1
|
Xue M, Liao Y, Jiang W. Insights into the molecular changes of adipocyte dedifferentiation and its future research opportunities. J Lipid Res 2024; 65:100644. [PMID: 39303983 PMCID: PMC11550672 DOI: 10.1016/j.jlr.2024.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024] Open
Abstract
Recent studies have challenged the traditional belief that mature fat cells are irreversibly differentiated and revealed they can dedifferentiate into fibroblast-like cells known as dedifferentiated fat (DFAT) cells. Resembling pluripotent stem cells, DFAT cells hold great potential as a cell source for stem cell therapy. However, there is limited understanding of the specific changes that occur following adipocyte dedifferentiation and the detailed regulation of this process. This review explores the epigenetic, genetic, and phenotypic alterations associated with DFAT cell dedifferentiation, identifies potential targets for clinical regulation and discusses the current applications and challenges in the field of DFAT cell research.
Collapse
Affiliation(s)
- Mingheng Xue
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Wenqing Jiang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Wang S, Li W, Chen M, Cao Y, Lu W, Li X. The retinal pigment epithelium: Functions and roles in ocular diseases. FUNDAMENTAL RESEARCH 2024; 4:1710-1718. [PMID: 39734536 PMCID: PMC11670733 DOI: 10.1016/j.fmre.2023.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 12/31/2024] Open
Abstract
The retinal pigment epithelium (RPE) between retinal photoreceptors and choroidal capillaries is a single layer of cells that are of critical importance to the eye. RPE cells are derived from the anterior neural plate of neuroectodermal origin. Instructed by specific molecules and signaling pathways, the RPE undergoes formation and maturation to form a functional unit together with photoreceptors. The RPE plays crucial roles in maintaining normal retinal structure and functions, such as phagocytosis; barrier function; transportation of nutrients, ions, and water; resistance to oxidative damage; maintenance of visual cycle; and production of various important factors. RPE cells have an efficient metabolic machinery to provide sufficient energy to the retina. RPE dysfunction or atrophy can lead to many retinopathies, such as age-related macular degeneration and proliferative vitreoretinopathy. Here, we discuss RPE development, functions, and roles in various ocular diseases, and the mechanisms involved. A better understanding of the functions of the RPE and related regulatory pathways may help identify novel or better therapies for the treatment of many blinding diseases.
Collapse
Affiliation(s)
- Shasha Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wanhong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Min Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17165, Sweden
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
3
|
Sung TC, Chen YH, Wang T, Qian L, Chao WH, Liu J, Pang J, Ling QD, Lee HHC, Higuchi A. Design of dual peptide-conjugated hydrogels for proliferation and differentiation of human pluripotent stem cells. Mater Today Bio 2024; 25:100969. [PMID: 38318478 PMCID: PMC10839443 DOI: 10.1016/j.mtbio.2024.100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Completely synthetic cell cultivation materials for human pluripotent stem cells (hPSCs) are important for the future clinical use of hPSC-derived cells. Currently, cell culture materials conjugated with extracellular matrix (ECM)-derived peptides are being prepared using only one specific integrin-targeting peptide. We designed dual peptide-conjugated hydrogels, for which each peptide was selected from different ECM sites: the laminin β4 chain and fibronectin or vitronectin, which can target α6β1 and α2β1 or αVβ5. hPSCs cultured on dual peptide-conjugated hydrogels, especially on hydrogels conjugated with peptides obtained from the laminin β4 chain and vitronectin with a low peptide concentration of 200 μg/mL, showed high proliferation ability over the long term and differentiated into cells originating from 3 germ layers in vivo as well as a specific lineage of cardiac cells. The design of grafting peptides was also important, for which a joint segment and positive amino acids were added into the designed peptide. Because of the designed peptides on the hydrogels, only 200 μg/mL peptide solution was sufficient for grafting on the hydrogels, and the hydrogels supported hPSC cultures long-term; in contrast, in previous studies, greater than 1000 μg/mL peptide solution was needed for the grafting of peptides on cell culture materials.
Collapse
Affiliation(s)
- Tzu-Cheng Sung
- State Key Laboratory of Opthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Yen-Hung Chen
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan
| | - Ting Wang
- State Key Laboratory of Opthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Liu Qian
- State Key Laboratory of Opthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Wen-Hui Chao
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan
| | - Jun Liu
- State Key Laboratory of Opthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Jiandong Pang
- State Key Laboratory of Opthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei, 221, Taiwan
| | - Henry Hsin-Chung Lee
- Department of Surgery, Hsinchu Cathay General Hospital, No. 678, Sec 2, Zhonghua Rd., Hsinchu, 30060, Taiwan
- Graduate Institute of Translational and Interdisciplinary Medicine, National Central University, No. 300, Jhongda Rd., Jhongli, Taoyuan, 32001, Taiwan
| | - Akon Higuchi
- State Key Laboratory of Opthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, 320, Taiwan
| |
Collapse
|
4
|
Liu H, Ye J, Hu H, Song Y, Qiang H, Wang J, Zhou L, Wang X, Fei X, Zhu M. 3D stem cell spheroids with urchin-like hydroxyapatite microparticles enhance osteogenesis of stem cells. J Mater Chem B 2024; 12:1232-1243. [PMID: 38165170 DOI: 10.1039/d3tb02453a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cell therapy (also known as cell transplantation) has been considered promising as a next-generation living-cell therapy strategy to surpass the effects of traditional drugs. However, their practical clinical uses and product conversion are hampered by the unsatisfied viability and efficacy of the transplanted cells. Herein, we propose a synergistic enhancement strategy to address these issues by constructing 3D stem cell spheroids integrated with urchin-like hydroxyapatite microparticles (uHA). Specifically, cell-sized uHA microparticles were synthesized via a simple hydrothermal method using glutamic acid (Glu, E) as the co-template with good biocompatibility and structural antimicrobial performance (denoted as E-uHA). Combining with a hanging drop method, stem cell spheroids integrated with E-uHA were successfully obtained by culturing bone marrow mesenchymal stem cells (BMSCs) with a low concentration of the E-uHA suspensions (10 μg mL-1). The resulting composite spheroids of BMSCs/E-uHA deliver a high cellular viability, migration activity, and a superior osteogenic property compared to the 2D cultured counterpart or other BMSC spheroids. This work provides an effective strategy for integrating a secondary bio-functional component into stem cell spheroids for designing more cell therapy options with boosted cellular viability and therapeutic effect.
Collapse
Affiliation(s)
- Hongmei Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jianxin Ye
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Hui Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yuheng Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Huijun Qiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Junjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lei Zhou
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Xuefen Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Xiang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
5
|
Liu Q, Liu J, Guo M, Sung TC, Wang T, Yu T, Tian Z, Fan G, Wu W, Higuchi A. Comparison of retinal degeneration treatment with four types of different mesenchymal stem cells, human induced pluripotent stem cells and RPE cells in a rat retinal degeneration model. J Transl Med 2023; 21:910. [PMID: 38098048 PMCID: PMC10720187 DOI: 10.1186/s12967-023-04785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Retinal degeneration (RD) is a group of disorders on irreversible vision loss. Multiple types of stem cells were used in clinical trials for RD treatment. However, it remains unknown what kinds of stem cells are most effective for the treatment. Therefore, we investigated the subretinal transplantation of several types of stem cells, human adipose-derived stem cells (hADSCs), amniotic fluid stem cells (hAFSCs), bone marrow stem cells (hBMSCs), dental pulp stem cells (hDPSCs), induced pluripotent stem cell (hiPSC), and hiPSC-derived retinal pigment epithelium (RPE) cells for protection effects, paracrine effects and treatment efficiency in an RD disease model rats. METHODS The generation and characterization of these stem cells and hiPSC-derived RPE cells were performed before transplantation. The stem cells or hiPSC-derived RPE cell suspension labelled with CellTracker Green to detect transplanted cells were delivered into the subretinal space of 3-week-old RCS rats. The control group received subretinal PBS injection or non-injection. A series of detections including fundus photography, optomotor response (OMR) evaluations, light-dark box testing, electroretinography (ERG), and hematoxylin and eosin (HE) staining of retinal sections were conducted after subretinal injection of the cells. RESULTS Each stem cell, hiPSC-derived RPE cell or PBS (blank experiment) was successfully transplanted into at least six RCS rats subretinally. Compared with the control rats, RCS rats subjected to subretinal transplantation of any stem cells except hiPSCs showed higher ERG waves (p < 0.05) and quantitative OMR (qOMR) index values (hADSCs: 1.166, hAFSCs: 1.249, hBMSCs: 1.098, hDPSCs: 1.238, hiPSCs: 1.208, hiPSC-RPE cells: 1.294, non-injection: 1.03, PBS: 1.06), which indicated better visual function, at 4 weeks post-injection. However, only rats that received hiPSC-derived RPE cells maintained their visual function at 8 weeks post-injection (p < 0.05). The outer nuclear layer thickness observed in histological sections after HE staining showed the same pattern as the ERG and qOMR results. CONCLUSIONS Compared to hiPSC-derived RPE cells, adult and fetal stem cells yielded improvements in visual function for up to 4 weeks post-injection; this outcome was mainly based on the paracrine effects of several types of growth factors secreted by the stem cells. Patients with RD will benefit from the stem cell therapy.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Jun Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Minmei Guo
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Zeyu Tian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, 325027, Zhejiang, China.
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan.
| |
Collapse
|
6
|
Jovic D, Preradovic L, Kremenovic M, Jovic F, Antonic M, Aleksic Z, Ljubojevic V. Effect of Donor Site Selection for Fat Grafting on the Yield and Viability of the Stromal Vascular Fraction. Aesthet Surg J 2023; 43:NP704-NP712. [PMID: 37289983 DOI: 10.1093/asj/sjad184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND The efficacy of stromal vascular fraction (SVF) treatment, or stem cell treatment, directly depends on the SVF cell count and the cells' viability. The SVF cell count and viability are in direct correlation with the adipose tissue harvesting site that yields SVF cells, making this research a contribution to developing tissue guidance. OBJECTIVES The aim of this study was to investigate the importance of harvesting subcutaneous adipose tissue-derived SVF cells on the concentration and viability of SVF. METHODS Adipose tissue was collected by vibration-assisted liposuction from the regions of the upper and lower abdomen, lumbar region, and inner thigh region. With the semiautomatic UNISTATION 2nd Version system, the obtained fat was chemically processed (with collagenase enzyme) and a concentrate of SVF cells was obtained by centrifugation. These samples were then analyzed with the Luna-Stem Counter device to measure the number and viability of SVF cells. RESULTS When comparing the regions of the upper abdomen, lower abdomen, lumbar region, and inner thigh, the highest concentration of SVF was found in the lumbar region, specifically at an average of 97,498.00 per 1.0 mL of concentrate. The lowest concentration was found in the upper abdominal region. When ranking the viability values, the highest cell viability of SVF was observed in the lumbar region, measuring 36.6200%. The lowest viability was found in the upper abdominal region, measuring 24.4967%. CONCLUSIONS By comparing the upper and lower abdominal, lumbar, and inner thigh regions, the authors have come to the conclusion that, on average, the largest number of cells with the highest viability was obtained from the lumbar region.
Collapse
|
7
|
Sung TC, Maitiruze K, Pan J, Gong J, Bai Y, Pan X, Higuchi A. Universal and hypoimmunogenic pluripotent stem cells for clinical usage. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:271-296. [PMID: 37678974 DOI: 10.1016/bs.pmbts.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
It is urgent to prepare and store large numbers of clinical trial grade human pluripotent stem (hPS) cells for off-the-shelf use in stem cell therapies. However, stem cell banks, which store off-the-shelf stem cells, need financial support and large amounts of technicians for daily cell maintenance. Therefore, it is valuable to create "universal" or "hypoimmunogenic" hPS cells with genome editing engineering by knocking in or out immune-related genes. Only a small number of universal or hypoimmunogenic hPS cell lines should be needed to store for off-the-shelf usage and reduce the large amounts of instruments, consumables and technicians. In this article, we consider how to create hypoimmunogenic or universal hPS cells as well as the demerits of the technology. β2-Microglobulin-knockout hPS cells did not harbor human leukocyte antigen (HLA)-expressing class I cells but led to the activation of natural killer cells. To escape the activities of macrophages and natural killer cells, homozygous hPS cells having a single allele of an HLA class I gene, such as HLA-C, were proposed. Major HLA class Ia molecules were knocked out, and CD47, HLA-G and PD-L1 were knocked in hPS cells utilizing CRISPR/Cas9 genome editing. Finally, some researchers are trying to generate universal hPS cells without genome editing. The cells evaded the activation of not only T cells but also macrophages and natural killer cells. These universal hPS cells have high potential for application in cell therapy.
Collapse
Affiliation(s)
- Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Kailibinuer Maitiruze
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jiandong Pan
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jian Gong
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, The First Affiliated Hospital Area, Wenzhou, Zhejiang, P.R. China
| | - Xiaodong Pan
- Department of Urology, The First Affiliated Hospital, Wenzhou Medical University, The First Affiliated Hospital Area, Wenzhou, Zhejiang, P.R. China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Liu Q, Liu J, Higuchi A. hPSC-derived RPE transplantation for the treatment of macular degeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:227-269. [PMID: 37678973 DOI: 10.1016/bs.pmbts.2023.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Macular degeneration (MD) is a group of diseases characterized by irreversible and progressive vision loss. Patients with MD suffer from severely impaired central vision, especially elderly people. Currently, only one type of MD, wet age-related macular degeneration (AMD), can be treated with anti-vascular endothelium growth factor (VEGF) drugs. Other types of MD remain difficult to treat. With the advent of human pluripotent stem cells (hPSCs) and their differentiation into retinal pigmented epithelium (RPE), it is promising to treat patients with MD by transplantation of hPSC-derived RPE into the subretinal space. In this review, the current progress in hPSC-derived RPE transplantation for the treatment of patients with MD is described from bench to bedside, including hPSC differentiation into RPE and the characterization and usage of hPSC-derived RPE for transplantation into patients with MD.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jun Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Miotti G, Parodi PC, Ferrari A, Salati C, Zeppieri M. Stem Cells in Ophthalmology: From the Bench to the Bedside. HANDBOOK OF STEM CELL APPLICATIONS 2023:1-24. [DOI: 10.1007/978-981-99-0846-2_10-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 09/13/2023]
|
10
|
Miotti G, Parodi PC, Ferrari A, Salati C, Zeppieri M. Stem Cells in Ophthalmology: From the Bench to the Bedside. HANDBOOK OF STEM CELL APPLICATIONS 2023:1-24. [DOI: https:/doi.org/10.1007/978-981-99-0846-2_10-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 08/28/2023]
|
11
|
Grani F, Soto-Sánchez C, Fimia A, Fernández E. Toward a personalized closed-loop stimulation of the visual cortex: Advances and challenges. Front Cell Neurosci 2022; 16:1034270. [PMID: 36582211 PMCID: PMC9792612 DOI: 10.3389/fncel.2022.1034270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Current cortical visual prosthesis approaches are primarily unidirectional and do not consider the feed-back circuits that exist in just about every part of the nervous system. Herein, we provide a brief overview of some recent developments for better controlling brain stimulation and present preliminary human data indicating that closed-loop strategies could considerably enhance the effectiveness, safety, and long-term stability of visual cortex stimulation. We propose that the development of improved closed-loop strategies may help to enhance our capacity to communicate with the brain.
Collapse
Affiliation(s)
- Fabrizio Grani
- Institute of Bioengineering, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Cristina Soto-Sánchez
- Institute of Bioengineering, Universidad Miguel Hernández de Elche, Elche, Spain,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Antonio Fimia
- Departamento de Ciencia de Materiales, Óptica y Tecnología Electrónica, Universidad Miguel Hernández de Elche, Elche, Spain
| | - Eduardo Fernández
- Institute of Bioengineering, Universidad Miguel Hernández de Elche, Elche, Spain,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain,*Correspondence: Eduardo Fernández,
| |
Collapse
|
12
|
Mok PL, Catherine BML, Subbiah SK, Higuchi A. Editorial: Neurodegenerative eye diseases: Molecular mechanisms of neurogenesis and therapeutic perspectives. Front Cell Neurosci 2022; 16:1060266. [DOI: 10.3389/fncel.2022.1060266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
|
13
|
Norte-Muñoz M, Gallego-Ortega A, Lucas-Ruiz F, González-Riquelme MJ, Changa-Espinoza YI, Galindo-Romero C, Ponsaerts P, Vidal-Sanz M, García-Bernal D, Agudo-Barriuso M. Immune recognition of syngeneic, allogeneic and xenogeneic stromal cell transplants in healthy retinas. Stem Cell Res Ther 2022; 13:430. [PMID: 35987845 PMCID: PMC9392272 DOI: 10.1186/s13287-022-03129-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Advanced therapies using adult mesenchymal stromal cells (MSCs) for neurodegenerative diseases are not effectively translated into the clinic. The cross talk between the transplanted cells and the host tissue is something that, despite its importance, is not being systematically investigated. METHODS We have compared the response of the mouse healthy retina to the intravitreal transplantation of MSCs derived from the bone marrow in four modalities: syngeneic, allogeneic, xenogeneic and allogeneic with immunosuppression using functional analysis in vivo and histology, cytometry and protein measurement post-mortem. Data were considered significant (p < 0.05) after nonparametric suitable statistical tests. RESULTS Transplanted cells remain in the vitreous and are cleared by microglial cells a process that is quicker in allotransplants regardless of immunosuppression. All transplants cause anatomical remodelling which is more severe after xenotransplants. Xeno- and allotransplants with or without immunosuppression cause macro- and microglial activation and retinal functional impairment, being xenotransplants the most detrimental and the only ones that recruit CD45+Iba1-cells. The profile of proinflammatory cytokines changes in all transplantation settings. However, none of these changes affect the retinal ganglion cell population. CONCLUSIONS We show here a specific functional and anatomical retinal response depending on the MSC transplantation modality, an aspect that should be taken into consideration when conducting preclinical studies if we intend a more realistic translation into clinical practice.
Collapse
Affiliation(s)
- María Norte-Muñoz
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Universidad de Murcia, Murcia, Spain
| | - Alejandro Gallego-Ortega
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Universidad de Murcia, Murcia, Spain
| | - Fernando Lucas-Ruiz
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Universidad de Murcia, Murcia, Spain
| | - María J González-Riquelme
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Universidad de Murcia, Murcia, Spain
| | - Yazmín I Changa-Espinoza
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Universidad de Murcia, Murcia, Spain
| | - Caridad Galindo-Romero
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Universidad de Murcia, Murcia, Spain
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Manuel Vidal-Sanz
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Universidad de Murcia, Murcia, Spain
| | - David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Biochemistry, Molecular Biology and Immunology Department, Universidad de Murcia, Murcia, Spain.
| | - Marta Agudo-Barriuso
- Experimental Ophthalmology Group, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) & Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
14
|
Rodenkirch C, Carmel JB, Wang Q. Rapid Effects of Vagus Nerve Stimulation on Sensory Processing Through Activation of Neuromodulatory Systems. Front Neurosci 2022; 16:922424. [PMID: 35864985 PMCID: PMC9294458 DOI: 10.3389/fnins.2022.922424] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
After sensory information is encoded into neural signals at the periphery, it is processed through multiple brain regions before perception occurs (i.e., sensory processing). Recent work has begun to tease apart how neuromodulatory systems influence sensory processing. Vagus nerve stimulation (VNS) is well-known as an effective and safe method of activating neuromodulatory systems. There is a growing body of studies confirming VNS has immediate effects on sensory processing across multiple sensory modalities. These immediate effects of VNS on sensory processing are distinct from the more well-documented method of inducing lasting neuroplastic changes to the sensory pathways through repeatedly delivering a brief VNS burst paired with a sensory stimulus. Immediate effects occur upon VNS onset, often disappear upon VNS offset, and the modulation is present for all sensory stimuli. Conversely, the neuroplastic effect of pairing sub-second bursts of VNS with a sensory stimulus alters sensory processing only after multiple pairing sessions, this alteration remains after cessation of pairing sessions, and the alteration selectively affects the response properties of neurons encoding the specific paired sensory stimulus. Here, we call attention to the immediate effects VNS has on sensory processing. This review discusses existing studies on this topic, provides an overview of the underlying neuromodulatory systems that likely play a role, and briefly explores the potential translational applications of using VNS to rapidly regulate sensory processing.
Collapse
Affiliation(s)
- Charles Rodenkirch
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Jacobs Technion-Cornell Institute, Cornell Tech, New York, NY, United States
- *Correspondence: Charles Rodenkirch,
| | - Jason B. Carmel
- Department of Neurology and Orthopedics, Columbia University Medical Center, New York, NY, United States
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Qi Wang,
| |
Collapse
|
15
|
Kumar S. Meet the Editorial Board Member. Curr Pharm Biotechnol 2022. [DOI: 10.2174/138920102308220331115530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Kumar S. Meet the Editorial Board Member. Curr Pharm Biotechnol 2022. [DOI: 10.2174/138920102307220329094059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Lei T, Liu Y, Deng S, Xiao Z, Yang Y, Zhang X, Bi W, Du H. Hydrogel supplemented with human platelet lysate enhances multi-lineage differentiation of mesenchymal stem cells. J Nanobiotechnology 2022; 20:176. [PMID: 35366889 PMCID: PMC8976277 DOI: 10.1186/s12951-022-01387-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 12/18/2022] Open
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) can be used as a potential clinical material. But the use of xenogeneic ingredients will increase the risk of zoonotic disease transmission. Human platelet lysate (HPL) is a potential surrogate and used in human cell expansion with reliability in clinical applications. In this study, we synthesized chitosan/gelatin/gellan gum hydrogel supplemented with HPL and investigated the effect of 3D culture for SHED. TMT-tagged proteomics was used to decipher the secretome protein profiles of SHEDs and a total of 3209 proteins were identified, of which 23 were up-regulated and 192 were down-regulated. The results showed that hydrogel supplemented with HPL promoted SHED proliferation. After induction, the hydrogel coating contributed to osteogenic differentiation, adipogenic differentiation and differentiation into neural-like cells of SHED. SHED encapsulated in a hydrogel promotes migration and angiogenesis of HUVEC. In conclusion, our research found that hydrogel supplemented with HPL can be used as a method for SHED in standardized production and can contribute to the clinical application of SHED in cell therapy.
Collapse
|
18
|
Rizzolo LJ, Nasonkin IO, Adelman RA. Retinal Cell Transplantation, Biomaterials, and In Vitro Models for Developing Next-generation Therapies of Age-related Macular Degeneration. Stem Cells Transl Med 2022; 11:269-281. [PMID: 35356975 PMCID: PMC8968686 DOI: 10.1093/stcltm/szac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022] Open
Abstract
Retinal pigment epithelium (RPE) cells grown on a scaffold, an RPE patch, have potential to ameliorate visual impairment in a limited number of retinal degenerative conditions. This tissue-replacement therapy is suited for age-related macular degeneration (AMD), and related diseases. RPE cells must be transplanted before the disease reaches a point of no return, represented by the loss of photoreceptors. Photoreceptors are specialized, terminally differentiated neurosensory cells that must interact with RPE's apical processes to be functional. Human photoreceptors are not known to regenerate. On the RPE's basal side, the RPE transplant must induce the reformation of the choriocapillaris, thereby re-establishing the outer blood-retinal barrier. Because the scaffold is positioned between the RPE and choriocapillaris, it should ideally degrade and be replaced by the natural extracellular matrix that separates these tissues. Besides biodegradable, the scaffolds need to be nontoxic, thin enough to not affect the focal length of the eye, strong enough to survive the transplant procedure, yet flexible enough to conform to the curvature of the retina. The challenge is patients with progressing AMD treasure their remaining vision and fear that a risky surgical procedure will further degrade their vision. Accordingly, clinical trials only treat eyes with severe impairment that have few photoreceptors to interact with the transplanted patch. Although safety has been demonstrated, the cell-replacement mechanism and efficacy remain difficult to validate. This review covers the structure of the retina, the pathology of AMD, the limitations of cell therapy approaches, and the recent progress in developing retinal therapies using biomaterials.
Collapse
Affiliation(s)
- Lawrence J Rizzolo
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA
- Department of Surgery, Yale University, New Haven, CT, USA
| | | | - Ron A Adelman
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, USA
| |
Collapse
|
19
|
Almotawah FN, AlNamasy R, Alhamazani B, Almohsen S, AlNamasy RE. Alveolar Reconstruction Using Stem Cells in Patients with Cleft Lip and Palate: A Systematic Review. ARCHIVES OF PHARMACY PRACTICE 2022. [DOI: 10.51847/iobhdehrqo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
20
|
Liu YC, Ban LK, Lee HHC, Lee HT, Chang YT, Lin YT, Su HY, Hsu ST, Higuchi A. Laminin-511 and recombinant vitronectin supplementation enables human pluripotent stem cell culture and differentiation on conventional tissue culture polystyrene surfaces in xeno-free conditions. J Mater Chem B 2021; 9:8604-8614. [PMID: 34605523 DOI: 10.1039/d1tb01878g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human pluripotent stem cells (hPSCs) are typically cultivated on extracellular matrix (ECM) protein-coated dishes in xeno-free culture conditions. We supplemented mixed ECM proteins (laminin-511 and recombinant vitronectin, rVT) in culture medium for hPSC culture on conventional polystyrene dishes. Three hPSC cell lines were successfully cultivated on uncoated polystyrene dishes in medium supplemented with optimal conditions of laminin-511 and rVT. Excellent colony shape and colony size as well as high expansion fold of hPSCs were found under these conditions, whereas the colony size was small and poor expansion fold was found solely on L-511-coated dishes. A small portion of L-511 in the culture medium supported hPSC adhesion and prevented the adhesion from being too strong on the uncoated dishes, and rVT in the culture medium further supported adhesion of hPSCs on the dishes by maintaining their pluripotency. Having the optimal composition of L-511 and rVT in the culture medium was important for generating good hPSC colony shapes and sizes as well as a high expansion fold. After long-term culture of hPSCs on uncoated dishes supplemented with the mixed proteins, the hPSCs successfully showed pluripotent markers and could differentiate into a specific lineage of cells, cardiomyocytes, with high efficiency.
Collapse
Affiliation(s)
- Ya-Chu Liu
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan, 32001, Taiwan.
| | - Lee-Kiat Ban
- Department of Surgery, Hsinchu Cathay General Hospital, No. 678, Sec 2, Zhonghua Rd, Hsinchu, 30060, Taiwan
| | - Henry Hsin-Chung Lee
- Department of Surgery, Hsinchu Cathay General Hospital, No. 678, Sec 2, Zhonghua Rd, Hsinchu, 30060, Taiwan.,Graduate Institute of Translational and Interdisciplinary Medicine, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan, 32001, Taiwan
| | - Hsin-Ting Lee
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan, 32001, Taiwan.
| | - Yu-Tang Chang
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan, 32001, Taiwan.
| | - Yun-Ting Lin
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan, 32001, Taiwan.
| | - Her-Young Su
- Department of Obstetrics and Gynecology, Bobson Yuho Women and Children's Clinic, No. 182, Zhuangjing S. Rd, Zhubei City, Hsinchu 302, Taiwan
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital, 77, Kuangtai Road, Pingjen City, Taoyuan 32405, Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan, 32001, Taiwan. .,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
21
|
Sung TC, Lu MW, Tian Z, Lee HHC, Pan J, Ling QD, Higuchi A. Poly(vinyl alcohol- co-itaconic acid) hydrogels grafted with several designed peptides for human pluripotent stem cell culture and differentiation into cardiomyocytes. J Mater Chem B 2021; 9:7662-7673. [PMID: 34586153 DOI: 10.1039/d1tb01555a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed poly(vinyl alcohol-co-itaconic acid) (PV) hydrogels grafted with laminin-derived peptides that had different joint segments and several specific designs, including dual chain motifs. PV hydrogels grafted with a peptide derived from laminin-β4 (PMQKMRGDVFSP) containing a joint segment, dual chain motif and cationic amino acid insertion could attach human pluripotent stem (hPS) cells and promoted high expansion folds in long-term culture (over 10 passages) with low differentiation rates, whereas hPS cells attached poorly on PV hydrogels grafted with laminin-α5 peptides that had joint segments with and without a cationic amino acid or on PV hydrogels grafted with laminin-β4 peptides containing the joint segment only. The inclusion of a cationic amino acid in the laminin-β4 peptide was critical for hPS cell attachment on PV hydrogels, which contributed to the zeta potential shifting to higher values (3-4 mV enhancement). The novel peptide segment-grafted PV hydrogels developed in this study supported hPS cell proliferation, which induced better hPS cell expansion than recombinant vitronectin-coated dishes (gold standard of hPS cell culture dishes) in xeno-free culture conditions. After long-term culture on peptide-grafted hydrogels, hPS cells could be induced to differentiate into specific lineages of cells, such as cardiomyocytes, with high efficiency.
Collapse
Affiliation(s)
- Tzu-Cheng Sung
- School of Ophthalmology and Optometry, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Ming-Wei Lu
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan.
| | - Zeyu Tian
- School of Ophthalmology and Optometry, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Henry Hsin-Chung Lee
- Department of Surgery, Hsinchu Cathay General Hospital, No. 678, Sec 2, Zhonghua Rd., Hsinchu, 30060, Taiwan.,Graduate Institute of Translational and Interdisciplinary Medicine, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan
| | - Jiandong Pan
- School of Ophthalmology and Optometry, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei 221, Taiwan
| | - Akon Higuchi
- School of Ophthalmology and Optometry, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China. .,Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan. .,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan.,Nano Medical Engineering Laboratory, Riken Cluster for Pioneering Research, Riken, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Reproduction, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
22
|
Duarri A, Rodríguez-Bocanegra E, Martínez-Navarrete G, Biarnés M, García M, Ferraro LL, Kuebler B, Aran B, Izquierdo E, Aguilera-Xiol E, Casaroli-Marano RP, Trias E, Fernandez E, Raya Á, Veiga A, Monés J. Transplantation of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium in a Swine Model of Geographic Atrophy. Int J Mol Sci 2021; 22:ijms221910497. [PMID: 34638840 PMCID: PMC8508834 DOI: 10.3390/ijms221910497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The aim of this study was to test the feasibility and safety of subretinal transplantation of human induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) cells into the healthy margins and within areas of degenerative retina in a swine model of geographic atrophy (GA). METHODS Well-delimited selective outer retinal damage was induced by subretinal injection of NaIO3 into one eye in minipigs (n = 10). Thirty days later, a suspension of hiPSC-derived RPE cells expressing green fluorescent protein was injected into the subretinal space, into the healthy margins, and within areas of degenerative retina. In vivo follow-up was performed by multimodal imaging. Post-mortem retinas were analyzed by immunohistochemistry and histology. RESULTS In vitro differentiated hiPSC-RPE cells showed a typical epithelial morphology, expressed RPE-related genes, and had phagocytic ability. Engrafted hiPSC-RPE cells were detected in 60% of the eyes, forming mature epithelium in healthy retina extending towards the border of the atrophy. Histological analysis revealed RPE interaction with host photoreceptors in the healthy retina. Engrafted cells in the atrophic zone were found in a patchy distribution but failed to form an epithelial-like layer. CONCLUSIONS These results might support the use of hiPSC-RPE cells to treat atrophic GA by providing a housekeeping function to aid the overwhelmed remnant RPE, which might improve its survival and therefore slow down the progression of GA.
Collapse
Affiliation(s)
- Anna Duarri
- Program for Clinical Translation of Regenerative Medicine in Catalonia–P-CMR[C], Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; (A.D.); (B.K.); (B.A.); (Á.R.)
- National Stem Cell Bank-Barcelona Node, Biomolecular and Bioinformatics Resources Platform PRB2, ISCIII, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca (VHIR), 08036 Barcelona, Spain
| | - Eduardo Rodríguez-Bocanegra
- Barcelona Macula Foundation: Research for Vision, 08022 Barcelona, Spain; (E.R.-B.); (M.B.); (M.G.); (L.L.F.)
- Institut de la Màcula, Centro Médico Teknon, 08022 Barcelona, Spain
| | - Gema Martínez-Navarrete
- Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (G.M.-N.); (E.F.)
- Institute of Bioengineering, Universidad Miguel Hernández, 03202 Alicante, Spain
| | - Marc Biarnés
- Barcelona Macula Foundation: Research for Vision, 08022 Barcelona, Spain; (E.R.-B.); (M.B.); (M.G.); (L.L.F.)
- Institut de la Màcula, Centro Médico Teknon, 08022 Barcelona, Spain
| | - Miriam García
- Barcelona Macula Foundation: Research for Vision, 08022 Barcelona, Spain; (E.R.-B.); (M.B.); (M.G.); (L.L.F.)
- Institut de la Màcula, Centro Médico Teknon, 08022 Barcelona, Spain
| | - Lucía Lee Ferraro
- Barcelona Macula Foundation: Research for Vision, 08022 Barcelona, Spain; (E.R.-B.); (M.B.); (M.G.); (L.L.F.)
- Institut de la Màcula, Centro Médico Teknon, 08022 Barcelona, Spain
| | - Bernd Kuebler
- Program for Clinical Translation of Regenerative Medicine in Catalonia–P-CMR[C], Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; (A.D.); (B.K.); (B.A.); (Á.R.)
| | - Begoña Aran
- Program for Clinical Translation of Regenerative Medicine in Catalonia–P-CMR[C], Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; (A.D.); (B.K.); (B.A.); (Á.R.)
- National Stem Cell Bank-Barcelona Node, Biomolecular and Bioinformatics Resources Platform PRB2, ISCIII, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | | | | | - Ricardo P. Casaroli-Marano
- Banc de Sang i Teixits (BST), Institute of Biomedical Research (IIB-Sant Pau), 08025 Barcelona, Spain;
- Department of Surgery, School of Medicine and Health Science, Hospital Clinic de Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Esteve Trias
- LEITAT Technological Center, 08005 Barcelona, Spain;
- Advanced Therapies Unit, Hospital Clínic de Barcelona, 08005 Barcelona, Spain
| | - Eduardo Fernandez
- Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (G.M.-N.); (E.F.)
- Institute of Bioengineering, Universidad Miguel Hernández, 03202 Alicante, Spain
| | - Ángel Raya
- Program for Clinical Translation of Regenerative Medicine in Catalonia–P-CMR[C], Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; (A.D.); (B.K.); (B.A.); (Á.R.)
- Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; (G.M.-N.); (E.F.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Anna Veiga
- Program for Clinical Translation of Regenerative Medicine in Catalonia–P-CMR[C], Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain; (A.D.); (B.K.); (B.A.); (Á.R.)
- National Stem Cell Bank-Barcelona Node, Biomolecular and Bioinformatics Resources Platform PRB2, ISCIII, IDIBELL, Hospitalet de Llobregat, 08908 Barcelona, Spain
- Correspondence: (A.V.); (J.M.)
| | - Jordi Monés
- Barcelona Macula Foundation: Research for Vision, 08022 Barcelona, Spain; (E.R.-B.); (M.B.); (M.G.); (L.L.F.)
- Institut de la Màcula, Centro Médico Teknon, 08022 Barcelona, Spain
- Correspondence: (A.V.); (J.M.)
| |
Collapse
|
23
|
Maturation and Protection Effect of Retinal Tissue-Derived Bioink for 3D Cell Printing Technology. Pharmaceutics 2021; 13:pharmaceutics13070934. [PMID: 34201702 PMCID: PMC8309106 DOI: 10.3390/pharmaceutics13070934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/12/2023] Open
Abstract
Retinal degeneration is a leading cause of incurable vision loss and blindness. The increasing incidence of retinal degeneration has triggered research into the development of in vitro retinal models for drug development and retinal alternatives for transplantation. However, the complex retinal structure and the retinal microenvironment pose serious challenges. Although 3D cell printing technology has been widely used in tissue engineering, including in vitro model development and regeneration medicine, currently available bioinks are insufficient to recapitulate the complex extracellular matrix environment of the retina. Therefore, in this study, we developed a retinal decellularized extracellular matrix (RdECM) from the porcine retina and evaluated its characteristics. The RdECM conserved the ECM components from the native retina without cellular components. Then, we mixed the RdECM with collagen to form a bioink and confirmed its suitability for 3D cell printing. We further studied the effect of the RdECM bioink on the differentiation of Muller cells. The retinal protective effect of the RdECM bioink was confirmed through a retinal degeneration animal model. Thus, we believe that the RdECM bioink is a promising candidate for retinal tissue engineering.
Collapse
|
24
|
Miotti G, Parodi PC, Zeppieri M. Stem cell therapy in ocular pathologies in the past 20 years. World J Stem Cells 2021; 13:366-385. [PMID: 34136071 PMCID: PMC8176844 DOI: 10.4252/wjsc.v13.i5.366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/12/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Stem cell therapies are successfully used in various fields of medicine. This new approach of research is also expanding in ophthalmology. Huge investments, resources and important clinical trials have been performed in stem cell research and in potential therapies. In recent years, great strides have been made in genetic research, which permitted and enhanced the differentiation of stem cells. Moreover, the possibility of exploiting stem cells from other districts (such as adipose, dental pulp, bone marrow stem cells, etc.) for the treatment of ophthalmic diseases, renders this topic fascinating. Furthermore, great strides have been made in biomedical engineering, which have proposed new materials and three-dimensional structures useful for cell therapy of the eye. The encouraging results obtained on clinical trials conducted on animals have given a significant boost in the creation of study protocols also in humans. Results are limited to date, but clinical trials continue to evolve. Our attention is centered on the literature reported over the past 20 years, considering animal (the most represented in literature) and human clinical trials, which are limiting. The aim of our review is to present a brief overview of the main types of treatments based on stem cells in the field of ophthalmic pathologies.
Collapse
Affiliation(s)
- Giovanni Miotti
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy.
| |
Collapse
|
25
|
Sung TC, Jiang YP, Hsu JY, Ling QD, Chen H, Kumar SS, Chang Y, Hsu ST, Ye Q, Higuchi A. Transient characteristics of universal cells on human-induced pluripotent stem cells and their differentiated cells derived from foetal stem cells with mixed donor sources. Cell Prolif 2021; 54:e12995. [PMID: 33522648 PMCID: PMC7941237 DOI: 10.1111/cpr.12995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/02/2021] [Accepted: 01/02/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction It is important to prepare ‘hypoimmunogenic’ or ‘universal’ human pluripotent stem cells (hPSCs) with gene‐editing technology by knocking out or in immune‐related genes, because only a few hypoimmunogenic or universal hPSC lines would be sufficient to store for their off‐the‐shelf use. However, these hypoimmunogenic or universal hPSCs prepared previously were all genetically edited, which makes laborious processes to check and evaluate no abnormal gene editing of hPSCs. Methods Universal human‐induced pluripotent stem cells (hiPSCs) were generated without gene editing, which were reprogrammed from foetal stem cells (human amniotic fluid stem cells) with mixing 2‐5 allogenic donors but not with single donor. We evaluated human leucocyte antigen (HLA)‐expressing class Ia and class II of our hiPSCs and their differentiated cells into embryoid bodies, cardiomyocytes and mesenchymal stem cells. We further evaluated immunogenic response of transient universal hiPSCs with allogenic mononuclear cells from survival rate and cytokine production, which were generated by the cells due to immunogenic reactions. Results Our universal hiPSCs during passages 10‐25 did not have immunogenic reaction from allogenic mononuclear cells even after differentiation into cardiomyocytes, embryoid bodies and mesenchymal stem cells. Furthermore, the cells including the differentiated cells did not express HLA class Ia and class II. Cardiomyocytes differentiated from transient universal hiPSCs at passage 21‐22 survived and continued beating even after treatment with allogenic mononuclear cells.
Collapse
Affiliation(s)
- Tzu-Cheng Sung
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Yi-Peng Jiang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Jhe-Yu Hsu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, Taipei, Taiwan
| | - Hao Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Suresh S Kumar
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India
| | - Yung Chang
- Department of Chemical Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital, Pingjen City, Taiwan
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Hubei, China.,School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Department of Oral Maxillofacial Surgery, Skeletal Biology Research Center, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA, USA
| | - Akon Higuchi
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan.,Department of Chemical Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, Taiwan.,Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, China.,Nano Medical Engineering Laboratory, Riken Cluster for Pioneering Research, Riken, Japan
| |
Collapse
|
26
|
Harding P, Cunha DL, Moosajee M. Animal and cellular models of microphthalmia. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:2633004021997447. [PMID: 37181112 PMCID: PMC10032472 DOI: 10.1177/2633004021997447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/02/2021] [Indexed: 05/16/2023]
Abstract
Microphthalmia is a rare developmental eye disorder affecting 1 in 7000 births. It is defined as a small (axial length ⩾2 standard deviations below the age-adjusted mean) underdeveloped eye, caused by disruption of ocular development through genetic or environmental factors in the first trimester of pregnancy. Clinical phenotypic heterogeneity exists amongst patients with varying levels of severity, and associated ocular and systemic features. Up to 11% of blind children are reported to have microphthalmia, yet currently no treatments are available. By identifying the aetiology of microphthalmia and understanding how the mechanisms of eye development are disrupted, we can gain a better understanding of the pathogenesis. Animal models, mainly mouse, zebrafish and Xenopus, have provided extensive information on the genetic regulation of oculogenesis, and how perturbation of these pathways leads to microphthalmia. However, differences exist between species, hence cellular models, such as patient-derived induced pluripotent stem cell (iPSC) optic vesicles, are now being used to provide greater insights into the human disease process. Progress in 3D cellular modelling techniques has enhanced the ability of researchers to study interactions of different cell types during eye development. Through improved molecular knowledge of microphthalmia, preventative or postnatal therapies may be developed, together with establishing genotype-phenotype correlations in order to provide patients with the appropriate prognosis, multidisciplinary care and informed genetic counselling. This review summarises some key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future. Plain language summary Animal and Cellular Models of the Eye Disorder, Microphthalmia (Small Eye) Microphthalmia, meaning a small, underdeveloped eye, is a rare disorder that children are born with. Genetic changes or variations in the environment during the first 3 months of pregnancy can disrupt early development of the eye, resulting in microphthalmia. Up to 11% of blind children have microphthalmia, yet currently no treatments are available. By understanding the genes necessary for eye development, we can determine how disruption by genetic changes or environmental factors can cause this condition. This helps us understand why microphthalmia occurs, and ensure patients are provided with the appropriate clinical care and genetic counselling advice. Additionally, by understanding the causes of microphthalmia, researchers can develop treatments to prevent or reduce the severity of this condition. Animal models, particularly mice, zebrafish and frogs, which can also develop small eyes due to the same genetic/environmental changes, have helped us understand the genes which are important for eye development and can cause birth eye defects when disrupted. Studying a patient's own cells grown in the laboratory can further help researchers understand how changes in genes affect their function. Both animal and cellular models can be used to develop and test new drugs, which could provide treatment options for patients living with microphthalmia. This review summarises the key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future.
Collapse
Affiliation(s)
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, 11-43 Bath
Street, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust,
London, UK
- Great Ormond Street Hospital for Children NHS
Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
27
|
Jin Y, Wang H, Yi K, Lv S, Hu H, Li M, Tao Y. Applications of Nanobiomaterials in the Therapy and Imaging of Acute Liver Failure. NANO-MICRO LETTERS 2020; 13:25. [PMID: 34138224 PMCID: PMC8187515 DOI: 10.1007/s40820-020-00550-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/22/2020] [Indexed: 05/02/2023]
Abstract
This review focuses on the therapeutic mechanisms, targeting strategies of various nanomaterials in acute liver failure, and recent advances of diverse nanomaterials for acute liver failure therapy, diagnosis, and imaging. This review provides an outlook on the applications of nanomaterials, especially on the new horizons in acute liver failure therapy, and inspires broader interests across various disciplines. Acute liver failure (ALF), a fatal clinical disease featured with overwhelming hepatocyte necrosis, is a grand challenge in global health. However, a satisfactory therapeutic option for curing ALF is still absent, other than liver transplantation. Nanobiomaterials are currently being developed for the diagnosis and treatment of ALF. The liver can sequester most of nanoparticles from blood circulation, which becomes an intrinsic superiority for nanobiomaterials targeting hepatic diseases. Nanobiomaterials can enhance the bioavailability of free drugs, thereby significantly improving the therapeutic effects in ALF. Nanobiomaterials can also increase the liver accumulation of therapeutic agents and enable more effective targeting of the liver or specific liver cells. In addition, stimuli-responsive, optical, or magnetic nanomaterials exhibit great potential in the therapeutical, diagnostic, and imaging applications in ALF. Therefore, therapeutic agents in combination with nanobiomaterials increase the specificity of ALF therapy, diminish adverse systemic effects, and offer a multifunctional theranostic platform. Nanobiomaterial holds excellent significance and prospects in ALF theranostics. In this review, we summarize the therapeutic mechanisms and targeting strategies of various nanobiomaterials in ALF. We highlight recent developments of diverse nanomedicines for ALF therapy, diagnosis, and imaging. Furthermore, the challenges and future perspectives in the theranostics of ALF are also discussed.
Collapse
Affiliation(s)
- Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Shixian Lv
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.
| |
Collapse
|
28
|
Ye Q, Sung TC, Yang JM, Ling QD, He Y, Higuchi A. Generation of universal and hypoimmunogenic human pluripotent stem cells. Cell Prolif 2020; 53:e12946. [PMID: 33174655 PMCID: PMC7705897 DOI: 10.1111/cpr.12946] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
There is a need to store very large numbers of conventional human pluripotent stem cell (hPSC) lines for their off‐the‐shelf usage in stem cell therapy. Therefore, it is valuable to generate “universal” or “hypoimmunogenic” hPSCs with gene‐editing technology by knocking out or in immune‐related genes. A few universal or hypoimmunogenic hPSC lines should be enough to store for their off‐the‐shelf usage. Here, we overview and discuss how to prepare universal or hypoimmunogenic hPSCs and their disadvantages. β2‐Microglobulin‐knockout hPSCs did not harbour human leukocyte antigen (HLA)‐expressing class I cells but rather activated natural killer (NK) cells. To avoid NK cell and macrophage activities, homozygous hPSCs expressing a single allele of an HLA class I molecule, such as HLA‐C, were developed. Major HLA class I molecules were knocked out, and PD‐L1, HLA‐G and CD47 were knocked in hPSCs using CRISPR/Cas9 gene editing. These cells escaped activation of not only T cells but also NK cells and macrophages, generating universal hPSCs.
Collapse
Affiliation(s)
- Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China.,Skeletal Biology Research Center, Department of Oral Maxillofacial Surgery, Massachusetts General Hospital & Harvard School of Dental Medicine, Boston, MA, USA
| | - Tzu-Cheng Sung
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Jen-Ming Yang
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, Taipei, Taiwan
| | - Yan He
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Akon Higuchi
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan.,Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, China.,Department of Chemical Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, Taiwan.,Center for Emergent Matter Science, Riken, Saitama, Japan
| |
Collapse
|
29
|
Desgres M, Menasché P. Clinical Translation of Pluripotent Stem Cell Therapies: Challenges and Considerations. Cell Stem Cell 2020; 25:594-606. [PMID: 31703770 DOI: 10.1016/j.stem.2019.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although the clinical outcomes of cell therapy trials have not met initial expectations, emerging evidence suggests that injury-mediated tissue damage might benefit from the delivery of cells or their secreted products. Pluripotent stem cells (PSCs) are promising cell sources primarily because of their capacity to generate stage- and lineage-specific differentiated derivatives. However, they carry inherent challenges for safe and efficacious clinical translation. This Review describes completed or ongoing trials of PSCs, discusses their potential mechanisms of action, and considers how to address the challenges required for them to become a major therapy, using heart repair as a case study.
Collapse
Affiliation(s)
- Manon Desgres
- Université de Paris, PARCC, INSERM, 75015 Paris, France
| | - Philippe Menasché
- Université de Paris, PARCC, INSERM, 75015 Paris, France; Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou 20, rue Leblanc, 75015 Paris, France.
| |
Collapse
|
30
|
Fernández E, Alfaro A, González-López P. Toward Long-Term Communication With the Brain in the Blind by Intracortical Stimulation: Challenges and Future Prospects. Front Neurosci 2020; 14:681. [PMID: 32848535 PMCID: PMC7431631 DOI: 10.3389/fnins.2020.00681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/03/2020] [Indexed: 11/15/2022] Open
Abstract
The restoration of a useful visual sense in a profoundly blind person by direct electrical stimulation of the visual cortex has been a subject of study for many years. However, the field of cortically based sight restoration has made few advances in the last few decades, and many problems remain. In this context, the scientific and technological problems associated with safe and effective communication with the brain are very complex, and there are still many unresolved issues delaying its development. In this work, we review some of the biological and technical issues that still remain to be solved, including long-term biotolerability, the number of electrodes required to provide useful vision, and the delivery of information to the implants. Furthermore, we emphasize the possible role of the neuroplastic changes that follow vision loss in the success of this approach. We propose that increased collaborations among clinicians, basic researchers, and neural engineers will enhance our ability to send meaningful information to the brain and restore a limited but useful sense of vision to many blind individuals.
Collapse
Affiliation(s)
- Eduardo Fernández
- Institute of Bioengineering, Universidad Miguel Hernández, Elche, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Arantxa Alfaro
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Hospital Vega Baja, Orihuela, Spain
| | - Pablo González-López
- Institute of Bioengineering, Universidad Miguel Hernández, Elche, Spain
- Hospital General Universitario de Alicante, Alicante, Spain
| |
Collapse
|
31
|
Trapani I, Auricchio A. Has retinal gene therapy come of age? From bench to bedside and back to bench. Hum Mol Genet 2020; 28:R108-R118. [PMID: 31238338 PMCID: PMC6797000 DOI: 10.1093/hmg/ddz130] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 04/24/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal gene therapy has advanced considerably in the past three decades. Initial efforts have been devoted to comprehensively explore and optimize the transduction abilities of gene delivery vectors, define the appropriate intraocular administration routes and obtain evidence of efficacy in animal models of inherited retinal diseases (IRDs). Successful translation in clinical trials of the initial promising proof-of-concept studies led to the important milestone of the first approved product for retinal gene therapy in both US and Europe. The unprecedented clinical development observed during the last decade in the field is however highlighting new challenges that will need to be overcome to bring gene therapy to fruition to a larger patient population within and beyond the realm of IRDs.
Collapse
Affiliation(s)
- Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Department of Advanced Biomedicine, Federico II University, Naples, Italy
| |
Collapse
|
32
|
Fang J, Hsueh YY, Soto J, Sun W, Wang J, Gu Z, Khademhosseini A, Li S. Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS NANO 2020; 14:1296-1318. [PMID: 32011856 PMCID: PMC10067273 DOI: 10.1021/acsnano.9b04837] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cell reprogramming is a revolutionized biotechnology that offers a powerful tool to engineer cell fate and function for regenerative medicine, disease modeling, drug discovery, and beyond. Leveraging advances in biomaterials and micro/nanotechnologies can enhance the reprogramming performance in vitro and in vivo through the development of delivery strategies and the control of biophysical and biochemical cues. In this review, we present an overview of the state-of-the-art technologies for cell reprogramming and highlight the recent breakthroughs in engineering biomaterials with micro/nanotechnologies to improve reprogramming efficiency and quality. Finally, we discuss future directions and challenges for reprogramming technologies and clinical translation.
Collapse
Affiliation(s)
- Jun Fang
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Yuan-Yu Hsueh
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Division of Plastic Surgery, Department of Surgery, College of Medicine , National Cheng Kung University Hospital , Tainan 70456 , Taiwan
| | - Jennifer Soto
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Wujin Sun
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
| | - Jinqiang Wang
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
| | - Zhen Gu
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
- Jonsson Comprehensive Cancer Center , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Ali Khademhosseini
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
- Department of Chemical and Biomolecular Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Radiology , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Song Li
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
| |
Collapse
|
33
|
Mousawi F, Peng H, Li J, Ponnambalam S, Roger S, Zhao H, Yang X, Jiang LH. Chemical activation of the Piezo1 channel drives mesenchymal stem cell migration via inducing ATP release and activation of P2 receptor purinergic signaling. Stem Cells 2020; 38:410-421. [PMID: 31746084 PMCID: PMC7064961 DOI: 10.1002/stem.3114] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 08/02/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022]
Abstract
In this study, we examined the Ca2+‐permeable Piezo1 channel, a newly identified mechanosensing ion channel, in human dental pulp‐derived mesenchymal stem cells (MSCs) and hypothesized that activation of the Piezo1 channel regulates MSC migration via inducing ATP release and activation of the P2 receptor purinergic signaling. The Piezo1 mRNA and protein were readily detected in hDP‐MSCs from multiple donors and, consistently, brief exposure to Yoda1, the Piezo1 channel‐specific activator, elevated intracellular Ca2+ concentration. Yoda1‐induced Ca2+ response was inhibited by ruthenium red or GsMTx4, two Piezo1 channel inhibitors, and also by Piezo1‐specific siRNA. Brief exposure to Yoda1 also induced ATP release. Persistent exposure to Yoda1 stimulated MSC migration, which was suppressed by Piezo1‐specific siRNA, and also prevented by apyrase, an ATP scavenger, or PPADS, a P2 generic antagonist. Furthermore, stimulation of MSC migration induced by Yoda1 as well as ATP was suppressed by PF431396, a PYK2 kinase inhibitor, or U0126, an inhibitor of the mitogen‐activated protein kinase MEK/ERK signaling pathway. Collectively, these results suggest that activation of the Piezo1 channel stimulates MSC migration via inducing ATP release and subsequent activation of the P2 receptor purinergic signaling and downstream PYK2 and MEK/ERK signaling pathways, thus revealing novel insights into the molecular and signaling mechanisms regulating MSC migration. Such findings provide useful information for evolving a full understanding of MSC migration and homing and developing strategies to improve MSC‐based translational applications.
Collapse
Affiliation(s)
- Fatema Mousawi
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,Department of Oral Biology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Hongsen Peng
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,Department of Oral Biology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Jing Li
- Lingnan Medical Research Centre, School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Sreenivasan Ponnambalam
- School of Molecular and Cell Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sébastien Roger
- EA4245, Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France
| | - Hucheng Zhao
- Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Xuebin Yang
- Department of Oral Biology, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,EA4245, Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France
| |
Collapse
|
34
|
Reig A, Mamillapalli R, Coolidge A, Johnson J, Taylor HS. Uterine Cells Improved Ovarian Function in a Murine Model of Ovarian Insufficiency. Reprod Sci 2019; 26:1633-1639. [PMID: 31530098 PMCID: PMC6949960 DOI: 10.1177/1933719119875818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Primary ovarian insufficiency (POI) is defined as ovarian dysfunction in women younger than 40 years. It affects 1% of the women in this age-group and can occur iatrogenically after chemotherapy. Stem cells have been used in attempt to restore ovarian function in POI. In particular, endometrial mesenchymal stem cells (eMSCs) are easily obtainable in humans and have shown great potential for regenerative medicine. Here, we studied the potential for uterine cell (UC) suspensions containing eMSCs to improve ovarian function in a murine model of chemotherapy-induced POI. Green fluorescent protein (GFP)-labeled UC or phosphate-buffered solution (PBS) was delivered intravenously after chemotherapy. There was a significant increase in oocytes production and serum anti-Müllerian hormone concentrations after 6 weeks, as well as a 19% higher body mass in UC-treated mice. Similarly, we observed an increased number of pups in mice treated with UC than in mice treated with PBS. None of the oocytes or pups incorporated GFP, suggesting that there was no contribution of these stem cells to the oocyte pool. We conclude that treatment with UC indirectly improved ovarian function in mice with chemotherapy-induced POI. Furthermore, our study suggests that endometrial stem cell therapy may be beneficial to young women who undergo ovotoxic chemotherapy.
Collapse
Affiliation(s)
- Andres Reig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Alexis Coolidge
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Joshua Johnson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
35
|
Sung TC, Li HF, Higuchi A, Kumar SS, Ling QD, Wu YW, Burnouf T, Nasu M, Umezawa A, Lee KF, Wang HC, Chang Y, Hsu ST. Effect of cell culture biomaterials for completely xeno-free generation of human induced pluripotent stem cells. Biomaterials 2019; 230:119638. [PMID: 31810728 DOI: 10.1016/j.biomaterials.2019.119638] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) were generated on several biomaterials from human amniotic fluid in completely xeno-free and feeder-free conditions via the transfection of pluripotent genes using a nonintegrating RNA Sendai virus vector. The effect of xeno-free culture medium on the efficiency of the establishment of human amniotic fluid stem cells from amniotic fluid was evaluated. Subsequently, the effect of cell culture biomaterials on the reprogramming efficiency was investigated during the reprogramming of human amniotic fluid stem cells into hiPSCs. Cells cultured in laminin-511, laminin-521, and Synthemax II-coated dishes and hydrogels having optimal elasticity that were engrafted with specific oligopeptides derived from vitronectin could be reprogrammed into hiPSCs with high efficiency. The reprogrammed cells expressed pluripotency proteins and had the capability to differentiate into cells derived from all three germ layers in vitro and in vivo. Human iPSCs could be generated successfully and at high efficiency (0.15-0.25%) in completely xeno-free conditions from the selection of optimal cell culture biomaterials.
Collapse
Affiliation(s)
- Tzu-Cheng Sung
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China; Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan
| | - Hsing-Fen Li
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan
| | - Akon Higuchi
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China; Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan; Wenzhou Institute, University of Chinese Academy of Sciences, No. 16, Xinsan Road, Hi-tech Industry Park, Wenzhou, Zhejiang, China; Department of Reproduction, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan; Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, 200, Chung-Bei Rd., Chungli, Taoyuan, 320, Taiwan; Center for Emergent Matter Science, Riken, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei, 221, Taiwan
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International PhD Program in Cellular Therapies and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michiyo Nasu
- Department of Reproduction, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Akihiro Umezawa
- Department of Reproduction, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Kuei-Fang Lee
- Precision Medical Laboratory, Lee's OB/GYN Clinic, No. 9, Ln. 31, Sec. 2, Jinshan S. Rd., Da'an Dist., Taipei, 106, Taiwan
| | - Han-Chow Wang
- Department of Obstetrics and Gynecology, Hungchi Women & Children's Hospital, No.223, Yuanhua Rd., Taoyuan, 320, Taiwan
| | - Yung Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, 200, Chung-Bei Rd., Chungli, Taoyuan, 320, Taiwan
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital, 77, Kuangtai Road, Pingjen City, Taoyuan, 32405, Taiwan
| |
Collapse
|
36
|
Gao Y, Ku NJ, Sung TC, Higuchi A, Hung CS, Lee HHC, Ling QD, Cheng NC, Umezawa A, Barro L, Burnouf T, Ye Q, Chen H. The effect of human platelet lysate on the differentiation ability of human adipose-derived stem cells cultured on ECM-coated surfaces. J Mater Chem B 2019; 7:7110-7119. [PMID: 31513217 DOI: 10.1039/c9tb01764j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human mesenchymal stem cells (hMSCs), such as human adipose-derived stem cells (hADSCs), present heterogeneous characteristics, including varying differentiation abilities and genotypes. hADSCs isolated under different conditions exhibit differences in stemness. We isolated hADSCs from human fat tissues via culture on different cell culture biomaterials including tissue culture polystyrene (TCPS) dishes and extracellular matrix protein (ECM)-coated dishes in medium supplemented with 5% or 10% serum-converted human platelet lysate (hPL) or 10% fetal bovine serum (FBS) as a control. Currently, it is not clear whether xeno-free hPL in the cell culture medium promotes the ability of hMSCs such as hADSCs to differentiate into several cell lineages compared to the xenomaterial FBS. We investigated whether a synchronized effect of ECM (Matrigel, fibronectin, and recombinant vitronectin) coatings on TCPS dishes for efficient hADSC differentiation could be observed when hADSCs were cultured in hPL medium. We found that Matrigel-coated dishes promoted hADSC differentiation into osteoblasts and suppressed differentiation into chondrocytes in 10% hPL medium. Recombinant vitronectin- and fibronectin-coated dishes greatly promoted hADSC differentiation into osteoblasts and chondrocytes in 5% and 10% hPL media. hPL promoted hADSC differentiation into osteoblasts and chondrocytes compared to FBS on the fibronectin-coated surface and recombinant vitronectin-coated surface.
Collapse
Affiliation(s)
- Yan Gao
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China.
| | - Nien-Ju Ku
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan 32001, Taiwan
| | - Tzu-Cheng Sung
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan 32001, Taiwan
| | - Akon Higuchi
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China. and Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan 32001, Taiwan and Center for Emergent Matter Science, Riken, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and Wenzhou Institute, University of Chinese Academy of Science, No. 16, Xinsan Road, Hi-Tech Industry Park, Wenzhou, Zhejiang, China
| | - Chi-Sheng Hung
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan 32001, Taiwan
| | - Henry Hsin-Chung Lee
- Department of Surgery, Hsinchu Cathay General Hospital, No. 678, Sec 2, Zhonghua Rd, Hsinchu, 30060, Taiwan and Graduate Institute of Translational and Interdisciplinary Medicine, National Central University, No. 300, Jhongda Rd, Jhongli, Taoyuan 32001, Taiwan
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei 221, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S. Rd, Taipei 100, Taiwan
| | - Akihiro Umezawa
- Department of Reproduction, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan
| | - Thierry Burnouf
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan and Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, No. 250 Wu-Xing Street, Taipei 11031, Taiwan
| | - Qingsong Ye
- Regenerative Dentistry Group, School of Dentistry, The University of Queensland, 288 Herston Road, Herston Qld, Brisbane 4006, Australia
| | - Hao Chen
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
37
|
Si Z, Wang X, Sun C, Kang Y, Xu J, Wang X, Hui Y. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomed Pharmacother 2019; 114:108765. [PMID: 30921703 DOI: 10.1016/j.biopha.2019.108765] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived stem cells (ASCs) are a subset of mesenchymal stem cells (MSCs) that can be obtained easily from adipose tissues and possess many of the same regenerative properties as other MSCs. ASCs easily adhere to plastic culture flasks, expand in vitro, and have the capacity to differentiate into multiple cell lineages, offering the potential to repair, maintain, or enhance various tissues. Since human adipose tissue is ubiquitous and easily obtained in large quantities using a minimally invasive procedure, the use of autologous ASCs is promising for both regenerative medicine and organs damaged by injury and disease, leading to a rapidly increasing field of research. ASCs are effective for the treatment of severe symptoms such as atrophy, fibrosis, retraction, and ulcers induced by radiation therapy. Moreover, ASCs have been shown to be effective for pathological wound healing such as aberrant scar formation. Additionally, ASCs have been shown to be effective in treating severe refractory acute graft-versus-host disease and hematological and immunological disorders such as idiopathic thrombocytopenic purpura and refractory pure red cell aplasia, indicating that ASCs may have immunomodulatory function. Although many experimental procedures have been proposed, standardized harvesting protocols and processing techniques do not yet exist. Therefore, in this review we focus on the current landscape of ASC isolation, identification, location, and differentiation ability, and summarize the recent progress in ASC applications, the latest preclinical and clinical research, and future approaches for the use of ASCs.
Collapse
Affiliation(s)
- Zizhen Si
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Xue Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Changhui Sun
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yuchun Kang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiakun Xu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Xidi Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China.
| |
Collapse
|
38
|
Chen LH, Sung TC, Lee HHC, Higuchi A, Su HC, Lin KJ, Huang YR, Ling QD, Kumar SS, Alarfaj AA, Munusamy MA, Nasu M, Chen DC, Hsu ST, Chang Y, Lee KF, Wang HC, Umezawa A. Xeno-free and feeder-free culture and differentiation of human embryonic stem cells on recombinant vitronectin-grafted hydrogels. Biomater Sci 2019; 7:4345-4362. [DOI: 10.1039/c9bm00418a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Xeno-free culture and cardiomyocyte differentiation of human embryonic stem cells on vitronectin-grafted hydrogels by adjusting surface charge and elasticity.
Collapse
|
39
|
Kashpur O, Smith A, Gerami-Naini B, Maione AG, Calabrese R, Tellechea A, Theocharidis G, Liang L, Pastar I, Tomic-Canic M, Mooney D, Veves A, Garlick JA. Differentiation of diabetic foot ulcer-derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes. FASEB J 2019; 33:1262-1277. [PMID: 30088952 PMCID: PMC6355091 DOI: 10.1096/fj.201801059] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/23/2018] [Indexed: 01/05/2023]
Abstract
Diabetic foot ulcers (DFUs) are a major complication of diabetes, and there is a critical need to develop novel cell- and tissue-based therapies to treat these chronic wounds. Induced pluripotent stem cells (iPSCs) offer a replenishing source of allogeneic and autologous cell types that may be beneficial to improve DFU wound-healing outcomes. However, the biologic potential of iPSC-derived cells to treat DFUs has not, to our knowledge, been investigated. Toward that goal, we have performed detailed characterization of iPSC-derived fibroblasts from both diabetic and nondiabetic patients. Significantly, gene array and functional analyses reveal that iPSC-derived fibroblasts from both patients with and those without diabetes are more similar to each other than were the primary cells from which they were derived. iPSC-derived fibroblasts showed improved migratory properties in 2-dimensional culture. iPSC-derived fibroblasts from DFUs displayed a unique biochemical composition and morphology when grown as 3-dimensional (3D), self-assembled extracellular matrix tissues, which were distinct from tissues fabricated using the parental DFU fibroblasts from which they were reprogrammed. In vivo transplantation of 3D tissues with iPSC-derived fibroblasts showed they persisted in the wound and facilitated diabetic wound closure compared with primary DFU fibroblasts. Taken together, our findings support the potential application of these iPSC-derived fibroblasts and 3D tissues to improve wound healing.-Kashpur, O., Smith, A., Gerami-Naini, B., Maione, A. G., Calabrese, R., Tellechea, A., Theocharidis, G., Liang, L., Pastar, I., Tomic-Canic, M., Mooney, D., Veves, A., Garlick, J. A. Differentiation of diabetic foot ulcer-derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes.
Collapse
Affiliation(s)
- Olga Kashpur
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Avi Smith
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Behzad Gerami-Naini
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Anna G. Maione
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Rossella Calabrese
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| | - Ana Tellechea
- Microcirculation Laboratory, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
| | - Georgios Theocharidis
- Microcirculation Laboratory, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
| | - Liang Liang
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; and
| | - Irena Pastar
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; and
| | - Marjana Tomic-Canic
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; and
| | - David Mooney
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Aristidis Veves
- Microcirculation Laboratory, Beth Israel Deaconess Medical Center, Harvard University, Boston, Massachusetts, USA
| | - Jonathan A. Garlick
- Department of Diagnostic Sciences, School of Dental Medicine, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Irawan V, Sung TC, Higuchi A, Ikoma T. Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development. Tissue Eng Regen Med 2018; 15:673-697. [PMID: 30603588 PMCID: PMC6250655 DOI: 10.1007/s13770-018-0135-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cartilage tissue engineering (CTE) aims to obtain a structure mimicking native cartilage tissue through the combination of relevant cells, three-dimensional scaffolds, and extraneous signals. Implantation of 'matured' constructs is thus expected to provide solution for treating large injury of articular cartilage. Type I collagen is widely used as scaffolds for CTE products undergoing clinical trial, owing to its ubiquitous biocompatibility and vast clinical approval. However, the long-term performance of pure type I collagen scaffolds would suffer from its limited chondrogenic capacity and inferior mechanical properties. This paper aims to provide insights necessary for advancing type I collagen scaffolds in the CTE applications. METHODS Initially, the interactions of type I/II collagen with CTE-relevant cells [i.e., articular chondrocytes (ACs) and mesenchymal stem cells (MSCs)] are discussed. Next, the physical features and chemical composition of the scaffolds crucial to support chondrogenic activities of AC and MSC are highlighted. Attempts to optimize the collagen scaffolds by blending with natural/synthetic polymers are described. Hybrid strategy in which collagen and structural polymers are combined in non-blending manner is detailed. RESULTS Type I collagen is sufficient to support cellular activities of ACs and MSCs; however it shows limited chondrogenic performance than type II collagen. Nonetheless, type I collagen is the clinically feasible option since type II collagen shows arthritogenic potency. Physical features of scaffolds such as internal structure, pore size, stiffness, etc. are shown to be crucial in influencing the differentiation fate and secreting extracellular matrixes from ACs and MSCs. Collagen can be blended with native or synthetic polymer to improve the mechanical and bioactivities of final composites. However, the versatility of blending strategy is limited due to denaturation of type I collagen at harsh processing condition. Hybrid strategy is successful in maximizing bioactivity of collagen scaffolds and mechanical robustness of structural polymer. CONCLUSION Considering the previous improvements of physical and compositional properties of collagen scaffolds and recent manufacturing developments of structural polymer, it is concluded that hybrid strategy is a promising approach to advance further collagen-based scaffolds in CTE.
Collapse
Affiliation(s)
- Vincent Irawan
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2 Chome-12-1, Meguro-ku, Tokyo, 152-8550 Japan
| | - Tzu-Cheng Sung
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jung Da Rd., Chung-Li, Taoyuan, 320 Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jung Da Rd., Chung-Li, Taoyuan, 320 Taiwan
| | - Toshiyuki Ikoma
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2 Chome-12-1, Meguro-ku, Tokyo, 152-8550 Japan
| |
Collapse
|
41
|
Pigeau GM, Csaszar E, Dulgar-Tulloch A. Commercial Scale Manufacturing of Allogeneic Cell Therapy. Front Med (Lausanne) 2018; 5:233. [PMID: 30186836 PMCID: PMC6113399 DOI: 10.3389/fmed.2018.00233] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
Allogeneic cell therapy products are generating encouraging clinical and pre-clinical results. Pluripotent stem cell (PSC) derived therapies, in particular, have substantial momentum and the potential to serve as treatments for a wide range of indications. Many of these therapies are also expected to have large market sizes and require cell doses of ≥109 cells. As therapeutic technologies mature, it is essential for the cell manufacturing industry to correspondingly develop to adequately support commercial scale production. To that end, there is much that can be learned and adapted from traditional manufacturing fields. In this review, we highlight key areas of allogeneic cell therapy manufacturing, identify current gaps, and discuss strategies for integrating new solutions. It is anticipated that cell therapy scale-up manufacturing solutions will need to generate batches of up to 2,000 L in single-use disposable formats, which constrains selection of currently available upstream hardware. Suitable downstream hardware is even more limited as processing solutions from the biopharmaceutical field are often not compatible with the unique requirements of cell therapy products. The advancement of therapeutic cell manufacturing processes to date has largely been developed with a cell biology driven approach, which is essential in early development. However, for truly robust and standardized production in a maturing field, a highly controlled manufacturing engineering strategy must be employed, with the implementation of automation, process monitoring and control to increase batch consistency and efficiency.
Collapse
Affiliation(s)
- Gary M Pigeau
- Centre for Advanced Therapeutic Cell Technologies, Toronto, ON, Canada.,General Electric Healthcare, Cell Therapy Technologies, Marlborough, MA, United States
| | - Elizabeth Csaszar
- Centre for Advanced Therapeutic Cell Technologies, Toronto, ON, Canada.,Centre for Commercialization of Regenerative Medicine, Toronto, ON, Canada
| | - Aaron Dulgar-Tulloch
- Centre for Advanced Therapeutic Cell Technologies, Toronto, ON, Canada.,General Electric Healthcare, Cell Therapy Technologies, Marlborough, MA, United States
| |
Collapse
|
42
|
Fernandez E. Development of visual Neuroprostheses: trends and challenges. Bioelectron Med 2018; 4:12. [PMID: 32232088 PMCID: PMC7098238 DOI: 10.1186/s42234-018-0013-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
Visual prostheses are implantable medical devices that are able to provide some degree of vision to individuals who are blind. This research field is a challenging subject in both ophthalmology and basic science that has progressed to a point where there are already several commercially available devices. However, at present, these devices are only able to restore a very limited vision, with relatively low spatial resolution. Furthermore, there are still many other open scientific and technical challenges that need to be solved to achieve the therapeutic benefits envisioned by these new technologies. This paper provides a brief overview of significant developments in this field and introduces some of the technical and biological challenges that still need to be overcome to optimize their therapeutic success, including long-term viability and biocompatibility of stimulating electrodes, the selection of appropriate patients for each artificial vision approach, a better understanding of brain plasticity and the development of rehabilitative strategies specifically tailored for each patient.
Collapse
Affiliation(s)
- Eduardo Fernandez
- Institute of Bioengineering, University Miguel Hernández and CIBER-BBN, Avda de la Universidad, s/n, 03202 Alicante, Elche Spain.,2John A. Moran Eye Center, University of Utah, Salt Lake City, USA
| |
Collapse
|
43
|
Trapani I, Auricchio A. Seeing the Light after 25 Years of Retinal Gene Therapy. Trends Mol Med 2018; 24:669-681. [PMID: 29983335 DOI: 10.1016/j.molmed.2018.06.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022]
Abstract
The retina has been at the forefront of translational gene therapy. Proof-of-concept that gene therapy could restore vision in a large animal led to the initiation of the first successful clinical trials and, in turn, to the recent approval of the first gene therapy product for an ocular disease. As dozens of clinical trials of retinal gene therapy have begun, new challenges are identified, which include delivery of large genes, counteracting gain-of-function mutations, and safe and effective gene transfer to diseased retinas. Advancements in vector design, improvements of delivery routes, and selection of optimal timing for intervention will contribute to extend the initial success of retinal gene therapy to an increasing number of inherited blinding conditions.
Collapse
Affiliation(s)
- Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy.
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Advanced Biomedicine, Federico II University, Naples, Italy.
| |
Collapse
|
44
|
Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: An update. J Gene Med 2018; 20:e3015. [PMID: 29575374 DOI: 10.1002/jgm.3015] [Citation(s) in RCA: 536] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/07/2018] [Accepted: 03/09/2018] [Indexed: 12/19/2022] Open
Abstract
To date, almost 2600 gene therapy clinical trials have been completed, are ongoing or have been approved worldwide. Our database brings together global information on gene therapy clinical activity from trial databases, official agency sources, published literature, conference presentations and posters kindly provided to us by individual investigators or trial sponsors. This review presents our analysis of clinical trials that, to the best of our knowledge, have been or are being performed worldwide. As of our November 2017 update, we have entries on 2597 trials undertaken in 38 countries. We have analysed the geographical distribution of trials, the disease indications (or other reasons) for trials, the proportions to which different vector types are used, and the genes that have been transferred. Details of the analyses presented, and our searchable database are available via The Journal of Gene Medicine Gene Therapy Clinical Trials Worldwide website at: http://www.wiley.co.uk/genmed/clinical. We also provide an overview of the progress being made in gene therapy clinical trials around the world, and discuss key trends since the previous review, namely the use of chimeric antigen receptor T cells for the treatment of cancer and advancements in genome editing technologies, which have the potential to transform the field moving forward.
Collapse
Affiliation(s)
- Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Anais K Amaya
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, The University of Sydney and The Sydney Children's Hospitals Network, Westmead, NSW, Australia.,Discipline of Child and Adolescent Health, The University of Sydney, Westmead, NSW, Australia
| | | | - Mohammad R Abedi
- Department of Laboratory Medicine, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
45
|
Teh SW, Mok PL, Abd Rashid M, Bastion MLC, Ibrahim N, Higuchi A, Murugan K, Mariappan R, Subbiah SK. Recent Updates on Treatment of Ocular Microbial Infections by Stem Cell Therapy: A Review. Int J Mol Sci 2018; 19:ijms19020558. [PMID: 29438279 PMCID: PMC5855780 DOI: 10.3390/ijms19020558] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/03/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
Ocular microbial infection has emerged as a major public health crisis during the past two decades. A variety of causative agents can cause ocular microbial infections; which are characterized by persistent and destructive inflammation of the ocular tissue; progressive visual disturbance; and may result in loss of visual function in patients if early and effective treatments are not received. The conventional therapeutic approaches to treat vision impairment and blindness resulting from microbial infections involve antimicrobial therapy to eliminate the offending pathogens or in severe cases; by surgical methods and retinal prosthesis replacing of the infected area. In cases where there is concurrent inflammation, once infection is controlled, anti-inflammatory agents are indicated to reduce ocular damage from inflammation which ensues. Despite advances in medical research; progress in the control of ocular microbial infections remains slow. The varying level of ocular tissue recovery in individuals and the incomplete visual functional restoration indicate the chief limitations of current strategies. The development of a more extensive therapy is needed to help in healing to regain vision in patients. Stem cells are multipotent stromal cells that can give rise to a vast variety of cell types following proper differentiation protocol. Stem cell therapy shows promise in reducing inflammation and repairing tissue damage on the eye caused by microbial infections by its ability to modulate immune response and promote tissue regeneration. This article reviews a selected list of common infectious agents affecting the eye; which include fungi; viruses; parasites and bacteria with the aim of discussing the current antimicrobial treatments and the associated therapeutic challenges. We also provide recent updates of the advances in stem cells studies on sepsis therapy as a suggestion of optimum treatment regime for ocular microbial infections.
Collapse
Affiliation(s)
- Seoh Wei Teh
- Department of Biomedical Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Pooi Ling Mok
- Department of Biomedical Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Aljouf University, 72442 Sakaka, Aljouf Province, Saudi Arabia.
| | - Munirah Abd Rashid
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Mae-Lynn Catherine Bastion
- Department of Ophthalmology, Faculty of Medicine, UKM Medical Center, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Normala Ibrahim
- Department of Psychiatry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, 32001 Taoyuan, Taiwan.
| | - Kadarkarai Murugan
- Department of Zoology, Thiruvalluvar University, Serkkadu, 632 115 Vellore, India.
| | - Rajan Mariappan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625 021 Tamil Nadu, India.
| | - Suresh Kumar Subbiah
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
46
|
Sung TC, Li HF, Higuchi A, Ling QD, Yang JS, Tseng YC, Pan CHP, Alarfaj AA, Munusamy MA, Kumar S, Hsu ST, Murugan K. Human Pluripotent Stem Cell Culture on Polyvinyl Alcohol-Co-Itaconic Acid Hydrogels with Varying Stiffness Under Xeno-Free Conditions. J Vis Exp 2018:57314. [PMID: 29443075 PMCID: PMC5912358 DOI: 10.3791/57314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The effect of physical cues, such as the stiffness of biomaterials on the proliferation and differentiation of stem cells, has been investigated by several researchers. However, most of these investigators have used polyacrylamide hydrogels for stem cell culture in their studies. Therefore, their results are controversial because those results might originate from the specific characteristics of the polyacrylamide and not from the physical cue (stiffness) of the biomaterials. Here, we describe a protocol for preparing hydrogels, which are not based on polyacrylamide, where various stem, cells including human embryonic stem (ES) cells and human induced pluripotent stem (iPS) cells, can be cultured. Hydrogels with varying stiffness were prepared from bioinert polyvinyl alcohol-co-itaconic acid (P-IA), with stiffness controlled by crosslinking degree by changing crosslinking time. The P-IA hydrogels grafted with and without oligopeptides derived from extracellular matrix were investigated as a future platform for stem cell culture and differentiation. The culture and passage of amniotic fluid stem cells, adipose-derived stem cells, human ES cells, and human iPS cells is described in detail here. The oligopeptide P-IA hydrogels showed superior performances, which were induced by their stiffness properties. This protocol reports the synthesis of the biomaterial, their surface manipulation, along with controlling the stiffness properties and finally, their impact on stem cell fate using xeno-free culture conditions. Based on recent studies, such modified substrates can act as future platforms to support and direct the fate of various stem cells line to different linkages; and further, regenerate and restore the functions of the lost organ or tissue.
Collapse
Affiliation(s)
- Tzu-Cheng Sung
- Department of Chemical and Materials Engineering, National Central University
| | - Hsing-Fen Li
- Department of Chemical and Materials Engineering, National Central University
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University; Department of Botany and Microbiology, King Saud University;
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital; Graduate Institute of Systems Biology and Bioinformatics, National Central University
| | - Jia-Sin Yang
- Department of Chemical and Materials Engineering, National Central University
| | - Yeh-Chia Tseng
- Department of Chemical and Materials Engineering, National Central University
| | - Chih-Hsien Pan Pan
- Department of Chemical and Materials Engineering, National Central University
| | | | | | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital
| | | |
Collapse
|
47
|
Hytti M, Andjelic S, Josifovska N, Piippo N, Korhonen E, Hawlina M, Kaarniranta K, Nevalainen TJ, Petrovski G, Parkkari T, Kauppinen A. CB 2 receptor activation causes an ERK1/2-dependent inflammatory response in human RPE cells. Sci Rep 2017; 7:16169. [PMID: 29170454 PMCID: PMC5701010 DOI: 10.1038/s41598-017-16524-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
A chronic low-level inflammation contributes to the pathogenesis of age-related macular degeneration (AMD), the most common cause of blindness in the elderly in Western countries. The loss of central vision results from attenuated maintenance of photoreceptors due to the degeneration of retinal pigment epithelium (RPE) cells beneath the photoreceptor layer. It has been proposed that pathologic inflammation initiated in RPE cells could be regulated by the activation of type 2 cannabinoid receptors (CB2). Here, we have analysed the effect of CB2 activation on cellular survival and inflammation in human RPE cells. RPE cells were treated with the selective CB2 agonist JWH-133 in the presence or absence of the oxidative stressor 4-hydroxynonenal. Thereafter, cellular viability as well as the release of pro-inflammatory cytokines and potential underlying signalling pathways were analysed. Our results show that JWH-133 led to increased intracellular Ca2+ levels, suggesting that RPE cells are capable of responding to a CB2 agonist. JWH-133 could not prevent oxidative stress-induced cell death. Instead, 10 µM JWH-133 increased cell death and the release of proinflammatory cytokines in an ERK1/2-dependent manner. In contrast to previous findings, CB2 activation increased, rather than reduced inflammation in RPE cells.
Collapse
Affiliation(s)
- M Hytti
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland. .,Department of Ophthalmology, School of Medicine, University of Eastern Finland, Kuopio, Finland.
| | - S Andjelic
- Eye Hospital, University Medical Centre, Ljubljana, Slovenia
| | - N Josifovska
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - N Piippo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - E Korhonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - M Hawlina
- Eye Hospital, University Medical Centre, Ljubljana, Slovenia
| | - K Kaarniranta
- Department of Ophthalmology, School of Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| | - T J Nevalainen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - G Petrovski
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Centre of Eye Research, Department of Ophthalmology and the Norwegian Center for Stem Cell Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - T Parkkari
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - A Kauppinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
48
|
Higuchi A, Ku NJ, Tseng YC, Pan CH, Li HF, Kumar SS, Ling QD, Chang Y, Alarfaj AA, Munusamy MA, Benelli G, Murugan K. Stem cell therapies for myocardial infarction in clinical trials: bioengineering and biomaterial aspects. J Transl Med 2017; 97:1167-1179. [PMID: 28869589 DOI: 10.1038/labinvest.2017.100] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease remains the leading cause of death and disability in advanced countries. Stem cell transplantation has emerged as a promising therapeutic strategy for acute and chronic ischemic cardiomyopathy. The current status of stem cell therapies for patients with myocardial infarction is discussed from a bioengineering and biomaterial perspective in this review. We describe (a) the current status of clinical trials of human pluripotent stem cells (hPSCs) compared with clinical trials of human adult or fetal stem cells, (b) the gap between fundamental research and application of human stem cells, (c) the use of biomaterials in clinical and pre-clinical studies of stem cells, and finally (d) trends in bioengineering to promote stem cell therapies for patients with myocardial infarction. We explain why the number of clinical trials using hPSCs is so limited compared with clinical trials using human adult and fetal stem cells such as bone marrow-derived stem cells.
Collapse
Affiliation(s)
- Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan.,Nano Medical Engineering Laboratory, RIKEN, Wako, Saitama, Japan.,Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, Taiwan
| | - Nien-Ju Ku
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Yeh-Chia Tseng
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Chih-Hsien Pan
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Hsing-Fen Li
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, Hsi-Chi City, Taipei, Taiwan.,Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli, Taoyuan, Taiwan
| | - Yung Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, Taiwan
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Murugan A Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, Pisa, Italy.,The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India.,Department of Zoology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| |
Collapse
|
49
|
Yi DK, Nanda SS, Kim K, Tamil Selvan S. Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. J Mater Chem B 2017; 5:9429-9451. [DOI: 10.1039/c7tb02532g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology advancements for stem cell differentiation, labeling, tracking and therapeutic applications in cardiac repair, bone, and liver regeneration are delineated.
Collapse
Affiliation(s)
- Dong Kee Yi
- Department of Chemistry
- Myongji University
- Yongin 449-728
- South Korea
| | | | - Kwangmeyung Kim
- Center for Theragnosis
- Biomedical Research Institute
- Korea Institute of Science and Technology (KIST)
- Seoul
- South Korea
| | | |
Collapse
|