1
|
Yu F, Li Y, Meng S, Zhang B, Liu Y, Luo W, Qian Z, Xie W, Ye X, Pratush A, Peng T, Wang H, Gu JD, Hu Z. Distribution of microbial taxa and genes degrading halogenated organic pollutants in the mangroves. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137145. [PMID: 39793385 DOI: 10.1016/j.jhazmat.2025.137145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/12/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Anthropogenic activities have led to serious contamination of halogenated organic pollutants (HOPs), such as PCBs, PBDEs, and HBCDs, in the mangrove wetland. Biodegradation of HOPs is generally driven by environmental microorganisms harboring dehalogenase genes. However, little is known if HOPs can affect the distributions of HOPs-degrading bacteria and dehalogenase genes in the mangrove wetlands. Historical data suggested that HOPs contamination has been persistent and even deteriorated in the mangrove wetlands in China. We found that the organohalides-respiring bacteria Dehalococcoidia and reductive dehalogenase genes were more prevalent in the subsurface layer sediments (20-30 cm depth; 1.935-9.876 % relative abundance; 71-286 contigs) than the surface layer (0-5 cm depth; 0.174-2.020 % relative abundance; 7-130 contigs). While the genes of haloacid and haloalkane dehalogenases were more abundant in the surface layer (30-100 and 18-138 contigs) than the subsurface layer (22-56 and 50-101 contigs). The abundance of HOPs-degrading genes of reductive dehalogenase, haloacid dehalogenases, AtzA, AtzB, TrzA, TrzN, PcpB, were determined by GeoChip 5.0. Their total abundance ranged from 444.760 to 880.909. Their distributions were mainly associated with the contamination levels of HOPs and strength of anthropogenic activities around the mangrove wetlands. Therefore, the distribution of bacterial taxa and genes involved in HOPs degradation was related to the depth of sediments and affected by the selective stress from HOPs.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China.
| | - Yuyang Li
- Changde Hospital, Xiangya School of Medicine, Central South University(The first people's hospital of Changde city), Changde, Hunan Province, PR China
| | - Shanshan Meng
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Bing Zhang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Yongjin Liu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Zhihui Qian
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Wei Xie
- School of Food Science and Engineering, South China University of Technology, No 381 Wushan Road, Guangzhou, PR China
| | - Xueying Ye
- School of Life Sciences, Huizhou University, Huizhou, PR China
| | - Amit Pratush
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Tao Peng
- School of Resources and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, PR China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, Shantou, Guangdong Province, PR China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China.
| |
Collapse
|
2
|
Soliman H, Ismaeil M, Soussa H, El-Sayed WS. Unveiling organohalide respiration potential in River Nile sediments via 16S rRNA gene amplicon sequencing of endogenous bacterial communities. BMC Microbiol 2025; 25:186. [PMID: 40165092 PMCID: PMC11956321 DOI: 10.1186/s12866-025-03864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Industrial waste, agricultural runoff and untreated sewage contaminate the Nile, leaving a toxic legacy in its sediments. Organohalides-polluted sediment in particular poses serious public health risks and detrimental effects on aquatic life. Sediment microbiomes may harbor bacterial strains that could be utilized in bioremediation of such toxic pollutants. MATERIAL AND METHODS Two microbiomes from polluted River Nile sediments were analyzed by using 16S rRNA gene amplicon sequencing. In addition, PICRUSt analysis based on 16S rRNA data was used to explore the organohalide respiring bacteria (OHRB) genera and their corresponding organohalide respiration (OHR) activity. Microcosm studies were performed to validate the potential for dechlorination activity of River Nile sediment. Dechlorination of the parent chloroethenes into daughter end product were detected by gas chromatography coupled with flame ionization detection analysis. RESULTS Analysis of 16S rRNA gene amplicon sequences using the EZ-biocloud server identified Proteobacteria as the dominant phylum in both microbiomes, with Bacteroidetes and Chloroflexi prevalent in RNS1 sediment and Chlorobi in RNS2 sediment. EZ-biocloud and PCR analyses detected several potential OHRB genera, including Dehalococcoides, Dehalogenimonas, Desulfomonile, Desulfovibrio, and Geobacter, suggesting potential OHR activity. Further evidence for potential OHR activity was provided by PICRUSt functional prediction analysis, which suggested the presence of reductive dehalogenases as functional biomarkers associated with OHR in the sediment samples. Specifically, PICRUSt analysis predicted the presence of potential genes of tetrachloroethene reductive dehalogenase and 3-chloro-4-hydroxyphenylacetate reductive dehalogenase, previously linked to OHR. Microcosm studies confirmed the dechlorination potential of tetrachloroethene to dichloroethene. CONCLUSION This study demonstrates that River Nile sediment in industrialized area harbors distinct microbiomes enclosing various OHRB genera, providing substantial evidence for potential reductive dechlorination activity. It also provides potential functional biomarkers for OHR activity.
Collapse
Affiliation(s)
- Hwayda Soliman
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed Ismaeil
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Hoda Soussa
- Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt
| | - Wael S El-Sayed
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Zhang Z, Li Z, Nan J, Ouyang J, Chen X, Wang H, Wang A. Evaluating advancements and opportunities in electro-assisted biodehalogenation of emerging halogenated contaminants. BIORESOURCE TECHNOLOGY 2025; 419:132011. [PMID: 39725360 DOI: 10.1016/j.biortech.2024.132011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Electro-assisted biodehalogenation (EASB) as a biostimulation strategy can accelerate the slow attenuation of emerging halogenated contaminants (EHCs) in anaerobic aqueous environments. A timely review is urgent to evaluate the knowledge gaps and potential opportunities, further facilitating its design and application. Till now, EASB achieves promising progress in accelerating biohalogenation rates, promoting the detoxification of EHCs to cope with unfavourable environments and mitigating greenhouse gas emissions. However, EASB of EHCs still faces several knowledge gaps. Exploring crucial microbes and deciphering insights into dehalogenase characteristics and extracellular electron transfer (EET) pathways remain the prominent task for EASB of EHCs. Moreover, microbial ecological relationships and intricate environmental factors affecting performances and applications are largely underexplored. The emergence of emerging tools holds promises for sorting the intricate changes and addressing these knowledge gaps. Judicious use of emerging tools will rejuvenate EASB strategy, from EET to scale-up, to purposefully and effectively address cascading EHCs.
Collapse
Affiliation(s)
- Zimeng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia Ouyang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xueqi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongcheng Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
4
|
Ren Y, Manefield M. Evolution of pollutant biodegradation. Appl Microbiol Biotechnol 2025; 109:36. [PMID: 39903283 PMCID: PMC11794338 DOI: 10.1007/s00253-025-13418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Pollutant-derived risks to human and environmental health are exacerbated by slow natural attenuation rates, often driven by pollutant toxicity to microorganisms that can degrade them or limitations to the ability of microorganisms to metabolise them. This review explores mechanisms employed by bacteria to protect themselves from pollutant toxicity in the context of the evolution of pollutant-degrading abilities. The role of promiscuous enzymes in pollutant transformation is subsequently reviewed, highlighting the emergence of novel metabolic pathways and their transcriptional regulation in response to pollutant exposure, followed by the gene transcription regulation to optimise the cellular component synthesis for adaptation on the novel substrate. Additionally, we discuss epistatic interactions among mutations vital for this process both at macromolecular and at cellular levels. Finally, evolutionary constraints towards enhanced fitness in the context of pollutant degradation are considered, the constraints imposed by the epistasis from mutations on both enzyme level and cellular level, concluding with challenges and emerging opportunities to develop sustainable contaminated site remediation technologies. KEY POINTS: •Pollutants can exert toxicity on cellular membrane, enzyme and gene transcription. •Bacteria can patch promiscuous enzymes into novel pathway to degrade pollutants. •The evolution trajectory is constrained by epistasis from mutations on enzyme and cellular level.
Collapse
Affiliation(s)
- Yi Ren
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mike Manefield
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
5
|
Lu Q, Tang D, Liang Q, Wang S. Biotechnology for the degradation and upcycling of traditional plastics. ENVIRONMENTAL RESEARCH 2024; 263:120140. [PMID: 39395553 DOI: 10.1016/j.envres.2024.120140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024]
Abstract
Traditional plastics, predominantly derived from petrochemicals, are extensively utilized in modern industry and daily life. However, inadequate management and disposal practices have resulted in widespread environmental contamination, with polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, and polystyrene being the most prevalent pollutants. Biological methods for plastic degradation have garnered significant attention due to their cost-effectiveness and potential for resource recovery, positioning them as promising strategies for sustainable plastic waste management. While polyethylene terephthalate, characterized by its relatively less stable C-O bonds, has been extensively studied and demonstrates significant potential for biodegradation. In contrast, the biodegradation of other plastics remains a significant challenge due to the inherent stability of their C-C backbone structures. This review comprehensively examines the state-of-the-art biotechnology for treating these traditional plastics, focusing on: (1) the roles of specific microorganisms and enzymes, their taxonomic classifications, and the metabolic pathways involved in plastic biodegradation; and (2) a proposed two-stage hybrid approach integrating physicochemical and biological processes to enhance the biodegradation or upcycling of these traditional plastics. Additionally, the review highlights the critical role of multi-omics approaches and tailored strategies in enhancing the efficiency of plastic biodegradation while examining the impact of plastic molecular structures and additives on their degradation potential. It also addresses key challenges and delineates future research directions to foster the development of innovative biological methods for the effective and sustainable management of plastic waste.
Collapse
Affiliation(s)
- Qihong Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Daoyu Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qi Liang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Liu H, Ji DW, Mei YK, Liu Y, Liu CH, Wang XY, Chen QA. Repurposing of halogenated organic pollutants via alkyl bromide-catalysed transfer chlorination. Nat Chem 2024; 16:1505-1514. [PMID: 38844635 DOI: 10.1038/s41557-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/02/2024] [Indexed: 08/02/2024]
Abstract
Halogenated organic pollutants (HOPs) are causing a significant environmental and human health crisis due to their high levels of toxicity, persistence and bioaccumulation. Urgent action is required to develop effective approaches for the reduction and reuse of HOPs. Whereas current strategies focus primarily on the degradation of HOPs, repurposing them is an alternative approach, albeit a challenging task. Here we discover that alkyl bromide can act as a catalyst for the transfer of chlorine using alkyl chloride as the chlorine source. We demonstrate that this approach has a wide substrate scope, and we successfully apply it to reuse HOPs that include dichlorodiphenyltrichloroethane, hexabromocyclododecane, chlorinated paraffins, chloromethyl polystyrene and poly(vinyl chloride) (PVC). Moreover, we show that the synthesis of essential non-steroidal anti-inflammatory drugs can be achieved using PVC and hexabromocyclododecane, and we demonstrate that PVC waste can be used directly as a chlorinating agent. Overall, this methodology offers a promising strategy for repurposing HOPs.
Collapse
Affiliation(s)
- Heng Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yong-Kang Mei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chang-Hui Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Phillips E, Picott K, Kümmel S, Bulka O, Edwards E, Wang P, Gehre M, Nijenhuis I, Lollar BS. Vitamin B 12 as a source of variability in isotope effects for chloroform biotransformation by Dehalobacter. Microbiologyopen 2024; 13:e1433. [PMID: 39190020 PMCID: PMC11348799 DOI: 10.1002/mbo3.1433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
Carbon and chlorine isotope effects for biotransformation of chloroform by different microbes show significant variability. Reductive dehalogenases (RDase) enzymes contain different cobamides, affecting substrate preferences, growth yields, and dechlorination rates and extent. We investigate the role of cobamide type on carbon and chlorine isotopic signals observed during reductive dechlorination of chloroform by the RDase CfrA. Microcosm experiments with two subcultures of a Dehalobacter-containing culture expressing CfrA-one with exogenous cobamide (Vitamin B12, B12+) and one without (to drive native cobamide production)-resulted in a markedly smaller carbon isotope enrichment factor (εC, bulk) for B12- (-22.1 ± 1.9‰) compared to B12+ (-26.8 ± 3.2‰). Both cultures exhibited significant chlorine isotope fractionation, and although a lower εCl, bulk was observed for B12- (-6.17 ± 0.72‰) compared to B12+ (-6.86 ± 0.77‰) cultures, these values are not statistically different. Importantly, dual-isotope plots produced identical slopes of ΛCl/C (ΛCl/C, B12+ = 3.41 ± 0.15, ΛCl/C, B12- = 3.39 ± 0.15), suggesting the same reaction mechanism is involved in both experiments, independent of the lower cobamide bases. A nonisotopically fractionating masking effect may explain the smaller fractionations observed for the B12- containing culture.
Collapse
Affiliation(s)
- Elizabeth Phillips
- Department of Earth SciencesUniversity of TorontoTorontoOntarioCanada
- Present address:
Inorganic Chemistry LaboratoryUniversity of OxfordOxfordUK
| | - Katherine Picott
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Steffen Kümmel
- Department of Technical BiogeochemistryHelmholtz Centre for Environmental Research—UFZLeipzigGermany
| | - Olivia Bulka
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Elizabeth Edwards
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Po‐Hsiang Wang
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoOntarioCanada
- Present address:
Graduate Institute of Environmental EngineeringNational Central UniversityTaoyuan CityTaiwan
| | - Matthias Gehre
- Department of Technical BiogeochemistryHelmholtz Centre for Environmental Research—UFZLeipzigGermany
| | - Ivonne Nijenhuis
- Department of Technical BiogeochemistryHelmholtz Centre for Environmental Research—UFZLeipzigGermany
| | - Barbara S. Lollar
- Department of Earth SciencesUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
8
|
Lu Q, Liang Q, Wang S. Burning question: Rethinking organohalide degradation strategy for bioremediation applications. Microb Biotechnol 2024; 17:e14539. [PMID: 39075849 PMCID: PMC11286677 DOI: 10.1111/1751-7915.14539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
Organohalides are widespread pollutants that pose significant environmental hazards due to their high degree of halogenation and elevated redox potentials, making them resistant to natural attenuation. Traditional bioremediation approaches, primarily relying on bioaugmentation and biostimulation, often fall short of achieving complete detoxification. Furthermore, the emergence of complex halogenated pollutants, such as per- and polyfluoroalkyl substances (PFASs), further complicates remediation efforts. Therefore, there is a pressing need to reconsider novel approaches for more efficient remediation of these recalcitrant pollutants. This review proposes novel redox-potential-mediated hybrid bioprocesses, tailored to the physicochemical properties of pollutants and their environmental contexts, to achieve complete detoxification of organohalides. The possible scenarios for the proposed bioremediation approaches are further discussed. In anaerobic environments, such as sediment and groundwater, microbial reductive dehalogenation coupled with fermentation and methanogenesis can convert organohalides into carbon dioxide and methane. In environments with anaerobic-aerobic alternation, such as paddy soil and wetlands, a synergistic process involving reduction and oxidation can facilitate the complete mineralization of highly halogenated organic compounds. Future research should focus on in-depth exploration of microbial consortia, the application of ecological principles-guided strategies, and the development of bioinspired-designed techniques. This paper contributes to the academic discourse by proposing innovative remediation strategies tailored to the complexities of organohalide pollution.
Collapse
Affiliation(s)
- Qihong Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐Sen UniversityGuangzhouChina
| | - Qi Liang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐Sen UniversityGuangzhouChina
| | - Shanquan Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
9
|
Lu Y, Lu F, Zhang J, Tang Q, Yang D, Liu Y. Understanding the sources, function, and irreplaceable role of cobamides in organohalide-respiring bacteria. Front Microbiol 2024; 15:1435674. [PMID: 39139376 PMCID: PMC11321594 DOI: 10.3389/fmicb.2024.1435674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
Halogenated organic compounds are persistent pollutants that pose a serious threat to human health and the safety of ecosystems. Cobamides are essential cofactors for reductive dehalogenases (RDase) in organohalide-respiring bacteria (OHRB), which catalyze the dehalogenation process. This review systematically summarizes the impact of cobamides on organohalide respiration. The catalytic processes of cobamide in dehalogenation processes are also discussed. Additionally, we examine OHRB, which cannot synthesize cobamide and must obtain it from the environment through a salvage pathway; the co-culture with cobamide producer is more beneficial and possible. This review aims to help readers better understand the importance and function of cobamides in reductive dehalogenation. The presented information can aid in the development of bioremediation strategies.
Collapse
Affiliation(s)
- Yongfeng Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Fancheng Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jian Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Qianwei Tang
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Dan Yang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- Guangxi Yuhuacheng Environmental Protection Technology Co., Nanning, China
| | - Yaqing Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
10
|
Niu S, Li C, Gao S, Tian J, Zhang C, Li L, Huang Y, Lyu H. Biochar, microbes, and biochar-microbe synergistic treatment of chlorinated hydrocarbons in groundwater: a review. Front Microbiol 2024; 15:1443682. [PMID: 39091302 PMCID: PMC11291464 DOI: 10.3389/fmicb.2024.1443682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Dehalogenating bacteria are still deficient when targeted to deal with chlorinated hydrocarbons (CHCs) contamination: e.g., slow metabolic rates, limited substrate range, formation of toxic intermediates. To enhance its dechlorination capacity, biochar and its composites with appropriate surface activity and biocompatibility are selected for coupled dechlorination. Because of its special surface physical and chemical properties, it promotes biofilm formation by dehalogenating bacteria on its surface and improves the living environment for dehalogenating bacteria. Next, biochar and its composites provide active sites for the removal of CHCs through adsorption, activation and catalysis. These sites can be specific metal centers, functional groups or structural defects. Under microbial mediation, these sites can undergo activation and catalytic cycles, thereby increasing dechlorination efficiency. However, there is a lack of systematic understanding of the mechanisms of dechlorination in biogenic and abiogenic systems based on biochar. Therefore, this article comprehensively summarizes the recent research progress of biochar and its composites as a "Taiwan balm" for the degradation of CHCs in terms of adsorption, catalysis, improvement of microbial community structure and promotion of degradation and metabolism of CHCs. The removal efficiency, influencing factors and reaction mechanism of the degraded CHCs were also discussed. The following conclusions were drawn, in the pure biochar system, the CHCs are fixed to its surface by adsorption through chemical bonds on its surface; the biochar composite material relies on persistent free radicals and electron shuttle mechanisms to react with CHCs, disrupting their molecular structure and reducing them; biochar-coupled microorganisms reduce CHCs primarily by forming an "electron shuttle bridge" between biological and non-biological organisms. Finally, the experimental directions to be carried out in the future are suggested to explore the optimal solution to improve the treatment efficiency of CHCs in water.
Collapse
Affiliation(s)
- Shixin Niu
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Changsuo Li
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Shuai Gao
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Jingya Tian
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Chao Zhang
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Lixia Li
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
11
|
Chen B, Xu J, Zhu L. Controllable chemical redox reactions to couple microbial degradation for organic contaminated sites remediation: A review. J Environ Sci (China) 2024; 139:428-445. [PMID: 38105066 DOI: 10.1016/j.jes.2023.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 12/19/2023]
Abstract
Global environmental concern over organic contaminated sites has been progressively conspicuous during the process of urbanization and industrial restructuring. While traditional physical or chemical remediation technologies may significantly destroy the soil structure and function, coupling moderate chemical degradation with microbial remediation becomes a potential way for the green, economic, and efficient remediation of contaminated sites. Hence, this work systematically elucidates why and how to couple chemical technology with microbial remediation, mainly focused on the controllable redox reactions of organic contaminants. The rational design of materials structure, selective generation of reactive oxygen species, and estimation of degradation pathway are described for chemical oxidation. Meanwhile, current progress on efficient and selective reductions of organic contaminants (i.e., dechlorination, defluorination, -NO2 reduction) is introduced. Combined with the microbial remediation of contaminated sites, several consideration factors of how to couple chemical and microbial remediation are proposed based on both fundamental and practical points of view. This review will advance the understanding and development of chemical-microbial coupled remediation for organic contaminated sites.
Collapse
Affiliation(s)
- Bin Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Agriculture & Forest University, Lin'an 311300, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Hu M, Scott C. Toward the development of a molecular toolkit for the microbial remediation of per-and polyfluoroalkyl substances. Appl Environ Microbiol 2024; 90:e0015724. [PMID: 38477530 PMCID: PMC11022551 DOI: 10.1128/aem.00157-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly fluorinated synthetic organic compounds that have been used extensively in various industries owing to their unique properties. The PFAS family encompasses diverse classes, with only a fraction being commercially relevant. These substances are found in the environment, including in water sources, soil, and wildlife, leading to human exposure and fueling concerns about potential human health impacts. Although PFAS degradation is challenging, biodegradation offers a promising, eco-friendly solution. Biodegradation has been effective for a variety of organic contaminants but is yet to be successful for PFAS due to a paucity of identified microbial species capable of transforming these compounds. Recent studies have investigated PFAS biotransformation and fluoride release; however, the number of specific microorganisms and enzymes with demonstrable activity with PFAS remains limited. This review discusses enzymes that could be used in PFAS metabolism, including haloacid dehalogenases, reductive dehalogenases, cytochromes P450, alkane and butane monooxygenases, peroxidases, laccases, desulfonases, and the mechanisms of microbial resistance to intracellular fluoride. Finally, we emphasize the potential of enzyme and microbial engineering to advance PFAS degradation strategies and provide insights for future research in this field.
Collapse
Affiliation(s)
- Miao Hu
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin Scott
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
13
|
Ng TL, Silver PA. Sustainable B 12-Dependent Dehalogenation of Organohalides in E. coli. ACS Chem Biol 2024; 19:380-391. [PMID: 38254247 DOI: 10.1021/acschembio.3c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Microbial bioremediation can provide an environmentally friendly and scalable solution to treat contaminated soil and water. However, microbes have yet to optimize pathways for degrading persistent anthropogenic pollutants, in particular organohalides. In this work, we first expand our repertoire of enzymes useful for bioremediation. By screening a panel of cobalamin (B12)-dependent reductive dehalogenases, we identified previously unreported enzymes that dechlorinate perchloroethene and regioselectively deiodinate the thyroidal disruptor 2,4,6-triiodophenol. One deiodinase, encoded by the animal-associated anaerobe Clostridioides difficile, was demonstrated to dehalogenate the naturally occurring metabolites L-halotyrosines. In cells, several combinations of ferredoxin oxidoreductase and flavodoxin extract and transfer low-potential electrons from pyruvate to drive reductive dehalogenation without artificial reductants and mediators. This work provides new insights into a relatively understudied family of B12-dependent enzymes and sets the stage for engineering synthetic pathways for degrading unnatural small molecule pollutants.
Collapse
Affiliation(s)
- Tai L Ng
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute of Biologically-Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute of Biologically-Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
14
|
Lin R, Xie L, Zheng X, Patience DOD, Duan X. Advances and challenges in biocathode microbial electrolysis cells for chlorinated organic compounds degradation from electroactive perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167141. [PMID: 37739072 DOI: 10.1016/j.scitotenv.2023.167141] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Microbial electrolysis cell (MEC) is a promising in-situ strategy for chlorinated organic compound (COC) pollution remediation due to its high efficiency, low energy input, and long-term potential. Reductive dechlorination as the most critical step in COC degradation which takes place primarily in the cathode chamber of MECs is a complex biochemical process driven by the behavior of electrons. However, no information is currently available on the internal mechanism of MEC in dechlorination from the perspective of the whole electron transfer procedure and its dependent electrode materials. This review addresses the underlying mechanism of MEC on the fundamental of the generation (electron donor), transmission (transfer pathway), utilization (functional microbiota) and reception (electron acceptor) of electrons in dechlorination. In addition, the vital role of varied cathode materials involved in the entire electron transfer procedure during COC dechlorination is emphasized. Subsequently, suggestions for future research, including model construction, cathode material modification, and expanding the applicability of MECs to removal gaseous COCs have been proposed. This paper enriches the mechanism of COC degradation by MEC, and thus provides the theoretical support for the scale-up bioreactors for efficient COC removal.
Collapse
Affiliation(s)
- Rujing Lin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaomei Zheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dzedzemo-On Dufela Patience
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xu Duan
- Key Laboratory of Yangtze River Water Environment, Ministry of Education; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
15
|
Cao D, Chen X, Nan J, Wang A, Li Z. Biomolecular insights into the inhibition of heavy metals on reductive dechlorination of 2,4,6-trichlorophenol in Pseudomonas sp. CP-1. WATER RESEARCH 2023; 247:120836. [PMID: 37950953 DOI: 10.1016/j.watres.2023.120836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Influences of heavy metal exposure to the organohalide respiration process and the related molecular mechanism remain poorly understood. In this study, a non-obligate organohalide respiring bacterium, Pseudomonas sp. strain CP-1, was isolated and its molecular response to the five types of commonly existed heavy metal ions were thoroughly investigated. All types of heavy metal ions posed inhibitory effects on 2,4,6-trichlorophenol dechlorination activity and cell growth with the varied degree. Exposure to Cu (II) showed the most serious inhibitive effects on dechlorination even at the lowest concentration of 0.05 mg/L, while the inhibition by As (V) was the least with the removal kinetic constant k decreased to 0.05 under 50 mg/L. Further, multi-omics analysis found compared with Cu (II), As (V) exposure led to the insignificant downregulation of a variety of biosynthesis processes, which would be one possible account for the less inhibited activity. More importantly, the inhibited mechanisms on the organohalide respiration catabolism of strain CP-1 were firstly revealed. Cu (II) stress severely downregulated NADH generation during TCA cycle and electron donation of organohalide respiration process, which might decrease the reducing power required for organohalide respiration. While both Cu (II) and As (Ⅴ) inhibited substrate level phosphorylation during TCA cycle, as well as electron transfer and ATP generation during organohalide respiration. Meanwhile, CprA-2 was confirmed as the responsible reductive dehalogenase in charge of 2,4,6-TCP dechlorination, and transcriptional and proteomic studies confirmed the directly inhibited gene transcription and expression of CprA-2. The in-depth reveal of inhibitory effects and mechanism gave theoretical supports for alleviating heavy metal inhibition on organohalide respiration activity in groundwater co-contaminated with organohalides and heavy metals.
Collapse
Affiliation(s)
- Di Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xueqi Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
16
|
Wu R, Shen R, Liang Z, Zheng S, Yang Y, Lu Q, Adrian L, Wang S. Improve Niche Colonization and Microbial Interactions for Organohalide-Respiring-Bacteria-Mediated Remediation of Chloroethene-Contaminated Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17338-17352. [PMID: 37902991 DOI: 10.1021/acs.est.3c05932] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Organohalide-respiring bacteria (OHRB)-mediated reductive dehalogenation is promising in in situ bioremediation of chloroethene-contaminated sites. The bioremediation efficiency of this approach is largely determined by the successful colonization of fastidious OHRB, which is highly dependent on the presence of proper growth niches and microbial interactions. In this study, based on two ecological principles (i.e., Priority Effects and Coexistence Theory), three strategies were developed to enhance niche colonization of OHRB, which were tested both in laboratory experiments and field applications: (i) preinoculation of a niche-preparing culture (NPC, being mainly constituted of fermenting bacteria and methanogens); (ii) staggered fermentation; and (iii) increased inoculation of CE40 (a Dehalococcoides-containing tetrachloroethene-to-ethene dechlorinating enrichment culture). Batch experimental results show significantly higher dechlorination efficiencies, as well as lower concentrations of volatile fatty acids (VFAs) and methane, in experimental sets with staggered fermentation and niche-preconditioning with NPC for 4 days (CE40_NPC-4) relative to control sets. Accordingly, a comparatively higher abundance of Dehalococcoides as major OHRB, together with a lower abundance of fermenting bacteria and methanogens, was observed in CE40_NPC-4 with staggered fermentation, which indicated the balanced syntrophic and competitive interactions between OHRB and other populations for the efficient dechlorination. Further experiments with microbial source tracking analyses suggested enhanced colonization of OHRB by increasing the inoculation ratio of CE40. The optimized conditions for enhanced colonization of OHRB were successfully employed for field bioremediation of trichloroethene (TCE, 0.3-1.4 mM)- and vinyl chloride (VC, ∼0.04 mM)-contaminated sites, resulting in 96.6% TCE and 99.7% VC dechlorination to ethene within 5 and 3 months, respectively. This study provides ecological principles-guided strategies for efficient bioremediation of chloroethene-contaminated sites, which may be also employed for removal of other emerging organohalide pollutants.
Collapse
Affiliation(s)
- Rifeng Wu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Rui Shen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhiwei Liang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Shengzhi Zheng
- China State Science Dingshi Environmental Engineering Co., Ltd., Beijing 100102, China
| | - Yong Yang
- China State Science Dingshi Environmental Engineering Co., Ltd., Beijing 100102, China
| | - Qihong Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Lorenz Adrian
- Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany
| | - Shanquan Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
17
|
Soder-Walz JM, Wasmund K, Deobald D, Vicent T, Adrian L, Marco-Urrea E. Respiratory protein interactions in Dehalobacter sp. strain 8M revealed through genomic and native proteomic analyses. Environ Microbiol 2023; 25:2604-2620. [PMID: 37452527 DOI: 10.1111/1462-2920.16464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Dehalobacter (Firmicutes) encompass obligate organohalide-respiring bacteria used for bioremediation of groundwater contaminated with halogenated organics. Various aspects of their biochemistry remain unknown, including the identities and interactions of respiratory proteins. Here, we sequenced the genome of Dehalobacter sp. strain 8M and analysed its protein expression. Strain 8M encodes 22 reductive dehalogenase homologous (RdhA) proteins. RdhA D8M_v2_40029 (TmrA) was among the two most abundant proteins during growth with trichloromethane and 1,1,2-trichloroethane. To examine interactions of respiratory proteins, we used blue native gel electrophoresis together with dehalogenation activity tests and mass spectrometry. The highest activities were found in gel slices with the highest abundance of TmrA. Protein distributions across gel lanes provided biochemical evidence that the large and small subunits of the membrane-bound [NiFe] uptake hydrogenase (HupL and HupS) interacted strongly and that HupL/S interacted weakly with RdhA. Moreover, the interaction of RdhB and membrane-bound b-type cytochrome HupC was detected. RdhC proteins, often encoded in rdh operons but without described function, migrated in a protein complex not associated with HupL/S or RdhA. This study provides the first biochemical evidence of respiratory protein interactions in Dehalobacter, discusses implications for the respiratory architecture and advances the molecular comprehension of this unique respiratory chain.
Collapse
Affiliation(s)
- Jesica M Soder-Walz
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - Darja Deobald
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Teresa Vicent
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Lorenz Adrian
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
18
|
Löffler P, Escher BI, Baduel C, Virta MP, Lai FY. Antimicrobial Transformation Products in the Aquatic Environment: Global Occurrence, Ecotoxicological Risks, and Potential of Antibiotic Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37335844 DOI: 10.1021/acs.est.2c09854] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The global spread of antimicrobial resistance (AMR) is concerning for the health of humans, animals, and the environment in a One Health perspective. Assessments of AMR and associated environmental hazards mostly focus on antimicrobial parent compounds, while largely overlooking their transformation products (TPs). This review lists antimicrobial TPs identified in surface water environments and examines their potential for AMR promotion, ecological risk, as well as human health and environmental hazards using in silico models. Our review also summarizes the key transformation compartments of TPs, related pathways for TPs reaching surface waters and methodologies for studying the fate of TPs. The 56 antimicrobial TPs covered by the review were prioritized via scoring and ranking of various risk and hazard parameters. Most data on occurrences to date have been reported in Europe, while little is known about antibiotic TPs in Africa, Central and South America, Asia, and Oceania. Occurrence data on antiviral TPs and other antibacterial TPs are even scarcer. We propose evaluation of structural similarity between parent compounds and TPs for TP risk assessment. We predicted a risk of AMR for 13 TPs, especially TPs of tetracyclines and macrolides. We estimated the ecotoxicological effect concentrations of TPs from the experimental effect data of the parent chemical for bacteria, algae and water fleas, scaled by potency differences predicted by quantitative structure-activity relationships (QSARs) for baseline toxicity and a scaling factor for structural similarity. Inclusion of TPs in mixtures with their parent increased the ecological risk quotient over the threshold of one for 7 of the 24 antimicrobials included in this analysis, while only one parent had a risk quotient above one. Thirteen TPs, from which 6 were macrolide TPs, posed a risk to at least one of the three tested species. There were 12/21 TPs identified that are likely to exhibit a similar or higher level of mutagenicity/carcinogenicity, respectively, than their parent compound, with tetracycline TPs often showing increased mutagenicity. Most TPs with increased carcinogenicity belonged to sulfonamides. Most of the TPs were predicted to be mobile but not bioaccumulative, and 14 were predicted to be persistent. The six highest-priority TPs originated from the tetracycline antibiotic family and antivirals. This review, and in particular our ranking of antimicrobial TPs of concern, can support authorities in planning related intervention strategies and source mitigation of antimicrobials toward a sustainable future.
Collapse
Affiliation(s)
- Paul Löffler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala SE-75007, Sweden
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, UZ, 04318 Leipzig, Germany
- Eberhard Karls University Tübingen, Environmental Toxicology, Department of Geosciences, 72076 Tübingen, Germany
| | - Christine Baduel
- Université Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE, 38 050 Grenoble, France
| | - Marko P Virta
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland
- Multidisciplinary Center of Excellence in Antimicrobial Resistance Research, Helsinki 00100, Finland
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala SE-75007, Sweden
| |
Collapse
|
19
|
Yu Y, Zhang Y, Liu Y, Lv M, Wang Z, Wen LL, Li A. In situ reductive dehalogenation of groundwater driven by innovative organic carbon source materials: Insights into the organohalide-respiratory electron transport chain. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131243. [PMID: 36989787 DOI: 10.1016/j.jhazmat.2023.131243] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
In situ bioremediation using organohalide-respiring bacteria (OHRB) is a prospective method for the removal of persistent halogenated organic pollutants from groundwater, as OHRB can utilize H2 or organic compounds produced by carbon source materials as electron donors for cell growth through organohalide respiration. However, few previous studies have determined the suitability of different carbon source materials to the metabolic mechanism of reductive dehalogenation from the perspective of electron transfer. The focus of this critical review was to reveal the interactions and relationships between carbon source materials and functional microbes, in terms of the electron transfer mechanism. Furthermore, this review illustrates some innovative strategies that have used the physiological characteristics of OHRB to guide the optimization of carbon source materials, improving the abundance of indigenous dehalogenated bacteria and enhancing electron transfer efficiency. Finally, it is proposed that future research should combine multi-omics analysis with machine learning (ML) to guide the design of effective carbon source materials and optimize current dehalogenation bioremediation strategies to reduce the cost and footprint of practical groundwater bioremediation applications.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yueyan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuqing Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mengran Lv
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zeyi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Lian Wen
- College of Resource and Environmental Science, Hubei University, Wuhan 430062, China.
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
20
|
Zhu X, Liao C, Song D, Yan X, Wan Y, Sun H, Wang X. Glucose facilitates the acclimation of organohalide-respiring bacteria. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130421. [PMID: 36427483 DOI: 10.1016/j.jhazmat.2022.130421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Organohalide respiring bacteria (OHRB) are the mainstay for bioremediation of organohalide contaminated sites. Enrichment screening of OHRB is prerequisite for the development of high performance dehalogenating bacterial agents. Herein, different domestication strategies were formulated for the main factors (nutrients and inocula) affecting the enrichment of OHRB, and the dehalogenation effect was verified with 2-chlorophenol and per/polyfluoroalkyl substances. The nutrients had a greater impact on the dehalogenation of the systems relative to the inocula, where the combination of glucose and anaerobic sludge (Glu-AS) had a faster degradation rate (26 ± 2.5 µmol L-1 d-1) and more complete dechlorination effectiveness. Meanwhile, the dehalogenation results for perfluorooctanoic acid and trifluoroacetic acid showed the biological defluorination was closely related to the position of fluoride. Further, the microbial community structure profiled the resource competition, metabolic cross-feeding and nutrient dynamic exchange among fermenting bacteria, OHRB and methanogenic bacteria under different domestication strategies as endogenous factors affecting the dehalogenation performance, and speculated a hypothetical model for the interaction of different functional bacteria. Our research contributed guidelines and references for the development of efficient dehalogenating bacterial agents, and provided scientific theoretical and technical support for promoting the maximum efficiency of bioremediation of organohalogenated sites.
Collapse
Affiliation(s)
- Xuemei Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Dongbao Song
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yuxuan Wan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
21
|
Zhang X, Wang Z, Li Z, Shaik S, Wang B. [4Fe–4S]-Mediated Proton-Coupled Electron Transfer Enables the Efficient Degradation of Chloroalkenes by Reductive Dehalogenases. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xuan Zhang
- State Key Laboratory Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zikuan Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Zhen Li
- State Key Laboratory Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Binju Wang
- State Key Laboratory Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
22
|
Wu Z, Man Q, Niu H, Lyu H, Song H, Li R, Ren G, Zhu F, Peng C, Li B, Ma X. Recent advances and trends of trichloroethylene biodegradation: A critical review. Front Microbiol 2022; 13:1053169. [PMID: 36620007 PMCID: PMC9813602 DOI: 10.3389/fmicb.2022.1053169] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Trichloroethylene (TCE) is a ubiquitous chlorinated aliphatic hydrocarbon (CAH) in the environment, which is a Group 1 carcinogen with negative impacts on human health and ecosystems. Based on a series of recent advances, the environmental behavior and biodegradation process on TCE biodegradation need to be reviewed systematically. Four main biodegradation processes leading to TCE biodegradation by isolated bacteria and mixed cultures are anaerobic reductive dechlorination, anaerobic cometabolic reductive dichlorination, aerobic co-metabolism, and aerobic direct oxidation. More attention has been paid to the aerobic co-metabolism of TCE. Laboratory and field studies have demonstrated that bacterial isolates or mixed cultures containing Dehalococcoides or Dehalogenimonas can catalyze reductive dechlorination of TCE to ethene. The mechanisms, pathways, and enzymes of TCE biodegradation were reviewed, and the factors affecting the biodegradation process were discussed. Besides, the research progress on material-mediated enhanced biodegradation technologies of TCE through the combination of zero-valent iron (ZVI) or biochar with microorganisms was introduced. Furthermore, we reviewed the current research on TCE biodegradation in field applications, and finally provided the development prospects of TCE biodegradation based on the existing challenges. We hope that this review will provide guidance and specific recommendations for future studies on CAHs biodegradation in laboratory and field applications.
Collapse
Affiliation(s)
- Zhineng Wu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Quanli Man
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Hanyu Niu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Honghong Lyu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Haokun Song
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Rongji Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Gengbo Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Fujie Zhu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Benhang Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China,*Correspondence: Xiaodong Ma,
| |
Collapse
|
23
|
Precise Regulation of Differential Transcriptions of Various Catabolic Genes by OdcR via a Single Nucleotide Mutation in the Promoter Ensures the Safety of Metabolic Flux. Appl Environ Microbiol 2022; 88:e0118222. [PMID: 36036586 PMCID: PMC9499029 DOI: 10.1128/aem.01182-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synergistic regulation of the expression of various genes in a catabolic pathway is crucial for the degradation, survival, and adaptation of microorganisms in polluted environments. However, how a single regulator accurately regulates and controls differential transcriptions of various catabolic genes to ensure metabolic safety remains largely unknown. Here, a LysR-type transcriptional regulator (LTTR), OdcR, encoded by the regulator gene odcR, was confirmed to be essential for 3,5-dibromo-4-hydroxybenozate (DBHB) catabolism and simultaneously activated the transcriptions of a gene with unknown function, orf419, and three genes, odcA, odcB, and odcC, involved in the DBHB catabolism in Pigmentiphaga sp. strain H8. OdcB further metabolized the highly toxic intermediate 2,6-dibromohydroquinone, which was produced from DBHB by OdcA. The upregulated transcriptional level of odcB was 7- to 9-fold higher than that of orf419, odcA, or odcC in response to DBHB. Through an electrophoretic mobility shift assay and DNase I footprinting assay, DBHB was found to be the effector and essential for OdcR binding to all four promoters of orf419, odcA, odcB, and odcC. A single nucleotide mutation in the regulatory binding site (RBS) of the promoter of odcB (TAT-N11-ATG), compared to those of odcA/orf419 (CAT-N11-ATG) and odcC (CAT-N11-ATT), was identified and shown to enable the significantly higher transcription of odcB. The precise regulation of these genes by OdcR via a single nucleotide mutation in the promoter avoided the accumulation of 2,6-dibromohydroquinone, ensuring the metabolic safety of DBHB. IMPORTANCE Prokaryotes use various mechanisms, including improvement of the activity of detoxification enzymes, to cope with toxic intermediates produced during catabolism. However, studies on how bacteria accurately regulate differential transcriptions of various catabolic genes via a single regulator to ensure metabolic safety are scarce. This study revealed a LysR-type transcriptional activator, OdcR, which strongly activated odcB transcription for the detoxification of the toxic intermediate 2,6-dibromohydroquinone and slightly activated the transcriptions of other genes (orf419, odcA, and odcC) for 3,5-dibromo-4-hydroxybenozate (DBHB) catabolism in Pigmentiphaga sp. strain H8. Interestingly, the differential transcription/expression of the four genes, which ensured the metabolic safety of DBHB in cells, was determined by a single nucleotide mutation in the regulatory binding sites of the four promoters. This study describes a new and ingenious regulatory mode of ensuring metabolic safety in bacteria, expanding our understanding of synergistic transcriptional regulation in prokaryotes.
Collapse
|
24
|
Barnum TP, Coates JD. The biogeochemical cycling of chlorine. GEOBIOLOGY 2022; 20:634-649. [PMID: 35851523 DOI: 10.1111/gbi.12513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Chlorine has important roles in the Earth's systems. In different forms, it helps balance the charge and osmotic potential of cells, provides energy for microorganisms, mobilizes metals in geologic fluids, alters the salinity of waters, and degrades atmospheric ozone. Despite this importance, there has not been a comprehensive summary of chlorine's geobiology. Here, we unite different areas of recent research to describe a biogeochemical cycle for chlorine. Chlorine enters the biosphere through volcanism and weathering of rocks and is sequestered by subduction and the formation of evaporite sediments from inland seas. In the biosphere, chlorine is converted between solid, dissolved, and gaseous states and in oxidation states ranging from -1 to +7, with the soluble, reduced chloride ion as its most common form. Living organisms and chemical reactions change chlorine's form through oxidation and reduction and the addition and removal of chlorine from organic molecules. Chlorine can be transported through the atmosphere, and the highest oxidation states of chlorine are produced by reactions between sunlight and trace chlorine gases. Partial oxidation of chlorine occurs across the biosphere and creates reactive chlorine species that contribute to the oxidative stress experienced by living cells. A unified view of this chlorine cycle demonstrates connections between chlorine biology, chemistry, and geology that affect life on the Earth.
Collapse
Affiliation(s)
- Tyler P Barnum
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
25
|
Yu F, Luo W, Xie W, Li Y, Meng S, Kan J, Ye X, Peng T, Wang H, Huang T, Hu Z. Community reassemblies of eukaryotes, prokaryotes, and viruses in the hexabromocyclododecanes-contaminated microcosms. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129159. [PMID: 35643009 DOI: 10.1016/j.jhazmat.2022.129159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The microbial community in seriously contaminated environment were not well known. This research investigated the community reassemblies in microcosms made of two distinct mangrove sediments amended with high levels of hexabromocyclododecanes (HBCDs). After eight months of contamination, the transformation of HBCDs yielded various lower brominated products and resulted in acidification (pH ~2). Therefore, the degraders and dehalogenase homologous genes involved in transformation of HBCDs only presented in low abundance to avoid further deterioration of the habitats. Moreover, in these deteriorated habitats, 1344 bacterial, 969 archaeal, 599 eukaryotic (excluded fungi), 187 fungal OTUs, and 10 viral genera, were reduced compared with controls. Specifically, in two groups of microcosms, Zetaproteobacteria, Deinococcus-Thermus, Spirochaetes, Bacteroidetes, Euryarchaeota, and Ascomycota, were positively responding taxa to HBCDs. Caloneis (Bacillariophyta) and Ascomycota turned to the dominant eukaryotic and fungal taxa. Most of predominant taxa were related to the contamination of brominated flame retardants (BFRs). Microbial communities were reassembled in divergent and sediment-dependent manner. The long-term contamination of HBCDs leaded to the change of relations between many taxa, included some of the environmental viruses and their known hosts. This research highlight the importance of monitoring the ecological effects around plants producing or processing halogenated compounds.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Wei Xie
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Yuyang Li
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Shanshan Meng
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Jie Kan
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Xueying Ye
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, PR China.
| |
Collapse
|
26
|
Di Franca ML, Matturro B, Crognale S, Zeppilli M, Dell’Armi E, Majone M, Petrangeli Papini M, Rossetti S. Microbiome Composition and Dynamics of a Reductive/Oxidative Bioelectrochemical System for Perchloroethylene Removal: Effect of the Feeding Composition. Front Microbiol 2022; 13:951911. [PMID: 35923400 PMCID: PMC9340161 DOI: 10.3389/fmicb.2022.951911] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Chlorinated solvents still represent an environmental concern that requires sustainable and innovative bioremediation strategies. This study describes the microbiome composition of a novel bioelectrochemical system (BES) based on sequential reductive/oxidative dechlorination for complete perchloroethylene (PCE) removal occurring in two separate but sequential chambers. The BES has been tested under various feeding compositions [i.e., anaerobic mineral medium (MM), synthetic groundwater (SG), and real groundwater (RG)] differing in presence of sulfate, nitrate, and iron (III). In addition, the main biomarkers of the dechlorination process have been monitored in the system under various conditions. Among them, Dehalococcoides mccartyi 16S rRNA and reductive dehalogenase genes (tceA, bvcA, and vcrA) involved in anaerobic dechlorination have been quantified. The etnE and etnC genes involved in aerobic dechlorination have also been quantified. The feeding composition affected the microbiome, in particular when the BES was fed with RG. Sulfuricurvum, enriched in the reductive compartment, operated with MM and SG, suggesting complex interactions in the sulfur cycle mostly including sulfur oxidation occurring at the anodic counter electrode (MM) or coupled to nitrate reduction (SG). Moreover, the known Mycobacterium responsible for natural attenuation of VC by aerobic degradation was found abundant in the oxidative compartment fed with RG, which was in line with the high VC removal observed (92 ± 2%). D. mccartyi was observed in all the tested conditions ranging from 8.78E + 06 (with RG) to 2.35E + 07 (with MM) 16S rRNA gene copies/L. tceA was found as the most abundant reductive dehalogenase gene in all the conditions explored (up to 2.46 E + 07 gene copies/L in MM). The microbiome dynamics and the occurrence of biomarkers of dechlorination, along with the kinetic performance of the system under various feeding conditions, suggested promising implications for the scale-up of the BES, which couples reductive with oxidative dechlorination to ensure the complete removal of highly chlorinated ethylene and mobile low-chlorinated by-products.
Collapse
Affiliation(s)
- Maria L. Di Franca
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
| | - Bruna Matturro
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
| | - Simona Crognale
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
| | - Marco Zeppilli
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | - Mauro Majone
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | - Simona Rossetti
- Water Research Institute-National Research Council (IRSA-CNR), Rome, Italy
| |
Collapse
|
27
|
Desmarais M, Fraraccio S, Dolinova I, Ridl J, Strnad H, Kubatova H, Sevcu A, Suman J, Strejcek M, Uhlik O. Genomic analysis of Acinetobacter pittii CEP14 reveals its extensive biodegradation capabilities, including cometabolic degradation of cis-1,2-dichloroethene. Antonie Van Leeuwenhoek 2022; 115:1041-1057. [PMID: 35701646 DOI: 10.1007/s10482-022-01752-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022]
Abstract
Halogenated organic compounds are naturally occurring in subsurface environments; however, accumulation of the degradative intermediate cis-1,2-dichloroethene (cDCE) at soil and groundwater sites contaminated with xenobiotic chlorinated ethenes is a global environmental and public health issue. Identifying microorganisms capable of cDCE degradation in these environments is of interest because of their potential application to bioremediation techniques. In this study, we sequenced, assembled, and analyzed the complete genome of Acinetobacter pittii CEP14, a strain isolated from chloroethene-contaminated groundwater, that has demonstrated the ability for aerobic cometabolic degradation of cDCE in the presence of n-hexane, phenol, and toluene. The A. pittii CEP14 genome consists of a 3.93 Mbp-long chromosome (GenBank accession no. CP084921) with a GC content of 38.9% and three plasmids (GenBank accession no. CP084922, CP084923, and CP084924). Gene function was assigned to 83.4% of the 3,930 coding DNA sequences. Functional annotation of the genome revealed that the CEP14 strain possessed all genetic elements to mediate the degradation of a range of aliphatic and aromatic compounds, including n-hexane and phenol. In addition, it harbors gene clusters involved in cytosol detoxification and oxidative stress resistance, which could play a role in the mitigation of toxic chemical intermediates that can arise during the degradation of cDCE. Gene clusters for heavy metal and antibiotic resistance were also identified in the genome of CEP14. These results suggest that CEP14 may be a versatile degrader of xenobiotic compounds and well-adapted to polluted environments, where a combination of heavy metal and organic compound pollution is often found.
Collapse
Affiliation(s)
- Miguel Desmarais
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Prague, Czech Republic
| | - Serena Fraraccio
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Prague, Czech Republic
| | - Iva Dolinova
- Department of Applied Biology, Advanced Technologies and Innovation Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Institute for Nanomaterials, Technical University of Liberec, Liberec, Czech Republic
- Department of Genetics and Molecular Diagnostics, Regional Hospital Liberec, Liberec, Czech Republic
| | - Jakub Ridl
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Kubatova
- State Office for Nuclear Safety, Prague, Czech Republic
| | - Alena Sevcu
- Department of Applied Biology, Advanced Technologies and Innovation Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Institute for Nanomaterials, Technical University of Liberec, Liberec, Czech Republic
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Prague, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Prague, Czech Republic.
| |
Collapse
|
28
|
Lee M, Liang G, Holland SI, O'Farrell C, Osborne K, Manefield MJ. Dehalobium species implicated in 2,3,7,8-tetrachlorodibenzo-p-dioxin dechlorination in the contaminated sediments of Sydney Harbour Estuary. MARINE POLLUTION BULLETIN 2022; 179:113690. [PMID: 35504213 DOI: 10.1016/j.marpolbul.2022.113690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Polychlorinated dibenzo-p-dioxins and furans (PCDD/F) are some of the most environmentally recalcitrant and toxic compounds. They occur naturally and as by-products of anthropogenic activity. Sydney Harbour Estuary (Sydney, Australia), is heavily contaminated with PCDD/F. Analysis of sediment cores revealed that the contamination source area in Homebush Bay continues to have one of the highest levels of PCDD/F contamination in the world (5207 pg WHO-TEQ g-1) with >50% of the toxicity attributed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), the most toxic PCDD/F congener. Comparison of congener profiles at the contamination source area with surrounding bays and historical data provided evidence for the attenuation of 2,3,7,8-TCDD and other congeners at the source area. This finding was supported by the detection of di-, mono- and unchlorinated dibenzo-p-dioxin. Microbial community analysis of sediments by 16S rRNA amplicon sequencing revealed an abundance of lineages from the class Dehalococcoidia (up to 15% of the community), including the genus Dehalobium (up to 0.5%). Anaerobic seawater enrichment cultures using perchloroethene as more biologically available growth substrate enriched the Dehalobium population by more than six-fold. The enrichment culture then proved capable of reductively dechlorinating 2,3,7,8-TCDD to 2,3,7-TriCDD and octachlorodibenzo-p-dibenzodioxin (OCDD) to hepta and hexa congeners. This work is the first to show microbial reductive dehalogenation of 2,3,7,8-TCDD with a bacterium from outside the Dehalococcoides genus, and one of only a few that demonstrates PCDD/F dechlorination in a marine environment.
Collapse
Affiliation(s)
- Matthew Lee
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia.
| | - Gan Liang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Sophie I Holland
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| | | | - Keith Osborne
- New South Wales Department of Planning and Environment, Lidcombe, NSW 2141, Australia
| | - Michael J Manefield
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
29
|
Horna-Gray I, Lopez NA, Ahn Y, Saks B, Girer N, Hentschel U, McCarthy PJ, Kerkhof LJ, Häggblom MM. Desulfoluna spp. form a cosmopolitan group of anaerobic dehalogenating bacteria widely distributed in marine sponges. FEMS Microbiol Ecol 2022; 98:6596282. [PMID: 35641184 DOI: 10.1093/femsec/fiac063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Host-specific microbial communities thrive within sponge tissues and this association between sponge and associated microbiota may be driven by the organohalogen chemistry of the sponge animal. Several sponge species produce diverse organobromine secondary metabolites (e.g. brominated phenolics, indoles, and pyrroles) that may function as a chemical defense against microbial fouling, infection or predation. In this study, anaerobic cultures prepared from marine sponges were amended with 2,6-dibromophenol as the electron acceptor and short chain organic acids as electron donors. We observed reductive dehalogenation from diverse sponge species collected at disparate temperate and tropical waters suggesting that biogenic organohalides appear to enrich for populations of dehalogenating microorganisms in the sponge animal. Further enrichment by successive transfers with 2,6-dibromophenol as the sole electron acceptor demonstrated the presence of dehalogenating bacteria in over 20 sponge species collected from temperate and tropical ecoregions in the Atlantic and Pacific Oceans and the Mediterranean Sea. The enriched dehalogenating strains were closely related to Desulfoluna spongiiphila and Desulfoluna butyratoxydans, suggesting a cosmopolitan association between Desulfoluna spp. and various marine sponges. In vivo reductive dehalogenation in intact sponges was also demonstrated. Organobromide-rich sponges may thus provide a specialized habitat for organohalide-respiring microbes and D. spongiiphila and/or its close relatives are responsible for reductive dehalogenation in geographically widely distributed sponge species.
Collapse
Affiliation(s)
- Isabel Horna-Gray
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Nora A Lopez
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA.,Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Youngbeom Ahn
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA.,Division of Microbiology , National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Brandon Saks
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Nathaniel Girer
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Ute Hentschel
- RD3 Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Peter J McCarthy
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Boca Raton, FL, USA
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
30
|
Halliwell T, Fisher K, Rigby SEJ, Leys D. Heterologous production and biophysical characterization of catabolic Nitratireductor pacificus pht-3B reductive dehalogenase. Methods Enzymol 2022; 668:327-347. [PMID: 35589200 DOI: 10.1016/bs.mie.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Reductive dehalogenases provide a possible route to the biotechnological remediation of widespread anthropogenic environmental organohalide contamination. These bacterial enzymes employ cobalamin and an internal electron transfer chain of two [4Fe-4S] clusters to remove halide ions from organohalides, leaving an organic molecule more amenable to further transformations. Detailed protocols for the cloning, heterologous expression, purification, crystallization and characterization of the catabolic dehalogenase from Nitratireductor pacificus pht-3B (NpRdhA) are presented, together with insight into enzyme turnover, substrate selectivity and the use of electron paramagnetic resonance (EPR) spectroscopy as an active site probe.
Collapse
Affiliation(s)
- Tom Halliwell
- School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Karl Fisher
- School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Stephen E J Rigby
- School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - David Leys
- School of Chemistry, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
31
|
Sahoo MM, Sahoo NK, Daverey A, Raut S. Co-metabolic biodegradation of 4-bromophenol in a mixture of pollutants system by Arthrobacter chlorophenolicus A6. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:602-614. [PMID: 35059927 DOI: 10.1007/s10646-021-02508-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Brominated phenols are listed as priority pollutants together with nitrophenol and chlorophenol are the key components of paper pulp wastewater. However, the biodegradation of bromophenol in a mixed substrate system is very scanty. In the present investigation, simultaneous biodegradation kinetics of three substituted phenols 4-bromophenol (4-BP), 4-nitrophenol (4-NP), and 4-chlorophenol (4-CP) were investigated using Arthrobacter chlorophenolicus A6. A 23 full factorial design was applied with varying 4-BP and 4-CP from 75-125 mg/L and 4-NP from 50-100 mg/L. Almost complete degradation of this mixture of substituted phenols was achieved at initial concentration combinations of 125, 125, and 100 mg/L of 4-CP, 4-BP, and 4-NP, respectively, in 68 h. Statistical analysis of the results revealed that, among the three variables, 4-NP had the most prominent influence on the degradation of both 4-CP and 4-BP, while the concentration of 4-CP had a strong negative interaction effect on the biodegradation of 4-NP. Irrespective of the concentration levels of these three substrates, 4-NP was preferentially biodegraded over 4-CP and 4-BP. Furthermore, 4-BP biodegradation rates were found to be higher than those of 4-CP, followed by 4-NP. Besides, the variation of the biomass yield coefficient of the culture was investigated at different initial concentration combinations of these substituted phenols. Although the actinomycetes consumed 4-NP at a faster rate, the biomass yield was very poor. This revealed that the microbial cells were more stressed when grown on 4-NP compared to 4-BP and 4-CP. Overall, this study revealed the potential of A. chlorophenolicus A6 for the degradation of 4-BP in mixed substrate systems.
Collapse
Affiliation(s)
- Mitali Madhusmita Sahoo
- Centre for Biotechnology, Siksha 'O'Anusandhan, Deemed to be University, Bhubaneswar, 751 030, Odisha, India
| | - Naresh Kumar Sahoo
- Department of Chemistry, Environmental Science and Technology Program, Institute of Technical Education and Research, Siksha'O'Anusandhan, Deemed to be University, Bhubaneswar, 751 030, Odisha, India.
| | - Achlesh Daverey
- School of Environment & Natural Resources, Doon University, Dehradun, 248012, Uttarakhand, India
| | - Sangeeta Raut
- Centre for Biotechnology, Siksha 'O'Anusandhan, Deemed to be University, Bhubaneswar, 751 030, Odisha, India
| |
Collapse
|
32
|
Genomic Evidence for the Recycling of Complex Organic Carbon by Novel
Thermoplasmatota
Clades in Deep-Sea Sediments. mSystems 2022; 7:e0007722. [PMID: 35430893 PMCID: PMC9239135 DOI: 10.1128/msystems.00077-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Thermoplasmatota have been widely reported in a variety of ecosystems, but their distribution and ecological role in marine sediments are still elusive. Here, we obtained four draft genomes affiliated with the former RBG-16-68-12 clade, which is now considered a new order, “Candidatus Yaplasmales,” of the Thermoplasmatota phylum in sediments from the South China Sea. The phylogenetic trees based on the 16S rRNA genes and draft genomes showed that “Ca. Yaplasmales” archaea are composed of three clades: A, B, and C. Among them, clades A and B are abundantly distributed (up to 10.86%) in the marine anoxic sediment layers (>10-cm depth) of six of eight cores from 1,200- to 3,400-m depths. Metabolic pathway reconstructions indicated that all clades of “Ca. Yaplasmales” have the capacity for alkane degradation by predicted alkyl-succinate synthase. Clade A of “Ca. Yaplasmales” might be mixotrophic microorganisms for the identification of the complete Wood-Ljungdahl pathway and putative genes involved in the degradation of aromatic and halogenated organic compounds. Clades B and C were likely heterotrophic, especially with the potential capacity of the spermidine/putrescine and aromatic compound degradation, as suggested by a significant negative correlation between the concentrations of aromatic compounds and the relative abundances of clade B. The sulfide-quinone oxidoreductase and pyrophosphate-energized membrane proton pump were encoded by all genomes of “Ca. Yaplasmales,” serving as adaptive strategies for energy production. These findings suggest that “Ca. Yaplasmales” might synergistically transform benthic pollutant and detrital organic matter, possibly playing a vital role in the marine and terrestrial sedimentary carbon cycle. IMPORTANCE Deep oceans receive large amounts of complex organic carbon and anthropogenic pollutants. The deep-sea sediments of the continental slopes serve as the biggest carbon sink on Earth. Particulate organic carbons and detrital proteins accumulate in the sediment. The microbially mediated recycling of complex organic carbon is still largely unknown, which is an important question for carbon budget in global oceans and maintenance of the deep-sea ecosystem. In this study, we report the prevalence (up to 10.86% of the microbial community) of archaea from a novel order of Thermoplasmatota, “Ca. Yaplasmales,” in six of eight cores from 1,200- to 3,400-m depths in the South China Sea. We provide genomic evidence of “Ca. Yaplasmales” in the anaerobic microbial degradation of alkanes, aliphatic and monoaromatic hydrocarbons, and halogenated organic compounds. Our study identifies the key archaeal players in anoxic marine sediments, which are probably critical in recycling the complex organic carbon in global oceans.
Collapse
|
33
|
Xing Z, Su X, Zhang X, Zhang L, Zhao T. Direct aerobic oxidation (DAO) of chlorinated aliphatic hydrocarbons: A review of key DAO bacteria, biometabolic pathways and in-situ bioremediation potential. ENVIRONMENT INTERNATIONAL 2022; 162:107165. [PMID: 35278801 DOI: 10.1016/j.envint.2022.107165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Contamination of aquifers and vadose zones with chlorinated aliphatic hydrocarbons (CAH) is a world-wide issue. Unlike other reactions, direct aerobic oxidation (DAO) of CAHs does not require growth substrates and avoids the generation of toxic by-products. Here, we critically review the current understanding of chlorinated aliphatic hydrocarbons-DAO and its application in bioreactors and at the field scale. According to reports on chlorinated aliphatic hydrocarbons-DAO bacteria, isolates mainly consisted of Methylobacterium and Proteobacterium. Chlorinated aliphatic hydrocarbons-DAO bacteria are characterized by tolerance to a high concentration of CAHs and highly efficient removal of CAHs. Trans-1,2-dichloroethylene (t-DCE) is easily transformed biomass for bacteria, followed by 1,2-dichloroethane (1,2-DCA), dichloromethane (DCM), vinyl chloride (VC) and cis-1,2-dichloroethylene (c-DCE). Significant differences in the maximum specific growth rates were observed with different CAHs and biometabolic pathways for DCM, 1,2-DCA, VC and c-DCE degradation have been successfully parsed. Detection of the functional genes etnC and etnE is useful for the determination of active VC DAO bacteria. Additionally, DAO bacteria have been successfully applied to CAHs in new types of bioreactors with satisfactory results. To the best of the authors' knowledge, only one study on DAO-CAHs was conducted in-situ and resulted in 99% CAH removal. Lastly, we put forward future development prospect of chlorinated aliphatic hydrocarbons-DAO.
Collapse
Affiliation(s)
- Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xia Su
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiaoping Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Lijie Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
34
|
Zhu X, Wang X, Li N, Wang Q, Liao C. Bioelectrochemical system for dehalogenation: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118519. [PMID: 34793908 DOI: 10.1016/j.envpol.2021.118519] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/26/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Halogenated organic compounds are persistent pollutants, whose persistent contamination and rapid spread seriously threaten human health and the safety of ecosystems. It is difficult to remove them completely by traditional physicochemical techniques. In-situ remediation utilizing bioelectrochemical technology represents a promising strategy for degradation of halogenated organic compounds, which can be achieved through potential modulation. In this review, we summarize the reactor configuration of microbial electrochemical dehalogenation systems and relevant organohalide-respiring bacteria. We also highlight the mechanisms of electrode potential regulation of microbial dehalogenation and the role of extracellular electron transfer in dehalogenation process, and further discuss the application of bioelectrochemical technology in bioremediation of halogenated organic compounds. Therefore, this review summarizes the status of research on microbial electrochemical dehalogenation systems from macroscopic to microscopic levels, providing theoretical support for the development of rapid and efficient in situ bioremediation technologies for halogenated organic compounds contaminated sites, as well as insights for the removal of refractory fluorides.
Collapse
Affiliation(s)
- Xuemei Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Qi Wang
- Beijing Construction Engineering Group Environmental Remediation Co. Ltd. and National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
35
|
OUP accepted manuscript. FEMS Microbiol Ecol 2022; 98:6577122. [DOI: 10.1093/femsec/fiac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
|
36
|
Yan J, Wang J, Villalobos Solis MI, Jin H, Chourey K, Li X, Yang Y, Yin Y, Hettich RL, Löffler FE. Respiratory Vinyl Chloride Reductive Dechlorination to Ethene in TceA-Expressing Dehalococcoides mccartyi. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4831-4841. [PMID: 33683880 DOI: 10.1021/acs.est.0c07354] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bioremediation of chlorinated ethenes in anoxic aquifers hinges on organohalide-respiring Dehalococcoidia expressing vinyl chloride (VC) reductive dehalogenase (RDase). The tceA gene encoding the trichloroethene-dechlorinating RDase TceA is frequently detected in contaminated groundwater but not recognized as a biomarker for VC detoxification. We demonstrate that tceA-carrying Dehalococcoides mccartyi (Dhc) strains FL2 and 195 grow with VC as an electron acceptor when sufficient vitamin B12 (B12) is provided. Strain FL2 cultures that received 50 μg L-1 B12 completely dechlorinated VC to ethene at rates of 14.80 ± 1.30 μM day-1 and attained 1.64 ± 0.11 × 108 cells per μmol of VC consumed. Strain 195 attained similar growth yields of 1.80 ± 1.00 × 108 cells per μmol of VC consumed, and both strains could be consecutively transferred with VC as the electron acceptor. Proteomic analysis demonstrated TceA expression in VC-grown strain FL2 cultures. Resequencing of the strain FL2 and strain 195 tceA genes identified non-synonymous substitutions, although their consequences for TceA function are currently unknown. The finding that Dhc strains expressing TceA respire VC can explain ethene formation at chlorinated solvent sites, where quantitative polymerase chain reaction analysis indicates that tceA dominates the RDase gene pool.
Collapse
Affiliation(s)
- Jun Yan
- Key Laboratory of Pollution Control and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jingjing Wang
- Key Laboratory of Pollution Control and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Huijuan Jin
- Key Laboratory of Pollution Control and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Karuna Chourey
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xiuying Li
- Key Laboratory of Pollution Control and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Yi Yang
- Key Laboratory of Pollution Control and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Yongchao Yin
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Frank E Löffler
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
37
|
Abstract
Emerging pollutants in nature are linked to various acute and chronic detriments in biotic components and subsequently deteriorate the ecosystem with serious hazards. Conventional methods for removing pollutants are not efficient; instead, they end up with the formation of secondary pollutants. Significant destructive impacts of pollutants are perinatal disorders, mortality, respiratory disorders, allergy, cancer, cardiovascular and mental disorders, and other harmful effects. The pollutant substrate can recognize different microbial enzymes at optimum conditions (temperature/pH/contact time/concentration) to efficiently transform them into other rather unharmful products. The most representative enzymes involved in bioremediation include cytochrome P450s, laccases, hydrolases, dehalogenases, dehydrogenases, proteases, and lipases, which have shown promising potential degradation of polymers, aromatic hydrocarbons, halogenated compounds, dyes, detergents, agrochemical compounds, etc. Such bioremediation is favored by various mechanisms such as oxidation, reduction, elimination, and ring-opening. The significant degradation of pollutants can be upgraded utilizing genetically engineered microorganisms that produce many recombinant enzymes through eco-friendly new technology. So far, few microbial enzymes have been exploited, and vast microbial diversity is still unexplored. This review would also be useful for further research to enhance the efficiency of degradation of xenobiotic pollutants, including agrochemical, microplastic, polyhalogenated compounds, and other hydrocarbons.
Collapse
|
38
|
Halliwell T, Fisher K, Payne KAP, Rigby SEJ, Leys D. Heterologous expression of cobalamin dependent class-III enzymes. Protein Expr Purif 2021; 177:105743. [PMID: 32871253 PMCID: PMC7585037 DOI: 10.1016/j.pep.2020.105743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022]
Abstract
The family of cobalamin class-III dependent enzymes is composed of the reductive dehalogenases (RDases) and related epoxyqueuosine reductases. RDases are crucial for the energy conserving process of organohalide respiration. These enzymes have the ability to reductively cleave carbon-halogen bonds, present in a number of environmentally hazardous pollutants, making them of significant interest for bioremediation applications. Unfortunately, it is difficult to obtain sufficient yields of pure RDase isolated from organohalide respiring bacteria for biochemical studies. Hence, robust heterologous expression systems are required that yield the active holo-enzyme which requires both iron-sulphur cluster and cobalamin incorporation. We present a comparative study of the heterologous expression strains Bacillus megaterium, Escherichia coli HMS174(DE3), Shimwellia blattae and a commercial strain of Vibrio natrigenes, for cobalamin class-III dependent enzymes expression. The Nitratireductor pacificus pht-3B reductive dehalogenase (NpRdhA) and the epoxyqueuosine reductase from Streptococcus thermophilus (StoQ) were used as model enzymes. We also analysed whether co-expression of the cobalamin transporter BtuB, supports increased cobalamin incorporation into these enzymes in E. coli. We conclude that while expression in Bacillus megaterium resulted in the highest levels of cofactor incorporation, co-expression of BtuB in E. coli presents an appropriate balance between cofactor incorporation and protein yield in both cases.
Collapse
Affiliation(s)
- Tom Halliwell
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Karl Fisher
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Karl A P Payne
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK; Future Biomanufacturing Research Hub (FutureBRH), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Stephen E J Rigby
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - David Leys
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
39
|
Kräutler B, Widner FJ, Kieninger C, Wurst K, Deery E, Lawrence AD, Warren MJ. Synthesis, Spectral Characterization and Crystal Structure of Chlororhodibalamin: A Synthesis Platform for Rhodium Analogues of Vitamin B12 and for Rh-Based Antivitamins B12. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1707288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractChlororhodibalamin (ClRhbl), a rhodium analogue of vitamin B12 (cyanocobalamin), was prepared in 84% yield by metalation of the metal-free B12 ligand hydrogenobalamin using the RhI-complex [Rh(CO)2Cl]2. ClRhbl was identified and characterized by UV/Vis, circular dichroism, high-resolution mass and heteronuclear NMR spectra. The RhIII-corrin ClRhbl features the ‘base-on’ architecture of vitamin B12. X-ray analysis of single crystals of ClRhbl have revealed its detailed 3D-geometry and close structural similarity to the CoIII-analogue chlorocobalamin (ClCbl). ClRhbl is a versatile starting material for the preparation of other rhodibalamins, among them the organometallic derivatives adenosylrhodibalamin and methylrhodibalamin, the Rh analogues of the important coenzyme and cofactor forms of B12, adenosylcobalamin and methylcobalamin.
Collapse
Affiliation(s)
- Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck
| | - Florian J. Widner
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck
| | - Christoph Kieninger
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck
| | | | | | - Martin J. Warren
- School of Biosciences, University of Kent
- Quadram Institute Bioscience
| |
Collapse
|
40
|
Sobrado P. Role of reduced flavin in dehalogenation reactions. Arch Biochem Biophys 2020; 697:108696. [PMID: 33245912 DOI: 10.1016/j.abb.2020.108696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Halogenated organic compounds are extensively used in the cosmetic, pharmaceutical, and chemical industries. Several naturally occurring halogen-containing natural products are also produced, mainly by marine organisms. These compounds accumulate in the environment due to their chemical stability and lack of biological pathways for their degradation. However, a few enzymes have been identified that perform dehalogenation reactions in specific biological pathways and others have been identified to have secondary activities toward halogenated compounds. Various mechanisms for dehalogenation of I, Cl, Br, and F containing compounds have been elucidated. These have been grouped into reductive, oxidative, and hydrolytic mechanisms. Flavin-dependent enzymes have been shown to catalyze oxidative dehalogenation reactions utilizing the C4a-hydroperoxyflavin intermediate. In addition, flavoenzymes perform reductive dehalogenation, forming transient flavin semiquinones. Recently, flavin-dependent enzymes have also been shown to perform dehalogenation reactions where the reduced form of the flavin produces a covalent intermediate. Here, recent studies on the reactions of flavoenzymes in dehalogenation reactions, with a focus on covalent catalytic dehalogenation mechanisms, are described.
Collapse
Affiliation(s)
- Pablo Sobrado
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
41
|
Crystal structure of ClA1, a type of chlorinase from soil bacteria. Biochem Biophys Res Commun 2020; 530:42-46. [PMID: 32828313 DOI: 10.1016/j.bbrc.2020.06.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 11/23/2022]
Abstract
Halogenated compounds are widely discovered in nature, and many of them exhibit biological activities, such as an important chlorinated natural product salinosporamide A serving as a potential anticancer agent. Compared with bromination, iodination and fluorination, chlorination is the mainly important modification. To shed light on the mechanism of SAM-dependent chlorinases, a recombinant chlorinase ClA1 was expressed in Escherichia coli and further purified for crystallization and X-ray diffraction experiments. The flake crystals of ClA1 were able to diffract to a resolution of 1.85 Å. The crystals belonged to space group R3, with unit-cell parameters α = β = 90.0°, γ = 120.0°. By determining the structure of ClA1, it is revealed that the side chain of Arg242 in ClA1 may have contacts with the L-Met. However, in SalL the equivalent Arg243's side chain is far from L-Met. Considering the ClA1 and SalL are from different environments and their enzyme kinetics are quite different, it is suggested that the side chain conformation differences of the conserved arginine are possibly related with the enzyme activity differences of the two chlorinases.
Collapse
|
42
|
Halliwell T, Fisher K, Payne KAP, Rigby SEJ, Leys D. Catabolic Reductive Dehalogenase Substrate Complex Structures Underpin Rational Repurposing of Substrate Scope. Microorganisms 2020; 8:microorganisms8091344. [PMID: 32887524 PMCID: PMC7565698 DOI: 10.3390/microorganisms8091344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022] Open
Abstract
Reductive dehalogenases are responsible for the reductive cleavage of carbon-halogen bonds during organohalide respiration. A variety of mechanisms have been proposed for these cobalamin and [4Fe-4S] containing enzymes, including organocobalt, radical, or cobalt-halide adduct based catalysis. The latter was proposed for the oxygen-tolerant Nitratireductor pacificus pht-3B catabolic reductive dehalogenase (NpRdhA). Here, we present the first substrate bound NpRdhA crystal structures, confirming a direct cobalt–halogen interaction is established and providing a rationale for substrate preference. Product formation is observed in crystallo due to X-ray photoreduction. Protein engineering enables rational alteration of substrate preference, providing a future blue print for the application of this and related enzymes in bioremediation.
Collapse
Affiliation(s)
- Tom Halliwell
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (T.H.); (K.F.); (K.A.P.P.); (S.E.J.R.)
| | - Karl Fisher
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (T.H.); (K.F.); (K.A.P.P.); (S.E.J.R.)
| | - Karl A. P. Payne
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (T.H.); (K.F.); (K.A.P.P.); (S.E.J.R.)
- Future Biomanufacturing Research Hub (FutureBRH), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Stephen E. J. Rigby
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (T.H.); (K.F.); (K.A.P.P.); (S.E.J.R.)
| | - David Leys
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (T.H.); (K.F.); (K.A.P.P.); (S.E.J.R.)
- Correspondence: ; Tel.: +44-161-306-51-50
| |
Collapse
|
43
|
Qiu L, Fang W, He H, Liang Z, Zhan Y, Lu Q, Liang D, He Z, Mai B, Wang S. Organohalide-Respiring Bacteria in Polluted Urban Rivers Employ Novel Bifunctional Reductive Dehalogenases to Dechlorinate Polychlorinated Biphenyls and Tetrachloroethene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8791-8800. [PMID: 32551541 DOI: 10.1021/acs.est.0c01569] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polluted urban river sediments could be a sink of persistent and toxic polychlorinated biphenyls (PCBs) in urban areas and provide desired growth niches for organohalide-respiring bacteria (OHRB). In this study, microcosms were set up with surface sediments of nationwide polluted urban rivers in China, of which 164 cultures could dechlorinate tetrachloroethene (PCE) to dichloroethenes (DCEs) and to vinyl chloride and/or ethene. Further in vivo tests showed extensive PCB dechlorination with different pathways in 135 PCE pregrown cultures. Taking reductive dechlorination of PCB180 (2345-245-CB) as an example, 121 and 14 cultures preferentially removed flanked para- and meta-chlorines, respectively. Strikingly, all in vitro assays with the 135 PCE pregrown cultures showed identical PCB dechlorination pathways with their living cultures, implying the involvement of bifunctional reductive dehalogenases (RDases) to dechlorinate both PCBs and PCE. Further 16S rRNA and RDase gene-based analyses, together with enantioselective dechlorination of chiral PCBs, suggested that Dehalococcoides and Dehalogenimonas in the 135 cultures largely employed distinctively different novel bifunctional RDases to catalyze PCB/PCE dechlorination. Quantitative assessment of the community assembly process with the modified stochasticity ratio (MST) indicated three different stages in enrichment of OHRB. The second stage, as the only one controlled by stochastic processes (MST > 0.5), required extra attention in monitoring community successional patterns to minimize stochastic variance for enriching the PCB/PCE-dechlorinating OHRB.
Collapse
Affiliation(s)
- Lan Qiu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China 510275
| | - Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China 510275
| | - Haozheng He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China 510275
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China 510275
| | - Yangyue Zhan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China 510275
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China 510275
| | - Dawei Liang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space & Environment, Beihang University, Beijing, China 100191
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China 510275
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China 510640
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, China 510275
| |
Collapse
|
44
|
Hydrochemical Conditions for Aerobic/Anaerobic Biodegradation of Chlorinated Ethenes—A Multi-Site Assessment. WATER 2020. [DOI: 10.3390/w12020322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A stall of cis-1,2-DCE and vinyl chloride (VC) is frequently observed during bioremediation of groundwater chloroethenes via reductive dechlorination. These chloroethenes may be oxidised by aerobic methanotrophs or ethenotrophs co-metabolically and/or metabolically. We assessed the potential for such oxidation at 12 sites (49 groundwater samples) using hydrochemical and molecular biological tools. Both ethenotroph (etnC and etnE) and methanotroph (mmoX and pmoA) functional genes were identified in 90% of samples, while reductive dehalogenase functional genes (vcrA and bvcA) were identified in 82%. All functional genes were simultaneously detected in 78% of samples, in actively biostimulated sites in 88% of samples. Correlation analysis revealed that cis-1,2-DCE concentration was positively correlated with vcrA, etnC and etnE, while VC concentration was correlated with etnC, etnE, vcrA and bvcA. However, feature selection based on random forest classification indicated a significant relationship for the vcrA in relation to cis-1,2-DCE, and vcrA, bvcA and etnE for VC and no prove of relationship between cis-1,2-DCE or VC and the methanotroph functional genes. Analysis of hydrochemical parameters indicated that aerobic oxidation of chloroethenes by ethenotrophs may take place under a range of redox conditions of aquifers and coincide with high ethene and VC concentrations.
Collapse
|
45
|
Liang Z, Li G, Mai B, An T. Biodegradation of typical BFRs 2,4,6-tribromophenol by an indigenous strain Bacillus sp. GZT isolated from e-waste dismantling area through functional heterologous expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134159. [PMID: 31491624 DOI: 10.1016/j.scitotenv.2019.134159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/22/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Legacy wastewater contaminants from e-waste dismantling process such as 2,4,6-tribromophenol (TBP), one of the most widely used brominated flame retardants (BFRs), have raised concern owing to their toxicity and recalcitrance. Our previously isolated Bacillus sp. GZT from river sludge in e-waste dismantling area is a good candidate for bioremediation of BFRs contaminated sites considering its remarkable degradability of TBP and its intermediates. However, there exists a new challenge because bio-degrader cannot produce enough biomass or metabolic activity to cleanup TBP in practice complex environment. Here, we heterologously expressed and functionally characterized the genes and enzymes responsible for TBP degradation to examine the feasibility of enhancing the ability of this microorganism to detoxify TBP. Results demonstrated that five recombinant strains containing functional genes, designated tbpA, tbpB, tbpC, tbpD, and tbpE, become more tolerant toward a wide range of brominated compounds than the nontransgenic strain. Cytochrome P450 reductase encoded by tbpA gene could greatly increase efficiency to remove TBP (98.8%), as compared to wild-type strain GZT (93.2%). Its debromination intermediates 2,4-dibromophenol, 2,6-dibromo-4-methylphenol and 2-bromophenol were significantly metabolized by halophenol dehalogenases encoded by tbpB, tbpC, and tbpD, respectively. Finally, under the function of tbpE gene encoding enzyme, further debrominated product (phenol) was dramatically detoxified. To reduce the risk of these xenobiotics, the expression of these genes can be induced and significantly up-regulated during exposure to them. These results open broad scope for future study in developing genetic engineering technologies for more efficient remediation wastewater of e-waste recycling sites contaminated with TBP, which would certainly be important steps to lower TBP exposures and prevent potential health effects.
Collapse
Affiliation(s)
- Zhishu Liang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
46
|
Antoniou K, Mamais D, Pantazidou M. Reductive dechlorination of trichloroethene under different sulfate-reducing and electron donor conditions. JOURNAL OF CONTAMINANT HYDROLOGY 2019; 226:103519. [PMID: 31302292 DOI: 10.1016/j.jconhyd.2019.103519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
The effect of sulfate presence on reductive dechlorination of chlorinated ethenes has been a matter of conflict among the limited reports found in literature. This paper aims to clarify the misconceptions regarding the performance of trichloroethene biotransformation under sulfate reducing conditions by evaluating the effect of different sulfate concentrations on reductive dechlorination and to assess the influence of electron donor dose on dechlorination rate. To this end, batch experiments containing different sulfate and butyrate concentrations were conducted using trichloroethene-dechlorinating and sulfate-reducing parent cultures. Results demonstrated that if sufficient time and electron donor is provided, complete dechlorination can be achieved, even at up to 400 mg/L initial sulfate concentration. However, the rate of dichloroethene and vinyl chloride degradation is reduced as sulfide concentration increases. Moreover, the excess electron donor dose induced a slightly slower dechlorination rate. The findings of this paper present an explanatory framework for the dechlorination of TCE under sulfate reducing conditions and can contribute to the state-of-art bioremediation of contaminated sites.
Collapse
Affiliation(s)
- Kornilia Antoniou
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Iroon Polytechniou 9, Zografou, Athens 157 80, Greece.
| | - Daniel Mamais
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, Iroon Polytechniou 9, Zografou, Athens 157 80, Greece
| | - Marina Pantazidou
- Department of Geotechnical Engineering, School of Civil Engineering, National Technical University of Athens, Iroon Polytechniou 9, Zografou, Athens 157 80, Greece
| |
Collapse
|
47
|
Elucidating the mechanism of cob(I)alamin mediated methylation reactions by alkyl halides: SN2 or radical mechanism? J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Temme HR, Carlson A, Novak PJ. Presence, Diversity, and Enrichment of Respiratory Reductive Dehalogenase and Non-respiratory Hydrolytic and Oxidative Dehalogenase Genes in Terrestrial Environments. Front Microbiol 2019; 10:1258. [PMID: 31231342 PMCID: PMC6567934 DOI: 10.3389/fmicb.2019.01258] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/21/2019] [Indexed: 11/13/2022] Open
Abstract
Organohalide-respiring bacteria have been linked to the cycling and possible respiration of chlorinated natural organic matter (Cl-NOM) in uncontaminated soils and sediments. The importance of non-respiratory hydrolytic/oxidative dechlorination processes in the cycling of Cl-NOM in terrestrial soil and sediment, however, is still not understood. This research analyzes the dechlorination potential of terrestrial systems through analysis of the metagenomes of urban lake sediments and cultures enriched with Cl-NOM. Even with the variability in sample type and enrichment conditions, the potential to dechlorinate was universal, with reductive dehalogenase genes and hydrolytic or oxidative dehalogenase genes found in all samples analyzed. The reductive dehalogenase genes detected grouped taxonomically with those from organohalide-respiring bacteria with broad metabolic capabilities, as opposed to those that obligately respire organohalides. Furthermore, reductive dehalogenase genes and two haloacid dehalogenase genes increased in abundance when sediment was enriched with high concentrations of Cl-NOM. Our data suggests that both respiratory and non-respiratory dechlorination processes are important for Cl-NOM cycling, and that non-obligate organohalide-respiring bacteria are most likely involved in these processes.
Collapse
Affiliation(s)
| | | | - Paige J. Novak
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
49
|
Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat Microbiol 2019; 4:1138-1148. [DOI: 10.1038/s41564-019-0406-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/08/2019] [Indexed: 11/08/2022]
|
50
|
Türkowsky D, Jehmlich N, Diekert G, Adrian L, von Bergen M, Goris T. An integrative overview of genomic, transcriptomic and proteomic analyses in organohalide respiration research. FEMS Microbiol Ecol 2019; 94:4830072. [PMID: 29390082 DOI: 10.1093/femsec/fiy013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
Organohalide respiration (OHR) is a crucial process in the global halogen cycle and of interest for bioremediation. However, investigations on OHR are hampered by the restricted genetic accessibility and the poor growth yields of many organohalide-respiring bacteria (OHRB). Therefore, genomics, transcriptomics and proteomics are often used to investigate OHRB. In general, these gene expression studies are more useful when the data of the different 'omics' approaches are integrated and compared among a wide range of cultivation conditions and ideally involve several closely related OHRB. Despite the availability of a couple of proteomic and transcriptomic datasets dealing with OHRB, such approaches are currently not covered in reviews. Therefore, we here present an integrative and comparative overview of omics studies performed with the OHRB Sulfurospirillum multivorans, Dehalococcoides mccartyi, Desulfitobacterium spp. and Dehalobacter restrictus. Genes, transcripts, proteins and the regulatory and biochemical processes involved in OHR are discussed, and a comprehensive view on the unusual metabolism of D. mccartyi, which is one of the few bacteria possibly using a quinone-independent respiratory chain, is provided. Several 'omics'-derived theories on OHRB, e.g. the organohalide-respiratory chain, hydrogen metabolism, corrinoid biosynthesis or one-carbon metabolism are critically discussed on the basis of this integrative approach.
Collapse
Affiliation(s)
- Dominique Türkowsky
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.,Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Brüderstraße 34, Germany
| | - Tobias Goris
- Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743 Jena, Germany
| |
Collapse
|