1
|
Kassem R, Cousin A, Clesse D, Poignavent V, Trolet A, Ritzenthaler C, Michon T, Chovin A, Demaille C. Nanobody-guided redox and enzymatic functionalization of icosahedral virus particles for enhanced bioelectrocatalysis. Bioelectrochemistry 2024; 155:108570. [PMID: 37769510 DOI: 10.1016/j.bioelechem.2023.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
Icosahedral, 30 nm diameter, grapevine fanleaf virus (GFLV) virus particles are adsorbed onto electrodes and used as nanoscaffolds for the assembly of an integrated glucose oxidizing system, comprising the enzyme pyrroloquinoline quinone-glucose dehydrogenase (PQQ-GDH) and ferrocenylated polyethylene glycol chains (Fc-PEG) as a redox co-substrate. Two different GFLV-specific nanobodies, either fused to the enzyme, or chemically conjugated to Fc-PEG, are used for the regio-selective immunodecoration of the viral particles. A comprehensive kinetic characterization of the enzymatic function of the particles, initially decorated with the enzyme alone shows that simple immobilization on the GFLV capsid has no effect on the kinetic scheme of the enzyme, nor on its catalytic activity. However, we find that co-immobilization of the enzyme and the Fc-PEG co-substrate on GFLV does induce enzymatic enhancement, by promoting cooperativity between the two subunits of the homodimeric enzyme, via "synchronization" of their redox state. A decrease in inhibition of the enzyme by its substrate (glucose) is also observed.
Collapse
Affiliation(s)
- Racha Kassem
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France
| | - Anne Cousin
- Institut de Biologie Moléculaire des Plantes, UPR2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Daniel Clesse
- Institut de Biologie Moléculaire des Plantes, UPR2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Vianney Poignavent
- Institut de Biologie Moléculaire des Plantes, UPR2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Adrien Trolet
- Institut de Biologie Moléculaire des Plantes, UPR2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Christophe Ritzenthaler
- Institut de Biologie Moléculaire des Plantes, UPR2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France.
| | - Thierry Michon
- Université de Bordeaux, Biologie du Fruit et Pathologie, INRA UMR 1332, F-33140 Villenave d'Ornon, France.
| | - Arnaud Chovin
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France.
| | - Christophe Demaille
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France.
| |
Collapse
|
2
|
Mateu MG, Valbuena A. Engineering and Bio/Nanotechnological Applications of Virus Particles. Subcell Biochem 2024; 105:823-878. [PMID: 39738964 DOI: 10.1007/978-3-031-65187-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Virus particles (VPs) are naturally evolved nanomachines. Their outstanding molecular structures, physical and chemical properties, and biological activities make them potentially useful for many biomedical or technological applications. Natural VPs such as virions or capsids must, however, be modified by genetic and/or chemical engineering in order to become adequate for many specific uses. We present first a general overview of the methods used for obtaining virions and viral capsids, and of genetic and chemical engineering approaches to suitably modify VPs. In the second part of the chapter, we present an updated overview on current or developing applications of engineered VPs as tools, materials, reagents, or nanodevices in biomedicine, biotechnology, or nanotechnology.
Collapse
Affiliation(s)
- Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Su Y, Liu B, Huang Z, Teng Z, Yang L, Zhu J, Huo S, Liu A. Virus-like particles nanoreactors: from catalysis towards bio-applications. J Mater Chem B 2023; 11:9084-9098. [PMID: 37697810 DOI: 10.1039/d3tb01112g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Virus-like particles (VLPs) are self-assembled supramolecular structures found in nature, often used for compartmentalization. Exploiting their inherent properties, including precise nanoscale structures, monodispersity, and high stability, these architectures have been widely used as nanocarriers to protect or enrich catalysts, facilitating catalytic reactions and avoiding interference from the bulk solutions. In this review, we summarize the current progress of virus-like particles (VLPs)-based nanoreactors. First, we briefly introduce the physicochemical properties of the most commonly used virus particles to understand their roles in catalytic reactions beyond the confined space. Next, we summarize the self-assembly of nanoreactors forming higher-order hierarchical structures, highlighting the emerging field of nanoreactors as artificial organelles and their potential biomedical applications. Finally, we discuss the current findings and future perspectives of VLPs-based nanoreactors.
Collapse
Affiliation(s)
- Yuqing Su
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Beibei Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhenkun Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zihao Teng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jie Zhu
- National-Local Joint Engineering Research and High-Quality Utilization, Changzhou University, Changzhou 213164, China
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Aijie Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Welden M, Poghossian A, Vahidpour F, Wendlandt T, Keusgen M, Christina Wege, Schöning MJ. Capacitive field-effect biosensor modified with a stacked bilayer of weak polyelectrolyte and plant virus particles as enzyme nanocarriers. Bioelectrochemistry 2023; 151:108397. [PMID: 36906982 DOI: 10.1016/j.bioelechem.2023.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/29/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
This work presents a new approach for the development of field-effect biosensors based on an electrolyte-insulator-semiconductor capacitor (EISCAP) modified with a stacked bilayer of weak polyelectrolyte and tobacco mosaic virus (TMV) particles as enzyme nanocarriers. With the aim to increase the surface density of virus particles and thus, to achieve a dense immobilization of enzymes, the negatively charged TMV particles were loaded onto the EISCAP surface modified with a positively charged poly(allylamine hydrochloride) (PAH) layer. The PAH/TMV bilayer was prepared on the Ta2O5-gate surface by means of layer-by-layer technique. The bare and differently modified EISCAP surfaces were physically characterized by fluorescence microscopy, zeta-potential measurements, atomic force microscopy and scanning electron microscopy. Transmission electron microscopy was used to scrutinize the PAH effect on TMV adsorption in a second system. Finally, a highly sensitive TMV-assisted EISCAP antibiotics biosensor was realized by immobilizing the enzyme penicillinase onto the TMV surface. This PAH/TMV bilayer-modified EISCAP biosensor was electrochemically characterized in solutions with different penicillin concentrations via capacitance-voltage and constant-capacitance methods. The biosensor possessed a mean penicillin sensitivity of 113 mV/dec in a concentration range from 0.1 mM to 5 mM.
Collapse
Affiliation(s)
- Melanie Welden
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany; Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35032 Marburg, Germany.
| | | | - Farnoosh Vahidpour
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany.
| | - Tim Wendlandt
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany.
| | - Michael Keusgen
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35032 Marburg, Germany.
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany.
| | - Michael J Schöning
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany; Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| |
Collapse
|
5
|
Geiger F, Wendlandt T, Berking T, Spatz JP, Wege C. Convenient site-selective protein coupling from bacterial raw lysates to coenzyme A-modified tobacco mosaic virus (TMV) by Bacillus subtilis Sfp phosphopantetheinyl transferase. Virology 2023; 578:61-70. [PMID: 36473278 DOI: 10.1016/j.virol.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
A facile enzyme-mediated strategy enables site-specific covalent one-step coupling of genetically tagged luciferase molecules to coenzyme A-modified tobacco mosaic virus (TMV-CoA) both in solution and on solid supports. Bacillus subtilis surfactin phosphopantetheinyl transferase Sfp produced in E. coli mediated the conjugation of firefly luciferase N-terminally extended by eleven amino acids forming a 'ybbR tag' as Sfp-selective substrate, which even worked in bacterial raw lysates. The enzymes displayed on the protein coat of the TMV nanocarriers exhibited high activity. As TMV has proven a beneficial high surface-area adapter template stabilizing enzymes in different biosensing layouts in recent years, the use of TMV-CoA for fishing ybbR-tagged proteins from complex mixtures might become an advantageous concept for the versatile equipment of miniaturized devices with biologically active proteins. It comes along with new opportunities for immobilizing multiple functionalities on TMV adapter coatings, as desired, e.g., in handheld systems for point-of-care detection.
Collapse
Affiliation(s)
- Fania Geiger
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120, Heidelberg, Germany; Heidelberg University, Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Tim Wendlandt
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Research Unit Molecular and Synthetic Plant Virology, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Tim Berking
- University of Stuttgart, Institute of Organic Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120, Heidelberg, Germany; Heidelberg University, Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Im Neuenheimer Feld 225, 69120, Heidelberg, Germany; Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Christina Wege
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Research Unit Molecular and Synthetic Plant Virology, Pfaffenwaldring 57, 70569, Stuttgart, Germany.
| |
Collapse
|
6
|
Zhan S, Fang H, Chen Q, Xiong S, Guo Y, Huang T, Li X, Leng Y, Huang X, Xiong Y. M13 bacteriophage as biometric component for orderly assembly of dynamic light scattering immunosensor. Biosens Bioelectron 2022; 217:114693. [PMID: 36108584 DOI: 10.1016/j.bios.2022.114693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The ordered assembly of nanostructure is an effective strategy used to manipulate the hydrodynamic diameter (DH) of nanoparticles. Herein, a versatile dynamic light scattering (DLS) immunosensing platform is presented to sensitively detect small molecules and biomacromolecules by using the M13 phage as the building module to order the assembly of gold nanoflowers and gold-coated magnetic nanoparticles, respectively. After the directional assembly of M13 phage, the DH of the probes was significantly increased due to its larger filamentous structure, thus improving the detection sensitivity of the DLS immunosensor. The designed M13 assembled DLS immunosensor with competitive and sandwich formats showed high sensitivities for ochratoxin A and alpha-fetoprotein in real corn and undiluted serum samples, with the detection limits of 1.37 and 57 pg/mL, respectively. These values are approximately 15.8 and 164.9 times lower than those of traditional phage-based enzyme-linked immunosorbent assays. Collectively, this work provides a promising strategy to manipulate the DH of nanoparticles by highly evolved biomaterials such as engineered M13 phages and opens upon a new direction for developing DLS immunosensors to detect various targets by the fusion expression of special peptide or nanobody on the pIII or pVIII protein of M13 phage.
Collapse
Affiliation(s)
- Shengnan Zhan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, 315800, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Hao Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Qi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Sicheng Xiong
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| | - Yuqian Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Tao Huang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, 315800, PR China
| | - Xiangmin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
7
|
Detection of Acetoin and Diacetyl by a Tobacco Mosaic Virus-Assisted Field-Effect Biosensor. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Acetoin and diacetyl have a major impact on the flavor of alcoholic beverages such as wine or beer. Therefore, their measurement is important during the fermentation process. Until now, gas chromatographic techniques have typically been applied; however, these require expensive laboratory equipment and trained staff, and do not allow for online monitoring. In this work, a capacitive electrolyte–insulator–semiconductor sensor modified with tobacco mosaic virus (TMV) particles as enzyme nanocarriers for the detection of acetoin and diacetyl is presented. The enzyme acetoin reductase from Alkalihalobacillus clausii DSM 8716T is immobilized via biotin–streptavidin affinity, binding to the surface of the TMV particles. The TMV-assisted biosensor is electrochemically characterized by means of leakage–current, capacitance–voltage, and constant capacitance measurements. In this paper, the novel biosensor is studied regarding its sensitivity and long-term stability in buffer solution. Moreover, the TMV-assisted capacitive field-effect sensor is applied for the detection of diacetyl for the first time. The measurement of acetoin and diacetyl with the same sensor setup is demonstrated. Finally, the successive detection of acetoin and diacetyl in buffer and in diluted beer is studied by tuning the sensitivity of the biosensor using the pH value of the measurement solution.
Collapse
|
8
|
Paiva TO, Schneider A, Bataille L, Chovin A, Anne A, Michon T, Wege C, Demaille C. Enzymatic activity of individual bioelectrocatalytic viral nanoparticles: dependence of catalysis on the viral scaffold and its length. NANOSCALE 2022; 14:875-889. [PMID: 34985473 DOI: 10.1039/d1nr07445h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The enzymatic activity of tobacco mosaic virus (TMV) nanorod particles decorated with an integrated electro-catalytic system, comprising the quinoprotein glucose-dehydrogenase (PQQ-GDH) enzyme and ferrocenylated PEG chains as redox mediators, is probed at the individual virion scale by atomic force microscopy-scanning electrochemical atomic force microscopy (AFM-SECM). A marked dependence of the catalytic activity on the particle length is observed. This finding can be explained by electron propagation along the viral backbone, resulting from electron exchange between ferrocene moieties, coupled with enzymatic catalysis. Thus, the use of a simple 1D diffusion/reaction model allows the determination of the kinetic parameters of the virus-supported enzyme. Comparative analysis of the catalytic behavior of the Fc-PEG/PQQ-GDH system assembled on two differing viral scaffolds, TMV (this work) and bacteriophage-fd (previous work), reveals two distinct kinetic effects of scaffolding: An enhancement of catalysis that does not depend on the virus type and a modulation of substrate inhibition that depends on the virus type. AFM-SECM detection of the enzymatic activity of a few tens of PQQ-GDH molecules, decorating a 40 nm-long viral domain, is also demonstrated, a record in terms of the lowest number of enzyme molecules interrogated by an electrochemical imaging technique.
Collapse
Affiliation(s)
- Telmo O Paiva
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS UMR 7591, F-75013 Paris, France.
| | - Angela Schneider
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Research Unit Molecular and Synthetic Plant Virology, 70569 Stuttgart, Germany.
| | - Laure Bataille
- Université de Bordeaux, Biologie du Fruit et Pathologie, INRA UMR 1332, F-33140 Villenave d'Ornon, France.
| | - Arnaud Chovin
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS UMR 7591, F-75013 Paris, France.
| | - Agnès Anne
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS UMR 7591, F-75013 Paris, France.
| | - Thierry Michon
- Université de Bordeaux, Biologie du Fruit et Pathologie, INRA UMR 1332, F-33140 Villenave d'Ornon, France.
| | - Christina Wege
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Research Unit Molecular and Synthetic Plant Virology, 70569 Stuttgart, Germany.
| | - Christophe Demaille
- Université de Paris, Laboratoire d'Electrochimie Moléculaire, CNRS UMR 7591, F-75013 Paris, France.
| |
Collapse
|
9
|
Welden M, Poghossian A, Vahidpour F, Wendlandt T, Keusgen M, Wege C, Schöning MJ. Towards Multi-Analyte Detection with Field-Effect Capacitors Modified with Tobacco Mosaic Virus Bioparticles as Enzyme Nanocarriers. BIOSENSORS 2022; 12:bios12010043. [PMID: 35049671 PMCID: PMC8773754 DOI: 10.3390/bios12010043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 05/07/2023]
Abstract
Utilizing an appropriate enzyme immobilization strategy is crucial for designing enzyme-based biosensors. Plant virus-like particles represent ideal nanoscaffolds for an extremely dense and precise immobilization of enzymes, due to their regular shape, high surface-to-volume ratio and high density of surface binding sites. In the present work, tobacco mosaic virus (TMV) particles were applied for the co-immobilization of penicillinase and urease onto the gate surface of a field-effect electrolyte-insulator-semiconductor capacitor (EISCAP) with a p-Si-SiO2-Ta2O5 layer structure for the sequential detection of penicillin and urea. The TMV-assisted bi-enzyme EISCAP biosensor exhibited a high urea and penicillin sensitivity of 54 and 85 mV/dec, respectively, in the concentration range of 0.1-3 mM. For comparison, the characteristics of single-enzyme EISCAP biosensors modified with TMV particles immobilized with either penicillinase or urease were also investigated. The surface morphology of the TMV-modified Ta2O5-gate was analyzed by scanning electron microscopy. Additionally, the bi-enzyme EISCAP was applied to mimic an XOR (Exclusive OR) enzyme logic gate.
Collapse
Affiliation(s)
- Melanie Welden
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany; (M.W.); (F.V.)
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35032 Marburg, Germany;
| | | | - Farnoosh Vahidpour
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany; (M.W.); (F.V.)
| | - Tim Wendlandt
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany; (T.W.); (C.W.)
| | - Michael Keusgen
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35032 Marburg, Germany;
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany; (T.W.); (C.W.)
| | - Michael J. Schöning
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, 52428 Jülich, Germany; (M.W.); (F.V.)
- Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Correspondence:
| |
Collapse
|
10
|
Berckman EA, Chen W. Self-assembling protein nanocages for modular enzyme assembly by orthogonal bioconjugation. Biotechnol Prog 2021; 37:e3190. [PMID: 34173352 DOI: 10.1002/btpr.3190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 11/06/2022]
Abstract
The wide variety of enzymatic pathways that can benefit from enzyme scaffolding is astronomical. While enzyme co-localization based on protein, DNA, and RNA scaffolds has been reported, we still lack scaffolds that offer well-defined and uniform three-dimensional structures for enzyme organization. Here we reported a new approach for protein co-localization using naturally occurring protein nanocages as a scaffold. Two different nanocages, the 25 nm E2 and the 34 nm heptatitis B virus, were used to demonstrate the successfully co-localization of the endoglucanase CelA and cellulose binding domain using the robust SpyTag/SpyCatcher bioconjugation chemistry. Because of the simplicity of the assembly, this strategy is useful not only for in vivo enzyme cascading but also the potential for in vivo applications as well.
Collapse
Affiliation(s)
- Emily A Berckman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA.,Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
11
|
Wang Q, Xiao Y, Zhu J, Ye L, Zhang L, Wang L, Wang X, Pang H, Li J, Yuan S, Niu L, Chen M, Yan Y, Xu L, Yan J. Design of a Genetically Programmed Biomimetic Lipase Nanoreactor. ACS APPLIED BIO MATERIALS 2021; 4:3518-3523. [DOI: 10.1021/acsabm.1c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qingxia Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yi Xiao
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jiarui Zhu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Luona Ye
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Longyu Zhang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Lei Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xuxia Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Huimin Pang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jing Li
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Sheng Yuan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Li Niu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Miao Chen
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yunjun Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Li Xu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Jinyong Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
12
|
Nkanga CI, Steinmetz NF. The pharmacology of plant virus nanoparticles. Virology 2021; 556:39-61. [PMID: 33545555 PMCID: PMC7974633 DOI: 10.1016/j.virol.2021.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
The application of nanoparticles for medical purposes has made enormous strides in providing new solutions to health problems. The observation that plant virus-based nanoparticles (VNPs) can be repurposed and engineered as smart bio-vehicles for targeted drug delivery and imaging has launched extensive research for improving the therapeutic and diagnostic management of various diseases. There is evidence that VNPs are promising high value nanocarriers with potential for translational development. This is mainly due to their unique features, encompassing structural uniformity, ease of manufacture and functionalization by means of expression, chemical biology and self-assembly. While the development pipeline is moving rapidly, with many reports focusing on engineering and manufacturing aspects to tailor the properties and efficacy of VNPs, fewer studies have focused on gaining insights into the nanotoxicity of this novel platform nanotechnology. Herein, we discuss the pharmacology of VNPs as a function of formulation and route of administration. VNPs are reviewed in the context of their application as therapeutic adjuvants or nanocarrier excipients to initiate, enhance, attenuate or impede the formulation's toxicity. The summary of the data however also underlines the need for meticulous VNP structure-nanotoxicity studies to improve our understanding of their in vivo fates and pharmacological profiles to pave the way for translation of VNP-based formulations into the clinical setting.
Collapse
Affiliation(s)
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, United States; Department of Bioengineering, Department of Radiology, Center for NanoImmunoEngineering, Moores Cancer Center, Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, CA, 92039, United States.
| |
Collapse
|
13
|
Borlan R, Focsan M, Maniu D, Astilean S. Interventional NIR Fluorescence Imaging of Cancer: Review on Next Generation of Dye-Loaded Protein-Based Nanoparticles for Real-Time Feedback During Cancer Surgery. Int J Nanomedicine 2021; 16:2147-2171. [PMID: 33746512 PMCID: PMC7966856 DOI: 10.2147/ijn.s295234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The use of fluorescence imaging technique for visualization, resection and treatment of cancerous tissue, attained plenty of interest once the promise of whole body and deep tissue near-infrared (NIR) imaging emerged. Why is NIR so desired? Contrast agents with optical properties in the NIR spectral range offer an upgrade for the diagnosis and treatment of cancer, by dint of the deep tissue penetration of light in the NIR region of the electromagnetic spectrum, also known as the optical window in biological tissue. Thus, the development of a new generation of NIR emitting and absorbing contrast agents able to overcome the shortcomings of the basic free dye administration is absolutely essential. Several examples of nanoparticles (NPs) have been successfully implemented as carriers for NIR dye molecules to the tumour site owing to their prolonged blood circulation time and enhanced accumulation within the tumour, as well as their increased fluorescence signal relative to free fluorophore emission and active targeting of cancerous cells. Due to their versatile structure, good biocompatibility and capability to efficiently load dyes and bioconjugate with diverse cancer-targeting ligands, the research area of developing protein-based NPs encapsulated or conjugated with NIR dyes is highly promising but still in its infancy. The current review aims to provide an up-to-date overview on the biocompatibility, specific targeting and versatility offered by protein-based NPs loaded with different classes of NIR dyes as next-generation fluorescent agents. Moreover, this study brings to light the newest and most relevant advances involving the state-of-the-art NIR fluorescent agents for the real-time interventional NIR fluorescence imaging of cancer in clinical trials.
Collapse
Affiliation(s)
- Raluca Borlan
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania.,Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Simion Astilean
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania.,Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| |
Collapse
|
14
|
Capacitive Field-Effect Biosensor Studying Adsorption of Tobacco Mosaic Virus Particles. MICROMACHINES 2021; 12:mi12010057. [PMID: 33418949 PMCID: PMC7825068 DOI: 10.3390/mi12010057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
Plant virus-like particles, and in particular, tobacco mosaic virus (TMV) particles, are increasingly being used in nano- and biotechnology as well as for biochemical sensing purposes as nanoscaffolds for the high-density immobilization of receptor molecules. The sensitive parameters of TMV-assisted biosensors depend, among others, on the density of adsorbed TMV particles on the sensor surface, which is affected by both the adsorption conditions and surface properties of the sensor. In this work, Ta2O5-gate field-effect capacitive sensors have been applied for the label-free electrical detection of TMV adsorption. The impact of the TMV concentration on both the sensor signal and the density of TMV particles adsorbed onto the Ta2O5-gate surface has been studied systematically by means of field-effect and scanning electron microscopy methods. In addition, the surface density of TMV particles loaded under different incubation times has been investigated. Finally, the field-effect sensor also demonstrates the label-free detection of penicillinase immobilization as model bioreceptor on TMV particles.
Collapse
|
15
|
Wi S, Hwang IS, Jo BH. Engineering a Plant Viral Coat Protein for In Vitro Hybrid Self-Assembly of CO2-Capturing Catalytic Nanofilaments. Biomacromolecules 2020; 21:3847-3856. [DOI: 10.1021/acs.biomac.0c00925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Suhan Wi
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea
| | - In Seong Hwang
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea
| | - Byung Hoon Jo
- Division of Life Science and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
16
|
Liu JL, Zabetakis D, Breger JC, Anderson GP, Goldman ER. Multi-Enzyme Assembly on T4 Phage Scaffold. Front Bioeng Biotechnol 2020; 8:571. [PMID: 32671028 PMCID: PMC7327620 DOI: 10.3389/fbioe.2020.00571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/12/2020] [Indexed: 01/11/2023] Open
Abstract
Over the past two decades, various scaffolds have been designed and synthesized to organize enzyme cascades spatially for enhanced enzyme activity based on the concepts of substrate channeling and enhanced stability. The most bio-compatible synthetic scaffolds known for enzyme immobilization are protein and DNA nanostructures. Herein, we examined the utility of the T4 phage capsid to serve as a naturally occurring protein scaffold for the immobilization of a three-enzyme cascade: Amylase, Maltase, and Glucokinase. Covalent constructs between each of the enzymes and the outer capsid protein Hoc were prepared through SpyTag-SpyCatcher pairing and assembled onto phage capsids in vitro with an estimated average of 90 copies per capsid. The capsid-immobilized Maltase has a fourfold higher initial rate relative to Maltase free in solution. Kinetic analysis also revealed that the immobilized three-enzyme cascade has an 18-fold higher converted number of NAD+ to NADH relative to the mixtures in solution. Our results demonstrate that the T4 phage capsid can act as a naturally occurring scaffold with substantial potential to enhance enzyme activity by spatially organizing enzymes on the capsid Hoc.
Collapse
Affiliation(s)
- Jinny L Liu
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States
| | - Daniel Zabetakis
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States
| | - Joyce C Breger
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States
| | - George P Anderson
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States
| | - Ellen R Goldman
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States
| |
Collapse
|
17
|
Paiva TO, Torbensen K, Patel AN, Anne A, Chovin A, Demaille C, Bataille L, Michon T. Probing the Enzymatic Activity of Individual Biocatalytic fd-Viral Particles by Electrochemical-Atomic Force Microscopy. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Telmo O. Paiva
- Université de Paris, Laboratoire d’Electrochimie Moléculaire, CNRS UMR 7591, F-75006 Paris, France
| | - Kristian Torbensen
- Université de Paris, Laboratoire d’Electrochimie Moléculaire, CNRS UMR 7591, F-75006 Paris, France
| | - Anisha N. Patel
- Université de Paris, Laboratoire d’Electrochimie Moléculaire, CNRS UMR 7591, F-75006 Paris, France
| | - Agnès Anne
- Université de Paris, Laboratoire d’Electrochimie Moléculaire, CNRS UMR 7591, F-75006 Paris, France
| | - Arnaud Chovin
- Université de Paris, Laboratoire d’Electrochimie Moléculaire, CNRS UMR 7591, F-75006 Paris, France
| | - Christophe Demaille
- Université de Paris, Laboratoire d’Electrochimie Moléculaire, CNRS UMR 7591, F-75006 Paris, France
| | - Laure Bataille
- Université de Bordeaux, Biologie du Fruit et Pathologie, INRA UMR 1332, F-33140 Villenave d’Ornon, France
| | - Thierry Michon
- Université de Bordeaux, Biologie du Fruit et Pathologie, INRA UMR 1332, F-33140 Villenave d’Ornon, France
| |
Collapse
|
18
|
Poghossian A, Jablonski M, Molinnus D, Wege C, Schöning MJ. Field-Effect Sensors for Virus Detection: From Ebola to SARS-CoV-2 and Plant Viral Enhancers. FRONTIERS IN PLANT SCIENCE 2020; 11:598103. [PMID: 33329662 PMCID: PMC7732584 DOI: 10.3389/fpls.2020.598103] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/26/2020] [Indexed: 05/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a novel human infectious disease provoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, no specific vaccines or drugs against COVID-19 are available. Therefore, early diagnosis and treatment are essential in order to slow the virus spread and to contain the disease outbreak. Hence, new diagnostic tests and devices for virus detection in clinical samples that are faster, more accurate and reliable, easier and cost-efficient than existing ones are needed. Due to the small sizes, fast response time, label-free operation without the need for expensive and time-consuming labeling steps, the possibility of real-time and multiplexed measurements, robustness and portability (point-of-care and on-site testing), biosensors based on semiconductor field-effect devices (FEDs) are one of the most attractive platforms for an electrical detection of charged biomolecules and bioparticles by their intrinsic charge. In this review, recent advances and key developments in the field of label-free detection of viruses (including plant viruses) with various types of FEDs are presented. In recent years, however, certain plant viruses have also attracted additional interest for biosensor layouts: Their repetitive protein subunits arranged at nanometric spacing can be employed for coupling functional molecules. If used as adapters on sensor chip surfaces, they allow an efficient immobilization of analyte-specific recognition and detector elements such as antibodies and enzymes at highest surface densities. The display on plant viral bionanoparticles may also lead to long-time stabilization of sensor molecules upon repeated uses and has the potential to increase sensor performance substantially, compared to conventional layouts. This has been demonstrated in different proof-of-concept biosensor devices. Therefore, richly available plant viral particles, non-pathogenic for animals or humans, might gain novel importance if applied in receptor layers of FEDs. These perspectives are explained and discussed with regard to future detection strategies for COVID-19 and related viral diseases.
Collapse
Affiliation(s)
| | - Melanie Jablonski
- Institute of Nano- and Biotechnologies, FH Aachen University of Applied Sciences, Jülich, Germany
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Denise Molinnus
- Institute of Nano- and Biotechnologies, FH Aachen University of Applied Sciences, Jülich, Germany
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
- *Correspondence: Christina Wege,
| | - Michael J. Schöning
- Institute of Nano- and Biotechnologies, FH Aachen University of Applied Sciences, Jülich, Germany
- Institute of Complex Systems (ICS-8), Research Centre Jülich GmbH, Jülich, Germany
- Michael J. Schöning,
| |
Collapse
|
19
|
DNA Packaging and Genomics of the Salmonella 9NA-Like Phages. J Virol 2019; 93:JVI.00848-19. [PMID: 31462565 DOI: 10.1128/jvi.00848-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
We present the genome sequences of Salmonella enterica tailed phages Sasha, Sergei, and Solent. These phages, along with Salmonella phages 9NA, FSL_SP-062, and FSL_SP-069 and the more distantly related Proteus phage PmiS-Isfahan, have similarly sized genomes of between 52 and 57 kbp in length that are largely syntenic. Their genomes also show substantial genome mosaicism relative to one another, which is common within tailed phage clusters. Their gene content ranges from 80 to 99 predicted genes, of which 40 are common to all seven and form the core genome, which includes all identifiable virion assembly and DNA replication genes. The total number of gene types (pangenome) in the seven phages is 176, and 59 of these are unique to individual phages. Their core genomes are much more closely related to one another than to the genome of any other known phage, and they comprise a well-defined cluster within the family Siphoviridae To begin to characterize this group of phages in more experimental detail, we identified the genes that encode the major virion proteins and examined the DNA packaging of the prototypic member, phage 9NA. We show that it uses a pac site-directed headful packaging mechanism that results in virion chromosomes that are circularly permuted and about 13% terminally redundant. We also show that its packaging series initiates with double-stranded DNA cleavages that are scattered across a 170-bp region and that its headful measuring device has a precision of ±1.8%.IMPORTANCE The 9NA-like phages are clearly highly related to each other but are not closely related to any other known phage type. This work describes the genomes of three new 9NA-like phages and the results of experimental analysis of the proteome of the 9NA virion and DNA packaging into the 9NA phage head. There is increasing interest in the biology of phages because of their potential for use as antibacterial agents and for their ecological roles in bacterial communities. 9NA-like phages that infect two bacterial genera have been identified to date, and related phages infecting additional Gram-negative bacterial hosts are likely to be found in the future. This work provides a foundation for the study of these phages, which will facilitate their study and potential use.
Collapse
|
20
|
Abstract
Enzyme-based biocatalysis exhibits multiple advantages over inorganic catalysts, including the biocompatibility and the unchallenged specificity of enzymes towards their substrate. The recovery and repeated use of enzymes is essential for any realistic application in biotechnology, but is not easily achieved with current strategies. For this purpose, enzymes are often immobilized on inorganic scaffolds, which could entail a reduction of the enzymes’ activity. Here, we show that immobilization to a nano-scaled biological scaffold, a nanonetwork of end-to-end cross-linked M13 bacteriophages, ensures high enzymatic activity and at the same time allows for the simple recovery of the enzymes. The bacteriophages have been genetically engineered to express AviTags at their ends, which permit biotinylation and their specific end-to-end self-assembly while allowing space on the major coat protein for enzyme coupling. We demonstrate that the phages form nanonetwork structures and that these so-called nanonets remain highly active even after re-using the nanonets multiple times in a flow-through reactor.
Collapse
|
21
|
Alarcón-Correa M, Günther JP, Troll J, Kadiri VM, Bill J, Fischer P, Rothenstein D. Self-Assembled Phage-Based Colloids for High Localized Enzymatic Activity. ACS NANO 2019; 13:5810-5815. [PMID: 30920792 DOI: 10.1021/acsnano.9b01408] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Catalytically active colloids are model systems for chemical motors and active matter. It is desirable to replace the inorganic catalysts and the toxic fuels that are often used with biocompatible enzymatic reactions. However, compared to inorganic catalysts, enzyme-coated colloids tend to exhibit less activity. Here, we show that the self-assembly of genetically engineered M13 bacteriophages that bind enzymes to magnetic beads ensures high and localized enzymatic activity. These phage-decorated colloids provide a proteinaceous environment for directed enzyme immobilization. The magnetic properties of the colloidal carrier particle permit repeated enzyme recovery from a reaction solution, while the enzymatic activity is retained. Moreover, localizing the phage-based construct with a magnetic field in a microcontainer allows the enzyme-phage-colloids to function as an enzymatic micropump, where the enzymatic reaction generates a fluid flow. This system shows the fastest fluid flow reported to date by a biocompatible enzymatic micropump. In addition, it is functional in complex media including blood, where the enzyme-driven micropump can be powered at the physiological blood-urea concentrations.
Collapse
Affiliation(s)
- Mariana Alarcón-Correa
- Max Planck Institute for Intelligent Systems , Heisenbergstrasse 3 , 70569 Stuttgart , Germany
- Institute of Physical Chemistry , University of Stuttgart , Pfaffenwaldring 55 , 70569 Stuttgart , Germany
| | - Jan-Philipp Günther
- Max Planck Institute for Intelligent Systems , Heisenbergstrasse 3 , 70569 Stuttgart , Germany
- Institute of Physical Chemistry , University of Stuttgart , Pfaffenwaldring 55 , 70569 Stuttgart , Germany
| | - Jonas Troll
- Max Planck Institute for Intelligent Systems , Heisenbergstrasse 3 , 70569 Stuttgart , Germany
- Institute of Physical Chemistry , University of Stuttgart , Pfaffenwaldring 55 , 70569 Stuttgart , Germany
| | - Vincent Mauricio Kadiri
- Max Planck Institute for Intelligent Systems , Heisenbergstrasse 3 , 70569 Stuttgart , Germany
- Institute of Physical Chemistry , University of Stuttgart , Pfaffenwaldring 55 , 70569 Stuttgart , Germany
| | - Joachim Bill
- Institute for Materials Science , University of Stuttgart , Heisenbergstrasse 3 , 70569 Stuttgart , Germany
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems , Heisenbergstrasse 3 , 70569 Stuttgart , Germany
- Institute of Physical Chemistry , University of Stuttgart , Pfaffenwaldring 55 , 70569 Stuttgart , Germany
| | - Dirk Rothenstein
- Institute for Materials Science , University of Stuttgart , Heisenbergstrasse 3 , 70569 Stuttgart , Germany
| |
Collapse
|
22
|
Torbensen K, Patel AN, Anne A, Chovin A, Demaille C, Bataille L, Michon T, Grelet E. Immuno-Based Molecular Scaffolding of Glucose Dehydrogenase and Ferrocene Mediator on fd Viral Particles Yields Enhanced Bioelectrocatalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kristian Torbensen
- Laboratoire d’Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université − UMR 7591 CNRS, Bâtiment Lavoisier, 15 Rue Jean-Antoine de Baïf, 75205 CEDEX 13 Paris, France
| | - Anisha N. Patel
- Laboratoire d’Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université − UMR 7591 CNRS, Bâtiment Lavoisier, 15 Rue Jean-Antoine de Baïf, 75205 CEDEX 13 Paris, France
| | - Agnès Anne
- Laboratoire d’Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université − UMR 7591 CNRS, Bâtiment Lavoisier, 15 Rue Jean-Antoine de Baïf, 75205 CEDEX 13 Paris, France
| | - Arnaud Chovin
- Laboratoire d’Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université − UMR 7591 CNRS, Bâtiment Lavoisier, 15 Rue Jean-Antoine de Baïf, 75205 CEDEX 13 Paris, France
| | - Christophe Demaille
- Laboratoire d’Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université − UMR 7591 CNRS, Bâtiment Lavoisier, 15 Rue Jean-Antoine de Baïf, 75205 CEDEX 13 Paris, France
| | - Laure Bataille
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, 71, Avenue Edouard Bourlaux, CS 20032-33882 CEDEX Villenave d’Ornon, France
| | - Thierry Michon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Université de Bordeaux, 71, Avenue Edouard Bourlaux, CS 20032-33882 CEDEX Villenave d’Ornon, France
| | - Eric Grelet
- Centre de Recherche Paul-Pascal, UMR 5031 CNRS, Université de Bordeaux, 115 Avenue Schweitzer, 33600 Pessac, France
| |
Collapse
|
23
|
Plant virus-based materials for biomedical applications: Trends and prospects. Adv Drug Deliv Rev 2019; 145:96-118. [PMID: 30176280 DOI: 10.1016/j.addr.2018.08.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Nanomaterials composed of plant viral components are finding their way into medical technology and health care, as they offer singular properties. Precisely shaped, tailored virus nanoparticles (VNPs) with multivalent protein surfaces are efficiently loaded with functional compounds such as contrast agents and drugs, and serve as carrier templates and targeting vehicles displaying e.g. peptides and synthetic molecules. Multiple modifications enable uses including vaccination, biosensing, tissue engineering, intravital delivery and theranostics. Novel concepts exploit self-organization capacities of viral building blocks into hierarchical 2D and 3D structures, and their conversion into biocompatible, biodegradable units. High yields of VNPs and proteins can be harvested from plants after a few days so that various products have reached or are close to commercialization. The article delineates potentials and limitations of biomedical plant VNP uses, integrating perspectives of chemistry, biomaterials sciences, molecular plant virology and process engineering.
Collapse
|
24
|
Zhao L, Kopylov M, Potter CS, Carragher B, Finn MG. Engineering the PP7 Virus Capsid as a Peptide Display Platform. ACS NANO 2019; 13:4443-4454. [PMID: 30912918 PMCID: PMC6991139 DOI: 10.1021/acsnano.8b09683] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
As self-assembling polyvalent nanoscale structures that can tolerate substantial genetic and chemical modification, virus-like particles are useful in a variety of fields. Here we describe the genetic modification and structural characterization of the Leviviridae PP7 capsid protein as a platform for the presentation of functional polypeptides. This particle was shown to tolerate the display of sequences from 1 kDa (a cell penetrating peptide) to 14 kDa (the Fc-binding double Z-domain) on its exterior surface as C-terminal genetic fusions to the coat protein. In addition, a dimeric construct allowed the presentation of exogenous loops between capsid monomers and the simultaneous presentation of two different peptides at different positions on the icosahedral structure. The PP7 particle is thereby significantly more tolerant of these types of polypeptide additions than Qβ and MS2, the other Leviviridae-derived VLPs in common use.
Collapse
Affiliation(s)
- Liangjun Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Mykhailo Kopylov
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, United States
| | - Clinton S. Potter
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, United States
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Avenue, New York, New York 10027, United States
| | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
- School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
25
|
Rao G, Fu Y, Li N, Yin J, Zhang J, Wang M, Hu Z, Cao S. Controllable Assembly of Flexible Protein Nanotubes for Loading Multifunctional Modules. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25135-25145. [PMID: 29989404 DOI: 10.1021/acsami.8b07611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Viruses with filamentous morphologies, such as tobacco mosaic virus (TMV) and M13 bacteriophage, have long been studied as multivalent nanoscaffolds for loading functional motifs. Structural assembly of the capsid proteins (CPs) of filamentous viruses often requires the presence of DNA or RNA molecules, which has limited their applications. Here, we describe a strategy for controllable assembly of flexible bio-nanotubes consisting of Escherichia coli expressed CP of baculovirus Helicoverpa armigera nucleopolyhedrovirus (HearNPV) in vitro. These protein-only nanotubes were studied as a new structural platform for high-density presentation of multiple active molecules on the exterior surface by direct fusion of the protein of interest to the N-terminus of HearNPV CP (HaCP). Structural characterization using cryoelectron microscopy demonstrated that the HaCP could assemble into two closely related but structurally distinct tube types, suggesting the tunable HaCP interaction network is the major contributor to the flexibility of HaCP nanotubes. Our flexible nanotubes could tolerate larger molecular modifications compared with TMV-based templates and could be used as promising candidates for versatile molecular loading applications.
Collapse
Affiliation(s)
- Guibo Rao
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | | | - Na Li
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jiayi Yin
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jie Zhang
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | | | | | | |
Collapse
|
26
|
Poghossian A, Jablonski M, Koch C, Bronder TS, Rolka D, Wege C, Schöning MJ. Field-effect biosensor using virus particles as scaffolds for enzyme immobilization. Biosens Bioelectron 2018; 110:168-174. [DOI: 10.1016/j.bios.2018.03.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/01/2018] [Accepted: 03/16/2018] [Indexed: 11/27/2022]
|
27
|
Vieweger SE, Tsvetkova IB, Dragnea BG. In Vitro Assembly of Virus-Derived Designer Shells Around Inorganic Nanoparticles. Methods Mol Biol 2018; 1776:279-294. [PMID: 29869249 DOI: 10.1007/978-1-4939-7808-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoparticle-templated assembly of virus shells provides a promising approach to the production of hybrid nanomaterials and a potential avenue toward new mechanistic insights in virus phenomena originating in many-body effects, which cannot be understood from examining the properties of molecular subunits alone. This approach complements the successful molecular biology perspective traditionally used in virology, and promises a deeper understanding of viruses and virus-like particles through an expanded methodological toolbox. Here we present protocols for forming a virus coat protein shell around functionalized inorganic nanoparticles.
Collapse
|
28
|
Nagamune T. Biomolecular engineering for nanobio/bionanotechnology. NANO CONVERGENCE 2017; 4:9. [PMID: 28491487 PMCID: PMC5401866 DOI: 10.1186/s40580-017-0103-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/29/2017] [Indexed: 05/02/2023]
Abstract
Biomolecular engineering can be used to purposefully manipulate biomolecules, such as peptides, proteins, nucleic acids and lipids, within the framework of the relations among their structures, functions and properties, as well as their applicability to such areas as developing novel biomaterials, biosensing, bioimaging, and clinical diagnostics and therapeutics. Nanotechnology can also be used to design and tune the sizes, shapes, properties and functionality of nanomaterials. As such, there are considerable overlaps between nanotechnology and biomolecular engineering, in that both are concerned with the structure and behavior of materials on the nanometer scale or smaller. Therefore, in combination with nanotechnology, biomolecular engineering is expected to open up new fields of nanobio/bionanotechnology and to contribute to the development of novel nanobiomaterials, nanobiodevices and nanobiosystems. This review highlights recent studies using engineered biological molecules (e.g., oligonucleotides, peptides, proteins, enzymes, polysaccharides, lipids, biological cofactors and ligands) combined with functional nanomaterials in nanobio/bionanotechnology applications, including therapeutics, diagnostics, biosensing, bioanalysis and biocatalysts. Furthermore, this review focuses on five areas of recent advances in biomolecular engineering: (a) nucleic acid engineering, (b) gene engineering, (c) protein engineering, (d) chemical and enzymatic conjugation technologies, and (e) linker engineering. Precisely engineered nanobiomaterials, nanobiodevices and nanobiosystems are anticipated to emerge as next-generation platforms for bioelectronics, biosensors, biocatalysts, molecular imaging modalities, biological actuators, and biomedical applications.
Collapse
Affiliation(s)
- Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Patel AN, Anne A, Chovin A, Demaille C, Grelet E, Michon T, Taofifenua C. Scaffolding of Enzymes on Virus Nanoarrays: Effects of Confinement and Virus Organization on Biocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603163. [PMID: 28098963 DOI: 10.1002/smll.201603163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Organizing active enzyme molecules on nanometer-sized scaffolds is a promising strategy for designing highly efficient supported catalytic systems for biosynthetic and sensing applications. This is achieved by designing model nanoscale enzymatic platforms followed by thorough analysis of the catalytic activity. Herein, the virus fd bacteriophage is considered as an enzyme nanocarrier to study the scaffolding effects on enzymatic activity. Nanoarrays of randomly oriented, or directionally patterned, fd bacteriophage virus are functionalized with the enzyme glucose oxidase (GOx), using an immunological assembly strategy, directly on a gold electrode support. The scaffolding process on the virus capsid is monitored in situ by AFM (atomic force microscopy) imaging, while cyclic voltammetry is used to interrogate the catalytic activity of the resulting functional GOx-fd nanoarrays. Kinetic analysis reveals the ability to modulate the activity of GOx via nanocarrier patterning. The results evidence, for the first time, enhancement of the enzymatic activity due to scaffolding on a filamentous viral particle.
Collapse
Affiliation(s)
- Anisha N Patel
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205, Paris Cedex 13, France
| | - Agnès Anne
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205, Paris Cedex 13, France
| | - Arnaud Chovin
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205, Paris Cedex 13, France
| | - Christophe Demaille
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205, Paris Cedex 13, France
| | - Eric Grelet
- Centre de Recherche Paul-Pascal, UPR 8641 CNRS, Université de Bordeaux, 115 avenue Schweitzer, 33600, Pessac, France
| | - Thierry Michon
- Biologie du Fruit et Pathologie, UMR 1332 INRA, Université de Bordeaux, 71 avenue Edouard Bourlaux, CS20032, 33882, Villenave d'Ornon Cedex, France
| | - Cécilia Taofifenua
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205, Paris Cedex 13, France
| |
Collapse
|
30
|
Schneider A, Eber FJ, Wenz NL, Altintoprak K, Jeske H, Eiben S, Wege C. Dynamic DNA-controlled "stop-and-go" assembly of well-defined protein domains on RNA-scaffolded TMV-like nanotubes. NANOSCALE 2016; 8:19853-19866. [PMID: 27878174 DOI: 10.1039/c6nr03897b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A DNA-based approach allows external control over the self-assembly process of tobacco mosaic virus (TMV)-like ribonucleoprotein nanotubes: their growth from viral coat protein (CP) subunits on five distinct RNA scaffolds containing the TMV origin of assembly (OAs) could be temporarily blocked by a stopper DNA oligomer hybridized downstream (3') of the OAs. At two upstream (5') sites tested, simple hybridization was not sufficient for stable stalling, which correlates with previous findings on a non-symmetric assembly of TMV. The growth of DNA-arrested particles could be restarted efficiently by displacement of the stopper via its toehold by using a release DNA oligomer, even after storage for twelve days. This novel strategy for growing proteinaceous tubes under tight kinetic and spatial control combines RNA guidance and its site-specific but reversible interruption by DNA blocking elements. As three of the RNA scaffolds contained long heterologous non-TMV sequence portions that included the stopping sites, this method is applicable to all RNAs amenable to TMV CP encapsidation, albeit with variable efficiency most likely depending on the scaffolds' secondary structures. The use of two distinct, selectively addressable CP variants during the serial assembly stages finally enabled an externally configured fabrication of nanotubes with highly defined subdomains. The "stop-and-go" strategy thus might pave the way towards production routines of TMV-like particles with variable aspect ratios from a single RNA scaffold, and of nanotubes with two or even more adjacent protein domains of tightly pre-defined lengths.
Collapse
Affiliation(s)
- Angela Schneider
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Fabian J Eber
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Nana L Wenz
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Klara Altintoprak
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Holger Jeske
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Sabine Eiben
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| |
Collapse
|
31
|
Belval L, Hemmer C, Sauter C, Reinbold C, Fauny J, Berthold F, Ackerer L, Schmitt‐Keichinger C, Lemaire O, Demangeat G, Ritzenthaler C. Display of whole proteins on inner and outer surfaces of grapevine fanleaf virus-like particles. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2288-2299. [PMID: 27178344 PMCID: PMC5103221 DOI: 10.1111/pbi.12582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
Virus-like particles (VLPs) derived from nonenveloped viruses result from the self-assembly of capsid proteins (CPs). They generally show similar structural features to viral particles but are noninfectious and their inner cavity and outer surface can potentially be adapted to serve as nanocarriers of great biotechnological interest. While a VLP outer surface is generally amenable to chemical or genetic modifications, encaging a cargo within particles can be more complex and is often limited to small molecules or peptides. Examples where both inner cavity and outer surface have been used to simultaneously encapsulate and expose entire proteins remain scarce. Here, we describe the production of spherical VLPs exposing fluorescent proteins at either their outer surface or inner cavity as a result of the self-assembly of a single genetically modified viral structural protein, the CP of grapevine fanleaf virus (GFLV). We found that the N- and C-terminal ends of the GFLV CP allow the genetic fusion of proteins as large as 27 kDa and the plant-based production of nucleic acid-free VLPs. Remarkably, expression of N- or C-terminal CP fusions resulted in the production of VLPs with recombinant proteins exposed to either the inner cavity or the outer surface, respectively, while coexpression of both fusion proteins led to the formation hybrid VLP, although rather inefficiently. Such properties are rather unique for a single viral structural protein and open new potential avenues for the design of safe and versatile nanocarriers, particularly for the targeted delivery of bioactive molecules.
Collapse
Affiliation(s)
- Lorène Belval
- SVQVINRAUniversité de StrasbourgColmarFrance
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| | - Caroline Hemmer
- SVQVINRAUniversité de StrasbourgColmarFrance
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| | - Claude Sauter
- Institut de Biologie Moléculaire et Cellulaire du CNRSUPR 9002Architecture et Réactivité de l'ARNUniversité de StrasbourgStrasbourgFrance
| | | | - Jean‐Daniel Fauny
- Institut de Biologie Moléculaire et Cellulaire du CNRSUPR 9002Architecture et Réactivité de l'ARNUniversité de StrasbourgStrasbourgFrance
| | - François Berthold
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| | - Léa Ackerer
- SVQVINRAUniversité de StrasbourgColmarFrance
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
- Institut Français de la Vigne et du VinDomaine de l'EspiguetteLe Grau‐du‐RoiFrance
| | - Corinne Schmitt‐Keichinger
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| | | | | | - Christophe Ritzenthaler
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| |
Collapse
|
32
|
Protein Nanoparticles as Multifunctional Biocatalysts and Health Assessment Sensors. Curr Opin Chem Eng 2016; 13:109-118. [PMID: 30370212 DOI: 10.1016/j.coche.2016.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of protein nanoparticles for biosensing, biocatalysis and drug delivery has exploded in the last few years. The ability of protein nanoparticles to self-assemble into predictable, monodisperse structures is of tremendous value. The unique properties of protein nanoparticles such as high stability, and biocompatibility, along with the potential to modify them led to development of novel bioengineering tools. Together, the ability to control the interior loading and external functionalities of protein nanoparticles makes them intriguing nanodevices. This review will focus on a number of recent examples of protein nanoparticles that have been engineered towards imparting the particles with biocatalytic or biosensing functionality.
Collapse
|
33
|
van Rijn P, Schirhagl R. Viruses, Artificial Viruses and Virus-Based Structures for Biomedical Applications. Adv Healthc Mater 2016; 5:1386-400. [PMID: 27119823 DOI: 10.1002/adhm.201501000] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/14/2016] [Indexed: 12/17/2022]
Abstract
Nanobiomaterials such as virus particles and artificial virus particles offer tremendous opportunities to develop new biomedical applications such as drug- or gene-delivery, imaging and sensing but also improve understanding of biological mechanisms. Recent advances within the field of virus-based systems give insights in how to mimic viral structures and virus assembly processes as well as understanding biodistribution, cell/tissue targeting, controlled and triggered disassembly or release and circulation times. All these factors are of high importance for virus-based functional systems. This review illustrates advances in mimicking and enhancing or controlling these aspects to a high degree toward delivery and imaging applications.
Collapse
Affiliation(s)
- Patrick van Rijn
- University of Groningen University Medical Center Groningen Biomedical Engineering‐FB40 W.J. Kolff Institute for Biomedical Engineering and Materials Science‐FB41 Antonius Deusinglaan 1 9713 AW Groningen Netherlands
- Zernike Institute for Advanced Materials University of Groningen Nijenborgh 4 9747 AG Groningen Netherlands
| | - Romana Schirhagl
- University of Groningen University Medical Center Groningen Biomedical Engineering‐FB40 W.J. Kolff Institute for Biomedical Engineering and Materials Science‐FB41 Antonius Deusinglaan 1 9713 AW Groningen Netherlands
| |
Collapse
|
34
|
Koch C, Eber FJ, Azucena C, Förste A, Walheim S, Schimmel T, Bittner AM, Jeske H, Gliemann H, Eiben S, Geiger FC, Wege C. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:613-29. [PMID: 27335751 PMCID: PMC4901926 DOI: 10.3762/bjnano.7.54] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/03/2016] [Indexed: 05/22/2023]
Abstract
The rod-shaped nanoparticles of the widespread plant pathogen tobacco mosaic virus (TMV) have been a matter of intense debates and cutting-edge research for more than a hundred years. During the late 19th century, their behavior in filtration tests applied to the agent causing the 'plant mosaic disease' eventually led to the discrimination of viruses from bacteria. Thereafter, they promoted the development of biophysical cornerstone techniques such as electron microscopy and ultracentrifugation. Since the 1950s, the robust, helically arranged nucleoprotein complexes consisting of a single RNA and more than 2100 identical coat protein subunits have enabled molecular studies which have pioneered the understanding of viral replication and self-assembly, and elucidated major aspects of virus-host interplay, which can lead to agronomically relevant diseases. However, during the last decades, TMV has acquired a new reputation as a well-defined high-yield nanotemplate with multivalent protein surfaces, allowing for an ordered high-density presentation of multiple active molecules or synthetic compounds. Amino acid side chains exposed on the viral coat may be tailored genetically or biochemically to meet the demands for selective conjugation reactions, or to directly engineer novel functionality on TMV-derived nanosticks. The natural TMV size (length: 300 nm) in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks are also amenable to external control of in vitro assembly and re-organization into technically expedient new shapes or arrays, which bears a unique potential for the development of 'smart' functional 3D structures. Among those, materials designed for enzyme-based biodetection layouts, which are routinely applied, e.g., for monitoring blood sugar concentrations, might profit particularly from the presence of TMV rods: Their surfaces were recently shown to stabilize enzymatic activities upon repeated consecutive uses and over several weeks. This review gives the reader a ride through strikingly diverse achievements obtained with TMV-based particles, compares them to the progress with related viruses, and focuses on latest results revealing special advantages for enzyme-based biosensing formats, which might be of high interest for diagnostics employing 'systems-on-a-chip'.
Collapse
Affiliation(s)
- Claudia Koch
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Fabian J Eber
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Carlos Azucena
- Institute of Functional Interfaces (IFG), Chemistry of Oxidic and Organic Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Karlsruhe, D-76344, Germany
| | - Alexander Förste
- Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany
| | - Stefan Walheim
- Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany
| | - Thomas Schimmel
- Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany
| | - Alexander M Bittner
- CIC Nanogune, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastián, Spain, and Ikerbasque, Maria Díaz de Haro 3, E-48013 Bilbao, Spain
| | - Holger Jeske
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Hartmut Gliemann
- Institute of Functional Interfaces (IFG), Chemistry of Oxidic and Organic Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Karlsruhe, D-76344, Germany
| | - Sabine Eiben
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Fania C Geiger
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany
| |
Collapse
|
35
|
Cuenca S, Mansilla C, Aguado M, Yuste-Calvo C, Sánchez F, Sánchez-Montero JM, Ponz F. Nanonets Derived from Turnip Mosaic Virus as Scaffolds for Increased Enzymatic Activity of Immobilized Candida antarctica Lipase B. FRONTIERS IN PLANT SCIENCE 2016; 7:464. [PMID: 27148295 PMCID: PMC4826883 DOI: 10.3389/fpls.2016.00464] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/24/2016] [Indexed: 05/22/2023]
Abstract
Elongated flexuous plant viral nanoparticles (VNPs) represent an interesting platform for developing different applications in nanobiotechnology. In the case of potyviruses, the virion external surface is made up of helically arrayed domains of the viral structural coat protein (CP), repeated over 2000 times, in which the N- and C-terminal domains of each CP are projected toward the exterior of the external virion surface. These characteristics provide a chemical environment rich in functional groups susceptible to chemical conjugations. We have conjugated Candida antarctica lipase B (CALB) onto amino groups of the external surface of the potyvirus turnip mosaic virus (TuMV) using glutaraldehyde as a conjugating agent. Using this approach, TuMV virions were transformed into scaffolds for CALB nanoimmobilization. Analysis of the resulting structures revealed the formation of TuMV nanonets onto which large CALB aggregates were deposited. The functional enzymatic characterization of the CALB-bearing TuMV nanonets showed that CALB continued to be active in the nanoimmobilized form, even gaining an increased relative specific activity, as compared to the non-immobilized form. These novel virus-based nanostructures may provide a useful new approach to enzyme nanoimmobilization susceptible to be industrially exploited.
Collapse
Affiliation(s)
- Sol Cuenca
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Carmen Mansilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Marta Aguado
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Carmen Yuste-Calvo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Flora Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Jose M. Sánchez-Montero
- Grupo de Biotransformaciones, Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| |
Collapse
|
36
|
Mateu MG. Assembly, Engineering and Applications of Virus-Based Protein Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:83-120. [PMID: 27677510 DOI: 10.1007/978-3-319-39196-0_5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Viruses and their protein capsids can be regarded as biologically evolved nanomachines able to perform multiple, complex biological functions through coordinated mechano-chemical actions during the infectious cycle. The advent of nanoscience and nanotechnology has opened up, in the last 10 years or so, a vast number of novel possibilities to exploit engineered viral capsids as protein-based nanoparticles for multiple biomedical, biotechnological or nanotechnological applications. This chapter attempts to provide a broad, updated overview on the self-assembly and engineering of virus capsids, and on applications of virus-based nanoparticles. Different sections provide outlines on: (i) the structure, functions and properties of virus capsids; (ii) general approaches for obtaining assembled virus particles; (iii) basic principles and events related to virus capsid self-assembly; (iv) genetic and chemical strategies for engineering virus particles; (v) some applications of engineered virus particles being developed; and (vi) some examples on the engineering of virus particles to modify their physical properties, in order to improve their suitability for different uses.
Collapse
Affiliation(s)
- Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain. .,Department of Molecular Biology, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
37
|
Besong-Ndika J, Wahlsten M, Cardinale D, Pille J, Walter J, Michon T, Mäkinen K. Toward the Reconstitution of a Two-Enzyme Cascade for Resveratrol Synthesis on Potyvirus Particles. FRONTIERS IN PLANT SCIENCE 2016; 7:89. [PMID: 26904061 PMCID: PMC4748245 DOI: 10.3389/fpls.2016.00089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/18/2016] [Indexed: 05/04/2023]
Abstract
The highly ordered protein backbone of virus particles makes them attractive candidates for use as enzyme nano-carriers (ENCs). We have previously developed a non-covalent and versatile approach for adhesion of enzymes to virus particles. This approach makes use of z33, a peptide derived from the B-domain of Staphylococcus aureus protein A, which binds to the Fc domain of many immunoglobulins. We have demonstrated that with specific antibodies addressed against the viral capsid proteins (CPs) an 87% coverage of z33-tagged proteins can be achieved on potyvirus particles. 4-coumarate coenzyme A ligase (4CL2) and stilbene synthase (STS) catalyze consecutive steps in the resveratrol synthetic pathway. In this study, these enzymes were modified to carry an N-terminal z33 peptide and a C-terminal 6xHis tag to obtain (z)4CL2(His) and (z)STS(His), respectively. A protein chimera, (z)4CL2::STS(His), with the same modifications was also generated from the genetic fusion of both mono-enzyme encoding genes. All z33 enzymes were biologically active after expression in Escherichia coli as revealed by LC-MS analysis to identify resveratrol and assembled readily into macromolecular complexes with Potato virus A particles and α-PVA CP antibodies. To test simultaneous immobilization-purification, we applied the double antibody sandwich - ELISA protocol to capture active z33-containg mono-enzymes and protein chimera directly from clarified soluble cell lysates onto the virus particle surface. These immobilized enzymes were able to synthesize resveratrol. We present here a bottom up approach to immobilize active enzymes onto virus-based ENCs and discuss the potential to utilize this method in the purification and configuration of nano-devices.
Collapse
Affiliation(s)
- Jane Besong-Ndika
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of HelsinkiHelsinki, Finland
- UMR 1332 Biologie du Fruit et Pathologie, INRA-Université BordeauxVillenace d’Ornon, France
| | - Matti Wahlsten
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of HelsinkiHelsinki, Finland
| | - Daniela Cardinale
- UMR 1332 Biologie du Fruit et Pathologie, INRA-Université BordeauxVillenace d’Ornon, France
| | - Jan Pille
- UMR 1332 Biologie du Fruit et Pathologie, INRA-Université BordeauxVillenace d’Ornon, France
- Bio-Organic Chemistry, Radboud UniversityNijmegen, Netherlands
| | - Jocelyne Walter
- UMR 1332 Biologie du Fruit et Pathologie, INRA-Université BordeauxVillenace d’Ornon, France
| | - Thierry Michon
- UMR 1332 Biologie du Fruit et Pathologie, INRA-Université BordeauxVillenace d’Ornon, France
- *Correspondence: Thierry Michon, ; Kristiina Mäkinen,
| | - Kristiina Mäkinen
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of HelsinkiHelsinki, Finland
- *Correspondence: Thierry Michon, ; Kristiina Mäkinen,
| |
Collapse
|
38
|
Koch C, Wabbel K, Eber FJ, Krolla-Sidenstein P, Azucena C, Gliemann H, Eiben S, Geiger F, Wege C. Modified TMV Particles as Beneficial Scaffolds to Present Sensor Enzymes. FRONTIERS IN PLANT SCIENCE 2015; 6:1137. [PMID: 26734040 PMCID: PMC4689848 DOI: 10.3389/fpls.2015.01137] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/30/2015] [Indexed: 05/22/2023]
Abstract
Tobacco mosaic virus (TMV) is a robust nanotubular nucleoprotein scaffold increasingly employed for the high density presentation of functional molecules such as peptides, fluorescent dyes, and antibodies. We report on its use as advantageous carrier for sensor enzymes. A TMV mutant with a cysteine residue exposed on every coat protein (CP) subunit (TMVCys) enabled the coupling of bifunctional maleimide-polyethylene glycol (PEG)-biotin linkers (TMVCys/Bio). Its surface was equipped with two streptavidin [SA]-conjugated enzymes: glucose oxidase ([SA]-GOx) and horseradish peroxidase ([SA]-HRP). At least 50% of the CPs were decorated with a linker molecule, and all thereof with active enzymes. Upon use as adapter scaffolds in conventional "high-binding" microtiter plates, TMV sticks allowed the immobilization of up to 45-fold higher catalytic activities than control samples with the same input of enzymes. Moreover, they increased storage stability and reusability in relation to enzymes applied directly to microtiter plate wells. The functionalized TMV adsorbed to solid supports showed a homogeneous distribution of the conjugated enzymes and structural integrity of the nanorods upon transmission electron and atomic force microscopy. The high surface-increase and steric accessibility of the viral scaffolds in combination with the biochemical environment provided by the plant viral coat may explain the beneficial effects. TMV can, thus, serve as a favorable multivalent nanoscale platform for the ordered presentation of bioactive proteins.
Collapse
Affiliation(s)
- Claudia Koch
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| | - Katrin Wabbel
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| | - Fabian J. Eber
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| | - Peter Krolla-Sidenstein
- Chemistry of Oxydic and Organic Interfaces, Karlsruhe Institute of Technology, Institute of Functional InterfacesKarlsruhe, Germany
| | - Carlos Azucena
- Chemistry of Oxydic and Organic Interfaces, Karlsruhe Institute of Technology, Institute of Functional InterfacesKarlsruhe, Germany
| | - Hartmut Gliemann
- Chemistry of Oxydic and Organic Interfaces, Karlsruhe Institute of Technology, Institute of Functional InterfacesKarlsruhe, Germany
| | - Sabine Eiben
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| | - Fania Geiger
- Department of New Materials and Biosystems, Max-Planck-Institute for Intelligent SystemsStuttgart, Germany
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of StuttgartStuttgart, Germany
| |
Collapse
|
39
|
Kim S, Kim GS, Seo J, Gowri Rangaswamy G, So IS, Park RW, Lee BH, Kim IS. Double-Chambered Ferritin Platform: Dual-Function Payloads of Cytotoxic Peptides and Fluorescent Protein. Biomacromolecules 2015; 17:12-9. [DOI: 10.1021/acs.biomac.5b01134] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Soyoun Kim
- Department
of Biochemistry and Cell Biology, Cell and Matrix Research Institute,
School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Gwang Seob Kim
- Department
of Biochemistry and Cell Biology, Cell and Matrix Research Institute,
School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Junyoung Seo
- Department
of Biochemistry and Cell Biology, Cell and Matrix Research Institute,
School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Gunassekaran Gowri Rangaswamy
- Department
of Biochemistry and Cell Biology, Cell and Matrix Research Institute,
School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - In-Seop So
- Department
of Biochemistry and Cell Biology, Cell and Matrix Research Institute,
School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Rang-Woon Park
- Department
of Biochemistry and Cell Biology, Cell and Matrix Research Institute,
School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Byung-Heon Lee
- Department
of Biochemistry and Cell Biology, Cell and Matrix Research Institute,
School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - In-San Kim
- Biomedical
Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
- KU-KIST
School, Korea University, Seoul 136-701, Republic of Korea
| |
Collapse
|
40
|
Abe S, Ijiri H, Negishi H, Yamanaka H, Sasaki K, Hirata K, Mori H, Ueno T. Design of Enzyme-Encapsulated Protein Containers by In Vivo Crystal Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7951-7956. [PMID: 26503073 DOI: 10.1002/adma.201503827] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 06/05/2023]
Abstract
Crystalline protein assemblies of polyhedra crystal (PhC) can be utilized as solid enzyme containers for long-term storage of enzymes with retention of their enzymatic activity. The enzymes can be released from the crystals at the optimum pH for the enzymatic activity by dissolution of the crystals using in vivo crystal engineering.
Collapse
Affiliation(s)
- Satoshi Abe
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, 4259-B55, Midori-ku, Yokohama, 226-8501, Japan
| | - Hiroshi Ijiri
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, 4259-B55, Midori-ku, Yokohama, 226-8501, Japan
| | - Hashiru Negishi
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, 4259-B55, Midori-ku, Yokohama, 226-8501, Japan
| | - Hiroyuki Yamanaka
- Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Katsuhito Sasaki
- Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kunio Hirata
- SR Life Science Instrumentation Unit, RIKEN/SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Hajime Mori
- Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Takafumi Ueno
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, 4259-B55, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
41
|
Zschoche R, Hilvert D. Diffusion-Limited Cargo Loading of an Engineered Protein Container. J Am Chem Soc 2015; 137:16121-32. [PMID: 26637019 DOI: 10.1021/jacs.5b10588] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The engineered bacterial nanocompartment AaLS-13 is a promising artificial encapsulation system that exploits electrostatic interactions for cargo loading. In order to study its ability to take up and retain guests, a pair of fluorescent proteins was developed which allows spectroscopic determination of the extent of encapsulation by Förster resonance energy transfer (FRET). The encapsulation process is generally complete within a second, suggesting low energetic barriers for proteins to cross the capsid shell. Formation of intermediate aggregates upon mixing host and guest in vitro complicates capsid loading at low ionic strength, but can be sidestepped by increasing salt concentrations or diluting the components. Encapsulation of guests is completely reversible, and the position of the equilibrium is easily tuned by varying the ionic strength. These results, which challenge the notion that AaLS-13 is a continuous rigid shell, provide valuable information about cargo loading that will guide ongoing efforts to engineer functional host-guest complexes. Moreover, it should be possible to adapt the protein FRET pair described in this report to characterize functional capsid-cargo complexes generated by other encapsulation systems.
Collapse
Affiliation(s)
- Reinhard Zschoche
- Laboratory of Organic Chemistry, ETH Zürich , 8093 Zürich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich , 8093 Zürich, Switzerland
| |
Collapse
|
42
|
Glasgow JE, Asensio MA, Jakobson CM, Francis MB, Tullman-Ercek D. Influence of Electrostatics on Small Molecule Flux through a Protein Nanoreactor. ACS Synth Biol 2015; 4:1011-9. [PMID: 25893987 DOI: 10.1021/acssynbio.5b00037] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nature uses protein compartmentalization to great effect for control over enzymatic pathways, and the strategy has great promise for synthetic biology. In particular, encapsulation in nanometer-sized containers to create nanoreactors has the potential to elicit interesting, unexplored effects resulting from deviations from well-understood bulk processes. Self-assembled protein shells for encapsulation are especially desirable for their uniform structures and ease of perturbation through genetic mutation. Here, we use the MS2 capsid, a well-defined porous 27 nm protein shell, as an enzymatic nanoreactor to explore pore-structure effects on substrate and product flux during the catalyzed reaction. Our results suggest that the shell can influence the enzymatic reaction based on charge repulsion between small molecules and point mutations around the pore structure. These findings also lend support to the hypothesis that protein compartments modulate the transport of small molecules and thus influence metabolic reactions and catalysis in vitro.
Collapse
Affiliation(s)
- Jeff E. Glasgow
- Department of Chemistry, ‡Department of Bioengineering, §Department of Chemical
and Biomolecular
Engineering, University of California, Berkeley, California 94720, United States
| | - Michael A. Asensio
- Department of Chemistry, ‡Department of Bioengineering, §Department of Chemical
and Biomolecular
Engineering, University of California, Berkeley, California 94720, United States
| | - Christopher M. Jakobson
- Department of Chemistry, ‡Department of Bioengineering, §Department of Chemical
and Biomolecular
Engineering, University of California, Berkeley, California 94720, United States
| | - Matthew B. Francis
- Department of Chemistry, ‡Department of Bioengineering, §Department of Chemical
and Biomolecular
Engineering, University of California, Berkeley, California 94720, United States
| | - Danielle Tullman-Ercek
- Department of Chemistry, ‡Department of Bioengineering, §Department of Chemical
and Biomolecular
Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
43
|
Nault L, Taofifenua C, Anne A, Chovin A, Demaille C, Besong-Ndika J, Cardinale D, Carette N, Michon T, Walter J. Electrochemical atomic force microscopy imaging of redox-immunomarked proteins on native potyviruses: from subparticle to single-protein resolution. ACS NANO 2015; 9:4911-4924. [PMID: 25905663 DOI: 10.1021/acsnano.5b00952] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We show herein that electrochemical atomic force microscopy (AFM-SECM), operated in molecule touching (Mt) mode and combined with redox immunomarking, enables the in situ mapping of the distribution of proteins on individual virus particles and makes localization of individual viral proteins possible. Acquisition of a topography image allows isolated virus particles to be identified and structurally characterized, while simultaneous acquisition of a current image allows the sought after protein, marked by redox antibodies, to be selectively located. We concomitantly show that Mt/AFM-SECM, due to its single-particle resolution, can also uniquely reveal the way redox functionalization endowed to viral particles is distributed both statistically among the viruses and spatially over individual virus particles. This possibility makes Mt/AFM-SECM a unique tool for viral nanotechnology.
Collapse
Affiliation(s)
- Laurent Nault
- †Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université, CNRS No 7591, Bâtiment Lavoisier, 15 rue Jean-Antoine de Baïf, 75205 Cedex 13 Paris, France
| | - Cécilia Taofifenua
- †Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université, CNRS No 7591, Bâtiment Lavoisier, 15 rue Jean-Antoine de Baïf, 75205 Cedex 13 Paris, France
| | - Agnès Anne
- †Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université, CNRS No 7591, Bâtiment Lavoisier, 15 rue Jean-Antoine de Baïf, 75205 Cedex 13 Paris, France
| | - Arnaud Chovin
- †Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université, CNRS No 7591, Bâtiment Lavoisier, 15 rue Jean-Antoine de Baïf, 75205 Cedex 13 Paris, France
| | - Christophe Demaille
- †Laboratoire d'Electrochimie Moléculaire, Université Paris Diderot, Sorbonne Paris Cité, Unité Mixte de Recherche Université, CNRS No 7591, Bâtiment Lavoisier, 15 rue Jean-Antoine de Baïf, 75205 Cedex 13 Paris, France
| | - Jane Besong-Ndika
- ‡UMR 1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71 av. Edouard Bourlaux, 20032-33882 Cedex Villenave d'Ornon, France
- §Department of Food and Environmental Sciences, University of Helsinki, Latokartanonkaari 11, FI-00014 Helsinki, Finland
| | - Daniela Cardinale
- ‡UMR 1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71 av. Edouard Bourlaux, 20032-33882 Cedex Villenave d'Ornon, France
| | - Noëlle Carette
- ‡UMR 1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71 av. Edouard Bourlaux, 20032-33882 Cedex Villenave d'Ornon, France
| | - Thierry Michon
- ‡UMR 1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71 av. Edouard Bourlaux, 20032-33882 Cedex Villenave d'Ornon, France
| | - Jocelyne Walter
- ‡UMR 1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, 71 av. Edouard Bourlaux, 20032-33882 Cedex Villenave d'Ornon, France
| |
Collapse
|
44
|
Besong-Ndika J, Ivanov KI, Hafrèn A, Michon T, Mäkinen K. Cotranslational coat protein-mediated inhibition of potyviral RNA translation. J Virol 2015; 89:4237-48. [PMID: 25631087 PMCID: PMC4442359 DOI: 10.1128/jvi.02915-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/22/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Potato virus A (PVA) is a single-stranded positive-sense RNA virus and a member of the family Potyviridae. The PVA coat protein (CP) has an intrinsic capacity to self-assemble into filamentous virus-like particles, but the mechanism responsible for the initiation of viral RNA encapsidation in vivo remains unclear. Apart from virion assembly, PVA CP is also involved in the inhibition of viral RNA translation. In this study, we show that CP inhibits PVA RNA translation in a dose-dependent manner, through a mechanism involving the CP-encoding region. Analysis of this region, however, failed to identify any RNA secondary structure(s) preferentially recognized by CP, suggesting that the inhibition depends on CP-CP rather than CP-RNA interactions. In agreement with this possibility, insertion of an in-frame stop codon upstream of the CP sequence led to a marked decrease in the inhibition of viral RNA translation. Based on these results, we propose a model in which the cotranslational interactions between excess CP accumulating in trans and CP translated from viral RNA in cis are required to initiate the translational repression. This model suggests a mechanism for how viral RNA can be sequestered from translation and specifically selected for encapsidation at the late stages of viral infection. IMPORTANCE The main functions of the CP during potyvirus infection are to protect viral RNA from degradation and to transport it locally, systemically, and from host to host. Although virion assembly is a key step in the potyviral infectious cycle, little is known about how it is initiated and how viral RNA is selected for encapsidation. The results presented here suggest that CP-CP rather than CP-RNA interactions are predominantly involved in the sequestration of viral RNA away from translation. We propose that the cotranslational nature of these interactions may represent a mechanism for the selection of viral RNA for encapsidation. A better understanding of the mechanism of virion assembly may lead to development of crops resistant to potyviruses at the level of viral RNA encapsidation, thereby reducing the detrimental effects of potyvirus infections on food production.
Collapse
Affiliation(s)
- Jane Besong-Ndika
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland UMR 1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, Villenave d'Ornon Cedex, France
| | - Konstantin I Ivanov
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Anders Hafrèn
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Thierry Michon
- UMR 1332 Biologie du Fruit et Pathologie, INRA-Université Bordeaux 2, Villenave d'Ornon Cedex, France
| | - Kristiina Mäkinen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
45
|
Grose JH, Casjens SR. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology 2015; 468-470:421-443. [PMID: 25240328 DOI: 10.1016/j.virol.2014.08.024] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/18/2014] [Accepted: 08/22/2014] [Indexed: 02/03/2023]
Abstract
Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships.
Collapse
Affiliation(s)
- Julianne H Grose
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602, USA.
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
46
|
Jutz G, van Rijn P, Santos Miranda B, Böker A. Ferritin: a versatile building block for bionanotechnology. Chem Rev 2015; 115:1653-701. [PMID: 25683244 DOI: 10.1021/cr400011b] [Citation(s) in RCA: 284] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Günther Jutz
- DWI - Leibniz-Institut für Interaktive Materialien e.V., Lehrstuhl für Makromolekulare Materialien und Oberflächen, RWTH Aachen University , Forckenbeckstrasse 50, D-52056 Aachen, Germany
| | | | | | | |
Collapse
|
47
|
Zhang L, Lua LHL, Middelberg APJ, Sun Y, Connors NK. Biomolecular engineering of virus-like particles aided by computational chemistry methods. Chem Soc Rev 2015; 44:8608-18. [DOI: 10.1039/c5cs00526d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multi-scale investigation of VLP self-assembly aided by computational methods is facilitating the design, redesign, and modification of functionalized VLPs.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072, People's Republic of China
| | - Linda H. L. Lua
- Protein Expression Facility
- The University of Queensland
- Brisbane, Australia
| | - Anton P. J. Middelberg
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane, Australia
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072, People's Republic of China
| | - Natalie K. Connors
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane, Australia
| |
Collapse
|
48
|
Inaba H, Kitagawa S, Ueno T. Protein Needles as Molecular Templates for Artificial Metalloenzymes. Isr J Chem 2014. [DOI: 10.1002/ijch.201400097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Torelli E, Marini M, Palmano S, Piantanida L, Polano C, Scarpellini A, Lazzarino M, Firrao G. A DNA origami nanorobot controlled by nucleic acid hybridization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:2918-2926. [PMID: 24648163 DOI: 10.1002/smll.201400245] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/26/2014] [Indexed: 06/03/2023]
Abstract
A prototype for a DNA origami nanorobot is designed, produced, and tested. The cylindrical nanorobot (diameter of 14 nm and length of 48 nm) with a switchable flap, is able to respond to an external stimulus and reacts by a physical switch from a disarmed to an armed configuration able to deliver a cellular compatible message. In the tested design the robot weapon is a nucleic acid fully contained in the inner of the tube and linked to a single point of the internal face of the flap. Upon actuation the nanorobot moves the flap extracting the nucleic acid that assembles into a hemin/G-quadruplex horseradish peroxidase mimicking DNAzyme catalyzing a colorimetric reaction or chemiluminescence generation. The actuation switch is triggered by an external nucleic acid (target) that interacts with a complementary nucleic acid that is beard externally by the nanorobot (probe). Hybridization of probe and target produces a localized structural change that results in flap opening. The flap movement is studied on a two-dimensional prototype origami using Förster resonance energy transfer and is shown to be triggered by a variety of targets, including natural RNAs. The nanorobot has potential for in vivo biosensing and intelligent delivery of biological activators.
Collapse
Affiliation(s)
- Emanuela Torelli
- Department of Agricultural and Environmental Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Production and applications of engineered viral capsids. Appl Microbiol Biotechnol 2014; 98:5847-58. [PMID: 24816622 DOI: 10.1007/s00253-014-5787-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
As biological agents, viruses come in an astounding range of sizes, with varied shapes and surface morphologies. The structures of viral capsids are generally assemblies of hundreds of copies of one or a few proteins which can be harnessed for use in a wide variety of applications in biotechnology, nanotechnology, and medicine. Despite their complexity, many capsid types form as homogenous populations of precise geometrical assemblies. This is important in both medicine, where well-defined therapeutics are critical for drug performance and federal approval, and nanotechnology, where precise placement affects the properties of the desired material. Here we review the production of viruses and virus-like particles with methods for selecting and manipulating the size, surface chemistry, assembly state, and interior cargo of capsid. We then discuss many of the applications used in research today and the potential commercial and therapeutic products from engineered viral capsids.
Collapse
|