1
|
Grassi L, Harris C, Zhu J, Hatton D, Dunn S. Next-generation sequencing: A powerful multi-purpose tool in cell line development for biologics production. Comput Struct Biotechnol J 2025; 27:1511-1517. [PMID: 40265158 PMCID: PMC12013335 DOI: 10.1016/j.csbj.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Within the biopharmaceutical industry, the cell line development (CLD) process generates recombinant mammalian cell lines for the expression of therapeutic proteins. Analytical methods for the extensive characterisation of the protein product are well established; however, over recent years, next-generation sequencing (NGS) technologies have rapidly become an integral part of the CLD workflow. NGS can be used for different applications to characterise the genome, epigenome and transcriptome of cell lines. The resulting extensive datasets, especially when integrated with systems biology models, can give comprehensive insights that can be applied to optimize cell lines, media, and fermentation processes. NGS also provides comprehensive methods to monitor genetic variability during CLD. High coverage NGS experiments can indeed be used to ensure the integrity of plasmids, identify integration sites, and verify monoclonality of the cell lines. This review summarises the role of NGS in advancing biopharmaceutical production to ensure safety and efficacy of therapeutic proteins.
Collapse
Affiliation(s)
- Luigi Grassi
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Claire Harris
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jie Zhu
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - Diane Hatton
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sarah Dunn
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
2
|
Fan G, Li Y, Ye Q, Niu Q, Zhao X, Chen L, Gu Q, Zhang Y, Wei X, Wu S, Wu Q, Wu Y. Animal-derived free hydrolysate in animal cell culture: Current research and application advances. J Tissue Eng 2024; 15:20417314241300388. [PMID: 39649943 PMCID: PMC11624555 DOI: 10.1177/20417314241300388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024] Open
Abstract
Fetal bovine serum (FBS) plays a crucial role in the composition of animal cell culture medium. However, conventional serum-based medium face numerous challenges. The use of animal-derived free hydrolysate (ADFH) has garnered significant attention in research and applications as a viable alternative to FBS-containing medium in animal cell culture. This article provides a comprehensive overview of the effects, mechanisms of action, and applications of ADFH in animal cell culture. ADFH serves as an effective substitute for FBS-containing medium, enhancing various cellular processes, including cell proliferation, viability, protein synthesis, production, survival, and stability. Several mechanisms of action for ADFH have been elucidated through scientific investigations, such as nutrient provision, activation of signaling pathways, regulation of protein synthesis and folding, protection against oxidative damage and apoptosis, as well as cell cycle regulation. Researches and applications of ADFH represent a promising approach to overcoming the limitations of FBS-containing medium and advancing the field of animal cell culture. This review provides a theoretical foundation for promoting the development of sustainable and alternative hydrolysates, as well as the continued progress of animal cell culture.
Collapse
Affiliation(s)
- Guanghan Fan
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinghua Ye
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qinya Niu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Zhao
- Guangdong Kehuan Biological Science and Technology Co. Ltd., Guangzhou, Guangdong, China
| | - Ling Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qihui Gu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Youxiong Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianhu Wei
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shi Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuwei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Zhang HY, Fan ZL, Wang TY. Advances of Glycometabolism Engineering in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2021; 9:774175. [PMID: 34926421 PMCID: PMC8675083 DOI: 10.3389/fbioe.2021.774175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022] Open
Abstract
As the most widely used mammalian cell line, Chinese hamster ovary (CHO) cells can express various recombinant proteins with a post translational modification pattern similar to that of the proteins from human cells. During industrial production, cells need large amounts of ATP to support growth and protein expression, and since glycometabolism is the main source of ATP for cells, protein production partly depends on the efficiency of glycometabolism. And efficient glycometabolism allows less glucose uptake by cells, reducing production costs, and providing a better mammalian production platform for recombinant protein expression. In the present study, a series of progresses on the comprehensive optimization in CHO cells by glycometabolism strategy were reviewed, including carbohydrate intake, pyruvate metabolism and mitochondrial metabolism. We analyzed the effects of gene regulation in the upstream and downstream of the glucose metabolism pathway on cell’s growth and protein expression. And we also pointed out the latest metabolic studies that are potentially applicable on CHO cells. In the end, we elaborated the application of metabolic models in the study of CHO cell metabolism.
Collapse
Affiliation(s)
- Huan-Yu Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Zhen-Lin Fan
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China.,Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| |
Collapse
|
4
|
Banner M, Alosert H, Spencer C, Cheeks M, Farid SS, Thomas M, Goldrick S. A decade in review: use of data analytics within the biopharmaceutical sector. Curr Opin Chem Eng 2021; 34:None. [PMID: 34926134 PMCID: PMC8665905 DOI: 10.1016/j.coche.2021.100758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There are large amounts of data generated within the biopharmaceutical sector. Traditionally, data analysis methods labelled as multivariate data analysis have been the standard statistical technique applied to interrogate these complex data sets. However, more recently there has been a surge in the utilisation of a broader set of machine learning algorithms to further exploit these data. In this article, the adoption of data analysis techniques within the biopharmaceutical sector is evaluated through a review of journal articles and patents published within the last ten years. The papers objectives are to identify the most dominant algorithms applied across different applications areas within the biopharmaceutical sector and to explore whether there is a trend between the size of the data set and the algorithm adopted.
Collapse
Affiliation(s)
- Matthew Banner
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Haneen Alosert
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Christopher Spencer
- Cell Culture Fermentation Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Matthew Cheeks
- Cell Culture Fermentation Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Suzanne S Farid
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Michael Thomas
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
- London Centre for Nanotechnology, University College London, Gordon Street, London WC1H 0AH, UK
| | - Stephen Goldrick
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
5
|
Tao W, Ahmed W, Guo M, Mohsin A, Wu B, Li R. Selection of high-producing clones by a relative titer predictive model using image analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1144. [PMID: 34430585 PMCID: PMC8350677 DOI: 10.21037/atm-21-2822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022]
Abstract
Background The commercial success of monoclonal antibodies (Mabs) has made biological therapeutics attractive to pharmaceutical companies. The priority of biopharmaceutical companies is to acquire and develop cell lines that enable them to manufacture biologics quickly, consistently, and economically. Clone selection is a critical process for cell line development. However, the traditional clone selection process requires the evaluation of large numbers of clones using cell growth rate, cell densities and titer, product quality, and so on. Methods To improve efficiency of the clone selection strategies, we developed a relative titer (RT) prediction model by the quantitative information extracted from microscope images during the cell line development process. The performance of this RT prediction model was further evaluated with 50 clones from 5 different cell lines. Results The RT prediction model was able to predict high producers from a given data set when the same host cells were used. Although inaccurate prediction occurred when different host cell was used, this RT prediction model may serve as an excellent proof of concept study that quantitative information from cell line development images provides valuable information to facilitate the cell line development process. Conclusions Here, we present the first predictive model that can be used to estimate the relative productivity of Chinese hamster ovaries (CHO) clones during the cell line development. Additional experiments are currently in process to further improve the RT predictive model. Nevertheless, our current study will serve as a foundation for more prediction models for cell line development that can facilitate the selection of clones.
Collapse
Affiliation(s)
- Weihong Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Waqas Ahmed
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bing Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Rongxiu Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Towards development of plasmacytoma cells-based expression systems utilizing alphavirus vectors: An NS0-VEE model. J Virol Methods 2019; 274:113734. [PMID: 31525396 DOI: 10.1016/j.jviromet.2019.113734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/19/2019] [Accepted: 09/12/2019] [Indexed: 11/24/2022]
Abstract
Plasmacytoma (myeloma) cells have a large protein expression capacity, although their industrial use is confined to stable expression systems. Vectors derived from genomes of viruses from the genus Alphavirus allow obtaining of high yields of target proteins but their use is limited to transient expression. Little information has been published to date on attempts to combine the myeloma cells as hosts with alphaviruses as expression vectors. A plasmid construct which allows rescue of a model alphavirus Venezuelan equine encephalitis virus (VEE) upon transfection of a cell culture was created. Mutations in the capsid and nsP2 genes allow for less cytopathogenic propagation of the virus. A cDNA-copy of the genome was placed in a plasmid under the control of the CMV promoter for virus rescue following DNA transfection. Parameters for the virus rescue by electroporating of the infectious clone in murine myeloma cells (NS0) were optimized. The highest FFU counts (1.2 × 105 FFU per 10 ug DNA) were produced with 2 pulses (voltage 250 V, capacitance 960 u F) and the best electroporation buffer was selected from eight buffers. Self-sustained VEE infection was established in NS0 cultures with high titers (8 × 108 FFU/ml) of the virus, despite a fraction of infected cells dying during 5-days observation. Further development of the NS0-VEE expression system may require addressing of apoptosis induced by VEE.
Collapse
|
7
|
Rekena A, Didrihsone E, Vegere K. The role of magnetic field in the biopharmaceutical production: Current perspectives. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2019; 22:e00334. [PMID: 31011551 PMCID: PMC6460295 DOI: 10.1016/j.btre.2019.e00334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 01/02/2023]
Abstract
Current scientific evidence on the influence of magnetic field on mammalian cell lines used for industrial production of biopharmaceuticals, on human cell lines and on potential cell lines for the biopharmaceutical production is presented in this review. A novel magnetic coupling induced agitation could be the best solution to eliminate sources of contamination in stirred tank bioreactors which is especially important for mammalian cell cultures. Nevertheless, the side effect of magnetically-coupled stirring mechanism is that cells are exposed to the generated magnetic field. The influence of magnetic field on biological systems has been investigated for several decades. The research continues nowadays as well, investigating the influence of various types of magnetic field in a variety of experimental setups. In the context of bioreactors, only the lower frequencies and intensities of the magnetic field are relevant.
Collapse
Affiliation(s)
- Alina Rekena
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV1007, Latvia
| | - Elina Didrihsone
- Bioengineering Laboratory, Latvian State Institute of Wood Chemistry, Dzerbenes 27, Riga, LV1006, Latvia
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Paula Valdena 3, Riga, LV-1048, Latvia
| | - Kristine Vegere
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga, LV1007, Latvia
- Water Research Laboratory, Faculty of Civil Engineering, Riga Technical University, Paula Valdena 1-205, Riga, LV1048, Latvia
| |
Collapse
|
8
|
Genome sequence comparison between Chinese hamster ovary (CHO) DG44 cells and mouse using end sequences of CHO BAC clones based on BAC-FISH results. Cytotechnology 2018; 70:1399-1407. [PMID: 29987698 DOI: 10.1007/s10616-018-0233-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/16/2018] [Indexed: 11/26/2022] Open
Abstract
Chinese hamster ovary (CHO) cells have frequently been used in biotechnology as a mammalian host cell platform for expressing genes of interest. Previously, we constructed a detailed physical chromosomal map of the CHO DG44 cell line by fluorescence in situ hybridization (FISH) imaging using 303 bacterial artificial chromosome (BAC) clones as hybridization probes (BAC-FISH). BAC-FISH results revealed that the two longest chromosomes were completely paired. However, other chromosomes featured partial deletions or rearrangements. In this study, we determined the end sequences of 303 BAC clones (BAC end sequences), which were used for BAC-FISH probes. Among 606 BAC-end sequences (BESs) (forward and reverse ends), 558 could be determined. We performed a comparison between all determined BESs and mouse genome sequences using NCBI BLAST. Among these 558 BESs, 465 showed high homology to mouse chromosomal sequences. We analyzed the locations of these BACs in chromosomes of the CHO DG44 cell line using a physical chromosomal map. From the obtained results, we investigated the regional similarities among CHO chromosomes (A-T) and mouse chromosomes (1-19 and sex) about 217 BESs (46.7% of 465 high homologous BESs). Twenty-three specific narrow regions in 13 chromosomes of the CHO DG44 cell line showed high homology to mouse chromosomes, but most of other regions did not show significant correlations with the mouse genome. These results contribute to accurate alignments of chromosomes of Chinese hamster and its genome sequence, analysis of chromosomal instability in CHO cells, and the development of target locations for gene and/or genome editing techniques.
Collapse
|
9
|
Abstract
One of the greatest sources of metabolic and enzymatic diversity are microorganisms. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly, and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.
Collapse
Affiliation(s)
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| |
Collapse
|
10
|
Nigi I, Fairall L, Schwabe JWR. Expression and Purification of Protein Complexes Suitable for Structural Studies Using Mammalian HEK 293F Cells. ACTA ACUST UNITED AC 2017; 90:5.28.1-5.28.16. [PMID: 29091272 DOI: 10.1002/cpps.44] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prokaryotic expression systems have been widely used to express proteins for structural studies. Such expression systems have the advantage of being economical, straightforward and fast. However, for many eukaryotic proteins and particularly protein complexes, bacterial expression systems do not produce significant yields of soluble protein. This may result from failure to efficiently transcribe/translate the required protein or may result from the formation of insoluble aggregates known as inclusion bodies. Mammalian expression systems can often produce natively folded proteins, sometimes with native post-translational modifications. However, such expression systems are underutilized due to the perception that they are costly, technically challenging and result in limited protein yields. In fact, HEK 293F cells are straightforward to grow, transfect with high efficiency and often produce significant yields of recombinant proteins. In this unit, we describe a method to express and purify milligram quantities of a human protein complex from HEK 293F cells grown in suspension transiently transfected with the appropriate plasmids. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Irene Nigi
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Louise Fairall
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - John W R Schwabe
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
11
|
Affiliation(s)
- Jennifer Pfizenmaier
- University of Stuttgart; Institute of Biochemical Engineering; Allmandring 31 70569 Stuttgart Germany
| | - Ralf Takors
- University of Stuttgart; Institute of Biochemical Engineering; Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
12
|
Badsha MB, Kurata H, Onitsuka M, Oga T, Omasa T. Metabolic analysis of antibody producing Chinese hamster ovary cell culture under different stresses conditions. J Biosci Bioeng 2016; 122:117-24. [PMID: 26803706 DOI: 10.1016/j.jbiosc.2015.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 01/03/2023]
Abstract
Chinese hamster ovary (CHO) cells are commonly used as the host cell lines concerning their ability to produce therapeutic proteins with complex post-translational modifications. In this study, we have investigated the time course extra- and intracellular metabolome data of the CHO-K1 cell line, under a control and stress conditions. The addition of NaCl and trehalose greatly suppressed cell growth, where the maximum viable cell density of NaCl and trehalose cultures were 2.2-fold and 2.8-fold less than that of a control culture. Contrariwise, the antibody production of both the NaCl and trehalose cultures was sustained for a longer time to surpass that of the control culture. The NaCl and trehalose cultures showed relatively similar dynamics of cell growth, antibody production, and substrate/product concentrations, while they indicated different dynamics from the control culture. The principal component analysis of extra- and intracellular metabolome dynamics indicated that their dynamic behaviors were consistent with biological functions. The qualitative pattern matching classification and hierarchical clustering analyses for the intracellular metabolome identified the metabolite clusters whose dynamic behaviors depend on NaCl and trehalose. The volcano plot revealed several reporter metabolites whose dynamics greatly change between in the NaCl and trehalose cultures. The elastic net identified some critical, intracellular metabolites that are distinct between the NaCl and trehalose. While a relatively small number of intracellular metabolites related to the cell growth, glucose, glutamine, lactate and ammonium ion concentrations, the mechanism of antibody production was suggested to be very complicated or not to be explained by elastic net regression analysis.
Collapse
Affiliation(s)
- Md Bahadur Badsha
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| | - Hiroyuki Kurata
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan; Biomedical Informatics R&D Center, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan.
| | - Masayoshi Onitsuka
- Institute of Technology and Science, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan.
| | - Takushi Oga
- Human Metabolome Technologies, Inc., 24 Denby Road, Suite 217, Boston, MA 02134, USA.
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, U1E801, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
13
|
Liu Z, Dai S, Bones J, Ray S, Cha S, Karger BL, Li JJ, Wilson L, Hinckle G, Rossomando A. A quantitative proteomic analysis of cellular responses to high glucose media in Chinese hamster ovary cells. Biotechnol Prog 2015; 31:1026-38. [PMID: 25857574 DOI: 10.1002/btpr.2090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 03/11/2015] [Indexed: 12/12/2022]
Abstract
A goal in recombinant protein production using Chinese hamster ovary (CHO) cells is to achieve both high specific productivity and high cell density. Addition of glucose to the culture media is necessary to maintain both cell growth and viability. We varied the glucose concentration in the media from 5 to 16 g/L and found that although specific productivity of CHO-DG44 cells increased with the glucose level, the integrated viable cell density decreased. To examine the biological basis of these results, we conducted a discovery proteomic study of CHO-DG44 cells grown under batch conditions in normal (5 g/L) or high (15 g/L) glucose over 3, 6, and 9 days. Approximately 5,000 proteins were confidently identified against an mRNA-based CHO-DG44 specific proteome database, with 2,800 proteins quantified with at least two peptides. A self-organizing map algorithm was used to deconvolute temporal expression profiles of quantitated proteins. Functional analysis of altered proteins suggested that differences in growth between the two glucose levels resulted from changes in crosstalk between glucose metabolism, recombinant protein expression, and cell death, providing an overall picture of the responses to high glucose environment. The high glucose environment may enhance recombinant dihydrofolate reductase in CHO cells by up-regulating NCK1 and down-regulating PRKRA, and may lower integrated viable cell density by activating mitochondrial- and endoplasmic reticulum-mediated cell death pathways by up-regulating HtrA2 and calpains. These proteins are suggested as potential targets for bioengineering to enhance recombinant protein production.
Collapse
Affiliation(s)
- Zhenke Liu
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Shujia Dai
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Jonathan Bones
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Somak Ray
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Sangwon Cha
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Barry L Karger
- Barnett Inst. and Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Jingyi Jessica Li
- Dept. of Statistics, University of California, Los Angeles, CA, 90095
| | - Lee Wilson
- Alnylam Pharmaceuticals, Cambridge, MA, 02142
| | | | | |
Collapse
|
14
|
Wingens M, Gätgens J, Schmidt A, Albaum SP, Büntemeyer H, Noll T, Hoffrogge R. 2D-DIGE screening of high-productive CHO cells under glucose limitation--basic changes in the proteome equipment and hints for epigenetic effects. J Biotechnol 2015; 201:86-97. [PMID: 25612871 DOI: 10.1016/j.jbiotec.2015.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 12/23/2014] [Accepted: 01/09/2015] [Indexed: 01/21/2023]
Abstract
CHO derivates (Chinese hamster ovary) belong to the most important mammalian cells for industrial recombinant protein production. Many efforts have been made to improve productivity and stability of CHO cells in bioreactor processes. Here, we followed up one barely understood phenomenon observed with process optimizations: a significantly increased cell-specific productivity in late phases of glucose-limited perfusion cultivations, when glucose (and lactate) reserves are exhausted. Our aim was to elucidate the cellular activities connected to the metabolic shift from glucose surplus to glucose limitation phase. With 2D-DIGE, we compared three stages in a perfusion culture of CHO cells: the initial growth with high glucose concentration and low lactate production, the second phase with glucose going to limitation and high lactate level, and finally the state of glucose limitation and also low lactate concentration but increased cell-specific productivity. With our proteomic approach we were able to demonstrate consequences of glucose limitation for the protein expression machinery which also could play a role for a higher recombinant protein production. Most interestingly, we detected epigenetic effects on the level of proteins involved in histone modification (HDAC1/-2, SET, RBBP7, DDX5). Together with shifts in the protein inventory of energy metabolism, cytoskeleton and protein expression, a picture emerges of basic changes in the cellular equipment under long-term glucose limitation of CHO cells.
Collapse
Affiliation(s)
- Marc Wingens
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany
| | - Jochem Gätgens
- IBG-1: Biotechnology; Bioprocesses and Bioanalytics, Research Center Jülich, Germany
| | - Anica Schmidt
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany
| | - Stefan P Albaum
- Bioinformatics Resource Facility, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Heino Büntemeyer
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany
| | - Thomas Noll
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany
| | - Raimund Hoffrogge
- Institute of Cell Culture Technology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
15
|
Adaptation for survival: Phenotype and transcriptome response of CHO cells to elevated stress induced by agitation and sparging. J Biotechnol 2014; 189:94-103. [DOI: 10.1016/j.jbiotec.2014.08.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/25/2014] [Accepted: 08/30/2014] [Indexed: 11/21/2022]
|
16
|
Schwamb S, Munteanu B, Meyer B, Hopf C, Hafner M, Wiedemann P. Monitoring CHO cell cultures: Cell stress and early apoptosis assessment by mass spectrometry. J Biotechnol 2013; 168:452-61. [DOI: 10.1016/j.jbiotec.2013.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 01/30/2023]
|
17
|
Rodrigues A, Formas-Oliveira A, Bandeira V, Alves P, Hu W, Coroadinha A. Metabolic pathways recruited in the production of a recombinant enveloped virus: Mining targets for process and cell engineering. Metab Eng 2013; 20:131-45. [DOI: 10.1016/j.ymben.2013.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/22/2013] [Accepted: 10/03/2013] [Indexed: 11/27/2022]
|
18
|
Khan KH. Gene expression in Mammalian cells and its applications. Adv Pharm Bull 2013; 3:257-63. [PMID: 24312845 DOI: 10.5681/apb.2013.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/11/2013] [Accepted: 04/13/2013] [Indexed: 11/17/2022] Open
Abstract
The production of proteins in appropriate quantity and quality is an essential requirement of the present time. There appears to be a progressive increase in the application of mammalian cells for proteins production. Expression systems utilizing mammalian cells for recombinant proteins are able to introduce proper protein folding, post-translational modifications, and product assembly, which are important for complete biological activity. This review article is totally based on literature survey. In this article much emphasis has been done on the mammalian expression system. The author focused on different mammalian cell lines that express the gene. The different vector systems that transfer the gene into mammalian cells like plasmid based expression vectors, adenovirus vectors, vaccinia vectors, retroviral vector and baculovirus as vectors were explored. The processes for the transfer of gene into mammalian cells were also reviewed. Application and limitations of mammalian expression system were also focused. The purpose of research in writing this article is to create awareness in researchers, starting their career in gene expression related to mammalian cells. The principal result and major conclusion of this article is to make available the molecular technologies, expression system and applications of gene expression in mammalian cell lines.
Collapse
Affiliation(s)
- Kishwar Hayat Khan
- School of BioSciences and Technology, VIT University, Vellore-632014, Tamil nadu, India
| |
Collapse
|
19
|
Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O'Brien E, Bordbar A, Roth AM, Rosenbloom J, Bian C, Xie M, Chen W, Li N, Baycin-Hizal D, Latif H, Forster J, Betenbaugh MJ, Famili I, Xu X, Wang J, Palsson BO. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 2013; 31:759-65. [PMID: 23873082 DOI: 10.1038/nbt.2624] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 06/03/2013] [Indexed: 12/19/2022]
Abstract
Chinese hamster ovary (CHO) cells, first isolated in 1957, are the preferred production host for many therapeutic proteins. Although genetic heterogeneity among CHO cell lines has been well documented, a systematic, nucleotide-resolution characterization of their genotypic differences has been stymied by the lack of a unifying genomic resource for CHO cells. Here we report a 2.4-Gb draft genome sequence of a female Chinese hamster, Cricetulus griseus, harboring 24,044 genes. We also resequenced and analyzed the genomes of six CHO cell lines from the CHO-K1, DG44 and CHO-S lineages. This analysis identified hamster genes missing in different CHO cell lines, and detected >3.7 million single-nucleotide polymorphisms (SNPs), 551,240 indels and 7,063 copy number variations. Many mutations are located in genes with functions relevant to bioprocessing, such as apoptosis. The details of this genetic diversity highlight the value of the hamster genome as the reference upon which CHO cells can be studied and engineered for protein production.
Collapse
|
20
|
Carinhas N, Duarte TM, Barreiro LC, Carrondo MJT, Alves PM, Teixeira AP. Metabolic signatures of GS-CHO cell clones associated with butyrate treatment and culture phase transition. Biotechnol Bioeng 2013; 110:3244-57. [DOI: 10.1002/bit.24983] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/26/2013] [Accepted: 06/12/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Nuno Carinhas
- iBET; Instituto de Biologia Experimental e Tecnológica; Apartado 12 2781-901 Oeiras Portugal
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Av. da República 2780-157 Oeiras Portugal
| | - Tiago M. Duarte
- iBET; Instituto de Biologia Experimental e Tecnológica; Apartado 12 2781-901 Oeiras Portugal
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Av. da República 2780-157 Oeiras Portugal
| | - Laura C. Barreiro
- iBET; Instituto de Biologia Experimental e Tecnológica; Apartado 12 2781-901 Oeiras Portugal
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Av. da República 2780-157 Oeiras Portugal
| | - Manuel J. T. Carrondo
- iBET; Instituto de Biologia Experimental e Tecnológica; Apartado 12 2781-901 Oeiras Portugal
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Av. da República 2780-157 Oeiras Portugal
- Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; 2829-516 Caparica Portugal
| | - Paula M. Alves
- iBET; Instituto de Biologia Experimental e Tecnológica; Apartado 12 2781-901 Oeiras Portugal
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Av. da República 2780-157 Oeiras Portugal
| | - Ana P. Teixeira
- iBET; Instituto de Biologia Experimental e Tecnológica; Apartado 12 2781-901 Oeiras Portugal
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Av. da República 2780-157 Oeiras Portugal
| |
Collapse
|
21
|
Streefland M, Martens DE, Beuvery EC, Wijffels RH. Process analytical technology (PAT) tools for the cultivation step in biopharmaceutical production. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200025] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Mathieu Streefland
- Bioprocess Engineering; Wageningen University; Wageningen; The Netherlands
| | - Dirk E. Martens
- Bioprocess Engineering; Wageningen University; Wageningen; The Netherlands
| | | | - René H. Wijffels
- Bioprocess Engineering; Wageningen University; Wageningen; The Netherlands
| |
Collapse
|
22
|
Go EP, Liao HX, Alam SM, Hua D, Haynes BF, Desaire H. Characterization of host-cell line specific glycosylation profiles of early transmitted/founder HIV-1 gp120 envelope proteins. J Proteome Res 2013; 12:1223-34. [PMID: 23339644 PMCID: PMC3674872 DOI: 10.1021/pr300870t] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycosylation plays an essential role in regulating protein function by modulating biological, structural, and therapeutic properties. However, due to its inherent heterogeneity and diversity, the comprehensive analysis of protein glycosylation remains a challenge. As part of our continuing effort in the analysis of glycosylation profiles of recombinant HIV-1 envelope-based immunogens, we evaluated and compared the host-cell specific glycosylation pattern of recombinant HIV-1 surface glycoprotein, gp120, derived from clade C transmitted/founder virus 1086.C expressed in Chinese hamster ovary (CHO) and human embryonic kidney containing T antigen (293T) cell lines. We used an integrated glycopeptide-based mass mapping workflow that includes a partial deglycosylation step described in our previous study with the inclusion of a fragmentation technique, electron transfer dissociation (ETD), to complement collision-induced dissociation. The inclusion of ETD facilitated the analysis by providing additional validation for glycopeptide identification and expanding the identified glycopeptides to include coverage of O-linked glycosylation. The site-specific glycosylation analysis shows that the transmitted/founder 1086.C gp120 expressed in CHO and 293T displayed distinct similarities and differences. For N-linked glycosylation, two sites (N386 and N392) in the V4 region were populated with high mannose glycans in the CHO cell-derived 1086.C gp120, while these sites had a mixture of high mannose and processed glycans in the 293T cell-derived 1086.C gp120. Compositional analysis of O-linked glycans revealed that 293T cell-derived 1086.C gp120 consisted of core 1, 2, and 4 type O-linked glycans, while CHO cell-derived 1086.C exclusively consisted of core 1 type O-linked glycans. Overall, glycosylation site occupancy of the CHO and 293T cell-derived 1086.C gp120 showed a high degree of similarity except for one site at N88 in the C1 region. This site was partially occupied in 293T-gp120 but fully occupied in CHO-gp120. Site-specific glycopeptide analysis of transmitted/founder 1086.C gp120 expressed in CHO cells revealed the presence of phosphorylated glycans, while 293T cell-produced 1086.C gp120 glycans were not phosphorylated. While the influence of phosphorylated glycans on immunogenicity is unclear, distinguishing host-cell specific variations in glycosylation profiles provide insights into the similarity (or difference) in recombinant vaccine products. While these differences had minimal effect on envelope antigenicity, they may be important in considering immunogenicity and functional capacities of recombinant envelope proteins produced in different expression systems.
Collapse
Affiliation(s)
- Eden P. Go
- Department of Chemistry, University of Kansas, Lawrence, KS
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Department of Medicine, Duke University Medical Center, Durham, NC
| | - S. Munir Alam
- Duke Human Vaccine Institute, Department of Medicine, Duke University Medical Center, Durham, NC
| | - David Hua
- Department of Chemistry, University of Kansas, Lawrence, KS
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Department of Medicine, Duke University Medical Center, Durham, NC
- Department of Immunology, Duke University Medical Center, Durham, NC
| | | |
Collapse
|
23
|
Development of a Scale-Down Model of hydrodynamic stress to study the performance of an industrial CHO cell line under simulated production scale bioreactor conditions. J Biotechnol 2013; 164:41-9. [DOI: 10.1016/j.jbiotec.2012.11.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 10/27/2012] [Accepted: 11/26/2012] [Indexed: 01/11/2023]
|
24
|
Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol 2013; 40:257-74. [PMID: 23385853 DOI: 10.1007/s10295-013-1235-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/22/2013] [Indexed: 12/28/2022]
Abstract
Almost all of the 200 or so approved biopharmaceuticals have been produced in one of three host systems: the bacterium Escherichia coli, yeasts (Saccharomyces cerevisiae, Pichia pastoris) and mammalian cells. We describe the most widely used methods for the expression of recombinant proteins in the cytoplasm or periplasm of E. coli, as well as strategies for secreting the product to the growth medium. Recombinant expression in E. coli influences the cell physiology and triggers a stress response, which has to be considered in process development. Increased expression of a functional protein can be achieved by optimizing the gene, plasmid, host cell, and fermentation process. Relevant properties of two yeast expression systems, S. cerevisiae and P. pastoris, are summarized. Optimization of expression in S. cerevisiae has focused mainly on increasing the secretion, which is otherwise limiting. P. pastoris was recently approved as a host for biopharmaceutical production for the first time. It enables high-level protein production and secretion. Additionally, genetic engineering has resulted in its ability to produce recombinant proteins with humanized glycosylation patterns. Several mammalian cell lines of either rodent or human origin are also used in biopharmaceutical production. Optimization of their expression has focused on clonal selection, interference with epigenetic factors and genetic engineering. Systemic optimization approaches are applied to all cell expression systems. They feature parallel high-throughput techniques, such as DNA microarray, next-generation sequencing and proteomics, and enable simultaneous monitoring of multiple parameters. Systemic approaches, together with technological advances such as disposable bioreactors and microbioreactors, are expected to lead to increased quality and quantity of biopharmaceuticals, as well as to reduced product development times.
Collapse
|
25
|
Datta P, Linhardt RJ, Sharfstein ST. An 'omics approach towards CHO cell engineering. Biotechnol Bioeng 2013; 110:1255-71. [DOI: 10.1002/bit.24841] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/19/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022]
|
26
|
Abstract
Microorganisms are one of the greatest sources of metabolic and enzymatic diversity. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.
Collapse
|
27
|
Corchero JL, Gasser B, Resina D, Smith W, Parrilli E, Vázquez F, Abasolo I, Giuliani M, Jäntti J, Ferrer P, Saloheimo M, Mattanovich D, Schwartz S, Tutino ML, Villaverde A. Unconventional microbial systems for the cost-efficient production of high-quality protein therapeutics. Biotechnol Adv 2012; 31:140-53. [PMID: 22985698 DOI: 10.1016/j.biotechadv.2012.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 12/18/2022]
Abstract
Both conventional and innovative biomedical approaches require cost-effective protein drugs with high therapeutic potency, improved bioavailability, biocompatibility, stability and pharmacokinetics. The growing longevity of the human population, the increasing incidence and prevalence of age-related diseases and the better comprehension of genetic-linked disorders prompt to develop natural and engineered drugs addressed to fulfill emerging therapeutic demands. Conventional microbial systems have been for long time exploited to produce biotherapeutics, competing with animal cells due to easier operation and lower process costs. However, both biological platforms exhibit important drawbacks (mainly associated to intracellular retention of the product, lack of post-translational modifications and conformational stresses), that cannot be overcome through further strain optimization merely due to physiological constraints. The metabolic diversity among microorganisms offers a spectrum of unconventional hosts, that, being able to bypass some of these weaknesses, are under progressive incorporation into production pipelines. In this review we describe the main biological traits and potentials of emerging bacterial, yeast, fungal and microalgae systems, by comparing selected leading species with well established conventional organisms with a long run in protein drug production.
Collapse
|
28
|
Carinhas N, Oliveira R, Alves PM, Carrondo MJ, Teixeira AP. Systems biotechnology of animal cells: the road to prediction. Trends Biotechnol 2012; 30:377-85. [DOI: 10.1016/j.tibtech.2012.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/11/2012] [Accepted: 03/14/2012] [Indexed: 12/26/2022]
|
29
|
Beckmann TF, Krämer O, Klausing S, Heinrich C, Thüte T, Büntemeyer H, Hoffrogge R, Noll T. Effects of high passage cultivation on CHO cells: a global analysis. Appl Microbiol Biotechnol 2012; 94:659-71. [DOI: 10.1007/s00253-011-3806-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 11/27/2011] [Accepted: 11/28/2011] [Indexed: 01/19/2023]
|
30
|
Doolan P, Barron N, Kinsella P, Clarke C, Meleady P, O'Sullivan F, Melville M, Leonard M, Clynes M. Microarray expression profiling identifies genes regulating sustained cell specific productivity (S-Qp) in CHO K1 production cell lines. Biotechnol J 2012; 7:516-26. [DOI: 10.1002/biot.201100255] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 09/26/2011] [Accepted: 12/01/2011] [Indexed: 11/10/2022]
|
31
|
Dahodwala H, Nowey M, Mitina T, Sharfstein ST. Effects of clonal variation on growth, metabolism, and productivity in response to trophic factor stimulation: a study of Chinese hamster ovary cells producing a recombinant monoclonal antibody. Cytotechnology 2012; 64:27-41. [PMID: 21822681 PMCID: PMC3261449 DOI: 10.1007/s10616-011-9388-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022] Open
Abstract
The growth, metabolism, and productivity of five Chinese hamster ovary (CHO) clones were explored in response to stimulation with insulin (5 mg/L) and LONG(®)R(3)IGF-I (20 μg/L or 100 μg/L). All five clones were derived from the same parental CHO cell line (DG44) and produced the same recombinant monoclonal antibody, with varying specific productivities. There was no uniform response among the clones to stimulation with the different trophic factors. One of the high productivity clones (clone D) exhibited significantly better growth in response to LONG(®)R(3)IGF-I; whereas the other clones showed equivalent or slightly better growth in the presence of insulin. Three out of the five clones had higher specific productivities in the presence of insulin (although not statistically significant); one was invariant, and the final clone exhibited slightly higher specific productivity in the presence of LONG(®)R(3)IGF-I. Total product titers exhibited moderate variation between culture conditions, again with neither trophic factor being clearly superior. Overall product titers were affected by variations in both integrated viable cell density and specific productivity. Nutrient uptake and metabolite generation patterns varied strongly between clones and much less with culture conditions. These results point to the need for careful clonal analysis when selecting clones, particularly for platform processes where media and culture conditions are predetermined.
Collapse
Affiliation(s)
- Hussain Dahodwala
- Biochemistry and Biophysics Program, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | | | | | | |
Collapse
|
32
|
Cao Y, Kimura S, Park JY, Yamatani M, Honda K, Ohtake H, Omasa T. Chromosome identification and its application in Chinese hamster ovary cells. BMC Proc 2011; 5 Suppl 8:O8. [PMID: 22373392 PMCID: PMC3285028 DOI: 10.1186/1753-6561-5-s8-o8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yihua Cao
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuichi Kimura
- Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Joon-Young Park
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miyuki Yamatani
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kohsuke Honda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hisao Ohtake
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan ; Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| |
Collapse
|
33
|
Cao Y, Kimura S, Itoi T, Honda K, Ohtake H, Omasa T. Construction of BAC-based physical map and analysis of chromosome rearrangement in chinese hamster ovary cell lines. Biotechnol Bioeng 2011; 109:1357-67. [DOI: 10.1002/bit.24347] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/25/2011] [Accepted: 10/11/2011] [Indexed: 01/09/2023]
|
34
|
Clarke C, Doolan P, Barron N, Meleady P, O'Sullivan F, Gammell P, Melville M, Leonard M, Clynes M. Large scale microarray profiling and coexpression network analysis of CHO cells identifies transcriptional modules associated with growth and productivity. J Biotechnol 2011; 155:350-9. [DOI: 10.1016/j.jbiotec.2011.07.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 12/31/2022]
|
35
|
Zang L, Frenkel R, Simeone J, Lanan M, Byers M, Lyubarskaya Y. Metabolomics Profiling of Cell Culture Media Leading to the Identification of Riboflavin Photosensitized Degradation of Tryptophan Causing Slow Growth in Cell Culture. Anal Chem 2011; 83:5422-30. [DOI: 10.1021/ac2009492] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Zang
- Analytical Development Department and ‡Manufacturing Sciences Department, BiogenIdec, Cambridge, Massachusetts 02142, United States
| | - Ruth Frenkel
- Analytical Development Department and ‡Manufacturing Sciences Department, BiogenIdec, Cambridge, Massachusetts 02142, United States
| | - Jeffrey Simeone
- Analytical Development Department and ‡Manufacturing Sciences Department, BiogenIdec, Cambridge, Massachusetts 02142, United States
| | - Maureen Lanan
- Analytical Development Department and ‡Manufacturing Sciences Department, BiogenIdec, Cambridge, Massachusetts 02142, United States
| | - Mark Byers
- Analytical Development Department and ‡Manufacturing Sciences Department, BiogenIdec, Cambridge, Massachusetts 02142, United States
| | - Yelena Lyubarskaya
- Analytical Development Department and ‡Manufacturing Sciences Department, BiogenIdec, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
36
|
Advancing biopharmaceutical process development by system-level data analysis and integration of omics data. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2011; 127:133-63. [PMID: 21290218 DOI: 10.1007/10_2010_98] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development of efficient bioprocesses is essential for cost-effective manufacturing of recombinant therapeutic proteins. To achieve further process improvement and process rationalization comprehensive data analysis of both process data and phenotypic cell-level data is essential. Here, we present a framework for advanced bioprocess data analysis consisting of multivariate data analysis (MVDA), metabolic flux analysis (MFA), and pathway analysis for mapping of large-scale gene expression data sets. This data analysis platform was applied in a process development project with an IgG-producing Chinese hamster ovary (CHO) cell line in which the maximal product titer could be increased from about 5 to 8 g/L.Principal component analysis (PCA), k-means clustering, and partial least-squares (PLS) models were applied to analyze the macroscopic bioprocess data. MFA and gene expression analysis revealed intracellular information on the characteristics of high-performance cell cultivations. By MVDA, for example, correlations between several essential amino acids and the product concentration were observed. Also, a grouping into rather cell specific productivity-driven and process control-driven processes could be unraveled. By MFA, phenotypic characteristics in glycolysis, glutaminolysis, pentose phosphate pathway, citrate cycle, coupling of amino acid metabolism to citrate cycle, and in the energy yield could be identified. By gene expression analysis 247 deregulated metabolic genes were identified which are involved, inter alia, in amino acid metabolism, transport, and protein synthesis.
Collapse
|
37
|
Predicting cell-specific productivity from CHO gene expression. J Biotechnol 2011; 151:159-65. [DOI: 10.1016/j.jbiotec.2010.11.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/26/2010] [Accepted: 11/20/2010] [Indexed: 11/19/2022]
|
38
|
Schaub J, Clemens C, Schorn P, Hildebrandt T, Rust W, Mennerich D, Kaufmann H, Schulz TW. CHO gene expression profiling in biopharmaceutical process analysis and design. Biotechnol Bioeng 2010; 105:431-8. [DOI: 10.1002/bit.22549] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Omasa T, Cao Y, Park JY, Takagi Y, Kimura S, Yano H, Honda K, Asakawa S, Shimizu N, Ohtake H. Bacterial artificial chromosome library for genome-wide analysis of Chinese hamster ovary cells. Biotechnol Bioeng 2009; 104:986-94. [DOI: 10.1002/bit.22463] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Vester D, Rapp E, Gade D, Genzel Y, Reichl U. Quantitative analysis of cellular proteome alterations in human influenza A virus-infected mammalian cell lines. Proteomics 2009; 9:3316-27. [PMID: 19504497 DOI: 10.1002/pmic.200800893] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the last years virus-host cell interactions were investigated in numerous studies. Viral strategies for evasion of innate immune response, inhibition of cellular protein synthesis and permission of viral RNA and protein production were disclosed. With quantitative proteome technology, comprehensive studies concerning the impact of viruses on the cellular machinery of their host cells at protein level are possible. Therefore, 2-D DIGE and nanoHPLC-nanoESI-MS/MS analysis were used to qualitatively and quantitatively determine the dynamic cellular proteome responses of two mammalian cell lines to human influenza A virus infection. A cell line used for vaccine production (MDCK) was compared with a human lung carcinoma cell line (A549) as a reference model. Analyzing 2-D gels of the proteomes of uninfected and influenza-infected host cells, 16 quantitatively altered protein spots (at least +/-1.7-fold change in relative abundance, p<0.001) were identified for both cell lines. Most significant changes were found for keratins, major components of the cytoskeleton system, and for Mx proteins, interferon-induced key components of the host cell defense. Time series analysis of infection processes allowed the identification of further proteins that are described to be involved in protein synthesis, signal transduction and apoptosis events. Most likely, these proteins are required for supporting functions during influenza viral life cycle or host cell stress response. Quantitative proteome-wide profiling of virus infection can provide insights into complexity and dynamics of virus-host cell interactions and may accelerate antiviral research and support optimization of vaccine manufacturing processes.
Collapse
Affiliation(s)
- Diana Vester
- Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
41
|
Branco LM, Garry RF. Characterization of the Lassa virus GP1 ectodomain shedding: implications for improved diagnostic platforms. Virol J 2009; 6:147. [PMID: 19778448 PMCID: PMC2759938 DOI: 10.1186/1743-422x-6-147] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 09/24/2009] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, detection of early markers of Lassa virus (LASV) infection may improve diagnosis and ultimately successful treatment with antivirals. Characterization of LASV GP1 ectodomain shedding is an important step toward developing sensitive diagnostics to detect circulating levels of this viral glycoprotein in infected patient sera. RESULTS Secretion of GP1 from mammalian cells expressing a native LASV GPC gene was not mediated by proteolytic cleavage, as determined by treatment with a panel of matrix metalloprotease (MMP) inhibitors. The shedding of GP1 was also not the result of over-expression of GPC under the control of a strong intron-A containing CMV promoter, as the soluble component could be immunoprecipitated from supernatants of cells expressing low levels of GPC under the control of an intronless promoter. Cells transfected with GPC retained surface membrane-associated expression of GP1 as determined by immunofluorescence assay, in addition to secreting the glycoprotein.Secreted GP1 derived from GPC expression has a higher content of high mannose N-linked glycosylation than sGP1 expressed independently from the GP2 portion of the protein. Neither GP1 isoform contains sialylated N-glycans, O-linked carbohydrate chains, or galactose-beta(1-4)-N-acetylglucosamine commonly present in complex and hybrid N-glycan structures. CONCLUSION These results demonstrate the non-proteolytic secretory nature of GP1 shedding during expression of the arenaviral glycoprotein complex. This phenomenon parallels shedding of a secretory glycoprotein component in filovirus replication. The glycosylation pattern of soluble GP1 resulting from expression of GPC was different from that of a soluble GP1 construct (sGP1-RRAA-FLAG), highlighting the intricately orchestrated post translational processing of the LASV glycoprotein complex.
Collapse
Affiliation(s)
- Luis M Branco
- Tulane University Health Sciences Center, New Orleans, LA, USA
- Autoimmune Technologies, LLC, New Orleans, LA, USA
| | - Robert F Garry
- Tulane University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
42
|
|
43
|
Graf A, Dragosits M, Gasser B, Mattanovich D. Yeast systems biotechnology for the production of heterologous proteins. FEMS Yeast Res 2009; 9:335-48. [DOI: 10.1111/j.1567-1364.2009.00507.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
44
|
Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 2009; 27:297-306. [PMID: 19500547 DOI: 10.1016/j.biotechadv.2009.01.008] [Citation(s) in RCA: 611] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/14/2009] [Accepted: 01/21/2009] [Indexed: 02/08/2023]
Abstract
Large proteins are usually expressed in a eukaryotic system while smaller ones are expressed in prokaryotic systems. For proteins that require glycosylation, mammalian cells, fungi or the baculovirus system is chosen. The least expensive, easiest and quickest expression of proteins can be carried out in Escherichia coli. However, this bacterium cannot express very large proteins. Also, for S-S rich proteins, and proteins that require post-translational modifications, E. coli is not the system of choice. The two most utilized yeasts are Saccharomyces cerevisiae and Pichia pastoris. Yeasts can produce high yields of proteins at low cost, proteins larger than 50 kD can be produced, signal sequences can be removed, and glycosylation can be carried out. The baculoviral system can carry out more complex post-translational modifications of proteins. The most popular system for producing recombinant mammalian glycosylated proteins is that of mammalian cells. Genetically modified animals secrete recombinant proteins in their milk, blood or urine. Similarly, transgenic plants such as Arabidopsis thaliana and others can generate many recombinant proteins.
Collapse
Affiliation(s)
- Arnold L Demain
- Research Institute for Scientists Emeriti, Drew University, Madison, NJ 07940, USA
| | | |
Collapse
|
45
|
The application of SELDI-TOF mass spectrometry to mammalian cell culture. Biotechnol Adv 2008; 27:177-84. [PMID: 19049820 DOI: 10.1016/j.biotechadv.2008.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 10/28/2008] [Accepted: 10/30/2008] [Indexed: 11/20/2022]
Abstract
Surface Enhanced Laser Desorption/Ionisation Time-of-Fight Mass Spectrometry (SELDI-TOF MS) is a technique by which protein profiles can be rapidly produced from a wide variety of biological samples. By employing chromatographic surfaces combined with the specificity and reproducibility of mass spectrometry it has allowed for profiles from complex biological samples to be analysed. Profiling and biomarker identification have been employed widely throughout the biological sciences. To date, however, the benefits of SELDI-TOF MS have not been realised in the area of mammalian cell culture. The advantages in identifying markers for cell stresses, apoptosis and other culture parameters mean that these tools could help greatly to enhance monitoring and control of bioreaction process and improve the production of therapeutics. Better characterisation of culture systems through proteome analysis will allow for improved productivity and better yields.
Collapse
|
46
|
Omasa T, Cao Y, Kimura S, Haghparast S, Takagi Y, Honda K, Ohtake H. Chinese hamster ovary cells BAC library: Application to the characterization of CHO chromosomes. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Jaluria P, Chu C, Betenbaugh M, Shiloach J. Cells by design: a mini-review of targeting cell engineering using DNA microarrays. Mol Biotechnol 2008; 39:105-11. [PMID: 18327555 DOI: 10.1007/s12033-008-9048-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent studies have demonstrated the utility of DNA microarray technology in engineering cellular properties. For instance, cellular adhesion, the necessity of cells to attach to a surface in order to to proliferate, was examined by comparing two distinct HeLa cell lines. Two genes, one encoding a type II membrane glycosylating sialyltransferase (siat7e) and the other encoding a secreted glycoprotein (lama4), were found to influence adhesion. The expression of siat7e correlated with reduced adhesion, whereas expression of lama4 correlated with increased adhesion, as shown by various assays. In a separate example, a gene encoding a mitochondrial assembly protein (cox15) and a gene encoding a kinase (cdkl3), were found to influence cellular growth. Enhanced expression of either gene resulted in slightly higher specific growth rates and higher maximum cell densities for HeLa, HEK-293, and CHO cell lines. Another investigated property was the adaptation of HEK-293 cells to serum-free media. The genes egr1 and gas6, both with anti-apoptotic properties, were identified as potentially improving adaptability by impacting viability at low serum levels. In trying to control apoptosis, researchers found that by altering the expression levels of four genes faim, fadd, alg-2, and requiem, apoptotic response could be altered. In the present work, these and related studies in microorganisms (prokaryote and eukaryote) are examined in greater detail focusing on the approach of using DNA microarrays to direct cellular behavior by targeting select genes.
Collapse
Affiliation(s)
- Pratik Jaluria
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
48
|
Matasci M, Hacker DL, Baldi L, Wurm FM. Recombinant therapeutic protein production in cultivated mammalian cells: current status and future prospects. DRUG DISCOVERY TODAY. TECHNOLOGIES 2008; 5:e37-e42. [PMID: 24981089 DOI: 10.1016/j.ddtec.2008.12.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Recombinant therapeutic proteins produced in mammalian cells represent a major class of biopharmaceuticals. In recent years, their demand has increased dramatically and is now driving the development of a variety of improvements to maximize their expression in mammalian cells. Advances in media- and process optimization have already resulted in more than 100-fold improvement in yield, but further insights and subsequent targeted modifications with respect to the general biology of cells (genomics, physiology, selection and adaptation) in bioreactors are hoped to further improve protein yields and quality in the near future.:
Collapse
Affiliation(s)
- Mattia Matasci
- Institute of Bioengineering, Laboratory of Cellular Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - David L Hacker
- Institute of Bioengineering, Laboratory of Cellular Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lucia Baldi
- Institute of Bioengineering, Laboratory of Cellular Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Florian M Wurm
- Institute of Bioengineering, Laboratory of Cellular Biotechnology, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
49
|
In pursuit of a super producer-alternative paths to high producing recombinant mammalian cells. Curr Opin Biotechnol 2007; 18:557-64. [PMID: 18082393 DOI: 10.1016/j.copbio.2007.10.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 10/23/2007] [Accepted: 10/29/2007] [Indexed: 01/14/2023]
Abstract
Recombinant mammalian cells are used to produce numerous, high-value protein therapeutics. Generating hyper-producing cell lines is crucial for delivery of products to ailing patients. Better understanding of the complex trait of hyperproductivity can facilitate the creation of hyper-producing cell lines. Ruminating over the reported transcriptomic and proteomic studies, we attempt to assess whether high productivity response is a result of minute changes occurring globally or large alterations observed locally at the molecular level. We present here our philosophical perspective on the alternative routes to high productivity. We contend that given the advances in genome-scale technologies and data analysis approaches, insights gained from elucidating the gene-trait relationship underlying hyperproductivity will accelerate the development of hyperproductive processes.
Collapse
|