarkers and mechanisms.
Collapse
|
37
|
Labourel F, Rajon E. Resource uptake and the evolution of moderately efficient enzymes. Mol Biol Evol 2021; 38:3938-3952. [PMID: 33964160 PMCID: PMC8382906 DOI: 10.1093/molbev/msab132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Enzymes speed up reactions that would otherwise be too slow to sustain the metabolism of selfreplicators. Yet, most enzymes seem only moderately efficient, exhibiting kinetic parameters orders of magnitude lower than their expected physically achievable maxima and spanning over surprisingly large ranges of values. Here, we question how these parameters evolve using a mechanistic model where enzyme efficiency is a key component of individual competition for resources. We show that kinetic parameters are under strong directional selection only up to a point, above which enzymes appear to evolve under near-neutrality, thereby confirming the qualitative observation of other modeling approaches. While the existence of a large fitness plateau could potentially explain the extensive variation in enzyme features reported, we show using a population genetics model that such a widespread distribution is an unlikely outcome of evolution on a common landscape, as mutation–selection–drift balance occupy a narrow area even when very moderate biases towards lower efficiency are considered. Instead, differences in the evolutionary context encountered by each enzyme should be involved, such that each evolves on an individual, unique landscape. Our results point to drift and effective population size playing an important role, along with the kinetics of nutrient transporters, the tolerance to high concentrations of intermediate metabolites, and the reversibility of reactions. Enzyme concentration also shapes selection on kinetic parameters, but we show that the joint evolution of concentration and efficiency does not yield extensive variance in evolutionary outcomes when documented costs to protein expression are applied.
Collapse
Affiliation(s)
- Florian Labourel
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, F-69622, France
| | - Etienne Rajon
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Villeurbanne, F-69622, France
| |
Collapse
|
38
|
Promiscuous enzymes generating d-amino acids in mammals: Why they may still surprise us? Biochem J 2021; 478:1175-1178. [PMID: 33710333 DOI: 10.1042/bcj20200988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022]
Abstract
Promiscuous catalysis is a common property of enzymes, particularly those using pyridoxal 5'-phosphate as a cofactor. In a recent issue of this journal, Katane et al. Biochem. J. 477, 4221-4241 demonstrate the synthesis and accumulation of d-glutamate in mammalian cells by promiscuous catalysis mediated by a pyridoxal 5'-phosphate enzyme, the serine/threonine dehydratase-like (SDHL). The mechanism of SDHL resembles that of serine racemase, which synthesizes d-serine, a well-established signaling molecule in the mammalian brain. d-Glutamate is present in body fluids and is degraded by the d-glutamate cyclase at the mitochondria. This study demonstrates a biochemical pathway for d-glutamate synthesis in mammalian cells and advances our knowledge on this little-studied d-amino acid in mammals. d-Amino acids may still surprise us by their unique roles in biochemistry, intercellular signaling, and as potential biomarkers of disease.
Collapse
|
39
|
Promiscuity and specificity of eukaryotic glycosyltransferases. Biochem Soc Trans 2021; 48:891-900. [PMID: 32539082 PMCID: PMC7329348 DOI: 10.1042/bst20190651] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Glycosyltransferases are a large family of enzymes responsible for covalently linking sugar monosaccharides to a variety of organic substrates. These enzymes drive the synthesis of complex oligosaccharides known as glycans, which play key roles in inter-cellular interactions across all the kingdoms of life; they also catalyze sugar attachment during the synthesis of small-molecule metabolites such as plant flavonoids. A given glycosyltransferase enzyme is typically responsible for attaching a specific donor monosaccharide, via a specific glycosidic linkage, to a specific moiety on the acceptor substrate. However these enzymes are often promiscuous, able catalyze linkages between a variety of donors and acceptors. In this review we discuss distinct classes of glycosyltransferase promiscuity, each illustrated by enzymatic examples from small-molecule or glycan synthesis. We highlight the physical causes of promiscuity, and its biochemical consequences. Structural studies of glycosyltransferases involved in glycan synthesis show that they make specific contacts with ‘recognition motifs’ that are much smaller than the full oligosaccharide substrate. There is a wide range in the sizes of glycosyltransferase recognition motifs: highly promiscuous enzymes recognize monosaccharide or disaccharide motifs across multiple oligosaccharides, while highly specific enzymes recognize large, complex motifs found on few oligosaccharides. In eukaryotes, the localization of glycosyltransferases within compartments of the Golgi apparatus may play a role in mitigating the glycan variability caused by enzyme promiscuity.
Collapse
|
40
|
Desmet S, Brouckaert M, Boerjan W, Morreel K. Seeing the forest for the trees: Retrieving plant secondary biochemical pathways from metabolome networks. Comput Struct Biotechnol J 2020; 19:72-85. [PMID: 33384856 PMCID: PMC7753198 DOI: 10.1016/j.csbj.2020.11.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023] Open
Abstract
Over the last decade, a giant leap forward has been made in resolving the main bottleneck in metabolomics, i.e., the structural characterization of the many unknowns. This has led to the next challenge in this research field: retrieving biochemical pathway information from the various types of networks that can be constructed from metabolome data. Searching putative biochemical pathways, referred to as biotransformation paths, is complicated because several flaws occur during the construction of metabolome networks. Multiple network analysis tools have been developed to deal with these flaws, while in silico retrosynthesis is appearing as an alternative approach. In this review, the different types of metabolome networks, their flaws, and the various tools to trace these biotransformation paths are discussed.
Collapse
Affiliation(s)
- Sandrien Desmet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Marlies Brouckaert
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kris Morreel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
41
|
Cereijo AE, Kuhn ML, Hernández MA, Ballicora MA, Iglesias AA, Alvarez HM, Asencion Diez MD. Study of duplicated galU genes in Rhodococcus jostii and a putative new metabolic node for glucosamine-1P in rhodococci. Biochim Biophys Acta Gen Subj 2020; 1865:129727. [PMID: 32890704 DOI: 10.1016/j.bbagen.2020.129727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/11/2020] [Accepted: 08/30/2020] [Indexed: 01/10/2023]
Abstract
BACKGOUND Studying enzymes that determine glucose-1P fate in carbohydrate metabolism is important to better understand microorganisms as biotechnological tools. One example ripe for discovery is the UDP-glucose pyrophosphorylase enzyme from Rhodococcus spp. In the R. jostii genome, this gene is duplicated, whereas R. fascians contains only one copy. METHODS We report the molecular cloning of galU genes from R. jostii and R. fascians to produce recombinant proteins RjoGalU1, RjoGalU2, and RfaGalU. Substrate saturation curves were conducted, kinetic parameters were obtained and the catalytic efficiency (kcat/Km) was used to analyze enzyme promiscuity. We also investigated the response of R. jostii GlmU pyrophosphorylase activity with different sugar-1Ps, which may compete for substrates with RjoGalU2. RESULTS All enzymes were active as pyrophosphorylases and exhibited substrate promiscuity toward sugar-1Ps. Remarkably, RjoGalU2 exhibited one order of magnitude higher activity with glucosamine-1P than glucose-1P, the canonical substrate. Glucosamine-1P activity was also significant in RfaGalU. The efficient use of the phospho-amino-sugar suggests the feasibility of the reaction to occur in vivo. Also, RjoGalU2 and RfaGalU represent enzymatic tools for the production of (amino)glucosyl precursors for the putative synthesis of novel molecules. CONCLUSIONS Results support the hypothesis that partitioning of glucosamine-1P includes an uncharacterized metabolic node in Rhodococcus spp., which could be important for producing diverse alternatives for carbohydrate metabolism in biotechnological applications. GENERAL SIGNIFICANCE Results presented here provide a model to study evolutionary enzyme promiscuity, which could be used as a tool to expand an organism's metabolic repertoire by incorporating non-canonical substrates into novel metabolic pathways.
Collapse
Affiliation(s)
- A E Cereijo
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina
| | - M L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., San Francisco, CA, United States
| | - M A Hernández
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina
| | - M A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, IL 60660, United States
| | - A A Iglesias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina
| | - H M Alvarez
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina.
| | - M D Asencion Diez
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina.
| |
Collapse
|
42
|
Pyridoxamine-phosphate oxidases and pyridoxamine-phosphate oxidase-related proteins catalyze the oxidation of 6-NAD(P)H to NAD(P). Biochem J 2020; 476:3033-3052. [PMID: 31657440 DOI: 10.1042/bcj20190602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 11/17/2022]
Abstract
6-NADH and 6-NADPH are strong inhibitors of several dehydrogenases that may form spontaneously from NAD(P)H. They are known to be oxidized to NAD(P)+ by mammalian renalase, an FAD-linked enzyme mainly present in heart and kidney, and by related bacterial enzymes. We partially purified an enzyme oxidizing 6-NADPH from rat liver, and, surprisingly, identified it as pyridoxamine-phosphate oxidase (PNPO). This was confirmed by the finding that recombinant mouse PNPO oxidized 6-NADH and 6-NADPH with catalytic efficiencies comparable to those observed with pyridoxine- and pyridoxamine-5'-phosphate. PNPOs from Escherichia coli, Saccharomyces cerevisiae and Arabidopsis thaliana also displayed 6-NAD(P)H oxidase activity, indicating that this 'side-activity' is conserved. Remarkably, 'pyridoxamine-phosphate oxidase-related proteins' (PNPO-RP) from Nostoc punctiforme, A. thaliana and the yeast S. cerevisiae (Ygr017w) were not detectably active on pyridox(am)ine-5'-P, but oxidized 6-NADH, 6-NADPH and 2-NADH suggesting that this may be their main catalytic function. Their specificity profiles were therefore similar to that of renalase. Inactivation of renalase and of PNPO in mammalian cells and of Ygr017w in yeasts led to the accumulation of a reduced form of 6-NADH, tentatively identified as 4,5,6-NADH3, which can also be produced in vitro by reduction of 6-NADH by glyceraldehyde-3-phosphate dehydrogenase or glucose-6-phosphate dehydrogenase. As 4,5,6-NADH3 is not a substrate for renalase, PNPO or PNPO-RP, its accumulation presumably reflects the block in the oxidation of 6-NADH. These findings indicate that two different classes of enzymes using either FAD (renalase) or FMN (PNPOs and PNPO-RPs) as a cofactor play an as yet unsuspected role in removing damaged forms of NAD(P).
Collapse
|
43
|
Mahootchi E, Cannon Homaei S, Kleppe R, Winge I, Hegvik TA, Megias-Perez R, Totland C, Mogavero F, Baumann A, Glennon JC, Miletic H, Kursula P, Haavik J. GADL1 is a multifunctional decarboxylase with tissue-specific roles in β-alanine and carnosine production. SCIENCE ADVANCES 2020; 6:eabb3713. [PMID: 32733999 PMCID: PMC7367687 DOI: 10.1126/sciadv.abb3713] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/05/2020] [Indexed: 05/26/2023]
Abstract
Carnosine and related β-alanine-containing peptides are believed to be important antioxidants, pH buffers, and neuromodulators. However, their biosynthetic routes and therapeutic potential are still being debated. This study describes the first animal model lacking the enzyme glutamic acid decarboxylase-like 1 (GADL1). We show that Gadl1-/- mice are deficient in β-alanine, carnosine, and anserine, particularly in the olfactory bulb, cerebral cortex, and skeletal muscle. Gadl1-/- mice also exhibited decreased anxiety, increased levels of oxidative stress markers, alterations in energy and lipid metabolism, and age-related changes. Examination of the GADL1 active site indicated that the enzyme may have multiple physiological substrates, including aspartate and cysteine sulfinic acid. Human genetic studies show strong associations of the GADL1 locus with plasma levels of carnosine, subjective well-being, and muscle strength. Together, this shows the multifaceted and organ-specific roles of carnosine peptides and establishes Gadl1 knockout mice as a versatile model to explore carnosine biology and its therapeutic potential.
Collapse
Affiliation(s)
| | - Selina Cannon Homaei
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Rune Kleppe
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ingeborg Winge
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Tor-Arne Hegvik
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Christian Totland
- Department of Chemistry, University of Bergen, Bergen, Norway
- Norwegian Geotechnical Institute, Oslo, Norway
| | - Floriana Mogavero
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anne Baumann
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Jeffrey Colm Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
44
|
Atkins WM. Mechanisms of promiscuity among drug metabolizing enzymes and drug transporters. FEBS J 2020; 287:1306-1322. [PMID: 31663687 PMCID: PMC7138722 DOI: 10.1111/febs.15116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/04/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Detoxication, or 'drug-metabolizing', enzymes and drug transporters exhibit remarkable substrate promiscuity and catalytic promiscuity. In contrast to substrate-specific enzymes that participate in defined metabolic pathways, individual detoxication enzymes must cope with substrates of vast structural diversity, including previously unencountered environmental toxins. Presumably, evolution selects for a balance of 'adequate' kcat /KM values for a wide range of substrates, rather than optimizing kcat /KM for any individual substrate. However, the structural, energetic, and metabolic properties that achieve this balance, and hence optimize detoxication, are not well understood. Two features of detoxication enzymes that are frequently cited as contributions to promiscuity include the exploitation of highly reactive versatile cofactors, or cosubstrates, and a high degree of flexibility within the protein structure. This review examines these intuitive mechanisms in detail and clarifies the contributions of the classic ligand binding models 'induced fit' (IF) and 'conformational selection' (CS) to substrate promiscuity. The available literature data for drug metabolizing enzymes and transporters suggest that IF is exploited by these promiscuous detoxication enzymes, as it is with substrate-specific enzymes, but the detoxication enzymes uniquely exploit 'IFs' to retain a wide range of substrates at their active sites. In contrast, whereas CS provides no catalytic advantage to substrate-specific enzymes, promiscuous enzymes may uniquely exploit it to recruit a wide range of substrates. The combination of CS and IF, for recruitment and retention of substrates, can potentially optimize the promiscuity of drug metabolizing enzymes and drug transporters.
Collapse
Affiliation(s)
- William M. Atkins
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
45
|
Lukowski AL, Mallik L, Hinze ME, Carlson BM, Ellinwood DC, Pyser JB, Koutmos M, Narayan ARH. Substrate Promiscuity of a Paralytic Shellfish Toxin Amidinotransferase. ACS Chem Biol 2020; 15:626-631. [PMID: 32058687 DOI: 10.1021/acschembio.9b00964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Secondary metabolites are assembled by enzymes that often perform reactions with high selectivity and specificity. Many of these enzymes also tolerate variations in substrate structure, exhibiting promiscuity that enables various applications of a given biocatalyst. However, initial enzyme characterization studies frequently do not explore beyond the native substrates. This limited assessment of substrate scope contributes to the difficulty of identifying appropriate enzymes for specific synthetic applications. Here, we report the natural function of cyanobacterial SxtG, an amidinotransferase involved in the biosynthesis of paralytic shellfish toxins, and demonstrate its ability to modify a breadth of non-native substrates. In addition, we report the first X-ray crystal structure of SxtG, which provides rationale for this enzyme's substrate scope. Taken together, these data confirm the function of SxtG and exemplify its potential utility in biocatalytic synthesis.
Collapse
|
46
|
Niehaus TD, Hillmann KB. Enzyme promiscuity, metabolite damage, and metabolite damage control systems of the tricarboxylic acid cycle. FEBS J 2020; 287:1343-1358. [DOI: 10.1111/febs.15284] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Thomas D. Niehaus
- Department of Plant and Microbial Biology University of Minnesota Twin Cities Saint Paul MN USA
| | - Katie B. Hillmann
- Department of Plant and Microbial Biology University of Minnesota Twin Cities Saint Paul MN USA
| |
Collapse
|
47
|
Belcour A, Girard J, Aite M, Delage L, Trottier C, Marteau C, Leroux C, Dittami SM, Sauleau P, Corre E, Nicolas J, Boyen C, Leblanc C, Collén J, Siegel A, Markov GV. Inferring Biochemical Reactions and Metabolite Structures to Understand Metabolic Pathway Drift. iScience 2020; 23:100849. [PMID: 32058961 PMCID: PMC6997860 DOI: 10.1016/j.isci.2020.100849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 11/11/2019] [Accepted: 01/13/2020] [Indexed: 11/03/2022] Open
Abstract
Inferring genome-scale metabolic networks in emerging model organisms is challenged by incomplete biochemical knowledge and partial conservation of biochemical pathways during evolution. Therefore, specific bioinformatic tools are necessary to infer biochemical reactions and metabolic structures that can be checked experimentally. Using an integrative approach combining genomic and metabolomic data in the red algal model Chondrus crispus, we show that, even metabolic pathways considered as conserved, like sterols or mycosporine-like amino acid synthesis pathways, undergo substantial turnover. This phenomenon, here formally defined as "metabolic pathway drift," is consistent with findings from other areas of evolutionary biology, indicating that a given phenotype can be conserved even if the underlying molecular mechanisms are changing. We present a proof of concept with a methodological approach to formalize the logical reasoning necessary to infer reactions and molecular structures, abstracting molecular transformations based on previous biochemical knowledge.
Collapse
Affiliation(s)
- Arnaud Belcour
- Univ Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Jean Girard
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Méziane Aite
- Univ Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Ludovic Delage
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | | | | | - Cédric Leroux
- Sorbonne Université, CNRS, Plateforme METABOMER-Corsaire (FR2424), Station Biologique de Roscoff, Roscoff, France
| | - Simon M Dittami
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | | | - Erwan Corre
- Sorbonne Université, CNRS, Plateforme ABiMS (FR2424), Station Biologique de Roscoff, Roscoff, France
| | - Jacques Nicolas
- Univ Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Catherine Boyen
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Jonas Collén
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Anne Siegel
- Univ Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France.
| |
Collapse
|
48
|
Obata D, Takabayashi A, Tanaka R, Tanaka A, Ito H. Horizontal Transfer of Promiscuous Activity from Nonphotosynthetic Bacteria Contributed to Evolution of Chlorophyll Degradation Pathway. Mol Biol Evol 2020; 36:2830-2841. [PMID: 31432082 DOI: 10.1093/molbev/msz193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The relationship between enzymes and substrates does not perfectly match the "lock and key" model, because enzymes act on molecules other than their true substrate in different catalytic reactions. Such biologically nonfunctional reactions are called "promiscuous activities." Promiscuous activities are apparently useless, but they can be an important starting point for enzyme evolution. It has been hypothesized that enzymes with low promiscuous activity will show enhanced promiscuous activity under selection pressure and become new specialists through gene duplication. Although this is the prevailing scenario, there are two major problems: 1) it would not apply to prokaryotes because horizontal gene transfer is more significant than gene duplication and 2) there is no direct evidence that promiscuous activity is low without selection pressure. We propose a new scenario including various levels of promiscuous activity throughout a clade and horizontal gene transfer. STAY-GREEN (SGR), a chlorophyll a-Mg dechelating enzyme, has homologous genes in bacteria lacking chlorophyll. We found that some bacterial SGR homologs have much higher Mg-dechelating activities than those of green plant SGRs, while others have no activity, indicating that the level of promiscuous activity varies. A phylogenetic analysis suggests that a bacterial SGR homolog with high dechelating activity was horizontally transferred to a photosynthetic eukaryote. Some SGR homologs acted on various chlorophyll molecules that are not used as substrates by green plant SGRs, indicating that SGR acquired substrate specificity after transfer to eukaryotes. We propose that horizontal transfer of high promiscuous activity is one process of new enzyme acquisition.
Collapse
Affiliation(s)
- Daichi Obata
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
49
|
Janzen E, Blanco C, Peng H, Kenchel J, Chen IA. Promiscuous Ribozymes and Their Proposed Role in Prebiotic Evolution. Chem Rev 2020; 120:4879-4897. [PMID: 32011135 PMCID: PMC7291351 DOI: 10.1021/acs.chemrev.9b00620] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
The ability of enzymes,
including ribozymes, to catalyze side reactions
is believed to be essential to the evolution of novel biochemical
activities. It has been speculated that the earliest ribozymes, whose
emergence marked the origin of life, were low in activity but high
in promiscuity, and that these early ribozymes gave rise to specialized
descendants with higher activity and specificity. Here, we review
the concepts related to promiscuity and examine several cases of highly
promiscuous ribozymes. We consider the evidence bearing on the question
of whether de novo ribozymes would be quantitatively
more promiscuous than later evolved ribozymes or protein enzymes.
We suggest that while de novo ribozymes appear to
be promiscuous in general, they are not obviously more promiscuous
than more highly evolved or active sequences. Promiscuity is a trait
whose value would depend on selective pressures, even during prebiotic
evolution.
Collapse
Affiliation(s)
- Evan Janzen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States.,Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, Santa Barbara, California 93109, United States
| | - Celia Blanco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States
| | - Huan Peng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States
| | - Josh Kenchel
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States.,Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, Santa Barbara, California 93109, United States
| | - Irene A Chen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States.,Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, Santa Barbara, California 93109, United States.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
50
|
Tawfik DS, Gruic-Sovulj I. How evolution shapes enzyme selectivity - lessons from aminoacyl-tRNA synthetases and other amino acid utilizing enzymes. FEBS J 2020; 287:1284-1305. [PMID: 31891445 DOI: 10.1111/febs.15199] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/08/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) charge tRNA with their cognate amino acids. Many other enzymes use amino acids as substrates, yet discrimination against noncognate amino acids that threaten the accuracy of protein translation is a hallmark of AARSs. Comparing AARSs to these other enzymes allowed us to recognize patterns in molecular recognition and strategies used by evolution for exercising selectivity. Overall, AARSs are 2-3 orders of magnitude more selective than most other amino acid utilizing enzymes. AARSs also reveal the physicochemical limits of molecular discrimination. For example, amino acids smaller by a single methyl moiety present a discrimination ceiling of ~200, while larger ones can be discriminated by up to 105 -fold. In contrast, substrates larger by a hydroxyl group challenge AARS selectivity, due to promiscuous H-bonding with polar active site groups. This 'hydroxyl paradox' is resolved by editing. Indeed, when the physicochemical discrimination limits are reached, post-transfer editing - hydrolysis of tRNAs charged with noncognate amino acids, evolved. The editing site often selectively recognizes the edited noncognate substrate using the very same feature that the synthetic site could not efficiently discriminate against. Finally, the comparison to other enzymes also reveals that the selectivity of AARSs is an explicitly evolved trait, showing some clear examples of how selection acted not only to optimize catalytic efficiency with the target substrate, but also to abolish activity with noncognate threat substrates ('negative selection').
Collapse
Affiliation(s)
- Dan S Tawfik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| |
Collapse
|