1
|
Li Y, Huang D, Zhang Y, Xiao Y, Zhang X. Microfluidic-assisted engineering of hydrogels with microscale complexity. Acta Biomater 2025:S1742-7061(25)00350-2. [PMID: 40349902 DOI: 10.1016/j.actbio.2025.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Hydrogels have emerged as a promising 3D cell culture scaffold owing to their structural similarity to the extracellular matrix (ECM) and their tunable physicochemical properties. Recent advances in microfluidic technology have enabled the fabrication of hydrogels into precisely controlled microspheres and microfibers, which serve as modular units for scalable 3D tissue assembly. Furthermore, advances in 3D bioprinting have allowed facile and precise spatial engineering of these hydrogel-based structures into complex architectures. When integrated with microfluidics, these systems facilitate microscale heterogeneity, dynamic shear flow, and gradient generation-critical features for advancing organoids and organ-on-a-chip systems. In this review, we will discuss (1) microfluidic strategies for the preparation of hydrogel microspheres and microfibers, (2) the integration of microfluidics with 3D bioprinting technologies, and (3) their transformative applications in organoids and organ-on-a-chip systems. STATEMENT OF SIGNIFICANCE: Microfluidic-assisted preparation and assembly of hydrogel microspheres and microfibers have enabled unprecedented precision in size, morphology and compositional control. The diverse configurations of these hydrogel modules offer the opportunities to generate 3D constructs with microscale complexity-recapitulating critical features of native tissues such as compartmentalized microenvironments, cellular gradients, and vascular networks. In this review, we discuss the fundamental microfluidic principles governing the generation of hydrogel microspheres (0D) and microfibers (1D), their hierarchical assembly into 3D constructs, and their integration with 3D bioprinting platforms to generate and culture organoids and organ-on-a-chip systems. The synergistic integration of microfluidics and bioprinting overcomes longstanding limitations of conventional 3D culture, such as static microenvironments and poor spatial resolution. Advances in microfluidic design offer tunable hydrogel biophysical and biochemical properties that regulate cell behaviors dynamically. Looking forward, the growing mastery of these principles paves the way for next-generation organoids and organ-on-a-chip systems with improved cellular heterogeneity, integrated vasculature, and multicellular crosstalk, closing the gap between in vitro models and human pathophysiology.
Collapse
Affiliation(s)
- Yuehong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Danyang Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yuting Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yun Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
2
|
Mendes M, Morais AS, Carlos A, Sousa JJ, Pais AC, Mihăilă SM, Vitorino C. Organ-on-a-chip: Quo vademus? Applications and regulatory status. Colloids Surf B Biointerfaces 2025; 249:114507. [PMID: 39826309 DOI: 10.1016/j.colsurfb.2025.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/15/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Organ-on-a-chip systems, also referred to as microphysiological systems (MPS), represent an advance in bioengineering microsystems designed to mimic key aspects of human organ physiology and function. Drawing inspiration from the intricate and hierarchical architecture of the human body, these innovative platforms have emerged as invaluable in vitro tools with wide-ranging applications in drug discovery and development, as well as in enhancing our understanding of disease physiology. The facility to replicate human tissues within physiologically relevant three-dimensional multicellular environments empowers organ-on-a-chip systems with versatility throughout different stages of the drug development process. Moreover, these systems can be tailored to mimic specific disease states, facilitating the investigation of disease progression, drug responses, and potential therapeutic interventions. In particular, they can demonstrate, in early-phase pre-clinical studies, the safety and toxicity profiles of potential therapeutic compounds. Furthermore, they play a pivotal role in the in vitro evaluation of drug efficacy and the modeling of human diseases. One of the most promising prospects of organ-on-a-chip technology is to simulate the pathophysiology of specific subpopulations and even individual patients, thereby being used in personalized medicine. By mimicking the physiological responses of diverse patient groups, these systems hold the promise of revolutionizing therapeutic strategies, guiding them towards tailored intervention to the unique needs of each patient. This review presents the development status and evolution of microfluidic platforms that have facilitated the transition from cells to organs recreated on chips and some of the opportunities and applications offered by organ-on-a-chip technology. Additionally, the current potential and future perspectives of these microphysiological systems and the challenges this technology still faces are discussed.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Ana Sofia Morais
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - Ana Carlos
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Alberto Canelas Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal
| | - Silvia M Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3000-535, Portugal.
| |
Collapse
|
3
|
Govender M, Indermun S, Choonara YE. 3D bioprinted microneedles: merging drug delivery and scaffold science for tissue-specific applications. Expert Opin Drug Deliv 2024; 21:1559-1572. [PMID: 38722022 DOI: 10.1080/17425247.2024.2351928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/02/2024] [Indexed: 11/10/2024]
Abstract
INTRODUCTION Three-Dimensional (3D) microneedles have recently gained significant attention due to their versatility, biocompatibility, enhanced permeation, and predictable behavior. The incorporation of biological agents into these 3D constructs has advanced the traditional microneedle into an effective platform for wide-ranging applications. AREAS COVERED This review discusses the current state of microneedle fabrication as well as the developed 3D printed microneedles incorporating labile pharmaceutical agents and biological materials for potential biomedical applications. The mechanical and processing considerations for the preparation of microneedles and the barriers to effective 3D printing of microneedle constructs have additionally been reviewed along with their therapeutic applications and potential for tissue engineering and regenerative applications. Additionally, the regulatory considerations for microneedle approval have been discussed as well as the current clinical trial and patent landscapes. EXPERT OPINION The fields of tissue engineering and regenerative medicine are evolving at a significant pace with researchers constantly focused on incorporating advanced manufacturing techniques for the development of versatile, complex, and biologically specific platforms. 3D bioprinted microneedles, fabricated using conventional 3D printing techniques, have resultantly provided an alternative to 2D bioscaffolds through the incorporation of biological materials within 3D constructs while providing further mechanical stability, increased bioactive permeation and improved innervation into surrounding tissues. This advancement therefore potentially allows for a more effective biomimetic construct with improved tissue-specific cellular growth for the enhanced treatment of physiological conditions requiring tissue regeneration and replacement.
Collapse
Affiliation(s)
- Mershen Govender
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Sunaina Indermun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
4
|
Wang P, Jin L, Zhang M, Wu Y, Duan Z, Guo Y, Wang C, Guo Y, Chen W, Liao Z, Wang Y, Lai R, Lee LP, Qin J. Blood-brain barrier injury and neuroinflammation induced by SARS-CoV-2 in a lung-brain microphysiological system. Nat Biomed Eng 2024; 8:1053-1068. [PMID: 37349391 DOI: 10.1038/s41551-023-01054-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/11/2023] [Indexed: 06/24/2023]
Abstract
In some patients, COVID-19 can trigger neurological symptoms with unclear pathogenesis. Here we describe a microphysiological system integrating alveolus and blood-brain barrier (BBB) tissue chips that recapitulates neuropathogenesis associated with infection by SARS-CoV-2. Direct exposure of the BBB chip to SARS-CoV-2 caused mild changes to the BBB, and infusion of medium from the infected alveolus chip led to more severe injuries on the BBB chip, including endothelial dysfunction, pericyte detachment and neuroinflammation. Transcriptomic analyses indicated downregulated expression of the actin cytoskeleton in brain endothelium and upregulated expression of inflammatory genes in glial cells. We also observed early cerebral microvascular damage following lung infection with a low viral load in the brains of transgenic mice expressing human angiotensin-converting enzyme 2. Our findings suggest that systemic inflammation is probably contributing to neuropathogenesis following SARS-CoV-2 infection, and that direct viral neural invasion might not be a prerequisite for this neuropathogenesis. Lung-brain microphysiological systems should aid the further understanding of the systemic effects and neurological complications of viral infection.
Collapse
Affiliation(s)
- Peng Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Lin Jin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Min Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunsong Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zilei Duan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yaqiong Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Chaoming Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yingqi Guo
- Core Technology Facility of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenwen Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhiyi Liao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yaqing Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences-Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Luke P Lee
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, Korea.
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Science and Technology of China, Hefei, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Park S, Laskow TC, Chen J, Guha P, Dawn B, Kim D. Microphysiological systems for human aging research. Aging Cell 2024; 23:e14070. [PMID: 38180277 PMCID: PMC10928588 DOI: 10.1111/acel.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Recent advances in microphysiological systems (MPS), also known as organs-on-a-chip (OoC), enable the recapitulation of more complex organ and tissue functions on a smaller scale in vitro. MPS therefore provide the potential to better understand human diseases and physiology. To date, numerous MPS platforms have been developed for various tissues and organs, including the heart, liver, kidney, blood vessels, muscle, and adipose tissue. However, only a few studies have explored using MPS platforms to unravel the effects of aging on human physiology and the pathogenesis of age-related diseases. Age is one of the risk factors for many diseases, and enormous interest has been devoted to aging research. As such, a human MPS aging model could provide a more predictive tool to understand the molecular and cellular mechanisms underlying human aging and age-related diseases. These models can also be used to evaluate preclinical drugs for age-related diseases and translate them into clinical settings. Here, we provide a review on the application of MPS in aging research. First, we offer an overview of the molecular, cellular, and physiological changes with age in several tissues or organs. Next, we discuss previous aging models and the current state of MPS for studying human aging and age-related conditions. Lastly, we address the limitations of current MPS and present future directions on the potential of MPS platforms for human aging research.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical EngineeringUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Thomas C. Laskow
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jingchun Chen
- Nevada Institute of Personalized MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Prasun Guha
- Nevada Institute of Personalized MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
- School of Life SciencesUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Deok‐Ho Kim
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Center for Microphysiological SystemsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
6
|
Skardal A. Grand challenges in organoid and organ-on-a-chip technologies. Front Bioeng Biotechnol 2024; 12:1366280. [PMID: 38456004 PMCID: PMC10919399 DOI: 10.3389/fbioe.2024.1366280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 03/09/2024] Open
Affiliation(s)
- Aleksander Skardal
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
- Center for Cancer Engineering, The Ohio State University, Columbus, OH, United States
- Cancer Biology Program, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
7
|
Wang Y, Gao Y, Pan Y, Zhou D, Liu Y, Yin Y, Yang J, Wang Y, Song Y. Emerging trends in organ-on-a-chip systems for drug screening. Acta Pharm Sin B 2023; 13:2483-2509. [PMID: 37425038 PMCID: PMC10326261 DOI: 10.1016/j.apsb.2023.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/15/2023] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
New drug discovery is under growing pressure to satisfy the demand from a wide range of domains, especially from the pharmaceutical industry and healthcare services. Assessment of drug efficacy and safety prior to human clinical trials is a crucial part of drug development, which deserves greater emphasis to reduce the cost and time in drug discovery. Recent advances in microfabrication and tissue engineering have given rise to organ-on-a-chip, an in vitro model capable of recapitulating human organ functions in vivo and providing insight into disease pathophysiology, which offers a potential alternative to animal models for more efficient pre-clinical screening of drug candidates. In this review, we first give a snapshot of general considerations for organ-on-a-chip device design. Then, we comprehensively review the recent advances in organ-on-a-chip for drug screening. Finally, we summarize some key challenges of the progress in this field and discuss future prospects of organ-on-a-chip development. Overall, this review highlights the new avenue that organ-on-a-chip opens for drug development, therapeutic innovation, and precision medicine.
Collapse
Affiliation(s)
- Yanping Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- Sino-French Engineer School, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yuta Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yi Yin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Jingjing Yang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Abstract
Bioprinting as an extension of 3D printing offers capabilities for printing tissues and organs for application in biomedical engineering. Conducting bioprinting in space, where the gravity is zero, can enable new frontiers in tissue engineering. Fabrication of soft tissues, which usually collapse under their own weight, can be accelerated in microgravity conditions as the external forces are eliminated. Furthermore, human colonization in space can be supported by providing critical needs of life and ecosystems by 3D bioprinting without relying on cargos from Earth, e.g., by development and long-term employment of living engineered filters (such as sea sponges-known as critical for initiating and maintaining an ecosystem). This review covers bioprinting methods in microgravity along with providing an analysis on the process of shipping bioprinters to space and presenting a perspective on the prospects of zero-gravity bioprinting.
Collapse
Affiliation(s)
- Misagh Rezapour Sarabi
- Mechanical Engineering Department, School of Engineering, Koç University, Istanbul, Turkey 34450
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany 70569
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Savas Tasoglu
- Mechanical Engineering Department, School of Engineering, Koç University, Istanbul, Turkey 34450
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany 70569
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul, Turkey 34450
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul, Turkey 34450
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey 34684
| |
Collapse
|
9
|
Qiu L, Kong B, Kong T, Wang H. Recent advances in liver-on-chips: Design, fabrication, and applications. SMART MEDICINE 2023; 2:e20220010. [PMID: 39188562 PMCID: PMC11235950 DOI: 10.1002/smmd.20220010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/20/2022] [Indexed: 08/28/2024]
Abstract
The liver is a multifunctional organ and the metabolic center of the human body. Most drugs and toxins are metabolized in the liver, resulting in varying degrees of hepatotoxicity. The damage of liver will seriously affect human health, so it is very important to study the prevention and treatment of liver diseases. At present, there are many research studies in this field. However, most of them are based on animal models, which are limited by the time-consuming processes and species difference between human and animals. In recent years, liver-on-chips have emerged and developed rapidly and are expected to replace animal models. Liver-on-chips refer to the use of a small number of liver cells on the chips to simulate the liver microenvironment and ultrastructure in vivo. They hold extensive applications in multiple fields by reproducing the unique physiological functions of the liver in vitro. In this review, we first introduced the physiology and pathology of liver and then described the cell system of liver-on-chips, the chip-based liver models, and the applications of liver-on-chips in liver transplantation, drug screening, and metabolic evaluation. Finally, we discussed the currently encountered challenges and future trends in liver-on-chips.
Collapse
Affiliation(s)
- Linjie Qiu
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
- School of MedicineSun Yat‐Sen UniversityShenzhenChina
| | - Bin Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Huan Wang
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| |
Collapse
|
10
|
Barui S, Ghosh D, Laurencin CT. Osteochondral regenerative engineering: challenges, state-of-the-art and translational perspectives. Regen Biomater 2022; 10:rbac109. [PMID: 36683736 PMCID: PMC9845524 DOI: 10.1093/rb/rbac109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022] Open
Abstract
Despite quantum leaps, the biomimetic regeneration of cartilage and osteochondral regeneration remains a major challenge, owing to the complex and hierarchical nature of compositional, structural and functional properties. In this review, an account of the prevailing challenges in biomimicking the gradients in porous microstructure, cells and extracellular matrix (ECM) orientation is presented. Further, the spatial arrangement of the cues in inducing vascularization in the subchondral bone region while maintaining the avascular nature of the adjacent cartilage layer is highlighted. With rapid advancement in biomaterials science, biofabrication tools and strategies, the state-of-the-art in osteochondral regeneration since the last decade has expansively elaborated. This includes conventional and additive manufacturing of synthetic/natural/ECM-based biomaterials, tissue-specific/mesenchymal/progenitor cells, growth factors and/or signaling biomolecules. Beyond the laboratory-based research and development, the underlying challenges in translational research are also provided in a dedicated section. A new generation of biomaterial-based acellular scaffold systems with uncompromised biocompatibility and osteochondral regenerative capability is necessary to bridge the clinical demand and commercial supply. Encompassing the basic elements of osteochondral research, this review is believed to serve as a standalone guide for early career researchers, in expanding the research horizon to improve the quality of life of osteoarthritic patients affordably.
Collapse
Affiliation(s)
- Srimanta Barui
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Debolina Ghosh
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|
11
|
Guagliano G, Volpini C, Briatico-Vangosa F, Cornaglia AI, Visai L, Petrini P. Toward 3D-Bioprinted Models of the Liver to Boost Drug Development. Macromol Biosci 2022; 22:e2200264. [PMID: 36106413 DOI: 10.1002/mabi.202200264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/06/2022] [Indexed: 01/15/2023]
Abstract
The main problems in drug development are connected to enormous costs related to the paltry success rate. The current situation empowered the development of high-throughput and reliable instruments, in addition to the current golden standards, able to predict the failures in the early preclinical phase. Being hepatotoxicity responsible for the failure of 30% of clinical trials, and the 21% of withdrawal of marketed drugs, the development of complex in vitro models (CIVMs) of liver is currently one of the hottest topics in the field. Among the different fabrication techniques, 3D-bioprinting is emerging as a powerful ally for their production, allowing the manufacture of three-dimensional constructs characterized by computer-controlled and customized geometry, and inter-batches reproducibility. Thanks to these, it is possible to rapidly produce tailored cell-laden constructs, to be cultured within static and dynamic systems, thus reaching a further degree of personalization when designing in vitro models. This review highlights and prioritizes the most recent advances related to the development of CIVMs of the hepatic environment to be specifically applied to pharmaceutical research, with a special focus on 3D-bioprinting, since the liver is primarily involved in the metabolism of drugs.
Collapse
Affiliation(s)
- Giuseppe Guagliano
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, MI, 20133, Italy
| | - Cristina Volpini
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Via Forlanini 14, Pavia, PV, 27100, Italy.,Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri IRCCS, Via S. Boezio 28, Pavia, PV, 27100, Italy
| | - Francesco Briatico-Vangosa
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, MI, 20133, Italy
| | - Antonia Icaro Cornaglia
- University of Pavia - Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, Via Forlanini 2, Pavia, PV, 27100, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Via Forlanini 14, Pavia, PV, 27100, Italy.,Medicina Clinica-Specialistica, UOR5 Laboratorio Di Nanotecnologie, ICS Maugeri IRCCS, Via S. Boezio 28, Pavia, PV, 27100, Italy.,Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), Università di Pavia Unit, Pavia, PV, 27100, Italy
| | - Paola Petrini
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, MI, 20133, Italy.,Interuniversity Center for the promotion of the 3Rs principles in teaching and research (Centro 3R), Politecnico di Milano Unit, Milano, MI, 20133, Italy
| |
Collapse
|
12
|
Szostak B, Gorący A, Pala B, Rosik J, Ustianowski Ł, Pawlik A. Latest models for the discovery and development of rheumatoid arthritis drugs. Expert Opin Drug Discov 2022; 17:1261-1278. [PMID: 36184990 DOI: 10.1080/17460441.2022.2131765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune disease that reduces the quality of life. The current speed of development of therapeutic agents against RA is not satisfactory. Models on which initial experiments are conducted do not fully reflect human pathogenesis. Overcoming this oversimplification might be a crucial step to accelerate studies on RA treatment. AREAS COVERED The current approaches to produce novel models or to improve currently available models for the development of RA drugs have been discussed. Advantages and drawbacks of two- and three-dimensional cell cultures and animal models have been described based on recently published results of the studies. Moreover, approaches such as tissue engineering or organ-on-a-chip have been reviewed. EXPERT OPINION The cell cultures and animal models used to date appear to be of limited value due to the complexity of the processes involved in RA. Current models in RA research should take into account the heterogeneity of patients in terms of disease subtypes, course, and activity. Several advanced models and tools using human cells and tissues have been developed, including three-dimensional tissues, liquid bioreactors, and more complex joint-on-a-chip devices. This may increase knowledge of the molecular mechanisms leading to disease development, to help identify new biomarkers for early detection, and to develop preventive strategies and more effective treatments.
Collapse
Affiliation(s)
- Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Anna Gorący
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Bartłomiej Pala
- Department of Neurosurgery, Pomeranian Medical University Hospital No. 1, Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland.,Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
13
|
Singh G, Singh S, Kumar R, Parkash C, Pruncu C, Ramakrishna S. Tissues and organ printing: An evolution of technology and materials. Proc Inst Mech Eng H 2022; 236:1695-1710. [DOI: 10.1177/09544119221125084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since its beginnings, three-dimensional printing (3DP) technology has been successful because of ongoing advances in operating principles, the range of materials and cost-saving measures. However, the 3DP technological progressions in the biomedical sector have majorly taken place in the last decade after the evolution of novel 3DP systems, generally categorised as bioprinters and biomaterials to provide a replacement, transplantation or regeneration of the damaged organs and tissue constructs of the human body. There is now substantial scientific literature accessible to support the benefits of digital healthcare procedures with the help of bioprinters. It is of the highest significance to know the fundamental principles of the available printers and the compatibility of biomaterials as their feedstock, notwithstanding the huge potential of bioprinting systems to manufacture organs and other human body components. This paper provides a precise and helpful reading of the different categories of bioprinters, suitable biomaterials, numerical simulations and modelling and examples of much acknowledged clinical practices. The paper will also cite the prominent issues that still have not received desired solutions. Overall, the article will be of great use for all the professionals, scholars and engineers concerned with the 3DP, bioprinting and biomaterials.
Collapse
Affiliation(s)
- Gurminder Singh
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sunpreet Singh
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
- Mechanical Engineering Department, Chandigarh University, Punjab
| | - Raman Kumar
- Mechanical Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Chander Parkash
- School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab, India
| | - Catalin Pruncu
- Departimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials 2022; 287:121639. [PMID: 35779481 DOI: 10.1016/j.biomaterials.2022.121639] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Tissue/organ shortage is a major medical challenge due to donor scarcity and patient immune rejections. Furthermore, it is difficult to predict or mimic the human disease condition in animal models during preclinical studies because disease phenotype differs between humans and animals. Three-dimensional bioprinting (3DBP) is evolving into an unparalleled multidisciplinary technology for engineering three-dimensional (3D) biological tissue with complex architecture and composition. The technology has emerged as a key driver by precise deposition and assembly of biomaterials with patient's/donor cells. This advancement has aided in the successful fabrication of in vitro models, preclinical implants, and tissue/organs-like structures. Here, we critically reviewed the current state of 3D-bioprinting strategies for regenerative therapy in eight organ systems, including nervous, cardiovascular, skeletal, integumentary, endocrine and exocrine, gastrointestinal, respiratory, and urinary systems. We also focus on the application of 3D bioprinting to fabricated in vitro models to study cancer, infection, drug testing, and safety assessment. The concept of in situ 3D bioprinting is discussed, which is the direct printing of tissues at the injury or defect site for reparative and regenerative therapy. Finally, issues such as scalability, immune response, and regulatory approval are discussed, as well as recently developed tools and technologies such as four-dimensional and convergence bioprinting. In addition, information about clinical trials using 3D printing has been included.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India; Faculty of Dentistry, National University of Singapore, Singapore
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, 117543, Singapore; Nusmetic Pte Ltd, Makerspace, I4 Building, 3 Research Link Singapore, 117602, Singapore.
| | - Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| |
Collapse
|
15
|
Deroubaix A, Kramvis A. Imaging Techniques: Essential Tools for the Study of SARS-CoV-2 Infection. Front Cell Infect Microbiol 2022; 12:794264. [PMID: 35937687 PMCID: PMC9355083 DOI: 10.3389/fcimb.2022.794264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/21/2022] [Indexed: 01/08/2023] Open
Abstract
The world has seen the emergence of a new virus in 2019, SARS-CoV-2, causing the COVID-19 pandemic and millions of deaths worldwide. Microscopy can be much more informative than conventional detection methods such as RT-PCR. This review aims to present the up-to-date microscopy observations in patients, the in vitro studies of the virus and viral proteins and their interaction with their host, discuss the microscopy techniques for detection and study of SARS-CoV-2, and summarize the reagents used for SARS-CoV-2 detection. From basic fluorescence microscopy to high resolution techniques and combined technologies, this article shows the power and the potential of microscopy techniques, especially in the field of virology.
Collapse
Affiliation(s)
- Aurélie Deroubaix
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Life Sciences Imaging Facility, University of the Witwatersrand, Johannesburg, South Africa
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
16
|
Messelmani T, Morisseau L, Sakai Y, Legallais C, Le Goff A, Leclerc E, Jellali R. Liver organ-on-chip models for toxicity studies and risk assessment. LAB ON A CHIP 2022; 22:2423-2450. [PMID: 35694831 DOI: 10.1039/d2lc00307d] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The liver is a key organ that plays a pivotal role in metabolism and ensures a variety of functions in the body, including homeostasis, synthesis of essential components, nutrient storage, and detoxification. As the centre of metabolism for exogenous molecules, the liver is continuously exposed to a wide range of compounds, such as drugs, pesticides, and environmental pollutants. Most of these compounds can cause hepatotoxicity and lead to severe and irreversible liver damage. To study the effects of chemicals and drugs on the liver, most commonly, animal models or in vitro 2D cell cultures are used. However, data obtained from animal models lose their relevance when extrapolated to the human metabolic situation and pose ethical concerns, while 2D static cultures are poorly predictive of human in vivo metabolism and toxicity. As a result, there is a widespread need to develop relevant in vitro liver models for toxicology studies. In recent years, progress in tissue engineering, biomaterials, microfabrication, and cell biology has created opportunities for more relevant in vitro models for toxicology studies. Of these models, the liver organ-on-chip (OoC) has shown promising results by reproducing the in vivo behaviour of the cell/organ or a group of organs, the controlled physiological micro-environment, and in vivo cellular metabolic responses. In this review, we discuss the development of liver organ-on-chip technology and its use in toxicity studies. First, we introduce the physiology of the liver and summarize the traditional experimental models for toxicity studies. We then present liver OoC technology, including the general concept, materials used, cell sources, and different approaches. We review the prominent liver OoC and multi-OoC integrating the liver for drug and chemical toxicity studies. Finally, we conclude with the future challenges and directions for developing or improving liver OoC models.
Collapse
Affiliation(s)
- Taha Messelmani
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Lisa Morisseau
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Yasuyuki Sakai
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Cécile Legallais
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Anne Le Goff
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| | - Eric Leclerc
- CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
17
|
Tian T, Ho Y, Chen C, Sun H, Hui J, Yang P, Ge Y, Liu T, Yang J, Mao H. A 3D bio-printed spheroids based perfusion in vitro liver on chip for drug toxicity assays. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Abstract
Drug testing, either on animals or on 2D cell cultures, has its limitations due to inaccurate mimicking of human pathophysiology. The liver, as one of the key organs that filters and detoxifies the blood, is susceptible to drug-induced injuries. Integrating 3D bioprinting with microfluidic chips to fabricate organ-on-chip platforms for 3D liver cell cultures with continuous perfusion can offer a more physiologically relevant liver-mimetic platform for screening drugs and studying liver function. The development of organ-on-chip platforms may ultimately contribute to personalized medicine as well as body-on-chip technology that can test drug responses and organ–organ interactions on a single or linked chip model.
Collapse
|
19
|
Chansoria P, Asif S, Gupta N, Piedrahita J, Shirwaiker RA. Multiscale Anisotropic Tissue Biofabrication via Bulk Acoustic Patterning of Cells and Functional Additives in Hybrid Bioinks. Adv Healthc Mater 2022; 11:e2102351. [PMID: 35030290 PMCID: PMC9117510 DOI: 10.1002/adhm.202102351] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Indexed: 12/11/2022]
Abstract
Recapitulation of the microstructural organization of cellular and extracellular components found in natural tissues is an important but challenging feat for tissue engineering, which demands innovation across both process and material fronts. In this work, a highly versatile ultrasound-assisted biofabrication (UAB) approach is demonstrated that utilizes radiation forces generated by superimposing ultrasonic bulk acoustic waves to rapidly organize arrays of cells and other biomaterial additives within single and multilayered hydrogel constructs. UAB is used in conjunction with a novel hybrid bioink system, comprising of cartilage-forming cells (human adipose-derived stem cells or chondrocytes) and additives to promote cell adhesion (collagen microaggregates or polycaprolactone microfibers) encapsulated within gelatin methacryloyl (GelMA) hydrogels, to fabricate cartilaginous tissue constructs featuring bulk anisotropy. The hybrid matrices fabricated under the appropriate synergistic thermo-reversible and photocrosslinking conditions demonstrate enhanced mechanical stiffness, stretchability, strength, construct shape fidelity and aligned encapsulated cell morphology and collagen II secretion in long-term culture. Hybridization of UAB is also shown with extrusion and stereolithography printing to fabricate constructs featuring 3D perfusable channels for vasculature combined with a crisscross or circumferential organization of cells and adhesive bioadditives, which is relevant for further translation of UAB toward complex physiological-scale biomimetic tissue fabrication.
Collapse
Affiliation(s)
- Parth Chansoria
- Edward P. Fitts Department of Industrial and Systems Engineeringand Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27695USA
| | - Suleman Asif
- Edward P. Fitts Department of Industrial and Systems Engineeringand Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27695USA
| | - Nithin Gupta
- Department of Molecular Biomedical Sciencesand Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27695USA
| | - Jorge Piedrahita
- Department of Molecular Biomedical Sciencesand Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27695USA
| | - Rohan A. Shirwaiker
- Edward P. Fitts Department of Industrial and Systems EngineeringComparative Medicine InstituteJoint Department of Biomedical Engineeringand Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNC27695USA
| |
Collapse
|
20
|
Xie X, Maharjan S, Kelly C, Liu T, Lang RJ, Alperin R, Sebastian S, Bonilla D, Gandolfo S, Boukataya Y, Siadat SM, Zhang YS, Livermore C. Customizable Microfluidic Origami Liver-on-a-Chip (oLOC). ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2100677. [PMID: 35754760 PMCID: PMC9231824 DOI: 10.1002/admt.202100677] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 05/03/2023]
Abstract
The design and manufacture of an origami-based liver-on-a-chip device are presented, together with demonstrations of the chip's effectiveness at recapitulating some of the liver's key in vivo architecture, physical microenvironment, and functions. Laser-cut layers of polyimide tape are folded together with polycarbonate nanoporous membranes to create a stack of three adjacent flow chambers separated by the membranes. Endothelial cells are seeded in the upper and lower flow chambers to simulate sinusoids, and hepatocytes are seeded in the middle flow chamber. Nutrients and metabolites flow through the simulated sinusoids and diffuse between the vascular pathways and the hepatocyte layers, mimicking physiological microcirculation. Studies of cell viability, metabolic functions, and hepatotoxicity of pharmaceutical compounds show that the endothelialized liver-on-a-chip model is conducive to maintaining hepatocyte functions and evaluation of the hepatotoxicity of drugs. Our unique origami approach speeds chip development and optimization, effectively simplifying the laboratory-scale fabrication of on-chip models of human tissues without necessarily reducing their structural and functional sophistication.
Collapse
Affiliation(s)
- Xin Xie
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Chastity Kelly
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Tian Liu
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | | | - Roger Alperin
- Department of Mathematics, San Jose State University, San Jose, CA 95192
| | - Shikha Sebastian
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Diana Bonilla
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Sakura Gandolfo
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Yasmine Boukataya
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | | | - Yu Shrike Zhang
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Carol Livermore
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
21
|
HepG2-Based Designer Cells with Heat-Inducible Enhanced Liver Functions. Cells 2022; 11:cells11071194. [PMID: 35406758 PMCID: PMC8997820 DOI: 10.3390/cells11071194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Functional human hepatocytes have been a pivotal tool in pharmacological studies such as those investigating drug metabolism and hepatotoxicity. However, primary human hepatocytes are difficult to obtain in large quantities and may cause ethical problems, necessitating the development of a new cell source to replace human primary hepatocytes. We previously developed genetically modified murine hepatoma cell lines with inducible enhanced liver functions, in which eight liver-enriched transcription factor (LETF) genes were introduced into hepatoma cells as inducible transgene expression cassettes. Here, we establish a human hepatoma cell line with heat-inducible liver functions using HepG2 cells. The genetically modified hepatoma cells, designated HepG2/8F_HS, actively proliferated under normal culture conditions and, therefore, can be easily prepared in large quantities. When the expression of LETFs was induced by heat treatment at 43 °C for 30 min, cells ceased proliferation and demonstrated enhanced liver functions. Furthermore, three-dimensional spheroid cultures of HepG2/8F_HS cells showed a further increase in liver functions upon heat treatment. Comprehensive transcriptome analysis using DNA microarrays revealed that HepG2/8F_HS cells had enhanced overall expression of many liver function-related genes following heat treatment. HepG2/8F_HS cells could be useful as a new cell source for pharmacological studies and for constructing bioartificial liver systems.
Collapse
|
22
|
Janani G, Priya S, Dey S, Mandal BB. Mimicking Native Liver Lobule Microarchitecture In Vitro with Parenchymal and Non-parenchymal Cells Using 3D Bioprinting for Drug Toxicity and Drug Screening Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10167-10186. [PMID: 35171571 DOI: 10.1021/acsami.2c00312] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bioengineering an in vitro liver model recapitulating the native liver microarchitecture consisting of parenchymal and non-parenchymal cells is crucial in achieving cellular crosstalk and hepatic metabolic functions for accurate hepatotoxicity prediction. Bioprinting holds the promise of engineering constructs with precise control over the spatial distribution of multiple cells. Two distinct tissue-specific liver extracellular matrix (ECM)-based bioinks with excellent printability and rheological attributes are formulated for supporting parenchymal and non-parenchymal cells. A physiologically relevant human vascularized liver model is bioprinted with a novel liver ECM-based bioink laden with human adipose mesenchymal stem cell-derived hepatocyte-like cells (HLCs), human umbilical vein endothelial cells (HUVECs), and human hepatic stellate cells (HHSCs) using an extrusion-based bioprinting approach and validated for hepatotoxicity assessment. The HLC/HUVEC/HHSC-laden liver model resembles native alternate cords of hepatocytes with a functional sinusoidal lumen-like network in both horizontal and vertical directions, demonstrating enhanced albumin production, urea synthesis, and cytochrome P450 (CPR) activity. Furthermore, the liver model is evaluated for drug toxicity assessment following 24 h exposure to different concentrations of (i) non-hepatotoxicants aspirin and dexamethasone, (ii) idiosyncratic hepatotoxicant trovafloxacin mesylate, and (iii) clinical hepatotoxicant acetaminophen and troglitazone. A follow-up cell viability and metabolic competence evaluation by estimating DNA concentration, lactate dehydrogenase activity, and CPR activity revealed a dose-dependent clinically relevant hepatotoxic response. These results corroborated that the developed clinically relevant vascularized liver model is affordable and would aid pharmaceutical companies in speeding up the drug development and provide a robust platform for hepatotoxicity screening.
Collapse
Affiliation(s)
- G Janani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Smriti Priya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- School of Health Science & Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
23
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
24
|
Zarrintaj P, Saeb MR, Stadler FJ, Yazdi MK, Nezhad MN, Mohebbi S, Seidi F, Ganjali MR, Mozafari M. Human Organs-on-Chips: A Review of the State-of-the-Art, Current Prospects, and Future Challenges. Adv Biol (Weinh) 2022; 6:e2000526. [PMID: 34837667 DOI: 10.1002/adbi.202000526] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/03/2021] [Indexed: 01/09/2023]
Abstract
New emerging technologies, remarkably miniaturized 3D organ models and microfluidics, enable simulation of the real in vitro microenvironment ex vivo more closely. There are many fascinating features of innovative organ-on-a-chip (OOC) technology, including the possibility of integrating semipermeable and/or stretchable membranes, creating continuous perfusion of fluids into microchannels and chambers (while maintaining laminar flow regime), embedding microdevices like microsensors, microstimulators, micro heaters, or different cell lines, along with other 3D cell culture technologies. OOC systems are designed to imitate the structure and function of human organs, ranging from breathing lungs to beating hearts. This technology is expected to be able to revolutionize cell biology studies, personalized precision medicine, drug development process, and cancer diagnosis/treatment. OOC systems can significantly reduce the cost associated with tedious drug development processes and the risk of adverse drug reactions in the body, which makes drug screening more effective. The review mainly focus on presenting an overview of the several previously developed OOC systems accompanied by subjects relevant to pharmacy-, cancer-, and placenta-on-a-chip. The challenging issues and opportunities related to these systems are discussed, along with a future perspective for this technology.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518060, China
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Mojtaba Nasiri Nezhad
- Department of Chemical Engineering, Urmia University of Technology, Urmia, 57166-419, Iran
| | - Shabnam Mohebbi
- Department of Chemical Engineering, Tabriz University, Tabriz, 51335-1996, Iran
| | - Farzad Seidi
- Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 14395-1179, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
25
|
Pelechá M, Villanueva-Bádenas E, Timor-López E, Donato MT, Tolosa L. Cell Models and Omics Techniques for the Study of Nonalcoholic Fatty Liver Disease: Focusing on Stem Cell-Derived Cell Models. Antioxidants (Basel) 2021; 11:86. [PMID: 35052590 PMCID: PMC8772881 DOI: 10.3390/antiox11010086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is now the leading cause of chronic liver disease in western countries. The molecular mechanisms leading to NAFLD are only partially understood, and effective therapeutic interventions are clearly needed. Therefore, preclinical research is required to improve knowledge about NAFLD physiopathology and to identify new therapeutic targets. Primary human hepatocytes, human hepatic cell lines, and human stem cell-derived hepatocyte-like cells exhibit different hepatic phenotypes and have been widely used for studying NAFLD pathogenesis. In this paper, apart from employing the different in vitro cell models for the in vitro assessment of NAFLD, we also reviewed other approaches (metabolomics, transcriptomics, and high-content screening). We aimed to summarize the characteristics of different cell types and methods and to discuss their major advantages and disadvantages for NAFLD modeling.
Collapse
Affiliation(s)
- María Pelechá
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
| | - Estela Villanueva-Bádenas
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
| | - Enrique Timor-López
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
| | - María Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
26
|
Xie H, Appelt JW, Jenkins RW. Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology. Cancers (Basel) 2021; 13:cancers13236052. [PMID: 34885161 PMCID: PMC8656483 DOI: 10.3390/cancers13236052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The clinical success of cancer immunotherapy targeting immune checkpoints (e.g., PD-1, CTLA-4) has ushered in a new era of cancer therapeutics aimed at promoting antitumor immunity in hopes of offering durable clinical responses for patients with advanced, metastatic cancer. This success has also reinvigorated interest in developing tumor model systems that recapitulate key features of antitumor immune responses to complement existing in vivo tumor models. Patient-derived tumor models have emerged in recent years to facilitate study of tumor–immune dynamics. Microfluidic technology has enabled development of microphysiologic systems (MPSs) for the evaluation of the tumor microenvironment, which have shown early promise in studying tumor–immune dynamics. Further development of microfluidic-based “tumor-on-a-chip” MPSs to study tumor–immune interactions may overcome several key challenges currently facing tumor immunology. Abstract Recent advances in cancer immunotherapy have led a paradigm shift in the treatment of multiple malignancies with renewed focus on the host immune system and tumor–immune dynamics. However, intrinsic and acquired resistance to immunotherapy limits patient benefits and wider application. Investigations into the mechanisms of response and resistance to immunotherapy have demonstrated key tumor-intrinsic and tumor-extrinsic factors. Studying complex interactions with multiple cell types is necessary to understand the mechanisms of response and resistance to cancer therapies. The lack of model systems that faithfully recapitulate key features of the tumor microenvironment (TME) remains a challenge for cancer researchers. Here, we review recent advances in TME models focusing on the use of microfluidic technology to study and model the TME, including the application of microfluidic technologies to study tumor–immune dynamics and response to cancer therapeutics. We also discuss the limitations of current systems and suggest future directions to utilize this technology to its highest potential.
Collapse
Affiliation(s)
- Hongyan Xie
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Jackson W. Appelt
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (H.X.); (J.W.A.)
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: ; Tel.: +617-726-9372; Fax: +844-542-5959
| |
Collapse
|
27
|
Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A review on biomaterials for ovarian tissue engineering. Acta Biomater 2021; 135:48-63. [PMID: 34454083 DOI: 10.1016/j.actbio.2021.08.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Considerable challenges in engineering the female reproductive tissue are the follicle's unique architecture, the need to recapitulate the extracellular matrix, and tissue vascularization. Over the years, various strategies have been developed for preserving fertility in women diagnosed with cancer, such as embryo, oocyte, or ovarian tissue cryopreservation. While autotransplantation of cryopreserved ovarian tissue is a viable choice to restore fertility in prepubertal girls and women who need to begin chemo- or radiotherapy soon after the cancer diagnosis, it is not suitable for all patients due to the risk of having malignant cells present in the ovarian fragments in some types of cancer. Advances in tissue engineering such as 3D printing and ovary-on-a-chip technologies have the potential to be a translational strategy for precisely recapitulating normal tissue in terms of physical structure, vascularization, and molecular and cellular spatial distribution. This review first introduces the ovarian tissue structure, describes suitable properties of biomaterials for ovarian tissue engineering, and highlights recent advances in tissue engineering for developing an artificial ovary. STATEMENT OF SIGNIFICANCE: The increase of survival rates in young cancer patients has been accompanied by a rise in infertility/sterility in cancer survivors caused by the gonadotoxic effect of some chemotherapy regimens or radiotherapy. Such side-effect has a negative impact on these patients' quality of life as one of their main concerns is generating biologically related children. To aid female cancer patients, several research groups have been resorting to tissue engineering strategies to develop an artificial ovary. In this review, we discuss the numerous biomaterials cited in the literature that have been tested to encapsulate and in vitro culture or transplant isolated preantral follicles from human and different animal models. We also summarize the recent advances in tissue engineering that can potentially be optimal strategies for developing an artificial ovary.
Collapse
|
28
|
Three-Dimensional Liver Culture Systems to Maintain Primary Hepatic Properties for Toxicological Analysis In Vitro. Int J Mol Sci 2021; 22:ijms221910214. [PMID: 34638555 PMCID: PMC8508724 DOI: 10.3390/ijms221910214] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 12/13/2022] Open
Abstract
Drug-induced liver injury (DILI) is the major reason for failures in drug development and withdrawal of approved drugs from the market. Two-dimensional cultures of hepatocytes often fail to reliably predict DILI: hepatoma cell lines such as HepG2 do not reflect important primary-like hepatic properties and primary human hepatocytes (pHHs) dedifferentiate quickly in vitro and are, therefore, not suitable for long-term toxicity studies. More predictive liver in vitro models are urgently required in drug development and compound safety evaluation. This review discusses available human hepatic cell types for in vitro toxicology analysis and their usage in established and emerging three-dimensional (3D) culture systems. Generally, 3D cultures maintain or improve primary hepatic functions (including expression of drug-metabolizing enzymes) of different liver cells for several weeks of culture, thus allowing long-term and repeated-dose toxicity studies. Spheroid cultures of pHHs have been comprehensively tested, but also other cell types such as HepaRG benefit from 3D culture systems. Emerging 3D culture techniques include usage of induced pluripotent stem-cell-derived hepatocytes and primary-like upcyte cells, as well as advanced culture techniques such as microfluidic liver-on-a-chip models. In-depth characterization of existing and emerging 3D hepatocyte technologies is indispensable for successful implementation of such systems in toxicological analysis.
Collapse
|
29
|
Celikkin N, Presutti D, Maiullari F, Fornetti E, Agarwal T, Paradiso A, Volpi M, Święszkowski W, Bearzi C, Barbetta A, Zhang YS, Gargioli C, Rizzi R, Costantini M. Tackling Current Biomedical Challenges With Frontier Biofabrication and Organ-On-A-Chip Technologies. Front Bioeng Biotechnol 2021; 9:732130. [PMID: 34604190 PMCID: PMC8481890 DOI: 10.3389/fbioe.2021.732130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decades, biomedical research has significantly boomed in the academia and industrial sectors, and it is expected to continue to grow at a rapid pace in the future. An in-depth analysis of such growth is not trivial, given the intrinsic multidisciplinary nature of biomedical research. Nevertheless, technological advances are among the main factors which have enabled such progress. In this review, we discuss the contribution of two state-of-the-art technologies-namely biofabrication and organ-on-a-chip-in a selection of biomedical research areas. We start by providing an overview of these technologies and their capacities in fabricating advanced in vitro tissue/organ models. We then analyze their impact on addressing a range of current biomedical challenges. Ultimately, we speculate about their future developments by integrating these technologies with other cutting-edge research fields such as artificial intelligence and big data analysis.
Collapse
Affiliation(s)
- Nehar Celikkin
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Dario Presutti
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Fabio Maiullari
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
| | | | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Alessia Paradiso
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Marina Volpi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Claudia Bearzi
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy (IRGB-CNR), Milan, Italy
| | - Andrea Barbetta
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, MA, United States
| | - Cesare Gargioli
- Department of Biology, Rome University Tor Vergata, Rome, Italy
| | - Roberto Rizzi
- Istituto Nazionale Genetica Molecolare INGM “Romeo Ed Enrica Invernizzi”, Milan, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy (IRGB-CNR), Milan, Italy
- Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Milan, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
30
|
Ya S, Ding W, Li S, Du K, Zhang Y, Li C, Liu J, Li F, Li P, Luo T, He L, Xu A, Gao D, Qiu B. On-Chip Construction of Liver Lobules with Self-Assembled Perfusable Hepatic Sinusoid Networks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32640-32652. [PMID: 34225454 DOI: 10.1021/acsami.1c00794] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although various liver chips have been developed using emerging organ-on-a-chip techniques, it remains an enormous challenge to replicate the liver lobules with self-assembled perfusable hepatic sinusoid networks. Herein we develop a lifelike bionic liver lobule chip (LLC), on which the perfusable hepatic sinusoid networks are achieved using a microflow-guided angiogenesis methodology; additionally, during and after self-assembly, oxygen concentration is regulated to mimic physiologically dissolved levels supplied by actual hepatic arterioles and venules. This liver lobule design thereby produces more bionic liver microstructures, higher metabolic abilities, and longer lasting hepatocyte function than other liver-on-a-chip techniques that are able to deliver. We found that the flow through the unique micropillar design in the cell coculture zone guides the radiating assembly of the hepatic sinusoid, the oxygen concentration affects the morphology of the sinusoid by proliferation, and the oxygen gradient plays a key role in prolonging hepatocyte function. The expected breadth of applications our LLC is suited to is demonstrated by means of preliminarily testing chronic and acute hepatotoxicity of drugs and replicating growth of tumors in situ. This work provides new insights into designing more extensive bionic vascularized liver chips, while achieving longer lasting ex-vivo hepatocyte function.
Collapse
Affiliation(s)
- Shengnan Ya
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Weiping Ding
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Lab for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shibo Li
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kun Du
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuanyuan Zhang
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Chengpan Li
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jing Liu
- School of Biology, Food and Environment Engineering, Hefei University, Hefei, Anhui 230601, China
| | - Fenfen Li
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Lab for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ping Li
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Tianzhi Luo
- School of Engineering Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Liqun He
- School of Engineering Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ao Xu
- Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Bensheng Qiu
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China
- Hefei National Lab for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
31
|
Coban MA, Morrison J, Maharjan S, Hernandez Medina DH, Li W, Zhang YS, Freeman WD, Radisky ES, Le Roch KG, Weisend CM, Ebihara H, Caulfield TR. Attacking COVID-19 Progression Using Multi-Drug Therapy for Synergetic Target Engagement. Biomolecules 2021; 11:biom11060787. [PMID: 34071060 PMCID: PMC8224684 DOI: 10.3390/biom11060787] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is a devastating respiratory and inflammatory illness caused by a new coronavirus that is rapidly spreading throughout the human population. Over the past 12 months, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, has already infected over 160 million (>20% located in United States) and killed more than 3.3 million people around the world (>20% deaths in USA). As we face one of the most challenging times in our recent history, there is an urgent need to identify drug candidates that can attack SARS-CoV-2 on multiple fronts. We have therefore initiated a computational dynamics drug pipeline using molecular modeling, structure simulation, docking and machine learning models to predict the inhibitory activity of several million compounds against two essential SARS-CoV-2 viral proteins and their host protein interactors-S/Ace2, Tmprss2, Cathepsins L and K, and Mpro-to prevent binding, membrane fusion and replication of the virus, respectively. All together, we generated an ensemble of structural conformations that increase high-quality docking outcomes to screen over >6 million compounds including all FDA-approved drugs, drugs under clinical trial (>3000) and an additional >30 million selected chemotypes from fragment libraries. Our results yielded an initial set of 350 high-value compounds from both new and FDA-approved compounds that can now be tested experimentally in appropriate biological model systems. We anticipate that our results will initiate screening campaigns and accelerate the discovery of COVID-19 treatments.
Collapse
Affiliation(s)
- Mathew A. Coban
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (M.A.C.); (E.S.R.)
| | - Juliet Morrison
- Department of Microbiology and Plant Pathology, University of California, 900 University, Riverside, CA 92521, USA;
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA 02139, USA; (S.M.); (D.H.H.M.); (W.L.); (Y.S.Z.)
| | - David Hyram Hernandez Medina
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA 02139, USA; (S.M.); (D.H.H.M.); (W.L.); (Y.S.Z.)
| | - Wanlu Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA 02139, USA; (S.M.); (D.H.H.M.); (W.L.); (Y.S.Z.)
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne St, Cambridge, MA 02139, USA; (S.M.); (D.H.H.M.); (W.L.); (Y.S.Z.)
| | - William D. Freeman
- Department of Neurology, Mayo Clinic, 4500 San Pablo South, Jacksonville, FL 32224, USA;
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (M.A.C.); (E.S.R.)
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, 900 University, Riverside, CA 92521, USA;
| | - Carla M. Weisend
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (C.M.W.); (H.E.)
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (C.M.W.); (H.E.)
| | - Thomas R. Caulfield
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (M.A.C.); (E.S.R.)
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Quantitative Health Science, Division of Computational Biology, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-904-953-6072
| |
Collapse
|
32
|
Ustun M, Rahmani Dabbagh S, Ilci IS, Bagci-Onder T, Tasoglu S. Glioma-on-a-Chip Models. MICROMACHINES 2021; 12:490. [PMID: 33926127 PMCID: PMC8145995 DOI: 10.3390/mi12050490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022]
Abstract
Glioma, as an aggressive type of cancer, accounts for virtually 80% of malignant brain tumors. Despite advances in therapeutic approaches, the long-term survival of glioma patients is poor (it is usually fatal within 12-14 months). Glioma-on-chip platforms, with continuous perfusion, mimic in vivo metabolic functions of cancer cells for analytical purposes. This offers an unprecedented opportunity for understanding the underlying reasons that arise glioma, determining the most effective radiotherapy approach, testing different drug combinations, and screening conceivable side effects of drugs on other organs. Glioma-on-chip technologies can ultimately enhance the efficacy of treatments, promote the survival rate of patients, and pave a path for personalized medicine. In this perspective paper, we briefly review the latest developments of glioma-on-chip technologies, such as therapy applications, drug screening, and cell behavior studies, and discuss the current challenges as well as future research directions in this field.
Collapse
Affiliation(s)
- Merve Ustun
- Graduate School of Sciences and Engineering, Koc University, Sariyer, 34450 Istanbul, Turkey;
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering, Koç University, Sariyer, 34450 Istanbul, Turkey;
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, 34450 Istanbul, Turkey
| | - Irem Sultan Ilci
- Department of Bioengineering, Yildiz Technical University, 34220 Istanbul, Turkey;
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey;
- Koç University Research Center for Translational Medicine, Koç University, Sariyer, 34450 Istanbul, Turkey
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, 34450 Istanbul, Turkey;
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, 34450 Istanbul, Turkey
- Koç University Research Center for Translational Medicine, Koç University, Sariyer, 34450 Istanbul, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Bebek, 34342 Istanbul, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, 34684 Istanbul, Turkey
| |
Collapse
|
33
|
Chiang MC, Nicol CJB, Lin CH, Chen SJ, Yen C, Huang RN. Nanogold induces anti-inflammation against oxidative stress induced in human neural stem cells exposed to amyloid-beta peptide. Neurochem Int 2021; 145:104992. [PMID: 33609598 DOI: 10.1016/j.neuint.2021.104992] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/13/2021] [Accepted: 02/13/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with progressive memory loss resulting in dementia. Amyloid-beta (Aβ) peptides play a critical role in the pathogenesis of the disease by promoting inflammation and oxidative stress, leading to neurodegeneration in the brains of AD patients. Numerous in vitro 3D cell culture models are useful mimics for understanding cellular changes that occur during AD under in vivo conditions. The 3D Bioprinter developed at the CELLINK INKREDIBLE was used in this study to directly investigate the influence of 3D conditions on human neural stem cells (hNSCs) exposed to Aβ. The development of anti-AD drugs is usually difficult, mainly due to a lack of therapeutic efficacy and enhanced serious side effects. Gold nanoparticles (AuNPs) demonstrate benefits in the treatment of several diseases, including AD, and may provide a novel therapeutic approach for AD patients. However, the neuroprotective mechanisms by which AuNPs exert these beneficial effects in hNSCs treated with Aβ are still not well understood. Therefore, we tested the hypothesis that AuNPs protect against Aβ-induced inflammation and oxidative stress in hNSCs under 3D conditions. Here, we showed that AuNPs improved the viability of hNSCs exposed to Aβ, which was correlated with the reduction in the expression of inflammatory cytokines, such as TNF-α and IL-1β. In addition, AuNPs rescued the levels of the transcripts of inhibitory kappa B kinase (IKK) in Aβ-treated hNSCs. The Aβ-mediated increases in mRNA, protein, and nuclear translocation levels of NF-κB (p65), a key transcription factor involved in inflammatory responses, were all significantly abrogated following co-treatment of hNSCs with AuNPs. In addition, treatment with AuNPs significantly restored iNOS and COX-2 levels in Aβ-treated hNSCs. Importantly, hNSCs co-treated with AuNPs were significantly protected from Aβ-induced oxidative stress, as detected using the DCFH-DA and DHE staining assays. Furthermore, hNSCs co-treated with AuNPs were significantly protected from the Aβ-induced reduction in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2 downstream antioxidant target genes (SOD-1, SOD-2, Gpx1, GSH, Catalase, and HO-1). Moreover, AuNPs reduced the aggregates and increased the proteasome activity and the expression of HSP27 and HSP70 genes in Aβ-treated hNSCs. Taken together, these findings provide the first evidence extending our understanding of the molecular mechanisms under 3D scaffold conditions by which AuNPs reverse the inflammation and oxidative stress-induced in hNSCs exposed to Aβ. These findings may facilitate the development of novel treatments for AD.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
| | - Christopher J B Nicol
- Department of Pathology & Molecular Medicine, Cancer Biology and Genetics Division, Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada; Department of Biomedical & Molecular Sciences, Cancer Biology and Genetics Division, Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Chien-Hung Lin
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Pediatrics, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; College of Science and Engineering, Fu Jen Catholic University, New Taipei, Taiwan
| | - Shiang-Jiuun Chen
- Department of Life Science, Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chiahui Yen
- Department of International Business, Ming Chuan University, Taipei, 111, Taiwan
| | - Rong-Nan Huang
- Department of Entomology and Research Center for Plant-Medicine, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
34
|
Bilirgen AC, Toker M, Odabas S, Yetisen AK, Garipcan B, Tasoglu S. Plant-Based Scaffolds in Tissue Engineering. ACS Biomater Sci Eng 2021; 7:926-938. [PMID: 33591719 DOI: 10.1021/acsbiomaterials.0c01527] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A wide range of platforms has been developed for 3D culture of cells in vitro to aggregate and align cells to resemble in vivo conditions in order to enhance communication between cells and promote differentiation. The cellulose skeleton of plant tissue can serve as an attainable scaffold for mammalian cells after decellularization, which is advantageous when compared to synthetic polymers or animal-derived scaffolds. Adjustable variables to modify the physical and biochemical properties of the resulting scaffolds include the protocol for the sodium dodecyl sulfate (SDS)-based decellularization procedure, surface coatings for cell attachment, plant type for decellularization, differentiation media, and integrity and shape of the substrate. These tunable cellulose platforms can host a wide range of mammalian cell types from muscle to bone cells, as well as malignancies. Here, fundamentals and applications of decellularized plant-based scaffolds are discussed. These biocompatible, naturally perfused, tunable, and easily prepared decellularized scaffolds may allow eco-friendly manufacturing frameworks for application in tissue engineering and organs-on-a-chip.
Collapse
Affiliation(s)
| | - Melis Toker
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul, Turkey 34684
| | - Sedat Odabas
- Interdisiplinary Research Unit for Advanced Materials (INTRAM), Ankara University, Ankara, Turkey 06560.,Department of Chemistry, Ankara University, Ankara, Turkey 06560
| | - Ali Kemal Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Bora Garipcan
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul, Turkey 34684
| | - Savas Tasoglu
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul, Turkey 34684.,Department of Mechanical Engineering, Koç University, Sariyer, Istanbul, Turkey 34450.,Koc University Research Center for Translational Medicine, Koç University, Sariyer, Istanbul, Turkey 34450.,Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul, Turkey 34450.,Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul, Turkey 34470
| |
Collapse
|
35
|
Temirel M, Hawxhurst C, Tasoglu S. Shape Fidelity of 3D-Bioprinted Biodegradable Patches. MICROMACHINES 2021; 12:195. [PMID: 33668565 PMCID: PMC7918604 DOI: 10.3390/mi12020195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022]
Abstract
There is high demand in the medical field for rapid fabrication of biodegradable patches at low cost and high throughput for various instant applications, such as wound healing. Bioprinting is a promising technology, which makes it possible to fabricate custom biodegradable patches. However, several challenges with the physical and chemical fidelity of bioprinted patches must be solved to increase the performance of patches. Here, we presented two hybrid hydrogels made of alginate-cellulose nanocrystal (CNC) (2% w/v alginate and 4% w/v CNC) and alginate-TEMPO oxidized cellulose nanofibril (T-CNF) (4% w/v alginate and 1% w/v T-CNC) via ionic crosslinking using calcium chloride (2% w/v). These hydrogels were rheologically characterized, and printing parameters were tuned for improved shape fidelity for use with an extrusion printing head. Young's modulus of 3D printed patches was found to be 0.2-0.45 MPa, which was between the physiological ranges of human skin. Mechanical fidelity of patches was assessed through cycling loading experiments that emulate human tissue motion. 3D bioprinted patches were exposed to a solution mimicking the body fluid to characterize the biodegradability of patches at body temperature. The biodegradation of alginate-CNC and alginate-CNF was around 90% and 50% at the end of the 30-day in vitro degradation trial, which might be sufficient time for wound healing. Finally, the biocompatibility of the hydrogels was tested by cell viability analysis using NIH/3T3 mouse fibroblast cells. This study may pave the way toward improving the performance of patches and developing new patch material with high physical and chemical fidelity for instant application.
Collapse
Affiliation(s)
- Mikail Temirel
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Christopher Hawxhurst
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, 34450 Istanbul, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, 34450 Istanbul, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, 34684 Istanbul, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Bebek, 34470 Istanbul, Turkey
- Koc University Research Center for Translational Medicine, Koç University, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
36
|
Temirel M, Dabbagh SR, Tasoglu S. Hemp-Based Microfluidics. MICROMACHINES 2021; 12:mi12020182. [PMID: 33673025 PMCID: PMC7917756 DOI: 10.3390/mi12020182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
Hemp is a sustainable, recyclable, and high-yield annual crop that can be used to produce textiles, plastics, composites, concrete, fibers, biofuels, bionutrients, and paper. The integration of microfluidic paper-based analytical devices (µPADs) with hemp paper can improve the environmental friendliness and high-throughputness of µPADs. However, there is a lack of sufficient scientific studies exploring the functionality, pros, and cons of hemp as a substrate for µPADs. Herein, we used a desktop pen plotter and commercial markers to pattern hydrophobic barriers on hemp paper, in a single step, in order to characterize the ability of markers to form water-resistant patterns on hemp. In addition, since a higher resolution results in densely packed, cost-effective devices with a minimized need for costly reagents, we examined the smallest and thinnest water-resistant patterns plottable on hemp-based papers. Furthermore, the wicking speed and distance of fluids with different viscosities on Whatman No. 1 and hemp papers were compared. Additionally, the wettability of hemp and Whatman grade 1 paper was compared by measuring their contact angles. Besides, the effects of various channel sizes, as well as the number of branches, on the wicking distance of the channeled hemp paper was studied. The governing equations for the wicking distance on channels with laser-cut and hydrophobic side boundaries are presented and were evaluated with our experimental data, elucidating the applicability of the modified Washburn equation for modeling the wicking distance of fluids on hemp paper-based microfluidic devices. Finally, we validated hemp paper as a substrate for the detection and analysis of the potassium concentration in artificial urine.
Collapse
Affiliation(s)
- Mikail Temirel
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey;
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey;
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul 34684, Turkey
- Koc University Research Center for Translational Medicine, Koç University, Sariyer, Istanbul 34450, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34470, Turkey
- Correspondence:
| |
Collapse
|
37
|
Synthesis and characterization of site selective photo-crosslinkable glycidyl methacrylate functionalized gelatin-based 3D hydrogel scaffold for liver tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111694. [PMID: 33812568 DOI: 10.1016/j.msec.2020.111694] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
The presented work outlined the development of a new biocompatible hydrogel material that has potential applications in soft tissue engineering. As a proof of concept, human hepatocytes were used to demonstrate the suitability of this material in providing conducive environment for cellular growth and functional development. Herein, a detailed synthesis of novel gelatin derivatives - photo-crosslinkable glycidyl methacrylate (GMA) functionalized gelatins (Gelatin-GMA), and preparation of three-dimensional (3D) hydrogel scaffolds for the encapsulated Huh-7.5 cells is reported. The Gelatin-GMA biopolymers were synthesized at two different pH values of 3.5 (acidic) and 10.5 (basic) where two different photo-crosslinkable polymers were formed utilizing -COOH & -OH groups in acidic pH, and -NH2 & -OH groups in basic pH. The hydrogels were prepared using an initiator (Irgacure I2959) in the presence of UV light. The Gelatin-GMA biopolymers were characterized using spectroscopic studies which confirmed the successful preparation of the polymer derivatives. Rheological measurement was carried out to characterize the mechanical properties and derive the mesh sizes of the 3D hydrogels. Subsequently, detailed in vitro hepatocyte compatibility and functionality studies were performed in the 3D cell seeded hydrogel platform. The 3D hydrogel design with larger mesh sizes utilizes the advantage of the excellent diffusion properties of porous platform, and enhanced cell-growth was observed, which in turn elicited favorable Huh-7.5 response. The hydrogels led to improved cellular functions such as differentiation, viability and proliferation. Overall, it showed that the Gelatin-GMA based hydrogels presented better results compared to control sample (GelMA) because of the higher mesh sizes in Gelatin-GMA based hydrogels. Additionally, the functional group studies of the two Gelatin-GMA samples revealed that the cell functionalities are almost unaffected even after the tripeptide - Arg-Gly-Asp (RGD) in Gelatin-GMA synthesized at pH 3.5 is no longer completely available.
Collapse
|
38
|
Ozdalgic B, Ustun M, Dabbagh SR, Haznedaroglu BZ, Kiraz A, Tasoglu S. Microfluidics for microalgal biotechnology. Biotechnol Bioeng 2021; 118:1545-1563. [PMID: 33410126 DOI: 10.1002/bit.27669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 01/09/2023]
Abstract
Microalgae have expanded their roles as renewable and sustainable feedstocks for biofuel, smart nutrition, biopharmaceutical, cosmeceutical, biosensing, and space technologies. They accumulate valuable biochemical compounds from protein, carbohydrate, and lipid groups, including pigments and carotenoids. Microalgal biomass, which can be adopted for multivalorization under biorefinery settings, allows not only the production of various biofuels but also other value-added biotechnological products. However, state-of-the-art technologies are required to optimize yield, quality, and the economical aspects of both upstream and downstream processes. As such, the need to use microfluidic-based devices for both fundamental research and industrial applications of microalgae, arises due to their microscale sizes and dilute cultures. Microfluidics-based devices are superior to their competitors through their ability to perform multiple functions such as sorting and analyzing small amounts of samples (nanoliter to picoliter) with higher sensitivities. Here, we review emerging applications of microfluidic technologies on microalgal processes in cell sorting, cultivation, harvesting, and applications in biofuels, biosensing, drug delivery, and nutrition.
Collapse
Affiliation(s)
- Berin Ozdalgic
- Graduate School of Sciences and Engineering, Koc University, Sariyer, Istanbul, Turkey.,Department of Medical Services and Techniques, Advanced Vocational School, Dogus University, Istanbul, Turkey
| | - Merve Ustun
- Graduate School of Sciences and Engineering, Koc University, Sariyer, Istanbul, Turkey
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering, Engineering Faculty, Koc University, Sariyer, Istanbul, Turkey.,Koc University Arcelik Research Center for Creative Industries (KUAR), Koc University, Sariyer, Istanbul, Turkey
| | - Berat Z Haznedaroglu
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul, Turkey.,Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul, Turkey
| | - Alper Kiraz
- Department of Physics, Koc University, Sariyer, Istanbul, Turkey.,Department of Electrical Engineering, Koc University, Sariyer, Istanbul, Turkey.,Koc University Research Center for Translational Medicine, Koc University, Sariyer, Istanbul, Turkey
| | - Savas Tasoglu
- Department of Mechanical Engineering, Engineering Faculty, Koc University, Sariyer, Istanbul, Turkey.,Koc University Arcelik Research Center for Creative Industries (KUAR), Koc University, Sariyer, Istanbul, Turkey.,Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul, Turkey.,Koc University Research Center for Translational Medicine, Koc University, Sariyer, Istanbul, Turkey.,Institute of Biomedical Engineering, Bogazici University, Cengelkoy, Istanbul, Turkey
| |
Collapse
|
39
|
Dabbagh SR, Sarabi MR, Rahbarghazi R, Sokullu E, Yetisen AK, Tasoglu S. 3D-printed microneedles in biomedical applications. iScience 2021; 24:102012. [PMID: 33506186 PMCID: PMC7814162 DOI: 10.1016/j.isci.2020.102012] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Conventional needle technologies can be advanced with emerging nano- and micro-fabrication methods to fabricate microneedles. Nano-/micro-fabricated microneedles seek to mitigate penetration pain and tissue damage, as well as providing accurately controlled robust channels for administrating bioagents and collecting body fluids. Here, design and 3D printing strategies of microneedles are discussed with emerging applications in biomedical devices and healthcare technologies. 3D printing offers customization, cost-efficiency, a rapid turnaround time between design iterations, and enhanced accessibility. Increasing the printing resolution, the accuracy of the features, and the accessibility of low-cost raw printing materials have empowered 3D printing to be utilized for the fabrication of microneedle platforms. The development of 3D-printed microneedles has enabled the evolution of pain-free controlled release drug delivery systems, devices for extracting fluids from the cutaneous tissue, biosignal acquisition, and point-of-care diagnostic devices in personalized medicine.
Collapse
Affiliation(s)
- Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166653431, Iran
| | - Emel Sokullu
- Koc University School of Medicine, Koç University, Sariyer, Istanbul 34450, Turkey
| | - Ali K. Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
- Koc University Research Center for Translational Medicine, Koç University, Sariyer, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul 34684, Turkey
| |
Collapse
|
40
|
Kronemberger GS, Carneiro FA, Rezende DF, Baptista LS. Spheroids and organoids as humanized 3D scaffold-free engineered tissues for SARS-CoV-2 viral infection and drug screening. Artif Organs 2021; 45:548-558. [PMID: 33264436 PMCID: PMC7753831 DOI: 10.1111/aor.13880] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
The new coronavirus (2019‐nCoV) or the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) was officially declared by the World Health Organization (WHO) as a pandemic in March 2020. To date, there are no specific antiviral drugs proven to be effective in treating SARS‐CoV‐2, requiring joint efforts from different research fronts to discover the best route of treatment. The first decisions in drug discovery are based on 2D cell culture using high‐throughput screening. In this context, spheroids and organoids emerge as a reliable alternative. Both are scaffold‐free 3D engineered constructs that recapitulate key cellular and molecular events of tissue physiology. Different studies have already shown their advantages as a model for different infectious diseases, including SARS‐CoV‐2 and for drug screening. The use of these 3D engineered tissues as an in vitro model can fill the gap between 2D cell culture and in vivo preclinical assays (animal models) as they could recapitulate the entire viral life cycle. The main objective of this review is to understand spheroid and organoid biology, highlighting their advantages and disadvantages, and how these scaffold‐free engineered tissues can contribute to a better comprehension of viral infection by SARS‐CoV‐2 and to the development of in vitro high‐throughput models for drug screening.
Collapse
Affiliation(s)
- Gabriela S Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Campus Duque de Caxias, Rio de Janeiro, Brazil.,Postgraduation Program of Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias, Brazil
| | - Fabiana A Carneiro
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Campus Duque de Caxias, Rio de Janeiro, Brazil
| | | | - Leandra S Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Campus Duque de Caxias, Rio de Janeiro, Brazil.,Postgraduation Program of Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias, Brazil
| |
Collapse
|
41
|
Huang D, Zhang X, Fu X, Zu Y, Sun W, Zhao Y. Liver spheroids on chips as emerging platforms for drug screening. ENGINEERED REGENERATION 2021. [DOI: 10.1016/j.engreg.2021.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
42
|
Wang Z, Kapadia W, Li C, Lin F, Pereira RF, Granja PL, Sarmento B, Cui W. Tissue-specific engineering: 3D bioprinting in regenerative medicine. J Control Release 2021; 329:237-256. [DOI: 10.1016/j.jconrel.2020.11.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022]
|
43
|
Yang G, Mahadik B, Mollot T, Pinsky J, Jones A, Robinson A, Najafali D, Rivkin D, Katsnelson J, Piard C, Fisher JP. Engineered Liver Tissue Culture in an In Vitro Tubular Perfusion System. Tissue Eng Part A 2020; 26:1369-1377. [PMID: 33054685 DOI: 10.1089/ten.tea.2020.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Liver disease and the subsequent loss of liver function is an enormous clinical challenge. A severe shortage of donor liver tissue greatly limits patients' options for a timely transplantation. Tissue engineering approaches offer a promising alternative to organ transplantation by engineering artificial implantable tissues. We have established a platform of cell-laden microbeads as basic building blocks to assemble macroscopic tissues via different mechanisms. This modular fabrication strategy possesses great potential for liver tissue engineering in a bottom-up manner. In this study, we encapsulated human hepatocytes into microbeads presenting a favorable microenvironment consisting of collagen and mesenchymal stem cells, and then we perfused the beads in a three-dimensional printed tubular perfusion bioreactor that promoted oxygen and medium diffusion to the impregnated cells. We noted high cell vitality and retention of parenchymal cell functionality for up to 30 days in this culture system. Our engineering-based approach led to the advancement in tissue size and long-term functionality of an artificial liver tissue in vitro.
Collapse
Affiliation(s)
- Guang Yang
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA.,NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Bhushan Mahadik
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA.,NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Trevor Mollot
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Julia Pinsky
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Athenia Jones
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Alexis Robinson
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Daniel Najafali
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Daniel Rivkin
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Jenny Katsnelson
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - Charlotte Piard
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA
| | - John P Fisher
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, Maryland, USA.,NIBIB/NIH Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
44
|
Ioannidis K, Danalatos RI, Champeris Tsaniras S, Kaplani K, Lokka G, Kanellou A, Papachristou DJ, Bokias G, Lygerou Z, Taraviras S. A Custom Ultra-Low-Cost 3D Bioprinter Supports Cell Growth and Differentiation. Front Bioeng Biotechnol 2020; 8:580889. [PMID: 33251196 PMCID: PMC7676439 DOI: 10.3389/fbioe.2020.580889] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
Advances in 3D bioprinting have allowed the use of stem cells along with biomaterials and growth factors toward novel tissue engineering approaches. However, the cost of these systems along with their consumables is currently extremely high, limiting their applicability. To address this, we converted a 3D printer into an open source 3D bioprinter and produced a customized bioink based on accessible alginate/gelatin precursors, leading to a cost-effective solution. The bioprinter's resolution, including line width, spreading ratio and extrusion uniformity measurements, along with the rheological properties of the bioinks were analyzed, revealing high bioprinting accuracy within the printability window. Following the bioprinting process, cell survival and proliferation were validated on HeLa Kyoto and HEK293T cell lines. In addition, we isolated and 3D bioprinted postnatal neural stem cell progenitors derived from the mouse subventricular zone as well as mesenchymal stem cells derived from mouse bone marrow. Our results suggest that our low-cost 3D bioprinter can support cell proliferation and differentiation of two different types of primary stem cell populations, indicating that it can be used as a reliable tool for developing efficient research models for stem cell research and tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Konstantina Kaplani
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Georgia Lokka
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Anastasia Kanellou
- Laboratory of Bone and Soft Tissue Studies, Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Dionysios J. Papachristou
- Laboratory of Bone and Soft Tissue Studies, Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, Patras, Greece
| | - Georgios Bokias
- Department of Chemistry, University of Patras, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
45
|
Evaluation of hepatic drug-metabolism for glioblastoma using liver-brain chip. Biotechnol Lett 2020; 43:383-392. [PMID: 33145669 DOI: 10.1007/s10529-020-03043-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022]
Abstract
Glioma is one of the most aggressive and highly fatal diseases with an extremely poor prognosis. Considering the poor clinical response to therapy in glioma, it is urgent to establish an in vitro model to facilitate the screening and assessment of anti-brain-tumor drugs. The blood-brain barrier (BBB), as well as liver metabolism plays an important role in determining the pharmacological activity of many anti-brain-tumor drugs. In this work, we designed a multi-interface liver-brain chip integrating co-culture system to assess hepatic metabolism dependent cytotoxicity of anti-brain-tumor drug in vitro. This microdevice composed of three microchannels which were separated by porous membrane and collagen. HepG2 and U87 cells were cultured in separated channels as mimics of liver and glioblastoma. Brain microvascular endothelial cells (BMECS) and cerebral astrocytes were co-cultured on collagen to mimic the brain microvascular endothelial barrier. Three common anti-tumor drugs, paclitaxel (PTX), capecitabine (CAP) and temozolomide (TMZ), were evaluated on this chip. In integrated liver-brain chip, liver enhanced the cytotoxicity of CAP on U87 cells by 30%, but having no significant effect on TMZ. The BBB decreased the cytotoxicity of PTX by 20%, while no significant effects were observed on TMZ and CAP, indicating the importance of liver metabolism and blood-brain barrier on the evaluation of anti-brain-tumor drugs. This work provides a biomimetic liver-brain model to mimic the physiological and pharmacological processes in vitro and presents a simple platform for long-term cell co-culture, drug delivery and metabolism, and real-time analysis of drug effects on brain cancer.
Collapse
|
46
|
Tao G, Huang J, Moorthy B, Wang C, Hu M, Gao S, Ghose R. Potential role of drug metabolizing enzymes in chemotherapy-induced gastrointestinal toxicity and hepatotoxicity. Expert Opin Drug Metab Toxicol 2020; 16:1109-1124. [PMID: 32841068 PMCID: PMC8059872 DOI: 10.1080/17425255.2020.1815705] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Toxicity of chemotherapy drugs is the leading cause of poor therapeutic outcome in many cancer patients. Gastrointestinal (GI) toxicity and hepatotoxicity are among the most common side effects of current chemotherapies. Emerging studies indicate that many chemotherapy-induced toxicities are driven by drug metabolism, but very few reviews summarize the role of drug metabolism in chemotherapy-induced GI toxicity and hepatotoxicity. In this review, we highlighted the importance of drug metabolizing enzymes (DMEs) in chemotherapy toxicity. AREAS COVERED Our review demonstrated that altered activity of DMEs play important role in chemotherapy-induced GI toxicity and hepatotoxicity. Besides direct changes in catalytic activities, the transcription of DMEs is also affected by inflammation, cell-signaling pathways, and/or by drugs in cancer patients due to the disease etiology. EXPERT OPINION More studies should focus on how DMEs are altered during chemotherapy treatment, and how such changes affect the metabolism of chemotherapy drug itself. This mutual interaction between chemotherapies and DMEs can lead to excessive exposure of parent drug or toxic metabolites which ultimately cause GI adverse effect.
Collapse
Affiliation(s)
- Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston TX, U.S
| | - Junqing Huang
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | | | - Cathryn Wang
- Department of Pharmacy Practice and Translational Research, College of Pharmacy, University of Houston, Houston TX, U.S
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston TX, U.S
| | - Song Gao
- Department of Pharmaceutical and Environmental Health Sciences, Texas Southern University, Houston TX, U.S
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston TX, U.S
| |
Collapse
|
47
|
Moradi E, Jalili-Firoozinezhad S, Solati-Hashjin M. Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomater 2020; 116:67-83. [PMID: 32890749 DOI: 10.1016/j.actbio.2020.08.041] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/22/2020] [Accepted: 08/27/2020] [Indexed: 02/08/2023]
Abstract
The liver is the largest internal organ of the body with complex microarchitecture and function that plays critical roles in drug metabolism. Hepatotoxicity and drug-induced liver injury (DILI) caused by various drugs is the main reason for late-stage drug failures. Moreover, liver diseases are among the leading causes of death in the world, with the number of new cases arising each year. Although animal models have been used to understand human drug metabolism and toxicity before clinical trials, tridimensional microphysiological systems, such as liver-on-a-chip (Liver Chip) platforms, could better recapitulate features of human liver physiology and pathophysiology and thus, are often more predictive of human outcome. Liver Chip devices have shown promising results in mimicking in vivo condition by recapitulating the sinusoidal structure of the liver, maintaining high cell viability and cellular phenotypes, and emulating native liver functions. Here, we first review the cellular constituents and physiology of the liver and then critically discuss the state-of-the-art chip-based liver models and their applications in drug screening, disease modeling, and regenerative medicine. We finally address the pending issues of existing platforms and touch upon future directions for developing new, advanced on-chip models.
Collapse
Affiliation(s)
- Ehsanollah Moradi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | - Sasan Jalili-Firoozinezhad
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Mehran Solati-Hashjin
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran.
| |
Collapse
|
48
|
Fonseca AC, Melchels FPW, Ferreira MJS, Moxon SR, Potjewyd G, Dargaville TR, Kimber SJ, Domingos M. Emulating Human Tissues and Organs: A Bioprinting Perspective Toward Personalized Medicine. Chem Rev 2020; 120:11128-11174. [PMID: 32937071 PMCID: PMC7645917 DOI: 10.1021/acs.chemrev.0c00342] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 02/06/2023]
Abstract
The lack of in vitro tissue and organ models capable of mimicking human physiology severely hinders the development and clinical translation of therapies and drugs with higher in vivo efficacy. Bioprinting allow us to fill this gap and generate 3D tissue analogues with complex functional and structural organization through the precise spatial positioning of multiple materials and cells. In this review, we report the latest developments in terms of bioprinting technologies for the manufacturing of cellular constructs with particular emphasis on material extrusion, jetting, and vat photopolymerization. We then describe the different base polymers employed in the formulation of bioinks for bioprinting and examine the strategies used to tailor their properties according to both processability and tissue maturation requirements. By relating function to organization in human development, we examine the potential of pluripotent stem cells in the context of bioprinting toward a new generation of tissue models for personalized medicine. We also highlight the most relevant attempts to engineer artificial models for the study of human organogenesis, disease, and drug screening. Finally, we discuss the most pressing challenges, opportunities, and future prospects in the field of bioprinting for tissue engineering (TE) and regenerative medicine (RM).
Collapse
Affiliation(s)
- Ana Clotilde Fonseca
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Ferry P. W. Melchels
- Institute
of Biological Chemistry, Biophysics and Bioengineering, School of
Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, U.K.
| | - Miguel J. S. Ferreira
- Department
of Mechanical, Aerospace and Civil Engineering, School of Engineering,
Faculty of Science and Engineering, The
University of Manchester, Manchester M13 9PL, U.K.
| | - Samuel R. Moxon
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Geoffrey Potjewyd
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Tim R. Dargaville
- Institute
of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Queensland 4001, Australia
| | - Susan J. Kimber
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Marco Domingos
- Department
of Mechanical, Aerospace and Civil Engineering, School of Engineering,
Faculty of Science and Engineering, The
University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
49
|
Khalil AS, Jaenisch R, Mooney DJ. Engineered tissues and strategies to overcome challenges in drug development. Adv Drug Deliv Rev 2020; 158:116-139. [PMID: 32987094 PMCID: PMC7518978 DOI: 10.1016/j.addr.2020.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/29/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Current preclinical studies in drug development utilize high-throughput in vitro screens to identify drug leads, followed by both in vitro and in vivo models to predict lead candidates' pharmacokinetic and pharmacodynamic properties. The goal of these studies is to reduce the number of lead drug candidates down to the most likely to succeed in later human clinical trials. However, only 1 in 10 drug candidates that emerge from preclinical studies will succeed and become an approved therapeutic. Lack of efficacy or undetected toxicity represents roughly 75% of the causes for these failures, despite these parameters being the primary exclusion criteria in preclinical studies. Recently, advances in both biology and engineering have created new tools for constructing new preclinical models. These models can complement those used in current preclinical studies by helping to create more realistic representations of human tissues in vitro and in vivo. In this review, we describe current preclinical models to identify their value and limitations and then discuss select areas of research where improvements in preclinical models are particularly needed to advance drug development. Following this, we discuss design considerations for constructing preclinical models and then highlight recent advances in these efforts. Taken together, we aim to review the advances as of 2020 surrounding the prospect of biological and engineering tools for adding enhanced biological relevance to preclinical studies to aid in the challenges of failed drug candidates and the burden this poses on the drug development enterprise and thus healthcare.
Collapse
Affiliation(s)
- Andrew S Khalil
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA.
| |
Collapse
|
50
|
Maschmeyer I, Kakava S. Organ-on-a-Chip. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:311-342. [PMID: 32948885 DOI: 10.1007/10_2020_135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Limitations of the current tools used in the drug development process, cell cultures, and animal models have highlighted the need for a new powerful tool that can emulate the human physiology in vitro. Advances in the field of microfluidics have made the realization of this tool closer than ever. Organ-on-a-chip platforms have been the first step forward, leading to the combination and integration of multiple organ models in the same platform with human-on-a-chip being the ultimate goal. Despite the current progress and technological developments, there are still several unmet engineering and biological challenges curtailing their development and widespread application in the biomedical field. The potentials, challenges, and current work on this unprecedented tool are being discussed in this chapter.
Collapse
|