1
|
Asaithambi A, Jang A, Ghosh A, Ay M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Rationally Designed PKD1 Activator Protects Against Neurodegeneration in Pre-clinical Models of Parkinson's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.637661. [PMID: 40027802 PMCID: PMC11870433 DOI: 10.1101/2025.02.13.637661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Oxidative stress leads to degeneration in Parkinson's disease (PD). The key signal transduction and regulatory networks that are involved during this degenerative process in PD are currently being investigated for novel neuro-protective strategies. We recently discovered that the activation of Protein Kinase D1 (PKD1) acts as a novel compensatory mechanism in PD models and positive modulation of PKD1 can be a therapeutic strategy. Therefore, the purpose of the present study was to take a translational approach by developing a PKD1 activator and characterizing the protective function in pre-clinical models of PD. Positive genetic modulation of PKD1 by overexpression of constitutively active PKD1 protected against MPP + induced dopaminergic neurotoxicity. Pharmacological activation by Rosiglitazone protected, whereas inhibition by kb NB 142-70 exacerbated against MPP + and 6-OHDA toxicity in cell culture PD models. Importantly, peptides were rationally designed and screened for their ability to activate PKD1 using our screening methods. Peptide AK-P4 was identified to activate PKD1 specifically and protect against MPP + and 6-OHDA in both N27 cells and primary mesencephalic neurons. Further AK-P4 tagged with TAT sequence (AK-P4T) delivered using intra-venous injections activated PKD1 in mice. The neuro-protective effects of AK-P4T were tested using the sub-chronic MPTP mice model. Co-treatment with AK-P4T significantly restored the neurotransmitter levels and the behavioral and locomotory activities of the MPTP mouse model of PD. Collectively, our results demonstrate that rationally designed PKD1 activator peptide AK-P4T positively modulated PKD1 and protected against neurodegeneration in the pre-clinical models of PD. Our results suggest that positive modulation of the PKD1 using AK-P4T shows promise as a potential therapeutic agent against PD.
Collapse
|
2
|
Theivendren P, Pavadai P, Veerachamy S, Palanisamy P, Kunjiappan S. Surface receptor-targeted protein-based nanocarriers for drug delivery: advances in cancer therapy. NANOTECHNOLOGY 2025; 36:122003. [PMID: 39847811 DOI: 10.1088/1361-6528/adad7a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/23/2025] [Indexed: 01/25/2025]
Abstract
Significant progress has been made in cancer therapy with protein-based nanocarriers targeted directly to surface receptors for drug delivery. The nanocarriers are a potentially effective solution for the potential drawbacks of traditional chemotherapy, such as lack of specificity, side effects, and development resistance. Peptides as nanocarriers have been designed based on their biocompatible, biodegradable, and versatile functions to deliver therapeutic agents into cancer cells, reduce systemic toxicity, and maximize therapy efficacy through utilizing targeted ligands such as antibodies, amino acids, vitamins, and other small molecules onto protein-based nanocarriers and thus ensuring that drugs selectively accumulate in the cancer cells instead of healthy organs/drug release at a target site without effects on normal cells, which inherently caused less systemic toxicity/off-target effect. Moreover, their intrinsic protein backbone naturally degradesin vivo, providing another level of safety over synthetic materials. Various issues like immunogenicity, mass production, and quality control must be addressed for widespread use. However, further studies are necessary to perfect protein engineering and improve drug loading, protein modification, and targeting. Thus, it can be concluded that protein-based nanocarriers targeted against the surface receptors would help achieve cancer management in a more focused manner, thus minimizing toxicity. The further development of these nanoparticles could bring a significant change in cancer treatment so that more personalized, targeted, and safe therapies would be available to all patients.
Collapse
Affiliation(s)
- Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry & Analysis, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai 600117, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, M.S.R. Nagar, Bengaluru 560054, Karnataka, India
| | - Suganthan Veerachamy
- School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Ponnusamy Palanisamy
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| |
Collapse
|
3
|
Cabas-Mora G, Daza A, Soto-García N, Garrido V, Alvarez D, Navarrete M, Sarmiento-Varón L, Sepúlveda Yañez JH, Davari MD, Cadet F, Olivera-Nappa Á, Uribe-Paredes R, Medina-Ortiz D. Peptipedia v2.0: a peptide sequence database and user-friendly web platform. A major update. Database (Oxford) 2024; 2024:baae113. [PMID: 39514414 PMCID: PMC11734279 DOI: 10.1093/database/baae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/23/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
In recent years, peptides have gained significant relevance due to their therapeutic properties. The surge in peptide production and synthesis has generated vast amounts of data, enabling the creation of comprehensive databases and information repositories. Advances in sequencing techniques and artificial intelligence have further accelerated the design of tailor-made peptides. However, leveraging these techniques requires versatile and continuously updated storage systems, along with tools that facilitate peptide research and the implementation of machine learning for predictive systems. This work introduces Peptipedia v2.0, one of the most comprehensive public repositories of peptides, supporting biotechnological research by simplifying peptide study and annotation. Peptipedia v2.0 has expanded its collection by over 45% with peptide sequences that have reported biological activities. The functional biological activity tree has been revised and enhanced, incorporating new categories such as cosmetic and dermatological activities, molecular binding, and antiageing properties. Utilizing protein language models and machine learning, more than 90 binary classification models have been trained, validated, and incorporated into Peptipedia v2.0. These models exhibit average sensitivities and specificities of 0.877±0.0530 and 0.873±0.054, respectively, facilitating the annotation of more than 3.6 million peptide sequences with unknown biological activities, also registered in Peptipedia v2.0. Additionally, Peptipedia v2.0 introduces description tools based on structural and ontological properties and user-friendly machine learning tools to facilitate the application of machine learning strategies to study peptide sequences. Database URL: https://peptipedia.cl/.
Collapse
Affiliation(s)
- Gabriel Cabas-Mora
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, Punta Arenas 6210427, Chile
| | - Anamaría Daza
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Avenida Beauchef 851, Santiago 8320000, Chile
| | - Nicole Soto-García
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, Punta Arenas 6210427, Chile
| | - Valentina Garrido
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, Punta Arenas 6210427, Chile
| | - Diego Alvarez
- Centro Asistencial de Docencia e Investigación, CADI, Universidad de Magallanes, Av. Los Flamencos 01364, Punta Arenas 6210005,Chile
| | - Marcelo Navarrete
- Centro Asistencial de Docencia e Investigación, CADI, Universidad de Magallanes, Av. Los Flamencos 01364, Punta Arenas 6210005,Chile
- Escuela de Medicina, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, Punta Arenas 6210427, Chile
| | - Lindybeth Sarmiento-Varón
- Centro Asistencial de Docencia e Investigación, CADI, Universidad de Magallanes, Av. Los Flamencos 01364, Punta Arenas 6210005,Chile
| | - Julieta H Sepúlveda Yañez
- Centro Asistencial de Docencia e Investigación, CADI, Universidad de Magallanes, Av. Los Flamencos 01364, Punta Arenas 6210005,Chile
- Facultad de Ciencias de la Salud, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, Punta Arenas 6210427, Chile
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Frederic Cadet
- PEACCEL, Artificial Intelligence Department, AI for Biologics, Paris 75013, France
| | - Álvaro Olivera-Nappa
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Avenida Beauchef 851, Santiago 8320000, Chile
| | - Roberto Uribe-Paredes
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, Punta Arenas 6210427, Chile
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Avenida Beauchef 851, Santiago 8320000, Chile
| | - David Medina-Ortiz
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, Punta Arenas 6210427, Chile
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Avenida Beauchef 851, Santiago 8320000, Chile
| |
Collapse
|
4
|
Müller M, Gibisch M, Brocard C, Cserjan-Puschmann M, Striedner G, Hahn R. Purification of recombinantly produced somatostatin-28 comparing hydrochloric acid and polyethyleneimine as E. coli extraction aids. Protein Expr Purif 2024; 222:106537. [PMID: 38944221 DOI: 10.1016/j.pep.2024.106537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Peptides are used for diagnostics, therapeutics, and as antimicrobial agents. Most peptides are produced by chemical synthesis, but recombinant production has recently become an attractive alternative due to the advantages of high titers, less toxic waste and correct folding of tertiary structure. Somatostatin-28 is a peptide hormone that regulates the endocrine system, cell proliferation and inhibits the release of numerous secondary hormones in human body. It is composed of 28 amino acids and has one disulfide bond, which makes it to an optimal model peptide for a whole downstream purification process. We produced the peptide in the periplasm of E. coli using the CASPON™ technology, an affinity fusion technology system that enables high soluble expression of recombinant proteins and cleaves the fusion tag with a circularly permuted human caspase-2. Furthermore, purification of the products is straight forward using an established platform process. Two different case studies for downstream purification are presented, starting with either hydrochloric acid or polyethyleneimine as an extraction aid. After release of affinity-tagged somatostatin-28 out of E. coli's periplasm, several purification steps were performed, delivering a pure peptide solution after the final polishing step. The process was monitored by reversed-phase high-performance liquid chromatography as well as mass spectrometry to determine the yield and correct disulfide bond formation. Monitoring of impurities like host cell proteins, DNA and endotoxins after each downstream unit confirmed effective removal for both purification pathways.
Collapse
Affiliation(s)
- Matthias Müller
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Martin Gibisch
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cécile Brocard
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, A-1120, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gerald Striedner
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rainer Hahn
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
5
|
Medina-Ortiz D, Contreras S, Fernández D, Soto-García N, Moya I, Cabas-Mora G, Olivera-Nappa Á. Protein Language Models and Machine Learning Facilitate the Identification of Antimicrobial Peptides. Int J Mol Sci 2024; 25:8851. [PMID: 39201537 PMCID: PMC11487388 DOI: 10.3390/ijms25168851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Peptides are bioactive molecules whose functional versatility in living organisms has led to successful applications in diverse fields. In recent years, the amount of data describing peptide sequences and function collected in open repositories has substantially increased, allowing the application of more complex computational models to study the relations between the peptide composition and function. This work introduces AMP-Detector, a sequence-based classification model for the detection of peptides' functional biological activity, focusing on accelerating the discovery and de novo design of potential antimicrobial peptides (AMPs). AMP-Detector introduces a novel sequence-based pipeline to train binary classification models, integrating protein language models and machine learning algorithms. This pipeline produced 21 models targeting antimicrobial, antiviral, and antibacterial activity, achieving average precision exceeding 83%. Benchmark analyses revealed that our models outperformed existing methods for AMPs and delivered comparable results for other biological activity types. Utilizing the Peptide Atlas, we applied AMP-Detector to discover over 190,000 potential AMPs and demonstrated that it is an integrative approach with generative learning to aid in de novo design, resulting in over 500 novel AMPs. The combination of our methodology, robust models, and a generative design strategy offers a significant advancement in peptide-based drug discovery and represents a pivotal tool for therapeutic applications.
Collapse
Affiliation(s)
- David Medina-Ortiz
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Santiago 8370456, Chile
| | - Seba Contreras
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Diego Fernández
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
| | - Nicole Soto-García
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
| | - Iván Moya
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
- Departamento de Ingeniería Química, Universidad de Magallanes, Punta Arenas 6210005, Chile
| | - Gabriel Cabas-Mora
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Punta Arenas 6210005, Chile
| | - Álvaro Olivera-Nappa
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Santiago 8370456, Chile
- Departamento de Ingeniería Química, Biotecnología y Materiales, Universidad de Chile, Santiago 8370456, Chile
| |
Collapse
|
6
|
Camargo L, Gering I, Mastalipour M, Kraemer-Schulien V, Bujnicki T, Willbold D, Coronado MA, Eberle RJ. A Snake Venom Peptide and Its Derivatives Prevent Aβ 42 Aggregation and Eliminate Toxic Aβ 42 Aggregates In Vitro. ACS Chem Neurosci 2024; 15:2600-2611. [PMID: 38957957 PMCID: PMC11258689 DOI: 10.1021/acschemneuro.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/28/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
Over a century has passed since Alois Alzheimer first described Alzheimer's disease (AD), and since then, researchers have made significant strides in understanding its pathology. One key feature of AD is the presence of amyloid-β (Aβ) peptides, which form amyloid plaques, and therefore, it is a primary target for treatment studies. Naturally occurring peptides have garnered attention for their potential pharmacological benefits, particularly in the central nervous system. In this study, nine peptide derivatives of Crotamine, a polypeptide from Crotalus durissus terrificus Rattlesnake venom, as well as one d-enantiomer, were evaluated for their ability to modulate Aβ42 aggregation through various assays such as ThT, QIAD, SPR, and sFIDA. All tested peptides were able to decrease Aβ42 aggregation and eliminate Aβ42 aggregates. Additionally, all of the peptides showed an affinity for Aβ42. This study is the first to describe the potential of crotamine derivative peptides against Aβ42 aggregation and to identify a promising d-peptide that could be used as an effective pharmacological tool against AD in the future.
Collapse
Affiliation(s)
- Luana
Cristina Camargo
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52428, Germany
- Faculty
of Mathematics and Natural Sciences, Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Ian Gering
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Mohammadamin Mastalipour
- Faculty
of Mathematics and Natural Sciences, Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Victoria Kraemer-Schulien
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Tuyen Bujnicki
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Dieter Willbold
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52428, Germany
- Faculty
of Mathematics and Natural Sciences, Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Mônika A. Coronado
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52428, Germany
- Faculty
of Mathematics and Natural Sciences, Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Raphael J. Eberle
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich 52428, Germany
- Faculty
of Mathematics and Natural Sciences, Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
7
|
Bhattarai S, Tayara H, Chong KT. Advancing Peptide-Based Cancer Therapy with AI: In-Depth Analysis of State-of-the-Art AI Models. J Chem Inf Model 2024; 64:4941-4957. [PMID: 38874445 DOI: 10.1021/acs.jcim.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Anticancer peptides (ACPs) play a vital role in selectively targeting and eliminating cancer cells. Evaluating and comparing predictions from various machine learning (ML) and deep learning (DL) techniques is challenging but crucial for anticancer drug research. We conducted a comprehensive analysis of 15 ML and 10 DL models, including the models released after 2022, and found that support vector machines (SVMs) with feature combination and selection significantly enhance overall performance. DL models, especially convolutional neural networks (CNNs) with light gradient boosting machine (LGBM) based feature selection approaches, demonstrate improved characterization. Assessment using a new test data set (ACP10) identifies ACPred, MLACP 2.0, AI4ACP, mACPred, and AntiCP2.0_AAC as successive optimal predictors, showcasing robust performance. Our review underscores current prediction tool limitations and advocates for an omnidirectional ACP prediction framework to propel ongoing research.
Collapse
Affiliation(s)
- Sadik Bhattarai
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju-si, 54896 Jeollabuk-do, South Korea
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju-si, 54896 Jeollabuk-do, South Korea
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju-si, 54896 Jeollabuk-do, South Korea
- Advanced Electronics and Information Research Center, Jeonbuk National University, Jeonju-si, 54896 Jeollabuk-do, South Korea
| |
Collapse
|
8
|
Gibisch M, Müller M, Tauer C, Albrecht B, Hahn R, Cserjan-Puschmann M, Striedner G. A production platform for disulfide-bonded peptides in the periplasm of Escherichia coli. Microb Cell Fact 2024; 23:166. [PMID: 38840157 PMCID: PMC11155123 DOI: 10.1186/s12934-024-02446-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Recombinant peptide production in Escherichia coli provides a sustainable alternative to environmentally harmful and size-limited chemical synthesis. However, in-vivo production of disulfide-bonded peptides at high yields remains challenging, due to degradation by host proteases/peptidases and the necessity of translocation into the periplasmic space for disulfide bond formation. RESULTS In this study, we established an expression system for efficient and soluble production of disulfide-bonded peptides in the periplasm of E. coli. We chose model peptides with varying complexity (size, structure, number of disulfide bonds), namely parathyroid hormone 1-84, somatostatin 1-28, plectasin, and bovine pancreatic trypsin inhibitor (aprotinin). All peptides were expressed without and with the N-terminal, low molecular weight CASPON™ tag (4.1 kDa), with the expression cassette being integrated into the host genome. During BioLector™ cultivations at microliter scale, we found that most of our model peptides can only be sufficiently expressed in combination with the CASPON™ tag, otherwise expression was only weak or undetectable on SDS-PAGE. Undesired degradation by host proteases/peptidases was evident even with the CASPON™ tag. Therefore, we investigated whether degradation happened before or after translocation by expressing the peptides in combination with either a co- or post-translational signal sequence. Our results suggest that degradation predominantly happened after the translocation, as degradation fragments appeared to be identical independent of the signal sequence, and expression was not enhanced with the co-translational signal sequence. Lastly, we expressed all CASPON™-tagged peptides in two industry-relevant host strains during C-limited fed-batch cultivations in bioreactors. We found that the process performance was highly dependent on the peptide-host-combination. The titers that were reached varied between 0.6-2.6 g L-1, and exceeded previously published data in E. coli. Moreover, all peptides were shown by mass spectrometry to be expressed to completion, including full formation of disulfide bonds. CONCLUSION In this work, we demonstrated the potential of the CASPON™ technology as a highly efficient platform for the production of soluble peptides in the periplasm of E. coli. The titers we show here are unprecedented whenever parathyroid hormone, somatostatin, plectasin or bovine pancreatic trypsin inhibitor were produced in E. coli, thus making our proposed upstream platform favorable over previously published approaches and chemical synthesis.
Collapse
Affiliation(s)
- Martin Gibisch
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Matthias Müller
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Christopher Tauer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Bernd Albrecht
- Boehringer-Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, Vienna, Austria
| | - Rainer Hahn
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria.
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
9
|
Goles M, Daza A, Cabas-Mora G, Sarmiento-Varón L, Sepúlveda-Yañez J, Anvari-Kazemabad H, Davari MD, Uribe-Paredes R, Olivera-Nappa Á, Navarrete MA, Medina-Ortiz D. Peptide-based drug discovery through artificial intelligence: towards an autonomous design of therapeutic peptides. Brief Bioinform 2024; 25:bbae275. [PMID: 38856172 PMCID: PMC11163380 DOI: 10.1093/bib/bbae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/23/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
With their diverse biological activities, peptides are promising candidates for therapeutic applications, showing antimicrobial, antitumour and hormonal signalling capabilities. Despite their advantages, therapeutic peptides face challenges such as short half-life, limited oral bioavailability and susceptibility to plasma degradation. The rise of computational tools and artificial intelligence (AI) in peptide research has spurred the development of advanced methodologies and databases that are pivotal in the exploration of these complex macromolecules. This perspective delves into integrating AI in peptide development, encompassing classifier methods, predictive systems and the avant-garde design facilitated by deep-generative models like generative adversarial networks and variational autoencoders. There are still challenges, such as the need for processing optimization and careful validation of predictive models. This work outlines traditional strategies for machine learning model construction and training techniques and proposes a comprehensive AI-assisted peptide design and validation pipeline. The evolving landscape of peptide design using AI is emphasized, showcasing the practicality of these methods in expediting the development and discovery of novel peptides within the context of peptide-based drug discovery.
Collapse
Affiliation(s)
- Montserrat Goles
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
- Departamento de Ingeniería Química, Biotecnología y Materiales, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| | - Anamaría Daza
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| | - Gabriel Cabas-Mora
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Lindybeth Sarmiento-Varón
- Centro Asistencial de Docencia e Investigación, CADI, Universidad de Magallanes, Av. Los Flamencos 01364, 6210005, Punta Arenas, Chile
| | - Julieta Sepúlveda-Yañez
- Facultad de Ciencias de la Salud, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Hoda Anvari-Kazemabad
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany
| | - Roberto Uribe-Paredes
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - Álvaro Olivera-Nappa
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| | - Marcelo A Navarrete
- Centro Asistencial de Docencia e Investigación, CADI, Universidad de Magallanes, Av. Los Flamencos 01364, 6210005, Punta Arenas, Chile
- Escuela de Medicina, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
| | - David Medina-Ortiz
- Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile
- Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile
| |
Collapse
|
10
|
Malhis M, Funke SA. Mirror-Image Phage Display for the Selection of D-Amino Acid Peptide Ligands as Potential Therapeutics. Curr Protoc 2024; 4:e957. [PMID: 38372457 DOI: 10.1002/cpz1.957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
In neurodegenerative diseases like Alzheimer's disease (AD), endogenous proteins or peptides aggregate with themselves. These proteins may lose their function or aggregates and/or oligomers can obtain toxicity, causing injury or death to cells. Aggregation of two major proteins characterizes AD. Amyloid-β peptide (Aβ) is deposited in amyloid plaques within the extracellular space of the brain and Tau in so-called neurofibrillary tangles in neurons. Finding peptide ligands to halt protein aggregation is a promising therapeutical approach. Using mirror-image phage display with a commercially available, randomized 12-mer peptide library, we have selected D-amino acid peptides, which bind to the Tau protein and modulate its aggregation in vitro. Peptides can bind specifically and selectively to a target molecule, but natural L-amino acid peptides may have crucial disadvantages for in vivo applications, as they are sensitive to protease degradation and may elicit immune responses. One strategy to circumvent these disadvantages is the use of non-naturally occurring D-amino acid peptides as they exhibit increased protease resistance and generally do not activate the immune system. To perform mirror-image phage display, the target protein needs to be synthesized as D-amino acid version. If the target protein sequence is too long to be synthesized properly, smaller peptides derived from the full length protein can be used for the selection process. This also offers the possibility to influence the binding region of the selected D-peptides in the full-length target protein. Here we provide the protocols for mirror-image phage display selection on the PHF6* peptide of Tau, based on the commercially available Ph.D.™-12 Phage Display Peptide Library Kit, leading to D-peptides that also bind the full length Tau protein (Tau441), next to PHF6*. In addition, we provide protocols and data for the first characterization of those D-peptides that inhibit Tau aggregation in vitro. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Mirror image phage display selection against D-PHF6* fibrils Support Protocol 1: Single phage ELISA Basic Protocol 2: Sequencing and D-peptide generation Basic Protocol 3: Thioflavin-T (ThT) test to control inhibition of Tau aggregation Support Protocol 2: Purification of full-length Tau protein Basic Protocol 4: ELISA to demonstrate the binding of the generated D-peptides to PHF6* and full-length Tau fibrils.
Collapse
Affiliation(s)
- Marwa Malhis
- Institut für Bioanalytik, Hochschule für Angewandte Wissenschaften, Coburg, Germany
| | - Susanne Aileen Funke
- Institut für Bioanalytik, Hochschule für Angewandte Wissenschaften, Coburg, Germany
| |
Collapse
|
11
|
Kumar Sharma A, Sharma R, Dev Sarma H, Mukherjee A, Das T, Satpati D. Design, synthesis and evaluation of 177Lu-labeled inverso and retro-inverso A9 peptide variants targeting HER2-overexpression. Bioorg Chem 2023; 140:106761. [PMID: 37586132 DOI: 10.1016/j.bioorg.2023.106761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Several HER2-specific peptides are being continuously explored to find a candidate with suitable pharmacokinetic properties for development of effective radiopharmaceutical that can find applications for clinical screening of breast cancer patients. In the present work with an aim of preparing a radiopeptide with improved metabolic stability and in vivo pharmacokinetic performance we modified our previously reported [177Lu]DOTA-L-A9 peptide. Here we designed an 'inverso' peptide with all d-amino acids and a 'retro-inverso' peptide where sequence of d-amino acids was reversed. Higher secondary structure stabilization of retro- inverso A9 variant compared to inverso A9 peptide was evident by circular dichroism studies. The two radiopeptides [177Lu]DOTA-D-A9 and [177Lu]DOTA-rD-A9 exhibited significantly improved in vivo metabolic stability over the original l-peptide. The retro-inverso variant, [177Lu]DOTA-rD-A9 demonstrated better pharmacokinetic behavior with significantly higher tumor uptake than the inverso peptide, [177Lu]DOTA-D-A9 and the original peptide, [177Lu]DOTA-L-A9. In the present case of A9 peptide, reversal of the peptide sequence of d-amino acids boosted the uptake and retention of radioactivity in HER2-positive tumor. The present study can thus guide the design and development of newer and improved versions of peptides.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
12
|
Sharma AK, Sharma R, Das A, Chakraborty A, Rakshit S, Sarma HD, Mukherjee A, Das T, Satpati D. Synthesis and 177Lu Labeling of the First Retro Analog of the HER2-Targeting A9 Peptide: A Superior Variant. Bioconjug Chem 2023; 34:1576-1584. [PMID: 37379455 DOI: 10.1021/acs.bioconjchem.3c00265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The retro analog of the HER2-targeting A9 peptide was synthesized by coupling amino acids in a reverse fashion and switching the N-terminal in the original sequence of the L-A9 peptide (QDVNTAVAW) to the C-terminal in rL-A9 (WAVATNVDQ). Modification in the backbone resulted in higher conformational stability of the retro peptide as evident from CD spectra. Molecular docking analysis revealed a higher HER2 binding affinity of [177Lu]Lu-DOTA-rL-A9 than the original radiopeptide [177Lu]Lu-DOTA-L-A9. Enormously enhanced metabolic stability of the retro analog led to significant elevation in tumor uptake and retention. SPECT imaging studies corroborated biodistribution results demonstrating a remarkably higher tumor signal for [177Lu]Lu-DOTA-rL-A9. The presently studied retro probe has promising efficiency for clinical screening.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Amit Das
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Avik Chakraborty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400012, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Sutapa Rakshit
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400012, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
13
|
Fraser BA, Wilkins AL, De Iuliis GN, Rebourcet D, Nixon B, Aitken RJ. Development of a model for studying the developmental consequences of oxidative sperm DNA damage by targeting redox-cycling naphthoquinones to the Sertoli cell population. Free Radic Biol Med 2023; 206:50-62. [PMID: 37356777 DOI: 10.1016/j.freeradbiomed.2023.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Oxidative stress can be induced in the testes by a wide range of factors, including scrotal hyperthermia, varicocele, environmental toxicants, obesity and infection. The clinical consequences of such stress include the induction of genetic damage in the male germ line which may, in turn, have serious implications for the health and wellbeing of the progeny. In order to confirm the transgenerational impact of oxidative stress in the testes, we sought to develop an animal model in which this process could be analysed. Our primary approach to this problem was to induce Sertoli cells (robust, terminally differentiated, tissue-specific testicular cells whose radioresistance indicates significant resistance to oxidative stress) to generate high levels of reactive oxygen species (ROS) within the testes. To achieve this aim, six follicle-stimulating hormone (FSH) peptides were developed and compared for selective targeting to Sertoli cells both in vitro and in vivo. Menadione, a redox-cycling agent, was then conjugated to the most promising FSH candidate using a linker that had been optimised to enable maximum production of ROS in the targeted cells. A TM4 Sertoli cell line co-incubated with the FSH-menadione conjugate in vitro exhibited significantly higher levels of mitochondrial ROS generation (10-fold), lipid peroxidation (2-fold) and oxidative DNA damage (2-fold) than the vehicle control. Additionally, in a proof-of-concept study, ten weeks after a single injection of the FSH-menadione conjugate in vivo, injected male mice were found to exhibit a 1.6 fold increase in DNA double strand breaks and 13-fold increase in oxidative DNA damage to their spermatozoa while still retaining their ability to initiate a pregnancy. We suggest this model could now be used to study the influence of chronic oxidative stress on testicular function with emphasis on the impact of DNA damage in the male germ line on the mutational profile and health of future generations.
Collapse
Affiliation(s)
- Barbara Anne Fraser
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, 2308, Australia; Pregnancy and Reproduction Program, Hunter Medical Research Institute, Kookaburra Cct, New Lambton Heights, NSW, 2305, Australia; College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Alexandra Louise Wilkins
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, 2308, Australia; Pregnancy and Reproduction Program, Hunter Medical Research Institute, Kookaburra Cct, New Lambton Heights, NSW, 2305, Australia; College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Geoffry Nunzio De Iuliis
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, 2308, Australia; Pregnancy and Reproduction Program, Hunter Medical Research Institute, Kookaburra Cct, New Lambton Heights, NSW, 2305, Australia; College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Diane Rebourcet
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, 2308, Australia; Pregnancy and Reproduction Program, Hunter Medical Research Institute, Kookaburra Cct, New Lambton Heights, NSW, 2305, Australia; College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, 2308, Australia; Pregnancy and Reproduction Program, Hunter Medical Research Institute, Kookaburra Cct, New Lambton Heights, NSW, 2305, Australia; College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Robert John Aitken
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, 2308, Australia; Pregnancy and Reproduction Program, Hunter Medical Research Institute, Kookaburra Cct, New Lambton Heights, NSW, 2305, Australia; College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
14
|
Dhakne P, Pillai M, Mishra S, Chatterjee B, Tekade RK, Sengupta P. Refinement of safety and efficacy of anti-cancer chemotherapeutics by tailoring their site-specific intracellular bioavailability through transporter modulation. Biochim Biophys Acta Rev Cancer 2023; 1878:188906. [PMID: 37172652 DOI: 10.1016/j.bbcan.2023.188906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Low intracellular bioavailability, off-site toxicities, and multi drug resistance (MDR) are the major constraints involved in cancer chemotherapy. Many anticancer molecules fail to become a good lead in drug discovery because of their poor site-specific bioavailability. Concentration of a molecule at target sites is largely varied because of the wavering expression of transporters. Recent anticancer drug discovery strategies are paying high attention to enhance target site bioavailability by modulating drug transporters. The level of genetic expression of transporters is an important determinant to understand their ability to facilitate drug transport across the cellular membrane. Solid carrier (SLC) transporters are the major influx transporters involved in the transportation of most anti-cancer drugs. In contrast, ATP-binding cassette (ABC) superfamily is the most studied class of efflux transporters concerning cancer and is significantly involved in efflux of chemotherapeutics resulting in MDR. Balancing SLC and ABC transporters is essential to avoid therapeutic failure and minimize MDR in chemotherapy. Unfortunately, comprehensive literature on the possible approaches of tailoring site-specific bioavailability of anticancer drugs through transporter modulation is not available till date. This review critically discussed the role of different specific transporter proteins in deciding the intracellular bioavailability of anticancer molecules. Different strategies for reversal of MDR in chemotherapy by incorporation of chemosensitizers have been proposed in this review. Targeted strategies for administration of the chemotherapeutics to the intracellular site of action through clinically relevant transporters employing newer nanotechnology-based formulation platforms have been explained. The discussion embedded in this review is timely considering the current need of addressing the ambiguity observed in pharmacokinetic and clinical outcomes of the chemotherapeutics in anti-cancer treatment regimens.
Collapse
Affiliation(s)
- Pooja Dhakne
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Megha Pillai
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sonam Mishra
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Bappaditya Chatterjee
- SVKM's NMIMS School of Pharmacy and Management, Department of Pharmaceutics, Vaikunthlal Mehta Road, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
15
|
Castro TG, Melle-Franco M, Sousa CEA, Cavaco-Paulo A, Marcos JC. Non-Canonical Amino Acids as Building Blocks for Peptidomimetics: Structure, Function, and Applications. Biomolecules 2023; 13:981. [PMID: 37371561 PMCID: PMC10296201 DOI: 10.3390/biom13060981] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
This review provides a fresh overview of non-canonical amino acids and their applications in the design of peptidomimetics. Non-canonical amino acids appear widely distributed in nature and are known to enhance the stability of specific secondary structures and/or biological function. Contrary to the ubiquitous DNA-encoded amino acids, the structure and function of these residues are not fully understood. Here, results from experimental and molecular modelling approaches are gathered to classify several classes of non-canonical amino acids according to their ability to induce specific secondary structures yielding different biological functions and improved stability. Regarding side-chain modifications, symmetrical and asymmetrical α,α-dialkyl glycines, Cα to Cα cyclized amino acids, proline analogues, β-substituted amino acids, and α,β-dehydro amino acids are some of the non-canonical representatives addressed. Backbone modifications were also examined, especially those that result in retro-inverso peptidomimetics and depsipeptides. All this knowledge has an important application in the field of peptidomimetics, which is in continuous progress and promises to deliver new biologically active molecules and new materials in the near future.
Collapse
Affiliation(s)
- Tarsila G. Castro
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (T.G.C.); (A.C.-P.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuel Melle-Franco
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Cristina E. A. Sousa
- BioMark Sensor Research—School of Engineering of the Polytechnic Institute of Porto, 4249-015 Porto, Portugal;
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (T.G.C.); (A.C.-P.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - João C. Marcos
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
16
|
Wang R, Wang Y, Song J, Tan H, Tian C, Zhao D, Xu S, Zhao P, Xia Q. A Novel Approach for Screening Sericin-Derived Therapeutic Peptides Using Transcriptomics and Immunoprecipitation. Int J Mol Sci 2023; 24:ijms24119425. [PMID: 37298379 DOI: 10.3390/ijms24119425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
With the demand for more efficient and safer therapeutic drugs, targeted therapeutic peptides are well received due to their advantages of high targeting (specificity), low immunogenicity, and minimal side effects. However, the conventional methods of screening targeted therapeutic peptides in natural proteins are tedious, time-consuming, less efficient, and require too many validation experiments, which seriously restricts the innovation and clinical development of peptide drugs. In this study, we established a novel method of screening targeted therapeutic peptides in natural proteins. We also provide details for library construction, transcription assays, receptor selection, therapeutic peptide screening, and biological activity analysis of our proposed method. This method allows us to screen the therapeutic peptides TS263 and TS1000, which have the ability to specifically promote the synthesis of the extracellular matrix. We believe that this method provides a reference for screening other drugs in natural resources, including proteins, peptides, fats, nucleic acids, and small molecules.
Collapse
Affiliation(s)
- Riyuan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yuancheng Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Jianxin Song
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Huanhuan Tan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Chi Tian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Sheng Xu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Medical University, Nanning 530021, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
17
|
Aillaud I, Funke SA. Tau Aggregation Inhibiting Peptides as Potential Therapeutics for Alzheimer Disease. Cell Mol Neurobiol 2023; 43:951-961. [PMID: 35596819 PMCID: PMC10006036 DOI: 10.1007/s10571-022-01230-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer disease (AD) is the most common progressive neurodegenerative disorder. AD causes enormous personal and economic burden to society as currently only limited palliative therapeutic options are available. The pathological hallmarks of the disease are extracellular plaques, composed of fibrillar amyloid-β (Aβ), and neurofibrillary tangles inside neurons, composed of Tau protein. Until recently, the search for AD therapeutics was focussed more on the Aβ peptide and its pathology, but the results were unsatisfying. As an alternative, Tau might be a promising therapeutic target as its pathology is closely correlated to clinical symptoms. In addition, pathological Tau aggregation occurs in a large group of diseases, called Tauopathies, and in most of them Aβ aggregation does not play a role in disease pathogenesis. The formation of Tau aggregates is triggered by two hexapeptide motifs within Tau; PHF6* and PHF6. Both fragments are interesting targets for the development of Tau aggregation inhibitors (TAI). Peptides represent a unique class of pharmaceutical compounds and are reasonable alternatives to chemical substances or antibodies. They are attributed with high biological activity, valuable specificity and low toxicity, and often are developed as drug candidates to interrupt protein-protein interactions. The preparation of peptides is simple, controllable and the peptides can be easily modified. However, their application may also have disadvantages. Currently, a few peptide compounds acting as TAI are described in the literature, most of them developed by structure-based design or phage display. Here, we review the current state of research in this promising field of AD therapy development.
Collapse
Affiliation(s)
- Isabelle Aillaud
- Institute of Bioanalysis, Coburg University of Applied Sciences, Coburg, Germany
| | - Susanne Aileen Funke
- Institute of Bioanalysis, Coburg University of Applied Sciences, Coburg, Germany.
| |
Collapse
|
18
|
Lander AJ, Jin Y, Luk LYP. D-Peptide and D-Protein Technology: Recent Advances, Challenges, and Opportunities. Chembiochem 2023; 24:e202200537. [PMID: 36278392 PMCID: PMC10805118 DOI: 10.1002/cbic.202200537] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Indexed: 11/08/2022]
Abstract
Total chemical protein synthesis provides access to entire D-protein enantiomers enabling unique applications in molecular biology, structural biology, and bioactive compound discovery. Key enzymes involved in the central dogma of molecular biology have been prepared in their D-enantiomeric forms facilitating the development of mirror-image life. Crystallization of a racemic mixture of L- and D-protein enantiomers provides access to high-resolution X-ray structures of polypeptides. Additionally, D-enantiomers of protein drug targets can be used in mirror-image phage display allowing discovery of non-proteolytic D-peptide ligands as lead candidates. This review discusses the unique applications of D-proteins including the synthetic challenges and opportunities.
Collapse
Affiliation(s)
- Alexander J. Lander
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Yi Jin
- Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
| | - Louis Y. P. Luk
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
19
|
Zheng Z, Yuan L, Hu JJ, Xia F, Lou X. Modular Peptide Probe for Protein Analysis. Chemistry 2023; 29:e202203225. [PMID: 36333271 DOI: 10.1002/chem.202203225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
The analysis and regulation of proteins are of great significance for the development of disease diagnosis and treatment. However, complicated analytical environment and complex protein structure severely limit the accuracy of their analysis results. Nowadays, ascribing to the editability and bioactivity of peptides, peptide-based probes could meet the requirements of good selectivity and high affinity to overcome the challenges. In this review, we summarize the advances in the use of modular peptide probes for proteins analysis. It focuses on how to design and optimize the structure of probes, as well as their performance. Then, the strategies and application to improve the analysis result of modular peptide probes are introduced. Finally, we also discuss current challenge and provide some ideas for the future direction for modular peptide probes, hoping to accelerate their clinical transformation.
Collapse
Affiliation(s)
- Zhi Zheng
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Lizhen Yuan
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
20
|
Hardan L, Chedid JCA, Bourgi R, Cuevas-Suárez CE, Lukomska-Szymanska M, Tosco V, Monjarás-Ávila AJ, Jabra M, Salloum-Yared F, Kharouf N, Mancino D, Haikel Y. Peptides in Dentistry: A Scoping Review. Bioengineering (Basel) 2023; 10:214. [PMID: 36829708 PMCID: PMC9952573 DOI: 10.3390/bioengineering10020214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Currently, it remains unclear which specific peptides could be appropriate for applications in different fields of dentistry. The aim of this scoping review was to scan the contemporary scientific papers related to the types, uses and applications of peptides in dentistry at the moment. Literature database searches were performed in the following databases: PubMed/MEDLINE, Scopus, Web of Science, Embase, and Scielo. A total of 133 articles involving the use of peptides in dentistry-related applications were included. The studies involved experimental designs in animals, microorganisms, or cells; clinical trials were also identified within this review. Most of the applications of peptides included caries management, implant osseointegration, guided tissue regeneration, vital pulp therapy, antimicrobial activity, enamel remineralization, periodontal therapy, the surface modification of tooth implants, and the modification of other restorative materials such as dental adhesives and denture base resins. The in vitro and in vivo studies included in this review suggested that peptides may have beneficial effects for treating early carious lesions, promoting cell adhesion, enhancing the adhesion strength of dental implants, and in tissue engineering as healthy promotors of the periodontium and antimicrobial agents. The lack of clinical trials should be highlighted, leaving a wide space available for the investigation of peptides in dentistry.
Collapse
Affiliation(s)
- Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Jean Claude Abou Chedid
- Department of Pediatric Dentistry, Faculty of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint Joseph University, Beirut 1107 2180, Lebanon
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
| | - Carlos Enrique Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, San Agustín Tlaxiaca 42160, Mexico
| | | | - Vincenzo Tosco
- Department of Clinical Sciences and Stomatology (DISCO), Polytechnic University of Marche, 60126 Ancona, Italy
| | - Ana Josefina Monjarás-Ávila
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, San Agustín Tlaxiaca 42160, Mexico
| | - Massa Jabra
- Faculty of Medicine, Damascus University, Damascus 0100, Syria
| | | | - Naji Kharouf
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Davide Mancino
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Youssef Haikel
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, University of Strasbourg, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
21
|
Sharma L, Bisht GS. Short Antimicrobial Peptides: Therapeutic Potential and Recent Advancements. Curr Pharm Des 2023; 29:3005-3017. [PMID: 38018196 DOI: 10.2174/0113816128248959231102114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023]
Abstract
There has been a lot of interest in antimicrobial peptides (AMPs) as potential next-generation antibiotics. They are components of the innate immune system. AMPs have broad-spectrum action and are less prone to resistance development. They show potential applications in various fields, including medicine, agriculture, and the food industry. However, despite the good activity and safety profiles, AMPs have had difficulty finding success in the clinic due to their various limitations, such as production cost, proteolytic susceptibility, and oral bioavailability. To overcome these flaws, a number of solutions have been devised, one of which is developing short antimicrobial peptides. Short antimicrobial peptides do have an advantage over longer peptides as they are more stable and do not collapse during absorption. They have generated a lot of interest because of their evolutionary success and advantageous properties, such as low molecular weight, selective targets, cell or organelles with minimal toxicity, and enormous therapeutic potential. This article provides an overview of the development of short antimicrobial peptides with an emphasis on those with ≤ 30 amino acid residues as a potential therapeutic agent to fight drug-resistant microorganisms. It also emphasizes their applications in many fields and discusses their current state in clinical trials.
Collapse
Affiliation(s)
- Lalita Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Gopal Singh Bisht
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| |
Collapse
|
22
|
Mahto AK, Kumari S, Akbar S, Paroha S, Sahoo PK, Kumar A, Dewangan RP. Peptide-Based Therapeutics and Drug Delivery Systems. DRUGS AND A METHODOLOGICAL COMPENDIUM 2023:173-211. [DOI: 10.1007/978-981-19-7952-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Miah MM, Tabassum N, Afroj Zinnia M, Islam ABMMK. Drug and Anti-Viral Peptide Design to Inhibit the Monkeypox Virus by Restricting A36R Protein. Bioinform Biol Insights 2022; 16:11779322221141164. [PMID: 36570327 PMCID: PMC9772960 DOI: 10.1177/11779322221141164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/06/2022] [Indexed: 12/24/2022] Open
Abstract
Most recently, monkeypox virus (MPXV) has emanated as a global public health threat. Unavailability of effective medicament against MPXV escalates demand for new therapeutic agent. In this study, in silico strategies were conducted to identify novel drug against the A36R protein of MPXV. The A36R protein of MPXV is responsible for the viral migration, adhesion, and vesicle trafficking to the host cell. To block the A36R protein, 4893 potential antiviral peptides (AVPs) were retrieved from DRAMP and SATPdb databases. Finally, 57 sequences were screened based on peptide filtering criteria, which were then modeled. Likewise, 31 monkeypox virus A36R protein sequences were collected from NCBI protein database to find consensus sequence and to predict 3D protein model. The refined and validated models of the A36R protein and AVP peptides were used to predict receptor-ligand interactions using DINC 2 server. Three peptides that showed best interactions were SATPdb10193, SATPdb21850, and SATPdb26811 with binding energies -6.10, -6.10, and -6.30 kcal/mol, respectively. Small molecules from drug databases were also used to perform virtual screening against the A36R protein. Among databases, Enamine-HTSC showed strong affinity with docking scores ranging from -8.8 to 9.8 kcal/mol. Interaction of target protein A36R with the top 3 peptides and the most probable drug (Z55287118) examined by molecular dynamic (MD) simulation. Trajectory analyses (RMSD, RMSF, SASA, and Rg) confirmed the stable nature of protein-ligand and protein-peptide complexes. This work suggests that identified top AVPs and small molecules might interfere with the function of the A36R protein of MPXV.
Collapse
Affiliation(s)
| | - Nuzhat Tabassum
- Department of Pharmacy, East West University, Dhaka, Bangladesh
| | | | - Abul Bashar Mir Md. Khademul Islam
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh,Abul Bashar Mir Md. Khademul Islam, Department of Genetic Engineering and Biotechnology, University of Dhaka, Nilkhet Rd, Dhaka 1000, Bangladesh.
| |
Collapse
|
24
|
Baazaoui N, Iqbal K. Alzheimer's Disease: Challenges and a Therapeutic Opportunity to Treat It with a Neurotrophic Compound. Biomolecules 2022; 12:biom12101409. [PMID: 36291618 PMCID: PMC9599095 DOI: 10.3390/biom12101409] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with an insidious onset and multifactorial nature. A deficit in neurogenesis and synaptic plasticity are considered the early pathological features associated with neurofibrillary tau and amyloid β pathologies and neuroinflammation. The imbalance of neurotrophic factors with an increase in FGF-2 level and a decrease in brain derived neurotrophic factor (BDNF) and neurotrophin 4 (NT-4) in the hippocampus, frontal cortex and parietal cortex and disruption of the brain micro-environment are other characteristics of AD. Neurotrophic factors are crucial in neuronal differentiation, maturation, and survival. Several attempts to use neurotrophic factors to treat AD were made, but these trials were halted due to their blood-brain barrier (BBB) impermeability, short-half-life, and severe side effects. In the present review we mainly focus on the major etiopathology features of AD and the use of a small neurotrophic and neurogenic peptide mimetic compound; P021 that was discovered in our laboratory and was found to overcome the difficulties faced in the administration of the whole neurotrophic factor proteins. We describe pre-clinical studies on P021 and its potential as a therapeutic drug for AD and related neurodegenerative disorders. Our study is limited because it focuses only on P021 and the relevant literature; a more thorough investigation is required to review studies on various therapeutic approaches and potential drugs that are emerging in the AD field.
Collapse
Affiliation(s)
- Narjes Baazaoui
- Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha 61421, Saudi Arabia
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
- Correspondence: ; Tel.: +1-718-494-5259; Fax: +1-718-494-1080
| |
Collapse
|
25
|
Priya A, Aditya A, Budagavi DP, Chugh A. Tachyplesin and CyLoP-1 as efficient anti-mycobacterial peptides: A novel finding. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183895. [PMID: 35271828 DOI: 10.1016/j.bbamem.2022.183895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Mycobacterium tuberculosis is an etiological agent of tuberculosis (TB) known to be a highly contagious disease and is the major cause of mortality from a single infectious agent worldwide. Emergence of multi-drug resistant and extremely drug resistant strains of M. tuberculosis has made TB management extremely challenging eliciting the urgent need for alternative therapeutics. Peptide based therapeutic strategies are an emerging area that can be employed as a prospective alternative to the currently existing therapeutic regime for TB treatment. Here, we are reporting the anti-mycobacterial activity of two peptides, Tachyplesin and CyLoP-1, derived from marine horseshoe crab and snake toxin respectively, with potent anti-mycobacterial activity against various mycobacterium species. Both the peptides exhibit appreciable antimicrobial and anti-biofilm activities against mycobacterium species with minimum cytotoxicity towards macrophage cells. They are also effective in eliminating mycobacterium cells from infected macrophage cells. Tachyplesin acts on mycobacterium cells in a lytic manner with outer membrane disruption confirmed by propidium iodide uptake with slight membrane depolarization and reactive oxygen species (ROS) production. CyLoP-1, on the other hand, does not rupture the mycobacterium cells even at high concentrations. It seems to follow intracellular pathway of killing mycobacterium cells by production of more ROS and membrane depolarization. Both the peptides do not lead to apoptotic way of mycobacterium cell death. These results suggest an effective peptide-based antimicrobial strategy for development of future anti-TB therapeutics.
Collapse
Affiliation(s)
- Anjali Priya
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India.
| | - Anusha Aditya
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India
| | | | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India.
| |
Collapse
|
26
|
Deciphering the conformational landscape of few selected aromatic noncoded amino acids (NCAAs) for applications in rational design of peptide therapeutics. Amino Acids 2022; 54:1183-1202. [PMID: 35723743 PMCID: PMC9207436 DOI: 10.1007/s00726-022-03175-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/23/2022] [Indexed: 11/01/2022]
Abstract
Amino acids are the essential building blocks of both synthetic and natural peptides, which are crucial for biological functions and also important as biological probes for mapping the complex protein-protein interactions (PPIs) in both prokaryotic and eukaryotic systems. Mapping the PPIs through the chemical biology approach provides pharmacologically relevant peptides, which can have agonistic or antagonistic effects on the targeted biological systems. It is evidenced that ≥ 60 peptide-based drugs have been approved by the US-FDA so far, and the number will improve further in the foreseeable future, as ≥ 140 peptides are currently in clinical trials. However, natural peptides often require fine-tuning of their pharmacological properties by strategically replacing the αL-amino acids of the peptides with non-coded amino acids (NCAA), for which codons are absent in the genetic code for biosynthesis of proteins, prior to their applications as therapeutics. Considering the diverse repertoire of the NCAAs, the conformational space of many NCAAs is yet to be explored systematically in the context of the rational design of therapeutic peptides. The current study deciphers the conformational landscape of a few such Cα-substituted aromatic NCAAs (Ing: 2-indanyl-L-Glycine; Bpa: 4-benzoyl-L-phenylalanine; Aic: 2-aminoindane-2-carboxylic acid) both in the context of tripeptides and model synthetic peptide sequences, using alanine (Ala) and proline (Pro) as the reference. The combined data obtained from the computational and biophysical studies indicate the general success of this approach, which can be exploited further to rationally design optimized peptide sequences of unusual architecture with potent antimicrobial, antiviral, gluco-regulatory, immunomodulatory, and anti-inflammatory activities.
Collapse
|
27
|
Tan Q, Akindehin SE, Orsso CE, Waldner RC, DiMarchi RD, Müller TD, Haqq AM. Recent Advances in Incretin-Based Pharmacotherapies for the Treatment of Obesity and Diabetes. Front Endocrinol (Lausanne) 2022; 13:838410. [PMID: 35299971 PMCID: PMC8921987 DOI: 10.3389/fendo.2022.838410] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 01/01/2023] Open
Abstract
The incretin hormone glucagon-like peptide-1 (GLP-1) has received enormous attention during the past three decades as a therapeutic target for the treatment of obesity and type 2 diabetes. Continuous improvement of the pharmacokinetic profile of GLP-1R agonists, starting from native hormone with a half-life of ~2-3 min to the development of twice daily, daily and even once-weekly drugs highlight the pharmaceutical evolution of GLP-1-based medicines. In contrast to GLP-1, the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) received little attention as a pharmacological target, because of conflicting observations that argue activation or inhibition of the GIP receptor (GIPR) provides beneficial effects on systemic metabolism. Interest in GIPR agonism for the treatment of obesity and diabetes was recently propelled by the clinical success of unimolecular dual-agonists targeting the receptors for GIP and GLP-1, with reported significantly improved body weight and glucose control in patients with obesity and type II diabetes. Here we review the biology and pharmacology of GLP-1 and GIP and discuss recent advances in incretin-based pharmacotherapies.
Collapse
Affiliation(s)
- Qiming Tan
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Seun E. Akindehin
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany and German Center for Diabetes Research (DZD), Munich, Germany
| | - Camila E. Orsso
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | | | - Timo D. Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Germany and German Center for Diabetes Research (DZD), Munich, Germany
- *Correspondence: Timo D. Müller, ; Andrea M. Haqq,
| | - Andrea M. Haqq
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Timo D. Müller, ; Andrea M. Haqq,
| |
Collapse
|
28
|
Thakur R, Suri CR, Kaur IP, Rishi P. Review. Crit Rev Ther Drug Carrier Syst 2022; 40:49-100. [DOI: 10.1615/critrevtherdrugcarriersyst.2022040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Adesanoye OA, Farodoye OM, Adedara AO, Falobi AA, Abolaji AO, Ojo OO. Beneficial actions of esculentin-2CHa(GA30) on high sucrose-induced oxidative stress in Drosophila melanogaster. Food Chem Toxicol 2021; 157:112620. [PMID: 34656695 DOI: 10.1016/j.fct.2021.112620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/21/2021] [Accepted: 10/13/2021] [Indexed: 01/12/2023]
Abstract
Hyperglycaemia-induced oxidative stress plays a critical role in the development of diabetes and its complications. This study investigated actions of esculentin-2CHa(GA30) on high sucrose-induced oxidative stress in adult Drosophila melanogaster. Adult flies were exposed to diets containing graded concentrations of sucrose in the presence or absence of esculentin-2CHa(GA30) (5.0-10 μmol/kg diet) for 7 days. Effects of high sucrose diet and/or esculentin-2CHa(GA30) on survival and longevity of flies, and markers of oxidative stress, antioxidant status and glucose were assessed. High-sucrose diet (15-30%) and esculentin-2CHa(GA30) (5-10 μmol/kg diet) enhanced the percentage of surviving flies by 33.5%-46.2% (P < 0.01) and 7.4%-26.9% (P < 0.01) respectively. Concentration-dependent reduction in total thiol (19.3-51.3%, P < 0.01), reduced glutathione (22.6-54.9%, P < 0.05-0.01), catalase activity (36.8-57.3%, P < 0.05-0.01) and elevated glucose concentration (1.8-2.9-fold, P < 0.001) were observed in high sucrose-fed flies. Esculentin-2CHa(GA30) alone did not affect levels of total thiol, reduced glutathione, glucose and catalase activity. Improved survival (1.2-1.3-fold, P < 0.05-0.01) and longevity (1.3-fold) were observed in flies treated with the peptide (5.0 and 7.5 μmol/kg diet). Feeding on sucrose and esculentin-2CHa(1-30) (5.0 and 7.0 μmol/kg diet) for 7 days increased total thiol (2 - 3-fold, P < 0.001) and reduced glutathione (1.6-1.8-fold, P < 0.05) levels. Reduced catalase activity (21.4-36.4%, P < 0.01) and reduced glucose level (38.6-49.4%, P < 0.01) were observed in peptide-treated flies. Esculentin-2CHa(1-30) inhibited sucrose-induced generation of hydrogen peroxide (7.5-13.7%, P < 0.05) and nitric oxide (22.3-42.9%, P < 0.01) in adult flies. Overall, findings from this study offered further insights into the anti-oxidative properties of esculentin-2CHa(GA30).
Collapse
Affiliation(s)
- Omolola A Adesanoye
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Oluwabukola M Farodoye
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeola O Adedara
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayodele A Falobi
- Diabetes Research Laboratory, Research Institute in Healthcare Sciences, University of Wolverhampton, WV1 1LY, United Kingdom
| | - Amos O Abolaji
- Drug Metabolism and Molecular Toxicology Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Opeolu O Ojo
- Diabetes Research Laboratory, Research Institute in Healthcare Sciences, University of Wolverhampton, WV1 1LY, United Kingdom.
| |
Collapse
|
30
|
Lee RH, Oh JD, Hwang JS, Lee HK, Shin D. Antitumorigenic effect of insect-derived peptide poecilocorisin-1 in human skin cancer cells through regulation of Sp1 transcription factor. Sci Rep 2021; 11:18445. [PMID: 34531430 PMCID: PMC8446052 DOI: 10.1038/s41598-021-97581-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022] Open
Abstract
Malignant melanoma is highly resistant to conventional treatments and is one of the most aggressive types of skin cancers. Conventional cancer treatments are limited due to drug resistance, tumor selectivity, and solubility. Therefore, new treatments with fewer side effects and excellent effects should be developed. In previous studies, we have analyzed antimicrobial peptides (AMPs), which showed antibacterial and anti-inflammatory effects in insects, and some AMPs also exhibited anticancer efficacy. Anticancer peptides (ACPs) are known to have fewer side effects and high anticancer efficacy. In this study, the insect-derived peptide poecilocorisin-1 (PCC-1) did not induce toxicity in the human epithelial cell line HaCaT, but its potential as an anticancer agent was confirmed through specific effects of antiproliferation, apoptosis, and cell cycle arrest in two melanoma cell lines, SK-MEL-28 and G361. Additionally, we discovered a novel anticancer mechanism of insect-derived peptides in melanoma through the regulation of transcription factor Sp1 protein, which is overexpressed in cancer, apoptosis, and cell cycle-related proteins. Taken together, this study aims to clarify the anticancer efficacy and safety of insect-derived peptides and to present their potential as future therapeutic agents.
Collapse
Affiliation(s)
- Ra Ham Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jae-Don Oh
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Donghyun Shin
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
31
|
Quiroz C, Saavedra YB, Armijo-Galdames B, Amado-Hinojosa J, Olivera-Nappa Á, Sanchez-Daza A, Medina-Ortiz D. Peptipedia: a user-friendly web application and a comprehensive database for peptide research supported by Machine Learning approach. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6363751. [PMID: 34478499 PMCID: PMC8415426 DOI: 10.1093/database/baab055] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Peptides have attracted attention during the last decades due to their extraordinary therapeutic properties. Different computational tools have been developed to take advantage of existing information, compiling knowledge and making available the information for common users. Nevertheless, most related tools available are not user-friendly, present redundant information, do not clearly display the data, and usually are specific for particular biological activities, not existing so far, an integrated database with consolidated information to help research peptide sequences. To solve these necessities, we developed Peptipedia, a user-friendly web application and comprehensive database to search, characterize and analyse peptide sequences. Our tool integrates the information from 30 previously reported databases with a total of 92 055 amino acid sequences, making it the biggest repository of peptides with recorded activities to date. Furthermore, we make available a variety of bioinformatics services and statistical modules to increase our tool’s usability. Moreover, we incorporated a robust assembled binary classification system to predict putative biological activities for peptide sequences. Our tools’ significant differences with other existing alternatives become a substantial contribution for developing biotechnological and bioengineering applications for peptides. Peptipedia is available for non-commercial use as an open-access software, licensed under the GNU General Public License, version GPL 3.0. The web platform is publicly available at peptipedia.cl. Database URL: Both the source code and sample data sets are available in the GitHub repository https://github.com/ProteinEngineering-PESB2/peptipedia
Collapse
Affiliation(s)
- Cristofer Quiroz
- Facultad de Ingeniería, Universidad Autonóma de Chile, Cinco Pte. 1670, Talca 3467987, Chile
| | - Yasna Barrera Saavedra
- Escuela de Ingeniería en Bioinformática, Universidad de Talca, Avenida Lircay SN, Talca 3460000, Chile
| | - Benjamín Armijo-Galdames
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Beauchef 851, Santiago 8370448, Chile.,Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Beauchef 851, Santiago 8370448, Chile
| | - Juan Amado-Hinojosa
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Beauchef 851, Santiago 8370448, Chile.,Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Beauchef 851, Santiago 8370448, Chile
| | - Álvaro Olivera-Nappa
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Beauchef 851, Santiago 8370448, Chile.,Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Beauchef 851, Santiago 8370448, Chile
| | - Anamaria Sanchez-Daza
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Beauchef 851, Santiago 8370448, Chile.,Institute for Cell Dynamics and Biotechnology, Beauchef 851, Santiago 8370456, Chile
| | - David Medina-Ortiz
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Beauchef 851, Santiago 8370448, Chile.,Department of Chemical Engineering, Biotechnology and Materials, Universidad de Chile, Beauchef 851, Santiago 8370448, Chile
| |
Collapse
|
32
|
Mahmud S, Biswas S, Kumar Paul G, Mita MA, Afrose S, Robiul Hasan M, Sharmin Sultana Shimu M, Uddin MAR, Salah Uddin M, Zaman S, Kaderi Kibria KM, Arif Khan M, Bin Emran T, Abu Saleh M. Antiviral peptides against the main protease of SARS-CoV-2: A molecular docking and dynamics study. ARAB J CHEM 2021; 14:103315. [PMID: 34909064 PMCID: PMC8277949 DOI: 10.1016/j.arabjc.2021.103315] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/04/2021] [Indexed: 01/08/2023] Open
Abstract
The recent coronavirus outbreak has changed the world's economy and health sectors due to the high mortality and transmission rates. Because the development of new effective vaccines or treatments against the virus can take time, an urgent need exists for the rapid development and design of new drug candidates to combat this pathogen. Here, we obtained antiviral peptides obtained from the data repository of antimicrobial peptides (DRAMP) and screened their predicted tertiary structures for the ability to inhibit the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using multiple combinatorial docking programs, including PatchDock, FireDock, and ClusPro. The four best peptides, DRAMP00877, DRAMP02333, DRAMP02669, and DRAMP03804, had binding energies of -1125.3, -1084.5, -1005.2, and -924.2 Kcal/mol, respectively, as determined using ClusPro, and binding energies of -55.37, -50.96, -49.25, -54.81 Kcal/mol, respectively, as determined using FireDock, which were better binding energy values than observed for other peptide molecules. These peptides were found to bind with the active cavity of the SARS-CoV-2 main protease; at Glu166, Cys145, Asn142, Phe140, and Met165, in addition to the substrate-binding sites, Domain 2 and Domain 3, whereas fewer interactions were observed with Domain 1. The docking studies were further confirmed by a molecular dynamics simulation study, in which several descriptors, including the root-mean-square difference (RMSD), root-mean-square fluctuation (RMSF), solvent-accessible surface area (SASA), radius of gyration (Rg), and hydrogen bond formation, confirmed the stable nature of the peptide-main protease complexes. Toxicity and allergenicity studies confirmed the non-allergenic nature of the peptides. This present study suggests that these identified antiviral peptide molecules might inhibit the main protease of SARS-CoV-2, although further wet-lab experiments remain necessary to verify these findings.
Collapse
Affiliation(s)
- Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mst Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Abu Raihan Uddin
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong, Bangladesh
| | - Md Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - K M Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Arif Khan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University, Chittagong 4381, Bangladesh
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
33
|
Murali R, Zhang H, Cai Z, Lam L, Greene M. Rational Design of Constrained Peptides as Protein Interface Inhibitors. Antibodies (Basel) 2021; 10:antib10030032. [PMID: 34449551 PMCID: PMC8395526 DOI: 10.3390/antib10030032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022] Open
Abstract
The lack of progress in developing targeted therapeutics directed at protein–protein complexes has been due to the absence of well-defined ligand-binding pockets and the extensive intermolecular contacts at the protein–protein interface. Our laboratory has developed approaches to dissect protein–protein complexes focusing on the superfamilies of erbB and tumor necrosis factor (TNF) receptors by the combined use of structural biology and computational biology to facilitate small molecule development. We present a perspective on the development and application of peptide inhibitors as well as immunoadhesins to cell surface receptors performed in our laboratory.
Collapse
Affiliation(s)
- Ramachandran Murali
- Cedars-Sinai Medical Center, Department of Biomedical Science, Research Division of Immunology, Los Angeles, CA 90211, USA
- Correspondence: (R.M.); (M.G.)
| | - Hongtao Zhang
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.Z.); (Z.C.); (L.L.)
| | - Zheng Cai
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.Z.); (Z.C.); (L.L.)
| | - Lian Lam
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.Z.); (Z.C.); (L.L.)
| | - Mark Greene
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.Z.); (Z.C.); (L.L.)
- Correspondence: (R.M.); (M.G.)
| |
Collapse
|
34
|
Nayak SK, Nanda PK, Swain P. In vivo immunostimulatory effect of the amoebocyte lysate and plasma of Asian horseshoe crab, Tachypleus gigas in a piscine model. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:355-362. [PMID: 37073289 PMCID: PMC10077206 DOI: 10.1007/s42995-021-00090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 01/07/2021] [Indexed: 05/03/2023]
Abstract
Antimicrobial proteins/peptides are becoming a new generation of immunostimulants for prevention and disease control in human and animals, including aquatic animals. As the haemolymph of horseshoe crabs (Tachypleus) contains broad ranges of bioactive compounds, we have explored the in vivo immunostimulating potential of amoebocyte lysate and plasma using a fish model. Indian major carp, Labeo rohita, yearlings were injected intraperitoneally with two doses of lysate and plasma at 50 and 100 µg protein per fish. No abnormalities and/or mortalities were recorded in any group. L. rohita injected with 50 µg lysate and 100 µg plasma protein showed significant enhancement (P < 0.01) of various haematological and immunological parameters. There was a significant rise in the total protein and globulin content, myeloperoxidase and respiratory burst activity following injection with 50 µg lysate and 100 µg plasma protein. The agglutinating and haemagglutinating activities were increased albeit not significantly (P > 0.01) in any groups. On the contrary, a significantly high hemolysin titre was recorded in fish that received 100 µg plasma protein. Following challenge with Aeromonas hydrophila, both lysate and plasma protein(s) cross protected the fish after 30 days. The highest survival (50%) was recorded in group injected with 50 µg lysate protein, followed by 45% in both 100 µg lysate and plasma protein injected groups.
Collapse
Affiliation(s)
- Sukanta Kumar Nayak
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University (Erstwhile North Orissa University), Odisha, 757003 India
| | - Pramod Kumar Nanda
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, 700037 India
| | - Priyabrat Swain
- Fish Health Management Division, Central Institute of Freshwater Aquaculture, Bhubaneswar, 751002 India
| |
Collapse
|
35
|
Robles-Loaiza AA, Pinos-Tamayo EA, Mendes B, Teixeira C, Alves C, Gomes P, Almeida JR. Peptides to Tackle Leishmaniasis: Current Status and Future Directions. Int J Mol Sci 2021; 22:ijms22094400. [PMID: 33922379 PMCID: PMC8122823 DOI: 10.3390/ijms22094400] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Peptide-based drugs are an attractive class of therapeutic agents, recently recognized by the pharmaceutical industry. These molecules are currently being used in the development of innovative therapies for diverse health conditions, including tropical diseases such as leishmaniasis. Despite its socioeconomic influence on public health, leishmaniasis remains long-neglected and categorized as a poverty-related disease, with limited treatment options. Peptides with antileishmanial effects encountered to date are a structurally heterogeneous group, which can be found in different natural sources—amphibians, reptiles, insects, bacteria, marine organisms, mammals, plants, and others—or inspired by natural toxins or proteins. This review details the biochemical and structural characteristics of over one hundred peptides and their potential use as molecular frameworks for the design of antileishmanial drug leads. Additionally, we detail the main chemical modifications or substitutions of amino acid residues carried out in the peptide sequence, and their implications in the development of antileishmanial candidates for clinical trials. Our bibliographic research highlights that the action of leishmanicidal peptides has been evaluated mainly using in vitro assays, with a special emphasis on the promastigote stage. In light of these findings, and considering the advances in the successful application of peptides in leishmaniasis chemotherapy, possible approaches and future directions are discussed here.
Collapse
Affiliation(s)
- Alberto A. Robles-Loaiza
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (A.A.R.-L.); (E.A.P.-T.)
| | - Edgar A. Pinos-Tamayo
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (A.A.R.-L.); (E.A.P.-T.)
| | - Bruno Mendes
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil;
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (C.A.); (P.G.)
| | - Cláudia Alves
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (C.A.); (P.G.)
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (C.A.); (P.G.)
| | - José R. Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (A.A.R.-L.); (E.A.P.-T.)
- Correspondence:
| |
Collapse
|
36
|
Abstract
Since the introduction of insulin almost a century ago, more than 80 peptide drugs have reached the market for a wide range of diseases, including diabetes, cancer, osteoporosis, multiple sclerosis, HIV infection and chronic pain. In this Perspective, we summarize key trends in peptide drug discovery and development, covering the early efforts focused on human hormones, elegant medicinal chemistry and rational design strategies, peptide drugs derived from nature, and major breakthroughs in molecular biology and peptide chemistry that continue to advance the field. We emphasize lessons from earlier approaches that are still relevant today as well as emerging strategies such as integrated venomics and peptide-display libraries that create new avenues for peptide drug discovery. We also discuss the pharmaceutical landscape in which peptide drugs could be particularly valuable and analyse the challenges that need to be addressed for them to reach their full potential.
Collapse
|
37
|
Potential therapeutic applications of AKAP disrupting peptides. Clin Sci (Lond) 2021; 134:3259-3282. [PMID: 33346357 DOI: 10.1042/cs20201244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
The 3'-5'-cyclic adenosine monophosphate (cAMP)/PKA pathway represents a major target for pharmacological intervention in multiple disease conditions. Although the last decade saw the concept of highly compartmentalized cAMP/PKA signaling consolidating, current means for the manipulation of this pathway still do not allow to specifically intervene on discrete cAMP/PKA microdomains. Since compartmentalization is crucial for action specificity, identifying new tools that allow local modulation of cAMP/PKA responses is an urgent need. Among key players of cAMP/PKA signaling compartmentalization, a major role is played by A-kinase anchoring proteins (AKAPs) that, by definition, anchor PKA, its substrates and its regulators within multiprotein complexes in well-confined subcellular compartments. Different tools have been conceived to interfere with AKAP-based protein-protein interactions (PPIs), and these primarily include peptides and peptidomimetics that disrupt AKAP-directed multiprotein complexes. While these molecules have been extensively used to understand the molecular mechanisms behind AKAP function in pathophysiological processes, less attention has been devoted to their potential application for therapy. In this review, we will discuss how AKAP-based PPIs can be pharmacologically targeted by synthetic peptides and peptidomimetics.
Collapse
|
38
|
Lee SH, Moody I, Zeng Z, Fleischer EB, Weiss GA, Shea KJ. Synthesis of a High Affinity Complementary Peptide-Polymer Nanoparticle (NP) Pair Using Phage Display. ACS APPLIED BIO MATERIALS 2021; 4:2704-2712. [PMID: 35014309 PMCID: PMC9109703 DOI: 10.1021/acsabm.0c01631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Peptide-polymer complementary pairs can provide useful tools for isolating, organizing, and separating biomacromolecules. We describe a procedure for selecting a high affinity complementary peptide-polymer nanoparticle (NP) pair using phage display. A hydrogel copolymer nanoparticle containing a statistical distribution of negatively charged and hydrophobic groups was used to select a peptide sequence from a phage displayed library of >1010 peptides. The NP has low nanomolar affinity for the selected cyclic peptide and exhibited low affinity for a panel of diverse proteins and peptide variants. Affinity arises from the complementary physiochemical properties of both NP and peptide as well as the specific peptide sequence. Comparison of linear and cyclic variants of the peptide established that peptide structure also contributes to affinity. These findings offer a general method for identifying polymer-peptide complementary pairs. Significantly, precise polymer sequences (proteins) are not a requirement, a low information statistical copolymer can be used to select for a specific peptide sequence with affinity and selectivity comparable to that of an antibody. The data also provides evidence for the physiochemical and structural contributions to binding. The results confirm the utility of abiotic, statistical, synthetic copolymers as selective, high affinity peptide affinity reagents.
Collapse
Affiliation(s)
- Shih-Hui Lee
- School of Physical Sciences, University of California at Irvine, Irvine, California 92697, United States
| | - Issa Moody
- School of Physical Sciences, University of California at Irvine, Irvine, California 92697, United States
| | - Zhiyang Zeng
- School of Physical Sciences, University of California at Irvine, Irvine, California 92697, United States
| | - Everly B Fleischer
- School of Physical Sciences, University of California at Irvine, Irvine, California 92697, United States
| | - Gregory A Weiss
- School of Physical Sciences, University of California at Irvine, Irvine, California 92697, United States
| | - Kenneth J Shea
- School of Physical Sciences, University of California at Irvine, Irvine, California 92697, United States
| |
Collapse
|
39
|
Yap PG, Gan CY. In vivo challenges of anti-diabetic peptide therapeutics: Gastrointestinal stability, toxicity and allergenicity. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Shahin-Kaleybar B, Niazi A, Afsharifar A, Nematzadeh G, Yousefi R, Retzl B, Hellinger R, Muratspahić E, Gruber CW. Isolation of Cysteine-Rich Peptides from Citrullus colocynthis. Biomolecules 2020; 10:E1326. [PMID: 32948080 PMCID: PMC7565491 DOI: 10.3390/biom10091326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
The plant Citrullus colocynthis, a member of the squash (Cucurbitaceae) family, has a long history in traditional medicine. Based on the ancient knowledge about the healing properties of herbal preparations, plant-derived small molecules, e.g., salicylic acid, or quinine, have been integral to modern drug discovery. Additionally, many plant families, such as Cucurbitaceae, are known as a rich source for cysteine-rich peptides, which are gaining importance as valuable pharmaceuticals. In this study, we characterized the C. colocynthis peptidome using chemical modification of cysteine residues, and mass shift analysis via matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. We identified the presence of at least 23 cysteine-rich peptides in this plant, and eight novel peptides, named citcol-1 to -8, with a molecular weight between ~3650 and 4160 Da, were purified using reversed-phase high performance liquid chromatography (HPLC), and their amino acid sequences were determined by de novo assignment of b- and y-ion series of proteolytic peptide fragments. In silico analysis of citcol peptides revealed a high sequence similarity to trypsin inhibitor peptides from Cucumis sativus, Momordica cochinchinensis, Momordica macrophylla and Momordica sphaeroidea. Using genome/transcriptome mining it was possible to identify precursor sequences of this peptide family in related Cucurbitaceae species that cluster into trypsin inhibitor and antimicrobial peptides. Based on our analysis, the presence or absence of a crucial Arg/Lys residue at the putative P1 position may be used to classify these common cysteine-rich peptides by functional properties. Despite sequence homology and the common classification into the inhibitor cysteine knot family, these peptides appear to have diverse and additional bioactivities yet to be revealed.
Collapse
Affiliation(s)
- Behzad Shahin-Kaleybar
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (B.S.-K.); (B.R.); (R.H.); (E.M.)
- Department of Plant Biotechnology, Shiraz University, Shiraz 7144165186, Iran;
| | - Ali Niazi
- Department of Plant Biotechnology, Shiraz University, Shiraz 7144165186, Iran;
| | - Alireza Afsharifar
- Department of Plant Protection, Shiraz University, Shiraz 7144165186, Iran;
| | | | - Reza Yousefi
- Department of Biology, Shiraz University, Shiraz 7194684795, Iran;
| | - Bernhard Retzl
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (B.S.-K.); (B.R.); (R.H.); (E.M.)
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (B.S.-K.); (B.R.); (R.H.); (E.M.)
| | - Edin Muratspahić
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (B.S.-K.); (B.R.); (R.H.); (E.M.)
| | - Christian W. Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (B.S.-K.); (B.R.); (R.H.); (E.M.)
| |
Collapse
|
41
|
Shoari A, Rasaee MJ, Rezaei Kanavi M, Afsar Aski S, Tooyserkani R. In Vivo Effect of RSH-12, a Novel Selective MMP-9 Inhibitor Peptide, in the Treatment of Experimentally Induced Dry Eye Model. Curr Eye Res 2020; 46:7-13. [PMID: 32567381 DOI: 10.1080/02713683.2020.1782943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To investigate the efficacy of RSH-12, a novel selective matrix metalloproteinase 9 (MMP-9) inhibitor peptide in rabbit models of dry eye syndrome (DES). METHODS In vitro toxicity of RSH-12 on cultured human corneal fibroblasts was investigated with MTT. Ocular toxicity of RSH-12 was investigated by clinical examinations, histology, and TUNEL assay. Experimental model of dry eye was induced by 1.0% atropine sulfate administration followed after 15 min by treatment with PBS, RSH-12, and Restasis in individual groups, three times a day for 7 days. In addition to performing Schirmer's test for evaluating basic tear secretion and tear break-up time test for investigating tear stability, the occurrence of superficial punctate keratopathy was also investigated in the study groups. RESULTS MTT assay demonstrated that RSH-12 was not toxic to human corneal fibroblasts in different concentrations. During the administration of atropine, TBUT values and tear volume were decreased in vehicle group while these indices improved significantly in groups treated with RSH-12 in a promising manner. RSH-12 increased the mean value of tear volume from 4.85 to 10.75 mm (P = .0001) and mean of TBUT values from 20.3 s to 34.5 s (P = .0001) compared with the vehicle. In contrast to the presence of severe superficial punctate keratopathy in the controls, no significant dotted staining was observed in the RSH-12 and Restasis groups. CONCLUSIONS These outcomes propose that RSH-12 has a therapeutic effect in the rabbit model of dry eye and might be a potential treatment for severe DES.
Collapse
Affiliation(s)
- Alireza Shoari
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Sasha Afsar Aski
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Raheleh Tooyserkani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| |
Collapse
|
42
|
Talotta R, Atzeni F, Laska MJ. Therapeutic peptides for the treatment of systemic lupus erythematosus: a place in therapy. Expert Opin Investig Drugs 2020; 29:845-867. [PMID: 32500750 DOI: 10.1080/13543784.2020.1777983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Studies in vitro and in vivo have identified several peptides that are potentially useful in treating systemic lupus erythematosus (SLE). The rationale for their use lies in the cost-effective production, high potency, target selectivity, low toxicity, and a peculiar mechanism of action that is mainly based on the induction of immune tolerance. Three therapeutic peptides have entered clinical development, but they have yielded disappointing results. However, some subsets of patients, such as those with the positivity of anti-dsDNA antibodies, appear more likely to respond to these medications. AREAS COVERED This review evaluates the potential use of therapeutic peptides for SLE and gives an opinion on how they may offer advantages for SLE treatment. EXPERT OPINION Given their acceptable safety profile, therapeutic peptides could be added to agents traditionally used to treat SLE and this may offer a synergistic and drug-sparing effect, especially in selected patient populations. Moreover, they could temporarily be utilized to manage SLE flares, or be administered as a vaccine in subjects at risk. Efforts to ameliorate bioavailability, increase the half-life and prevent immunogenicity are ongoing. The formulation of hybrid compounds, like peptibodies or peptidomimetic small molecules, is expected to yield renewed treatments with a better pharmacologic profile and increased efficacy.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, Azienda Ospedaliera "Gaetano Martino", University of Messina , Messina, Italy
| | - Fabiola Atzeni
- Department of Clinical and Experimental Medicine, Rheumatology Unit, Azienda Ospedaliera "Gaetano Martino", University of Messina , Messina, Italy
| | | |
Collapse
|
43
|
Bousquet G, Feugeas JP, Gu Y, Leboeuf C, Bouchtaoui ME, Lu H, Espié M, Janin A, Benedetto MD. High expression of apoptosis protein (Api-5) in chemoresistant triple-negative breast cancers: an innovative target. Oncotarget 2019; 10:6577-6588. [PMID: 31762939 PMCID: PMC6859922 DOI: 10.18632/oncotarget.27312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/26/2019] [Indexed: 11/25/2022] Open
Abstract
Anti-apoptotic protein-5 (API-5) is a survival protein interacting with the protein acinus, preventing its cleavage by caspase-3 and thus inhibiting apoptosis. We studied the effect of targeting API-5 in chemoresistant triple negative breast cancers (TNBCs), to reverse chemoresistance. 78 TNBC biopsies from patients with different responses to chemotherapy were analysed for API-5 expression before any treatment. Further studies on API-5 expression and inhibition were performed on patient-derived TNBC xenografts, one highly sensitive to chemotherapies (XBC-S) and the other resistant to most tested drugs (XBC-R). In situ assessments of necrosis, cell proliferation, angiogenesis, and apoptosis in response to anti-API-5 peptide were performed on the TNBC xenografts. Clinical analyses of the 78 TNBC biopsies revealed that API-5 was more markedly expressed in endothelial cells before any treatment among patients with chemoresistant TNBC, and this was associated with greater micro-vessel density. A transcriptomic analysis of xenografted tumors showed an involvement of anti-apoptotic genes in the XBC-R model, and API-5 expression was higher in XBC-R endothelial cells. API-5 expression was also correlated with hypoxic stress conditions both in vitro and in vivo. 28 days of anti-API-5 peptide efficiently inhibited the XBC-R xenograft via caspase-3 apoptosis. This inhibition was associated with major inhibition of angiogenesis associated with necrosis and apoptosis. API-5 protein could be a valid therapeutic target in chemoresistant metastatic TNBC.
Collapse
Affiliation(s)
- Guilhem Bousquet
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 1165, F-75010, Paris, France.,INSERM, U942, F-75010, Paris, France.,Université Paris 13, Sorbonne Paris Cite, F-93000, Villetaneuse, France.,AP-HP, Hôpital Avicenne, Medical Oncology, F-93000, Bobigny, France
| | | | - Yuchen Gu
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 1165, F-75010, Paris, France
| | - Christophe Leboeuf
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 1165, F-75010, Paris, France.,INSERM, U942, F-75010, Paris, France
| | | | - He Lu
- INSERM, U942, F-75010, Paris, France
| | - Marc Espié
- AP-HP, Hôpital Saint-Louis, Centre des Maladies du Sein, F-75010, Université Paris Diderot, Sorbonne Paris Cité, INSERM CNRS UMR7212, Paris, France
| | - Anne Janin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 1165, F-75010, Paris, France.,INSERM, U942, F-75010, Paris, France.,AP-HP, Hôpital Saint-Louis, Laboratoire de Pathologie, F-75010, Paris, France
| | - Melanie Di Benedetto
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Pathologie, UMR-S 1165, F-75010, Paris, France.,INSERM, U942, F-75010, Paris, France.,Université Paris 13, Sorbonne Paris Cite, F-93000, Villetaneuse, France
| |
Collapse
|
44
|
Soares AMDS, Wanderley LF, Costa Junior LM. The potential of plant and fungal proteins in the control of gastrointestinal nematodes from animals. ACTA ACUST UNITED AC 2019; 28:339-345. [PMID: 31291435 DOI: 10.1590/s1984-29612019046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/27/2019] [Indexed: 11/22/2022]
Abstract
Gastrointestinal nematode infection is an important cause of high economic losses in livestock production. Nematode control based on a synthetic chemical approach is considered unsustainable due to the increasing incidence of anthelmintic resistance. Control alternatives such as the use of natural products are therefore becoming relevant from an environmental and economic point of view. Proteins are macromolecules with various properties that can be obtained from a wide range of organisms, including plants and fungi. Proteins belonging to different classes have shown great potential for the control of nematodes. The action of proteins can occur at specific stages of the nematode life cycle, depending on the composition of the external layers of the nematode body and the active site of the protein. Advances in biotechnology have resulted in the emergence of numerous protein and peptide therapeutics; however, few have been discussed with a focus on the control of animal nematodes. Here, we discuss the use of exogenous proteins and peptides in the control of gastrointestinal.
Collapse
Affiliation(s)
- Alexandra Martins Dos Santos Soares
- Laboratório de Bioquímica Vegetal, Curso de Engenharia Química, Centro de Ciências Exatas e Tecnologias, Universidade Federal do Maranhão - UFMA, São Luís, MA, Brasil
| | - Lêdia Feitosa Wanderley
- Laboratório de Bioquímica Vegetal, Curso de Engenharia Química, Centro de Ciências Exatas e Tecnologias, Universidade Federal do Maranhão - UFMA, São Luís, MA, Brasil
| | - Livio Martins Costa Junior
- Laboratório de Controle de Parasitos, Departamento de Patologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão - UFMA, São Luís, MA, Brasil
| |
Collapse
|
45
|
Abuei H, Behzad Behbahani A, Rafiei Dehbidi G, Pirouzfar M, Zare F, Farhadi A. Construction, Expression, and Purification of p28 as a Cell-Penetrating Peptide with Anticancer Effects on Burkitt’s Lymphoma Cell Line. SHIRAZ E-MEDICAL JOURNAL 2019; 20. [DOI: 10.5812/semj.85190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
|
46
|
Díaz-Perlas C, Oller-Salvia B, Sánchez-Navarro M, Teixidó M, Giralt E. Branched BBB-shuttle peptides: chemoselective modification of proteins to enhance blood-brain barrier transport. Chem Sci 2018; 9:8409-8415. [PMID: 30542590 PMCID: PMC6243681 DOI: 10.1039/c8sc02415d] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022] Open
Abstract
The blood-brain barrier (BBB) hampers the delivery of therapeutic proteins into the brain. BBB-shuttle peptides have been conjugated to therapeutic payloads to increase the permeability of these molecules. However, most BBB-shuttles have several limitations, such as a lack of resistance to proteases and low effectiveness in transporting large biomolecules. We have previously reported on the THRre peptide as a protease-resistant BBB-shuttle that is able to increase the transport of fluorophores and quantum dots in vivo. In this work, we have evaluated the capacity of linear and branched THRre to increase the permeability of proteins in cellular models of the BBB. With this purpose, we have covalently attached peptides with one or two copies of the BBB-shuttle to proteins in order to develop chemically well-defined peptide-protein conjugates. While THRre does not enhance the uptake and transport of a model protein in BBB cellular models, branched THRre peptides displaying two copies of the BBB-shuttle result in a 2.6-fold increase.
Collapse
Affiliation(s)
- Cristina Díaz-Perlas
- Institute for Research in Biomedicine (IRB Barcelona) , Barcelona Institute of Science and Technology (BIST) , Baldiri Reixac 10 , Barcelona 08028 , Spain . ; ;
| | - Benjamí Oller-Salvia
- Institute for Research in Biomedicine (IRB Barcelona) , Barcelona Institute of Science and Technology (BIST) , Baldiri Reixac 10 , Barcelona 08028 , Spain . ; ;
| | - Macarena Sánchez-Navarro
- Institute for Research in Biomedicine (IRB Barcelona) , Barcelona Institute of Science and Technology (BIST) , Baldiri Reixac 10 , Barcelona 08028 , Spain . ; ;
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona) , Barcelona Institute of Science and Technology (BIST) , Baldiri Reixac 10 , Barcelona 08028 , Spain . ; ;
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona) , Barcelona Institute of Science and Technology (BIST) , Baldiri Reixac 10 , Barcelona 08028 , Spain . ; ;
- Department of Inorganic and Organic Chemistry , University of Barcelona , Martí i Franquès 1-11 , Barcelona 08028 , Spain
| |
Collapse
|
47
|
Ding S, Li Z, Cheng Y, Du C, Gao J, Zhang YW, Zhang N, Li Z, Chang N, Hu X. Enhancing adsorption capacity while maintaining specific recognition performance of mesoporous silica: a novel imprinting strategy with amphiphilic ionic liquid as surfactant. NANOTECHNOLOGY 2018; 29:375604. [PMID: 29926809 DOI: 10.1088/1361-6528/aace10] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In order to facilitate the broad applications of molecular recognition materials in biomedical areas, it is critical to enhance their adsorption capacity while maintaining their excellent recognition performance. In this work, we designed and synthesized well-defined peptide-imprinted mesoporous silica (PIMS) for specific recognition of an immunostimulating hexapeptide from human casein (IHHC) by using amphiphilic ionic liquid as the surfactant to anchor IHHC via a combination of one-step sol-gel method and docking oriented imprinting approach. Thereinto, theoretical calculation was employed to reveal the multiple binding interactions and dual-template configuration between amphiphilic ionic liquid and IHHC. The fabricated PIMS was characterized and an in-depth analysis of specific recognition mechanism was conducted. Results revealed that both adsorption and recognition capabilities of PIMS far exceeded that of the NIMS's. More significantly, the PIMS exhibited a superior binding capacity (60.5 mg g-1), which could increase 18.9% than the previous work. The corresponding imprinting factor and selectivity coefficient could reach up to 4.51 and 3.30, respectively. The PIMS also possessed lickety-split kinetic binding for IHHC, where the equilibrium time was only 10 min. All of these merits were due to the high surface area and the synergistic effect of multiple interactions (including hydrogen bonding, π-π stacking, ion-ion electrostatic interactions and van der Waals interactions, etc) between PIMS and IHHC in imprinted sites. The present work suggests the potential application of PIMS for large-scale and high-effective separation of IHHC, which may lead to their broad applications in drug/gene deliver, biosensors, catalyst and so on.
Collapse
Affiliation(s)
- Shichao Ding
- Department of Applied Chemistry, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Nature and Applied Science, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gracia-Vitoria J, Osante I, Cativiela C, Merino P, Tejero T. Self-Regeneration of Chirality with l-Cysteine through 1,3-Dipolar Cycloadditions between Diazoalkanes and Enantiomerically Pure Thiazolines: Experimental and Computational Studies. J Org Chem 2018. [DOI: 10.1021/acs.joc.8b00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- J. Gracia-Vitoria
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - I. Osante
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - C. Cativiela
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - P. Merino
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza 50009, Spain
| | - T. Tejero
- Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| |
Collapse
|
49
|
Camargo LC, Campos GAA, Galante P, Biolchi AM, Gonçalves JC, Lopes KS, Mortari MR. Peptides isolated from animal venom as a platform for new therapeutics for the treatment of Alzheimer's disease. Neuropeptides 2018; 67:79-86. [PMID: 29198480 DOI: 10.1016/j.npep.2017.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/09/2017] [Accepted: 11/23/2017] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that deeply affects patients, their family and society. Although scientists have made intense efforts in seeking the cure for AD, no drug available today is able to stop AD progression. In this context, compounds isolated from animal venom are potentially successful drugs for neuroprotection, since they selectively bind to nervous system targets. In this review, we presented different studies using peptides isolated from animal venom for the treatment of AD. This is a growing field that will be very helpful in understanding and even curing neurodegenerative diseases, especially AD.
Collapse
Affiliation(s)
- L C Camargo
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - G A A Campos
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - P Galante
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - A M Biolchi
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - J C Gonçalves
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - K S Lopes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - M R Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
50
|
Cavaco M, Castanho MARB, Neves V. Peptibodies: An elegant solution for a long-standing problem. Biopolymers 2017; 110. [PMID: 29266205 DOI: 10.1002/bip.23095] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 01/09/2023]
Abstract
Chimeric proteins composed of a biologically active peptide and a fragment crystallizable (Fc) domain of immunoglobulin G (IgG) are known as peptibodies. They present an extended half-life due to neonatal Fc receptor (FcRn) salvage pathway, a decreased renal clearance rate owing to its increased size (≈70 kDa) and, depending on the peptide used in the design of the peptibody, an active-targeting moiety. Also, the peptides therapeutic activity is boosted by the number of peptides in the fusion protein (at least two peptides) and to some peptides' alterations. Peptibodies are mainly obtained through recombinant DNA technology. However, to improve peptide properties, "unnatural" changes have been introduced to the original peptides' sequence, for instance, the incorporation of D- or non-natural amino acid residues or even cyclization thus, limiting the application of genetic engineering in the production of peptibodies, since these peptides must be obtained via chemical synthesis. This constrains prompted the development of new methods for conjugation of peptides to Fc domains. Another challenge, subject of intense research, relates to the large-scale production of such peptibodies using these new techniques, which can be minimized by their proved value. To date, two peptibodies, romiplostim and dulaglutide, have been approved and stay as the standard of care in their areas of action. Furthermore, a considerable number of peptibodies are currently in preclinical and clinical development.
Collapse
Affiliation(s)
- Marco Cavaco
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa, 1649-028, Portugal
| | - Miguel A R B Castanho
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa, 1649-028, Portugal
| | - Vera Neves
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa, 1649-028, Portugal
| |
Collapse
|