1
|
Lim S, Chung HJ, Oh YJ, Hinterdorfer P, Myung SC, Seo Y, Ko K. Modification of Fc-fusion protein structures to enhance efficacy of cancer vaccine in plant expression system. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:960-982. [PMID: 39724301 PMCID: PMC11869200 DOI: 10.1111/pbi.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Epithelial cell adhesion molecule (EpCAM) fused to IgG, IgA and IgM Fc domains was expressed to create IgG, IgA and IgM-like structures as anti-cancer vaccines in Nicotiana tabacum. High-mannose glycan structures were generated by adding a C-terminal endoplasmic reticulum (ER) retention motif (KDEL) to the Fc domain (FcK) to produce EpCAM-Fc and EpCAM-FcK proteins in transgenic plants via Agrobacterium-mediated transformation. Cross-fertilization of EpCAM-Fc (FcK) transgenic plants with Joining chain (J-chain, J and JK) transgenic plants led to stable expression of large quaternary EpCAM-IgA Fc (EpCAM-A) and IgM-like (EpCAM-M) proteins. Immunoblotting, SDS-PAGE and ELISA analyses demonstrated that proteins with KDEL had higher expression levels and binding activity to anti-EpCAM IgGs. IgM showed the strongest binding among the fusion proteins, followed by IgA and IgG. Sera from BALB/c mice immunized with these vaccines produced anti-EpCAM IgGs. Flow cytometry indicated that the EpCAM-Fc fusion proteins significantly activated CD8+ cytotoxic T cells, CD4+ helper T cells and B cells, particularly with EpCAM-FcKP and EpCAM-FcP (FcKP) × JP (JKP). The induced anti-EpCAM IgGs captured human prostate cancer PC-3 and colorectal cancer SW620 cells. Sera from immunized mice inhibited cancer cell proliferation, migration and invasion; down-regulated proliferation markers (PCNA, Ki-67) and epithelial-mesenchymal transition markers (Vimentin); and up-regulated E-cadherin. These findings suggest that N. tabacum can produce effective vaccine candidates to induce anti-cancer immune responses.
Collapse
Affiliation(s)
- Sohee Lim
- BioSystems Design Lab, Department of Medicine, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Hyun Joo Chung
- Department of Urology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Yoo Jin Oh
- Department of Applied Experimental BiophysicsJohannes Kepler UniversityLinzAustria
| | - Peter Hinterdorfer
- Department of Applied Experimental BiophysicsJohannes Kepler UniversityLinzAustria
| | - Soon Chul Myung
- Department of Urology, College of MedicineChung‐Ang UniversitySeoulKorea
| | - Young‐Jin Seo
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Kisung Ko
- BioSystems Design Lab, Department of Medicine, College of MedicineChung‐Ang UniversitySeoulKorea
| |
Collapse
|
2
|
Vo DK, Trinh KTL. Molecular Farming for Immunization: Current Advances and Future Prospects in Plant-Produced Vaccines. Vaccines (Basel) 2025; 13:191. [PMID: 40006737 PMCID: PMC11860421 DOI: 10.3390/vaccines13020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Using plants as bioreactors, molecular farming has emerged as a versatile and sustainable platform for producing recombinant vaccines, therapeutic proteins, industrial enzymes, and nutraceuticals. This innovative approach leverages the unique advantages of plants, including scalability, cost-effectiveness, and reduced risk of contamination with human pathogens. Recent advancements in gene editing, transient expression systems, and nanoparticle-based delivery technologies have significantly enhanced the efficiency and versatility of plant-based systems. Particularly in vaccine development, molecular farming has demonstrated its potential with notable successes such as Medicago's Covifenz for COVID-19, illustrating the capacity of plant-based platforms to address global health emergencies rapidly. Furthermore, edible vaccines have opened new avenues in the delivery of vaccines, mainly in settings with low resources where the cold chain used for conventional logistics is a challenge. However, optimization of protein yield and stability, the complexity of purification processes, and regulatory hurdles are some of the challenges that still remain. This review discusses the current status of vaccine development using plant-based expression systems, operational mechanisms for plant expression platforms, major applications in the prevention of infectious diseases, and new developments, such as nanoparticle-mediated delivery and cancer vaccines. The discussion will also touch on ethical considerations, the regulatory framework, and future trends with respect to the transformative capacity of plant-derived vaccines in ensuring greater global accessibility and cost-effectiveness of the vaccination. This field holds great promise for the infectious disease area and, indeed, for applications in personalized medicine and biopharmaceuticals in the near future.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kieu The Loan Trinh
- Bionano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Bravo-Vázquez LA, Mora-Hernández EO, Rodríguez AL, Sahare P, Bandyopadhyay A, Duttaroy AK, Paul S. Current Advances of Plant-Based Vaccines for Neurodegenerative Diseases. Pharmaceutics 2023; 15:711. [PMID: 36840033 PMCID: PMC9963606 DOI: 10.3390/pharmaceutics15020711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by the progressive degeneration and/or loss of neurons belonging to the central nervous system, and represent one of the major global health issues. Therefore, a number of immunotherapeutic approaches targeting the non-functional or toxic proteins that induce neurodegeneration in NDDs have been designed in the last decades. In this context, due to unprecedented advances in genetic engineering techniques and molecular farming technology, pioneering plant-based immunogenic antigen expression systems have been developed aiming to offer reliable alternatives to deal with important NDDs, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Diverse reports have evidenced that plant-made vaccines trigger significant immune responses in model animals, supported by the production of antibodies against the aberrant proteins expressed in the aforementioned NDDs. Moreover, these immunogenic tools have various advantages that make them a viable alternative for preventing and treating NDDs, such as high scalability, no risk of contamination with human pathogens, cold chain free production, and lower production costs. Hence, this article presents an overview of the current progress on plant-manufactured vaccines for NDDs and discusses its future prospects.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Erick Octavio Mora-Hernández
- School of Engineering and Sciences, Campus Mexico City, Tecnologico de Monterrey, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, Mexico City 14380, Mexico
| | - Alma L. Rodríguez
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Padmavati Sahare
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM 3001, Juriquilla, Querétaro 76230, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila 4031, Philippines
- Reliance Industries Ltd., Navi Mumbai 400701, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046 Blindern, 0317 Oslo, Norway
| | - Sujay Paul
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| |
Collapse
|
4
|
Harnessing the Potential of Plant Expression System towards the Production of Vaccines for the Prevention of Human Papillomavirus and Cervical Cancer. Vaccines (Basel) 2022; 10:vaccines10122064. [PMID: 36560473 PMCID: PMC9782824 DOI: 10.3390/vaccines10122064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Cervical cancer is the most common gynecological malignant tumor worldwide, and it remains a major health problem among women, especially in developing countries. Despite the significant research efforts employed for tumor prevention, cervical cancer ranks as the leading cause of cancer death. Human papillomavirus (HPV) is the most important risk factor for cervical cancer. Cervical cancer is a preventable disease, for which early detection could increase survival rates. Immunotherapies represent a promising approach in the treatment of cancer, and several potential candidates are in clinical trials, while some are available in the market. However, equal access to available HPV vaccines is limited due to their high cost, which remains a global challenge for cervical cancer prevention. The implementation of screening programs, disease control systems, and medical advancement in developed countries reduce the serious complications associated with the disease somewhat; however, the incidence and prevalence of cervical cancer in low-income and middle-income countries continues to gradually increase, making it the leading cause of mortality, largely due to the unaffordable and inaccessible anti-cancer therapeutic options. In recent years, plants have been considered as a cost-effective production system for the development of vaccines, therapeutics, and other biopharmaceuticals. Several proof-of-concept studies showed the possibility of producing recombinant biopharmaceuticals for cancer immunotherapy in a plant platform. This review summarizes the current knowledge and therapeutic options for the prevention of cervical cancer and discusses the potential of the plant expression platform to produce affordable HPV vaccines.
Collapse
|
5
|
Immunoinformatics Approach for Epitope-Based Vaccine Design: Key Steps for Breast Cancer Vaccine. Diagnostics (Basel) 2022; 12:diagnostics12122981. [PMID: 36552988 PMCID: PMC9777080 DOI: 10.3390/diagnostics12122981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Vaccines are an upcoming medical intervention for breast cancer. By targeting the tumor antigen, cancer vaccines can be designed to train the immune system to recognize tumor cells. Therefore, along with technological advances, the vaccine design process is now starting to be carried out with more rational methods such as designing epitope-based peptide vaccines using immunoinformatics methods. Immunoinformatics methods can assist vaccine design in terms of antigenicity and safety. Common protocols used to design epitope-based peptide vaccines include tumor antigen identification, protein structure analysis, T cell epitope prediction, epitope characterization, and evaluation of protein-epitope interactions. Tumor antigen can be divided into two types: tumor associated antigen and tumor specific antigen. We will discuss the identification of tumor antigens using high-throughput technologies. Protein structure analysis comprises the physiochemical, hydrochemical, and antigenicity of the protein. T cell epitope prediction models are widely available with various prediction parameters as well as filtering tools for the prediction results. Epitope characterization such as allergenicity and toxicity can be done in silico as well using allergenicity and toxicity predictors. Evaluation of protein-epitope interactions can also be carried out in silico with molecular simulation. We will also discuss current and future developments of breast cancer vaccines using an immunoinformatics approach. Finally, although prediction models have high accuracy, the opposite can happen after being tested in vitro and in vivo. Therefore, further studies are needed to ensure the effectiveness of the vaccine to be developed. Although epitope-based peptide vaccines have the disadvantage of low immunogenicity, the addition of adjuvants can be a solution.
Collapse
|
6
|
Dobrica M, van Eerde A, Tucureanu C, Onu A, Paruch L, Caras I, Vlase E, Steen H, Haugslien S, Alonzi D, Zitzmann N, Bock R, Dubuisson J, Popescu C, Stavaru C, Liu Clarke J, Branza‐Nichita N. Hepatitis C virus E2 envelope glycoprotein produced in Nicotiana benthamiana triggers humoral response with virus-neutralizing activity in vaccinated mice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2027-2039. [PMID: 34002936 PMCID: PMC8486241 DOI: 10.1111/pbi.13631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/27/2021] [Accepted: 05/13/2021] [Indexed: 05/03/2023]
Abstract
Chronic infection with hepatitis C virus (HCV) remains a leading cause of liver-related pathologies and a global health problem, currently affecting more than 71 million people worldwide. The development of a prophylactic vaccine is much needed to complement the effective antiviral treatment available and achieve HCV eradication. Current strategies focus on increasing the immunogenicity of the HCV envelope glycoprotein E2, the major target of virus-neutralizing antibodies, by testing various expression systems or manipulating the protein conformation and the N-glycosylation pattern. Here we report the first evidence of successful production of the full-length HCV E2 glycoprotein in Nicotiana benthamiana, by using the Agrobacterium-mediated transient expression technology. Molecular and functional analysis showed that the viral protein was correctly processed in plant cells and achieved the native folding required for binding to CD81, one of the HCV receptors. N-glycan analysis of HCV-E2 produced in N. benthamiana and mammalian cells indicated host-specific trimming of mannose residues and possibly, protein trafficking. Notably, the plant-derived viral antigen triggered a significant immune response in vaccinated mice, characterized by the presence of antibodies with HCV-neutralizing activity. Together, our study demonstrates that N. benthamiana is a viable alternative to costly mammalian cell cultures for the expression of complex viral antigens and supports the use of plants as cost-effective production platforms for the development of HCV vaccines.
Collapse
Affiliation(s)
| | | | - Catalin Tucureanu
- Cantacuzino” Medico‐Military National Research InstituteBucharestRomania
| | - Adrian Onu
- Cantacuzino” Medico‐Military National Research InstituteBucharestRomania
| | - Lisa Paruch
- NIBIO ‐ Norwegian Institute of Bioeconomy ResearchÅsNorway
| | - Iuliana Caras
- Cantacuzino” Medico‐Military National Research InstituteBucharestRomania
| | - Ene Vlase
- Cantacuzino” Medico‐Military National Research InstituteBucharestRomania
| | - Hege Steen
- NIBIO ‐ Norwegian Institute of Bioeconomy ResearchÅsNorway
| | | | - Dominic Alonzi
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
| | - Nicole Zitzmann
- Oxford Glycobiology InstituteDepartment of BiochemistryUniversity of OxfordOxfordUK
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Jean Dubuisson
- Université LilleCNRSINSERMCHU LilleInstitut Pasteur de LilleU1019‐UMR 9017‐CIIL‐Center for Infection and Immunity of LilleLilleFrance
| | | | - Crina Stavaru
- Cantacuzino” Medico‐Military National Research InstituteBucharestRomania
| | | | | |
Collapse
|
7
|
Rahimian N, Miraei HR, Amiri A, Ebrahimi MS, Nahand JS, Tarrahimofrad H, Hamblin MR, Khan H, Mirzaei H. Plant-based vaccines and cancer therapy: Where are we now and where are we going? Pharmacol Res 2021; 169:105655. [PMID: 34004270 DOI: 10.1016/j.phrs.2021.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Therapeutic vaccines are an effective approach in cancer therapy for treating the disease at later stages. The Food and Drug Administration (FDA) recently approved the first therapeutic cancer vaccine, and further studies are ongoing in clinical trials. These are expected to result in the future development of vaccines with relatively improved efficacy. Several vaccination approaches are being studied in pre-clinical and clinical trials, including the generation of anti-cancer vaccines by plant expression systems.This approach has advantages, such as high safety and low costs, especially for the synthesis of recombinant proteins. Nevertheless, the development of anti-cancer vaccines in plants is faced with some technical obstacles.Herein, we summarize some vaccines that have been used in cancer therapy, with an emphasis on plant-based vaccines.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Hamid Reza Miraei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashahd, Iran
| | | | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 20282028, South Africa
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Kim K, Kang YJ, Park SR, Kim DS, Lee SW, Ko K, Ponndorf D, Ko K. Effect of leaf position and days post-infiltration on transient expression of colorectal cancer vaccine candidate proteins GA733-Fc and GA733-FcK in Nicotiana benthamiana plant. PeerJ 2021; 9:e10851. [PMID: 33868796 PMCID: PMC8035899 DOI: 10.7717/peerj.10851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Immunization with thetumor-associated antigen GA733 glycoprotein, which is highly expressed in colorectal cancer, is considered to be a promising strategy for cancer prevention and treatment. We cloned a fusion gene of GA733 and immunoglobulin Fc fragment (GA733-Fc), and that of GA733-Fc and an endoplasmic reticulum retention motif (GA733-FcK) into the Cowpea mosaic virus (CPMV)-based transient plant expression vector, pEAQ-HT. Agrobacterium tumefaciens (LBA4404) transformed with the vectors pEAQ-HT-GA733-Fc and pEAQ-HT-GA733-FcK was infiltrated into the leaves of Nicotiana benthamiana plants. To optimize harvesting of leaf to express therapeutic glycoproteins both spatially and temporally, protein expression levels at various leaf positions (top, middle, and base) and days post-infiltration (dpi) were investigated. The GA733-Fc and GA733-FcK genes were detected in leaves at 1–10 dpi using PCR. As assessed by western blot, GA733-Fc and GA733-FcK were expressed at the highest levels in the top leaf position at 5 dpi, and GA733-FcK was expressed more than GA733-Fc. The proteins were successfully purified from infiltrated N. benthamiana leaves using protein A affinity chromatography. ELISA verified that an anti-GA733 antibody recognized both purified proteins. Thus, a functional GA733-Fc colorectal cancer vaccine protein can be transiently expressed using a CPMV virus-based vector, with an optimized expression time and leaf position post-infiltration.
Collapse
Affiliation(s)
- Kibum Kim
- Department of Medicine, Therapeutic Protein Engineering Lab, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Yang Joo Kang
- Department of Medicine, Therapeutic Protein Engineering Lab, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Se Ra Park
- Department of Medicine, Therapeutic Protein Engineering Lab, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun, South Korea
| | - Seung-Won Lee
- Department of Medicine, Therapeutic Protein Engineering Lab, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Kinarm Ko
- Department of Stem Cell Biology, Konkuk University School of Medicine, Konkuk University, Seoul, South Korea
| | - Daniel Ponndorf
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Colney, Norwich, UK
| | - Kisung Ko
- Department of Medicine, Therapeutic Protein Engineering Lab, College of Medicine, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
9
|
Ward BJ, Séguin A, Couillard J, Trépanier S, Landry N. Phase III: Randomized observer-blind trial to evaluate lot-to-lot consistency of a new plant-derived quadrivalent virus like particle influenza vaccine in adults 18-49 years of age. Vaccine 2021; 39:1528-1533. [PMID: 33581920 DOI: 10.1016/j.vaccine.2021.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/22/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The global reliance on eggs to produce most influenza vaccines has several limitations and new approaches to influenza vaccine production are needed. Herein we describe a phase 3, lot-to-lot consistency trial (NCT03321968) of a quadrivalent, recombinant, virus-like particle (VLP) influenza vaccine produced in plants. This platform is based on transient expression of proteins in Nicotiana benthamiana and yields VLPs bearing hemagglutinin (HA) protein trimers that are combined in a quadrivalent vaccine (QVLP). METHODS The HAs targeted in this study were A/California/07/2009 H1N1, A/Hong Kong/4801/2014 H3N2, B/Brisbane/60/08 and B/Phuket/3073/2013: recommended for the 2016-2017 Northern Hemisphere season. Healthy adults 18-49 years of age (n = 1200) were randomized 1:1:1 to receive a 0.5 mL intramuscular injection of QVLP (30 μg HA/strain) from three sequential lots. Local and systemic reactions were monitored for 21 days post-vaccination and blood was collected pre-vaccination and at day 21 (D21) after vaccination to measure hemagglutination inhibition (HI) antibodies. RESULTS Subject demographics were similar between groups and compliance with study procedures was 96.3%. The study population was 54.8% female, the mean age (±SD) was 29.9 ± 9.01 and the racial distribution was 77.8% Caucasian, 15.6% Asian, 5.8% Black/African American and 0.8% other. The HI responses met the Center for Biologics Evaluation and Research criteria for seroconversion (SCR ≥ 40%) and seroprotection rates (SPR ≥ 70%). The geometric mean fold rise in HI titers was ≥ 2.5 for all 4 strains for each lot. Lot-to-lot consistency was met with the 95% confidence intervals of the D21 mean geometric titre ratios falling between 0.67 and 1.5 for all four strains. No safety concerns were identified. Solicited adverse events were generally mild and transient: typical for what is reported after inactivated influenza vaccines. CONCLUSIONS This study supported earlier findings of the safety profile and immunogenicity of the plant-derived QVLP and demonstrated the consistency with which it can be produced.
Collapse
Affiliation(s)
- Brian J Ward
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada; Research Institute of the McGill University Health Centre, 1001 Decarie Street, EM3-3248, Montreal, QC H4A 3J1, Canada
| | - Annie Séguin
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada
| | - Julie Couillard
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada
| | - Sonia Trépanier
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada
| | - Nathalie Landry
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC G1V 3V9, Canada.
| |
Collapse
|
10
|
Shahgolzari M, Pazhouhandeh M, Milani M, Fiering S, Khosroushahi AY. Alfalfa mosaic virus nanoparticles-based in situ vaccination induces antitumor immune responses in breast cancer model. Nanomedicine (Lond) 2021; 16:97-107. [PMID: 33442986 DOI: 10.2217/nnm-2020-0311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Preclinical and clinical studies show that local and systemic antitumor efficacy is achievable by in situ vaccination (ISV) using plant virus nanoparticles in which immunostimulatory reagents are directly administered into the tumor rather than systemically. Aim: To investigate a minimally studied plant virus nanoparticle, alfalfa mosaic virus (AMV), for ISV treatment of 4T1, the very aggressive and metastatic murine triple-negative breast cancer model. Materials & methods: AMV nanoparticles were propagated and characterized. Their treatment impact on in vivo tumors were analyzed using determination of inherent immunogenicity, cytokine analysis, western blotting analysis and immunohistochemistry methodologies. Results: AMV used as an ISV significantly slowed down tumor progression and prolonged survival through immune mechanisms (p < 0.001). Conclusion: Mechanistic studies show that ISV with AMV increases costimulatory molecules, inflammatory cytokines and immune effector cell infiltration and downregulates immune-suppressive molecules.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsoud Pazhouhandeh
- Biotechnology Dept. Agriculture Fac. Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Steven Fiering
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03756, USA.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth & Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Park SH, Ji KY, Kim HM, Ma SH, Park SY, Do JH, Oh DB, Kang HS, Shim JS, Joung YH. Optimization of the human colorectal carcinoma antigen GA733-2 production in tobacco plants. PLANT BIOTECHNOLOGY REPORTS 2021; 15:55-67. [PMID: 33520002 PMCID: PMC7825390 DOI: 10.1007/s11816-020-00657-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 05/02/2023]
Abstract
The colorectal carcinoma-associated protein GA733-2 is one of the representative candidate protein for the development of plant-derived colorectal cancer vaccine. Despite of its significant importance for colorectal vaccine development, low efficiency of GA733-2 production limits its wide applications. To improve productivity of GA733-2 in plants, we here tested multiple factors that affect expression of recombinant GA733-2 (rGA733-2) and rGA733 fused to fragment crystallizable (Fc) domain (rGA733-Fc) protein. The rGA733-2 and rGA733-Fc proteins were highly expressed when the pBINPLUS vector system was used for transient expression in tobacco plants. In addition, the length of interval between rGA733-2 and left border of T-DNA affected the expression of rGA733 protein. Transient expression analysis using various combinations of Agrobacterium tumefaciens strains (C58C1, LBA4404, and GV3101) and tobacco species (Nicotiana tabacum cv. Xanthi nc and Nicotiana benthamiana) revealed that higher accumulation of rGA733-2 and rGA733-Fc proteins were obtained by combination of A. tumefaciens LBA4404 and Nicotiana benthamiana. Transgenic plants generated by introduction of the rGA733-2 and rGA733-Fc expression cassettes also significantly accumulated corresponding recombinant proteins. Bioactivity and stability of the plant-derived rGA733 and rGA733-Fc were evaluated by further in vitro assay, western blot and N-glycosylation analysis. Collectively, we here suggest the optimal condition for efficient production of functional rGA733-2 protein in tobacco system.
Collapse
Affiliation(s)
- Se Hee Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Kon-Young Ji
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054 Korea
| | - Hyun Min Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Sang Hoon Ma
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Seo Young Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Ju Hui Do
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Doo-Byoung Oh
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Korea
- Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon, 34113 Korea
| | - Hyung Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Young Hee Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186 Korea
| |
Collapse
|
12
|
Ward BJ, Makarkov A, Séguin A, Pillet S, Trépanier S, Dhaliwall J, Libman MD, Vesikari T, Landry N. Efficacy, immunogenicity, and safety of a plant-derived, quadrivalent, virus-like particle influenza vaccine in adults (18-64 years) and older adults (≥65 years): two multicentre, randomised phase 3 trials. Lancet 2020; 396:1491-1503. [PMID: 33065035 DOI: 10.1016/s0140-6736(20)32014-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Seasonal influenza remains a substantial public health threat despite the availability of egg-derived and other vaccines. Plant-based manufacturing might address some of the limitations of current vaccines. We describe two phase 3 efficacy studies of a recombinant quadrivalent virus-like particle (QVLP) influenza vaccine manufactured in plants, one in adults aged 18-64 years (the 18-64 study) and one in older people aged 65 years and older (the 65-plus study). METHODS We did two randomised, observer-blind, multinational studies in the northern hemisphere in the 2017-18 (the 18-64 study) and 2018-19 (the 65-plus study) influenza seasons. The 18-64 study was done at 73 sites and the 65-plus study was done at 104 sites, both across Asia, Europe, and North America. In the 18-64 study, inclusion criteria were body-mass index less than 40 kg/m2; age 18-64 years at screening visit; and good health. In the 65-plus study, inclusion criteria were body-mass index of maximum 35 kg/m2; aged 65 years or older at screening visit; not living in a rehabilitation centre or care home; and no acute or evolving medical problems. Participants in the 18-64 study were randomly assigned (1:1) to receive either QVLP vaccine (30 μg haemagglutinin per strain) or placebo. Participants in the 65-plus study were randomly assigned (1:1) to receive QVLP vaccine (30 μg haemagglutinin per strain) or quadrivalent inactivated vaccine (QIV; 15 μg haemagglutinin per strain). The primary outcome in the 18-64 study was absolute vaccine efficacy to prevent laboratory-confirmed, respiratory illness caused by antigenically matched influenza strains. The primary outcome in the 65-plus study was relative vaccine efficacy to prevent laboratory-confirmed influenza-like illness caused by any influenza strain. The primary analyses were done in the per-protocol population and safety was assessed in all participants who received the assigned treatment. These studies are registered with ClinicalTrials.gov (18-64 study NCT03301051; 65-plus study NCT03739112). FINDINGS In the 18-64 study, between Aug 30, 2017, and Jan 15, 2018, 10 160 participants were randomly assigned to receive either QVLP vaccine (5077 participants) or placebo (5083 participants). The per-protocol population consisted of 4814 participants in the QVLP group and 4812 in the placebo group. The study did not meet its primary endpoint of 70% absolute vaccine efficacy for the QVLP vaccine (35·1% [95% CI 17·9 to 48·7]) against respiratory illness caused by matched strains. 55 (1·1%) of 5064 participants in the QVLP group versus 51 (1·0%) of 5072 in the placebo group had a serious adverse event. Four (0·1%) and six [0·1%] participants had severe treatment-related treatment-emergent adverse events. In the 65-plus study, between Sept 18, 2018, and Feb 22, 2019, 12 794 participants were randomly assigned to receive either QVLP vaccine (6396 participants) or QIV (6398 participants). The per-protocol population consisted of 5996 participants in the QVLP group and 6026 in the QIV group. The study met its primary non-inferiority endpoint with a relative vaccine efficacy of the QVLP vaccine for the prevention of influenza-like illness caused by any strain of 8·8% (-16·7 to 28·7). 263 (4·1%) of 6352 participants in the QVLP group versus 266 (4·2%) of 6366 in the QIV group had serious adverse events (one [<0·1%] vs two [<0·1%] were considered treatment-related); one (<0·1%) versus three (<0·1%) participants had severe treatment-related treatment-emergent adverse events. INTERPRETATION These efficacy studies are the first large-scale studies of any plant-derived human vaccine. Together, they show that the plant-derived QVLP vaccine can provide substantial protection against respiratory illness and influenza-like illness caused by influenza viruses in adults. QVLP vaccine was well tolerated and no major safety signal arose in participants who received QVLP vaccine across the two studies. FUNDING Medicago.
Collapse
Affiliation(s)
- Brian J Ward
- Medicago, Quebec, QC, Canada; Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | | | | | | | | | - Michael D Libman
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | | |
Collapse
|
13
|
Putting into Perspective the Future of Cancer Vaccines: Targeted Immunotherapy. EUROPEAN MEDICAL JOURNAL 2020. [DOI: 10.33590/emj/19-00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pre-clinical models and human clinical trials have confirmed the ability of cancer vaccines to induce immune responses that are tumour-specific and, in some cases, associated with clinical response. However, cancer vaccines as a targeted immunotherapy strategy have not yet come of age. So, why the discordance after so much research has been invested in cancer vaccines? There are several reasons for this that include: limited tumour immunogenicity (limited targeted antigen expression, antigen tolerance); antigenic heterogeneity in tumours; heterogeneity of individual immune responses; multiple mechanisms associated with suppressed functional activity of immune effector cells, the underlying rationale for the use of immune checkpoint inhibitors; and immune system exhaustion. The success of checkpoint therapy has refocussed investigations into defining relationships between tumours and host immune systems, appreciating the mechanisms by which tumour cells escape immune surveillance and reinforcing recognition of the potential of vaccines in the treatment and prevention of cancer. Recent developments in cancer immunotherapies, together with associated technologies, for instance, the unparalleled achievements by immune checkpoint inhibitors and neo-antigen identification tools, may foster potential improvements in cancer vaccines for the treatment of malignancies.
Collapse
|
14
|
Hefferon K, Cantero-Tubilla B, Badar U, Wilson DW. Plant-Based Cellulase Assay Systems as Alternatives for Synthetic Substrates. Appl Biochem Biotechnol 2020; 192:1318-1330. [PMID: 32734581 DOI: 10.1007/s12010-020-03395-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/16/2020] [Indexed: 11/25/2022]
Abstract
Dissociative enzymes such as cellulases are greatly desired for a variety of applications in the food, fuel, and fiber industries. Cellulases and other cell wall-degrading enzymes are currently being engineered with improved traits for application in the breakdown of lignocellulosic biomass. Biochemical assays using these "designer" enzymes have traditionally been carried out using synthetic substrates such as crystalline bacterial microcellulose (BMCC). However, the use of synthetic substrates may not reflect the actual action of these cellulases on real plant biomass. We examined the potential of suspension cell walls from several plant species as possible alternatives for synthetic cellulose substrates. Suspension cells grow synchronously; hence, their cell walls are more uniform than those derived from mature plants. This work will help to establish a new assay system that is more genuine than using synthetic substrates. In addition to this, we have demonstrated that it is feasible to produce cellulases inexpensively and at high concentrations and activities in plants using a recombinant plant virus expression system. Our long-term goals are to use this system to develop tailored cocktails of cellulases that have been engineered to function optimally for specific tasks (i.e., the conversion of biomass into biofuel or the enhancement of nutrients available in livestock feed). The broad impact would be to provide a facile and economic system for generating industrial enzymes that offer green solutions to valorize biomass in industrialized communities and specifically in developing countries.
Collapse
Affiliation(s)
- Kathleen Hefferon
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA.
| | - Borja Cantero-Tubilla
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Uzma Badar
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - David W Wilson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
15
|
Shanmugaraj B, I. Bulaon CJ, Phoolcharoen W. Plant Molecular Farming: A Viable Platform for Recombinant Biopharmaceutical Production. PLANTS 2020; 9:plants9070842. [PMID: 32635427 PMCID: PMC7411908 DOI: 10.3390/plants9070842] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
The demand for recombinant proteins in terms of quality, quantity, and diversity is increasing steadily, which is attracting global attention for the development of new recombinant protein production technologies and the engineering of conventional established expression systems based on bacteria or mammalian cell cultures. Since the advancements of plant genetic engineering in the 1980s, plants have been used for the production of economically valuable, biologically active non-native proteins or biopharmaceuticals, the concept termed as plant molecular farming (PMF). PMF is considered as a cost-effective technology that has grown and advanced tremendously over the past two decades. The development and improvement of the transient expression system has significantly reduced the protein production timeline and greatly improved the protein yield in plants. The major factors that drive the plant-based platform towards potential competitors for the conventional expression system are cost-effectiveness, scalability, flexibility, versatility, and robustness of the system. Many biopharmaceuticals including recombinant vaccine antigens, monoclonal antibodies, and other commercially viable proteins are produced in plants, some of which are in the pre-clinical and clinical pipeline. In this review, we consider the importance of a plant- based production system for recombinant protein production, and its potential to produce biopharmaceuticals is discussed.
Collapse
Affiliation(s)
- Balamurugan Shanmugaraj
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
| | - Christine Joy I. Bulaon
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
| | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence: ; Tel.: +66-2-218-8359; Fax: +66-2-218-8357
| |
Collapse
|
16
|
Abstract
Single chain variable fragments (scFvs) are generated by joining together the variable heavy and light chain of a monoclonal antibody (mAb) via a peptide linker. They offer some advantages over the parental mAb such as low molecular weight, heterologous production, multimeric form, and multivalency. The scFvs were produced against more than 50 antigens till date using 10 different plant species as the expression system. There were considerable improvements in the expression and purification strategies of scFv in the last 24 years. With the growing demand of scFv in therapeutic and diagnostic fields, its biosynthesis needs to be increased. The easiness in development, maintenance, and multiplication of transgenic plants make them an attractive expression platform for scFv production. The review intends to provide comprehensive information about the use of plant expression system to produce scFv. The developments, advantages, pitfalls, and possible prospects of improvement for the exploitation of plants in the industrial level are discussed.
Collapse
Affiliation(s)
- Padikara Kutty Satheeshkumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
17
|
Zhang H, Zhang J, Venkat PS, Gu C, Meng Y. Sanguinarine exhibits potent efficacy against cervical cancer cells through inhibiting the STAT3 pathway in vitro and in vivo. Cancer Manag Res 2019; 11:7557-7566. [PMID: 31616177 PMCID: PMC6699148 DOI: 10.2147/cmar.s212744] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cervical cancer is the third most common malignancy among female cancer patients worldwide. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor which regulates a variety of cancer cellular physiological activities including cervical cancer. Sanguinarine (SNG) is a natural plant-derived benzophenanthridine alkaloid that possesses antitumor activities in several cancer cells. However, its anticancer effect on human cervical cancer cells and the underlying mechanisms have not been fully defined. Methods In this study, the inhibitory effect of SNG on the proliferation and growth of HeLa cell was detected by MTT assay. Next, cell cycle and apoptosis of HeLa cells was analyzed using Annexin-V/PI double staining and flow cytometry. Then, we measured intracellular ROS generation induced by SNG in HeLa cells by DCFH-DA (10 μM) staining, and the expression level of p-STAT3 and STAT3 was detected by Western blot. Finally, in order to study the effect of SNG on tumor growth in vivo, athymic nude mice were used in the vivo experiments. Result This study showed that SNG dose-dependently decreased the tumor cell proliferation and induced a marked increase in cell apoptosis in HeLa cells. Western blot analysis results revealed that SNG-induced antitumor effect might be mediated by STAT3 inhibition. SNG increased the expression of the proapoptotic protein Bax and reduced the expression of the antiapoptotic protein Bcl-2. We further found that SNG dose-dependently increased ROS level in Hela cells. Moreover, pretreatment with N-acetyl-l-cysteine, a scavenger of ROS, almost reversed the SNG-induced anticancer effect. In addition, SNG inhibited human cervical cancer xenograft growth without exhibiting toxicity in vivo. Conclusion Our findings highlight STAT3 as a promising therapeutic target. We also demonstrate that SNG is a novel anticancer drug for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Huijuan Zhang
- Department of Gynecology and Obstetrics, The First Medical Center, The General Hospital of the People's Liberation Army, Beijing, People's Republic of China
| | - Jing Zhang
- Department of Gynecology, Guangdong Hydropower Hospital, Guangdong, People's Republic of China
| | - Puja S Venkat
- Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Chenglei Gu
- Department of Gynecology and Obstetrics, The First Medical Center, The General Hospital of the People's Liberation Army, Beijing, People's Republic of China
| | - Yuanguang Meng
- Department of Gynecology and Obstetrics, The First Medical Center, The General Hospital of the People's Liberation Army, Beijing, People's Republic of China
| |
Collapse
|
18
|
Hoelscher M, Tiller N, Teh AYH, Wu GZ, Ma JKC, Bock R. High-level expression of the HIV entry inhibitor griffithsin from the plastid genome and retention of biological activity in dried tobacco leaves. PLANT MOLECULAR BIOLOGY 2018; 97:357-370. [PMID: 29948657 PMCID: PMC6061503 DOI: 10.1007/s11103-018-0744-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/29/2018] [Indexed: 05/02/2023]
Abstract
KEY MESSAGE The potent anti-HIV microbicide griffithsin was expressed to high levels in tobacco chloroplasts, enabling efficient purification from both fresh and dried biomass, thus providing storable material for inexpensive production and scale-up on demand. The global HIV epidemic continues to grow, with 1.8 million new infections occurring per year. In the absence of a cure and an AIDS vaccine, there is a pressing need to prevent new infections in order to curb the disease. Topical microbicides that block viral entry into human cells can potentially prevent HIV infection. The antiviral lectin griffithsin has been identified as a highly potent inhibitor of HIV entry into human cells. Here we have explored the possibility to use transplastomic plants as an inexpensive production platform for griffithsin. We show that griffithsin accumulates in stably transformed tobacco chloroplasts to up to 5% of the total soluble protein of the plant. Griffithsin can be easily purified from leaf material and shows similarly high virus neutralization activity as griffithsin protein recombinantly expressed in bacteria. We also show that dried tobacco provides a storable source material for griffithsin purification, thus enabling quick scale-up of production on demand.
Collapse
Affiliation(s)
- Matthijs Hoelscher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Nadine Tiller
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Audrey Y-H Teh
- Institute for Infection and Immunity, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Guo-Zhang Wu
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Julian K-C Ma
- Institute for Infection and Immunity, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
19
|
Chabeda A, Yanez RJR, Lamprecht R, Meyers AE, Rybicki EP, Hitzeroth II. Therapeutic vaccines for high-risk HPV-associated diseases. PAPILLOMAVIRUS RESEARCH (AMSTERDAM, NETHERLANDS) 2018; 5:46-58. [PMID: 29277575 PMCID: PMC5887015 DOI: 10.1016/j.pvr.2017.12.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 12/16/2022]
Abstract
Cancer is the second leading cause of death worldwide, and it is estimated that Human papillomavirus (HPV) related cancers account for 5% of all human cancers. Current HPV vaccines are extremely effective at preventing infection and neoplastic disease; however, they are prophylactic and do not clear established infections. Therapeutic vaccines which trigger cell-mediated immune responses for the treatment of established infections and malignancies are therefore required. The E6 and E7 early genes are ideal targets for vaccine therapy due to their role in disruption of the cell cycle and their constitutive expression in premalignant and malignant tissues. Several strategies have been investigated for the development of therapeutic vaccines, including live-vector, nucleic acid, peptide, protein-based and cell-based vaccines as well as combinatorial approaches, with several vaccine candidates progressing to clinical trials. With the current understanding of the HPV life cycle, molecular mechanisms of infection, carcinogenesis, tumour biology, the tumour microenvironment and immune response mechanisms, an approved HPV therapeutic vaccine seems to be a goal not far from being achieved. In this article, the status of therapeutic HPV vaccines in clinical trials are reviewed, and the potential for plant-based vaccine production platforms described.
Collapse
Affiliation(s)
- Aleyo Chabeda
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Romana J R Yanez
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Renate Lamprecht
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
20
|
Abdelrahman M, Mahmoud HYAH, El-Sayed M, Tanaka S, Tran LS. Isolation and characterization of Cepa2, a natural alliospiroside A, from shallot (Allium cepa L. Aggregatum group) with anticancer activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 116:167-173. [PMID: 28577504 DOI: 10.1016/j.plaphy.2017.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Exploration of new and promising anticancer compounds continues to be one of the main tasks of cancer research because of the drug resistance, high cytotoxicity and limitations of tumor selectivity. Natural products represent a better choice for cancer treatment in comparison with synthetic compounds because of their pharmacokinetic properties and lower side effects. In the current study, we isolated a steroidal saponin, named Cepa2, from the dry roots of shallot (Allium cepa L. Aggregatum group), and determined its structure by using two-dimensional nuclear manganic resonance (2D NMR). The 1H NMR and 13C NMR data revealed that the newly isolated Cepa2 compound is identical to alliospiroside A (C38H60O12) [(25S)-3β-hydroxyspirost-5-en-1β-yl-2-O-(6-deoxy-α-L-mannopyranosyl)-α-L-arabinopyranoside], whose anticancer activity remains elusive. Our in vitro examination of the cytotoxic activity of the identified Cepa2 against P3U1 myeloma cancer cell line showed its high efficiency as an anticancer with 91.13% reduction in P3U1 cell viability 12 h post-treatment. The reduction of cell viability was correlated with the increase in reactive oxygen species levels in Cepa2-treated P3U1 cells, as compared with untreated cells. Moreover, scanning electron microscope results demonstrated apoptosis of the Cepa2-treated P3U1 cells in a time course-dependent manner. The results of our study provide evidence for the anticancer properties of the natural Cepa2/alliospiroside A extracted from shallot plants, and a strong foundation for in-depth investigations to build theoretical bases for cell apoptosis and development of novel anticancer drugs.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Graduate School of Life Sciences, Tohoku University 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan; Botany Department Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Hassan Y A H Mahmoud
- Division of infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Magdi El-Sayed
- Botany Department Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Shuhei Tanaka
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - L S Tran
- Plant Abiotic Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 70000, Viet Nam; Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumiku, Yokohama 230-0045, Japan.
| |
Collapse
|