1
|
Photiadis S, Mai Q, Montanez G, Nguyen C, Kramer T, Photiadis D, Sylvia C, Spangler T, Nguyen KH. A novel intravascular bioartificial pancreas device shows safety and islet functionality over 30 days in nondiabetic swine. Am J Transplant 2025; 25:734-743. [PMID: 39557121 DOI: 10.1016/j.ajt.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/27/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
In this study using a discordant, xenogeneic, transplant model we demonstrate the functionality and safety of the first stent-based bioartificial pancreas (BAP) device implanted endovascularly into an artery, harnessing the high oxygen content in blood to support islet viability. The device is a self-expanding nitinol stent that is coated with a bilayer of polytetrafluoroethylene that forms channels to hold islets embedded in a hydrogel. We completed a 1-month study in the nondiabetic swine model (N = 3) to test the safety of the device and to assess islet functionality after device recovery. The luminal diameter of the devices from 3 animals on day 0 and day 30 was 10.01 ± 0.408 mm and 10.05 ± 0.25 mm, respectively. The stimulation index of the control and endovascular BAP devices explanted at day 30 were 3.35 ± 0.97 and 4.83 ±1.20, respectively, and the islets stained positively for insulin and glucagon after 30 days in vivo. This pilot study shows that BAP implantation into a peripheral artery is safe and supports islet functionality over 30 days, providing the groundwork for future work assessing the in vivo function of the device in diabetic swine.
Collapse
Affiliation(s)
| | - Quynh Mai
- Isla Technologies, Inc, San Carlos, California, USA
| | | | | | - Thomas Kramer
- Sirius Engineering, LLC, San Carlos, California, USA
| | | | - Charles Sylvia
- Bayside Preclinical Services, Inc, Dixon, California, USA
| | | | | |
Collapse
|
2
|
Wang LH, Marfil-Garza BA, Ernst AU, Pawlick RL, Pepper AR, Okada K, Epel B, Viswakarma N, Kotecha M, Flanders JA, Datta AK, Gao HJ, You YZ, Ma M, Shapiro AMJ. Inflammation-induced subcutaneous neovascularization for the long-term survival of encapsulated islets without immunosuppression. Nat Biomed Eng 2024; 8:1266-1284. [PMID: 38052996 DOI: 10.1038/s41551-023-01145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/25/2023] [Indexed: 12/07/2023]
Abstract
Cellular therapies for type-1 diabetes can leverage cell encapsulation to dispense with immunosuppression. However, encapsulated islet cells do not survive long, particularly when implanted in poorly vascularized subcutaneous sites. Here we show that the induction of neovascularization via temporary controlled inflammation through the implantation of a nylon catheter can be used to create a subcutaneous cavity that supports the transplantation and optimal function of a geometrically matching islet-encapsulation device consisting of a twisted nylon surgical thread coated with an islet-seeded alginate hydrogel. The neovascularized cavity led to the sustained reversal of diabetes, as we show in immunocompetent syngeneic, allogeneic and xenogeneic mouse models of diabetes, owing to increased oxygenation, physiological glucose responsiveness and islet survival, as indicated by a computational model of mass transport. The cavity also allowed for the in situ replacement of impaired devices, with prompt return to normoglycemia. Controlled inflammation-induced neovascularization is a scalable approach, as we show with a minipig model, and may facilitate the clinical translation of immunosuppression-free subcutaneous islet transplantation.
Collapse
Affiliation(s)
- Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Braulio A Marfil-Garza
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Mexico
| | - Alexander U Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Rena L Pawlick
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew R Pepper
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Kento Okada
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
- O2M Technologies, LLC, Chicago, IL, USA
| | | | | | | | - Ashim K Datta
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Hong-Jie Gao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Ye-Zi You
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - A M James Shapiro
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.
- Clinical Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
de Jongh D, Lapré S, Özcan B, Zietse R, Bunnik EM, Massey EK. Clinical Translation and Implementation of a Bioartificial Pancreas Therapy: A Qualitative Study Exploring the Perspectives of People With Type 1 Diabetes. Transplant Direct 2024; 10:e1711. [PMID: 39328250 PMCID: PMC11427030 DOI: 10.1097/txd.0000000000001711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/29/2024] [Indexed: 09/28/2024] Open
Abstract
Background The development of a hybrid beta-cell replacement approach, referred to as a personalized, transplantable bioartificial pancreas (BAP), holds promise to treat type 1 diabetes (T1D). This interview study aimed to explore patients' expectations, needs, concerns, and considerations when considering to undergo a BAP transplantation. Research Design and Methods Semistructured interviews were conducted with 24 participants diagnosed with T1D. Data collection stopped once data saturation was reached. Audio recordings of the interviews were transcribed verbatim. The interviews were independently analyzed by 2 researchers. A qualitative content analysis using an inductive approach was used. Results Three main themes emerged as follow: (1) hoped-for benefits, (2) concerns and decision-making considerations, and (3) procedural aspects. First, the participants expected benefits across medical, psychological, and social domains. Over these 3 domains, 9 subthemes were identified, including improved clinical outcomes, a cure for diabetes, more headspace, emotional relief, a shift in responsibility, protection of privacy, improved flexibility in daily life, less visible diseases, and improved relationships with others. Second, concerns and considerations about undergoing a BAP transplant comprised adverse events, the functionality of the BAP, the surgery procedure, the biological materials used, the transplant location, and the intrusiveness associated with follow-up care. Finally, procedural considerations included equitable access, patient prioritization, and trust and control. Conclusions Incorporating insights from this study into the clinical development and implementation of the BAP is crucial to ensure alignment of the product and procedures with the needs and expectations of people with T1D.
Collapse
Affiliation(s)
- Dide de Jongh
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Silke Lapré
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Behiye Özcan
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert Zietse
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Eline M Bunnik
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Emma K Massey
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Dortaj H, Amani AM, Tayebi L, Azarpira N, Ghasemi Toudeshkchouei M, Hassanpour-Dehnavi A, Karami N, Abbasi M, Najafian-Najafabadi A, Zarei Behjani Z, Vaez A. Droplet-based microfluidics: an efficient high-throughput portable system for cell encapsulation. J Microencapsul 2024; 41:479-501. [PMID: 39077800 DOI: 10.1080/02652048.2024.2382744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
One of the goals of tissue engineering and regenerative medicine is restoring primary living tissue function by manufacturing a 3D microenvironment. One of the main challenges is protecting implanted non-autologous cells or tissues from the host immune system. Cell encapsulation has emerged as a promising technique for this purpose. It involves entrapping cells in biocompatible and semi-permeable microcarriers made from natural or synthetic polymers that regulate the release of cellular secretions. In recent years, droplet-based microfluidic systems have emerged as powerful tools for cell encapsulation in tissue engineering and regenerative medicine. These systems offer precise control over droplet size, composition, and functionality, allowing for creating of microenvironments that closely mimic native tissue. Droplet-based microfluidic systems have extensive applications in biotechnology, medical diagnosis, and drug discovery. This review summarises the recent developments in droplet-based microfluidic systems and cell encapsulation techniques, as well as their applications, advantages, and challenges in biology and medicine. The integration of these technologies has the potential to revolutionise tissue engineering and regenerative medicine by providing a precise and controlled microenvironment for cell growth and differentiation. By overcoming the immune system's challenges and enabling the release of cellular secretions, these technologies hold great promise for the future of regenerative medicine.
Collapse
Affiliation(s)
- Hengameh Dortaj
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ashraf Hassanpour-Dehnavi
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Karami
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Najafian-Najafabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Zarei Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Wasyłeczko M, Wojciechowski C, Chwojnowski A. Polyethersulfone Polymer for Biomedical Applications and Biotechnology. Int J Mol Sci 2024; 25:4233. [PMID: 38673817 PMCID: PMC11049998 DOI: 10.3390/ijms25084233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Polymers stand out as promising materials extensively employed in biomedicine and biotechnology. Their versatile applications owe much to the field of tissue engineering, which seamlessly integrates materials engineering with medical science. In medicine, biomaterials serve as prototypes for organ development and as implants or scaffolds to facilitate body regeneration. With the growing demand for innovative solutions, synthetic and hybrid polymer materials, such as polyethersulfone, are gaining traction. This article offers a concise characterization of polyethersulfone followed by an exploration of its diverse applications in medical and biotechnological realms. It concludes by summarizing the significant roles of polyethersulfone in advancing both medicine and biotechnology, as outlined in the accompanying table.
Collapse
Affiliation(s)
- Monika Wasyłeczko
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ksiecia Trojdena 4, 02-109 Warsaw, Poland; (C.W.); (A.C.)
| | | | | |
Collapse
|
6
|
Kavand A, Noverraz F, Gerber-Lemaire S. Recent Advances in Alginate-Based Hydrogels for Cell Transplantation Applications. Pharmaceutics 2024; 16:469. [PMID: 38675129 PMCID: PMC11053880 DOI: 10.3390/pharmaceutics16040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
With its exceptional biocompatibility, alginate emerged as a highly promising biomaterial for a large range of applications in regenerative medicine. Whether in the form of microparticles, injectable hydrogels, rigid scaffolds, or bioinks, alginate provides a versatile platform for encapsulating cells and fostering an optimal environment to enhance cell viability. This review aims to highlight recent studies utilizing alginate in diverse formulations for cell transplantation, offering insights into its efficacy in treating various diseases and injuries within the field of regenerative medicine.
Collapse
Affiliation(s)
| | | | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; (A.K.); (F.N.)
| |
Collapse
|
7
|
Einstein SA, Steyn LV, Weegman BP, Suszynski TM, Sambanis A, O'Brien TD, Avgoustiniatos ES, Firpo MT, Graham ML, Janecek J, Eberly LE, Garwood M, Putnam CW, Papas KK. Hypoxia within subcutaneously implanted macroencapsulation devices limits the viability and functionality of densely loaded islets. FRONTIERS IN TRANSPLANTATION 2023; 2:1257029. [PMID: 38993891 PMCID: PMC11235299 DOI: 10.3389/frtra.2023.1257029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/20/2023] [Indexed: 07/13/2024]
Abstract
Introduction Subcutaneous macroencapsulation devices circumvent disadvantages of intraportal islet therapy. However, a curative dose of islets within reasonably sized devices requires dense cell packing. We measured internal PO2 of implanted devices, mathematically modeled oxygen availability within devices and tested the predictions with implanted devices containing densely packed human islets. Methods Partial pressure of oxygen (PO2) within implanted empty devices was measured by noninvasive 19F-MRS. A mathematical model was constructed, predicting internal PO2, viability and functionality of densely packed islets as a function of external PO2. Finally, viability was measured by oxygen consumption rate (OCR) in day 7 explants loaded at various islet densities. Results In empty devices, PO2 was 12 mmHg or lower, despite successful external vascularization. Devices loaded with human islets implanted for 7 days, then explanted and assessed by OCR confirmed trends proffered by the model but viability was substantially lower than predicted. Co-localization of insulin and caspase-3 immunostaining suggested that apoptosis contributed to loss of beta cells. Discussion Measured PO2 within empty devices declined during the first few days post-transplant then modestly increased with neovascularization around the device. Viability of islets is inversely related to islet density within devices.
Collapse
Affiliation(s)
- Samuel A Einstein
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Department of Radiology, The Pennsylvania State University, Hershey, PA, United States
| | - Leah V Steyn
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Bradley P Weegman
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Sylvatica Biotech Inc., North Charleston, SC, United States
| | - Thomas M Suszynski
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Athanassios Sambanis
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Timothy D O'Brien
- Veterinary Population Medicine Department, University of Minnesota, Saint Paul, MN, United States
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | | | - Meri T Firpo
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Melanie L Graham
- Veterinary Population Medicine Department, University of Minnesota, Saint Paul, MN, United States
- Department of Surgery, Preclinical Research Center, University of Minnesota, Saint Paul, MN, United States
| | - Jody Janecek
- Department of Surgery, Preclinical Research Center, University of Minnesota, Saint Paul, MN, United States
| | - Lynn E Eberly
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Charles W Putnam
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Klearchos K Papas
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
8
|
Li Y, He C, Liu R, Xiao Z, Sun B. Stem cells therapy for diabetes: from past to future. Cytotherapy 2023; 25:1125-1138. [PMID: 37256240 DOI: 10.1016/j.jcyt.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Diabetes mellitus is a chronic disease of carbohydrate metabolism characterized by uncontrolled hyperglycemia due to the body's impaired ability to produce or respond to insulin. Oral or injectable exogenous insulin and its analogs cannot mimic endogenous insulin secreted by healthy individuals, and pancreatic and islet transplants face a severe shortage of sources and transplant complications, all of which limit the widespread use of traditional strategies in diabetes treatment. We are now in the era of stem cells and their potential in ameliorating human disease. At the same time, the rapid development of gene editing and cell-encapsulation technologies has added to the wings of stem cell therapy. However, there are still many unanswered questions before stem cell therapy can be applied clinically to patients with diabetes. In this review, we discuss the progress of strategies to obtain insulin-producing cells from different types of stem cells, the application of gene editing in stem cell therapy for diabetes, as well as summarize the current advanced cell encapsulation technologies in diabetes therapy and look forward to the future development of stem cell therapy in diabetes.
Collapse
Affiliation(s)
- Yumin Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Cong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital,The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rui Liu
- Department of Genetic Engineering, College of Natural Science, University of Suwon, Kyunggi-Do, Republic of Korea
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
9
|
Qin T, Smink AM, de Vos P. Enhancing longevity of immunoisolated pancreatic islet grafts by modifying both the intracapsular and extracapsular environment. Acta Biomater 2023:S1742-7061(23)00362-8. [PMID: 37392934 DOI: 10.1016/j.actbio.2023.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease characterized by autoimmune destruction of pancreatic β cells. Transplantation of immunoisolated pancreatic islets might treat T1DM in the absence of chronic immunosuppression. Important advances have been made in the past decade as capsules can be produced that provoke minimal to no foreign body response after implantation. However, graft survival is still limited as islet dysfunction may occur due to chronic damage to islets during islet isolation, immune responses induced by inflammatory cells, and nutritional issues for encapsulated cells. This review summarizes the current challenges for promoting longevity of grafts. Possible strategies for improving islet graft longevity are also discussed, including supplementation of the intracapsular milieu with essential survival factors, promotion of vascularization and oxygenation near capsules, modulation of biomaterials, and co-transplantation of accessory cells. Current insight is that both the intracapsular as well as the extracapsular properties should be improved to achieve long-term survival of islet-tissue. Some of these approaches reproducibly induce normoglycemia for more than a year in rodents. Further development of the technology requires collective research efforts in material science, immunology, and endocrinology. STATEMENT OF SIGNIFICANCE: Islet immunoisolation allows for transplantation of insulin producing cells in absence of immunosuppression and might facilitate the use of xenogeneic cell sources or grafting of cells obtained from replenishable cell sources. However, a major challenge to date is to create a microenvironment that supports long-term graft survival. This review provides a comprehensive overview of the currently identified factors that have been demonstrated to be involved in either stimulating or reducing islet graft survival in immunoisolating devices and discussed current strategies to enhance the longevity of encapsulated islet grafts as treatment for type 1 diabetes. Although significant challenges remain, interdisciplinary collaboration across fields may overcome obstacles and facilitate the translation of encapsulated cell therapy from the laboratory to clinical application.
Collapse
Affiliation(s)
- Tian Qin
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands.
| | - Alexandra M Smink
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
10
|
Huo Y, Bai B, Zheng R, Sun Y, Yu Y, Wang X, Chen H, Hua Y, Zhang Y, Zhou G, Wang X. In Vivo Stable Allogenic Cartilage Regeneration in a Goat Model Based on Immunoisolation Strategy Using Electrospun Semipermeable Membranes. Adv Healthc Mater 2023; 12:e2203084. [PMID: 36789972 PMCID: PMC11469122 DOI: 10.1002/adhm.202203084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Indexed: 02/16/2023]
Abstract
Tissue engineering is a promising strategy for cartilage defect repair. However, autologous cartilage regeneration is limited by additional trauma to the donor site and a long in vitro culture period. Alternatively, allogenic cartilage regeneration has attracted attention because of the unique advantages of an abundant donor source and immediate supply, but it will cause immune rejection responses (IRRs), especially in immunocompetent large animals. Therefore, a universal technique needs to be established to overcome IRRs for allogenic cartilage regeneration in large animals. In the current study, a hybrid synthetic-natural electrospun thermoplastic polyurethane/gelatin (TPU/GT) semipermeable membrane to explore the feasibility of stable allogenic cartilage regeneration by an immunoisolation strategy is developed. In vitro results demonstrated that the rationally designed electrospun TPU/GT membranes has ideal biocompatibility, semipermeability, and an immunoisolation function. In vivo results further showed that the semipermeable membrane (SPM) efficiently blocked immune cell attack, decreased immune factor production, and cell apoptosis of the regenerated allogenic cartilage. Importantly, TPU/GT-encapsulated cartilage-sheet constructs achieved stable allogeneic cartilage regeneration in a goat model. The current study provides a novel strategy for allogenic cartilage regeneration and supplies a new cartilage donor source to repair various cartilage defects.
Collapse
Affiliation(s)
- Yingying Huo
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Tissue EngineeringShanghai200011PR China
- National Tissue Engineering Center of ChinaShanghai200241PR China
| | - Baoshuai Bai
- Research Institute of Plastic SurgeryWeifang Medical UniversityWeifangShandong261053PR China
| | - Rui Zheng
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Tissue EngineeringShanghai200011PR China
- National Tissue Engineering Center of ChinaShanghai200241PR China
| | - Yuyan Sun
- Research Institute of Plastic SurgeryWeifang Medical UniversityWeifangShandong261053PR China
| | - Yao Yu
- Research Institute of Plastic SurgeryWeifang Medical UniversityWeifangShandong261053PR China
| | - Xin Wang
- Department of Plastic SurgeryTongren HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Tissue EngineeringShanghai200050PR China
- Department of Hand SurgeryNingbo Sixth HospitalNingboZhejiang315042PR China
| | - Hong Chen
- Department of Hand SurgeryNingbo Sixth HospitalNingboZhejiang315042PR China
| | - Yujie Hua
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Tissue EngineeringShanghai200011PR China
- National Tissue Engineering Center of ChinaShanghai200241PR China
- Institute of Regenerative Medicine and OrthopedicsInstitutes of Health Central PlainXinxiang Medical UniversityXinxiangHenan453003PR China
| | - Yixin Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Tissue EngineeringShanghai200011PR China
- National Tissue Engineering Center of ChinaShanghai200241PR China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Tissue EngineeringShanghai200011PR China
- National Tissue Engineering Center of ChinaShanghai200241PR China
- Research Institute of Plastic SurgeryWeifang Medical UniversityWeifangShandong261053PR China
- Institute of Regenerative Medicine and OrthopedicsInstitutes of Health Central PlainXinxiang Medical UniversityXinxiangHenan453003PR China
| | - Xiaoyun Wang
- Department of Plastic SurgeryTongren HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Tissue EngineeringShanghai200050PR China
- Department of Hand SurgeryNingbo Sixth HospitalNingboZhejiang315042PR China
| |
Collapse
|
11
|
Samadi A, Moammeri A, Pourmadadi M, Abbasi P, Hosseinpour Z, Farokh A, Shamsabadipour A, Heydari M, Mohammadi MR. Cell Encapsulation and 3D Bioprinting for Therapeutic Cell Transplantation. ACS Biomater Sci Eng 2023; 9:1862-1890. [PMID: 36877212 DOI: 10.1021/acsbiomaterials.2c01183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The promise of cell therapy has been augmented by introducing biomaterials, where intricate scaffold shapes are fabricated to accommodate the cells within. In this review, we first discuss cell encapsulation and the promising potential of biomaterials to overcome challenges associated with cell therapy, particularly cellular function and longevity. More specifically, cell therapies in the context of autoimmune disorders, neurodegenerative diseases, and cancer are reviewed from the perspectives of preclinical findings as well as available clinical data. Next, techniques to fabricate cell-biomaterials constructs, focusing on emerging 3D bioprinting technologies, will be reviewed. 3D bioprinting is an advancing field that enables fabricating complex, interconnected, and consistent cell-based constructs capable of scaling up highly reproducible cell-biomaterials platforms with high precision. It is expected that 3D bioprinting devices will expand and become more precise, scalable, and appropriate for clinical manufacturing. Rather than one printer fits all, seeing more application-specific printer types, such as a bioprinter for bone tissue fabrication, which would be different from a bioprinter for skin tissue fabrication, is anticipated in the future.
Collapse
Affiliation(s)
- Amirmasoud Samadi
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, California 92617, United States
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Parisa Abbasi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, Tehran 1458889694, Iran
| | - Zeinab Hosseinpour
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol 4714871167, Mazandaran Province, Iran
| | - Arian Farokh
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran 199389373, Iran
| | - M Rezaa Mohammadi
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, California 92866, United States
| |
Collapse
|
12
|
Chao X, Zhao F, Hu J, Yu Y, Xie R, Zhong J, Huang M, Zeng T, Yang H, Luo D, Peng W. Comparative Study of Two Common In Vitro Models for the Pancreatic Islet with MIN6. Tissue Eng Regen Med 2023; 20:127-141. [PMID: 36592326 PMCID: PMC9852380 DOI: 10.1007/s13770-022-00507-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Islet transplantation is currently considered the most promising method for treating insulin-dependent diabetes. The two most-studied artificial islets are alginate-encapsulated β cells or β cell spheroids. As three-dimensional (3D) models, both artificial islets have better insulin secretory functions and transplantation efficiencies than cells in two-dimensional (2D) monolayer culture. However, the effects of these two methods have not been compared yet. Therefore, in this study, cells from the mouse islet β cell line Min6 were constructed as scaffold-free spheroids or alginate-encapsulated dispersed cells. METHODS MIN6 cell spheroids were prepared by using Agarose-base microwell arrays. The insulin secretion level was determined by mouse insulin ELISA kit, and the gene and protein expression status of the MIN6 were performed by Quantitative polymerase chain reaction and immunoblot, respectively. RESULTS Both 3D cultures effectively promoted the proliferation and glucose-stimulated insulin release (GSIS) of MIN6 cells compared to 2D adherent cells. Furthermore, 1% alginate-encapsulated MIN6 cells demonstrated more significant effects than the spheroids. In general, three pancreatic genes were expressed at higher levels in response to the 3D culture than to the 2D culture, and pancreatic/duodenal homeobox-1 (PDX1) expression was higher in the cells encapsulated in 1% alginate than that in the spheroids. A western blot analysis showed that 1% alginate-encapsulated MIN6 cells activated the phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (AKT)/forkhead transcription factor FKHR (FoxO1) pathway more than the spheroids, 0.5% alginate-, or 2% alginate-encapsulated cells did. The 3D MIN6 culture, therefore, showed improved effects compared to the 2D culture, and the 1% alginate-encapsulated MIN6 cells exhibited better effects than the spheroids. The upregulation of PDX1 expression through the activation of the PI3K/AKT/FoxO1 pathway may mediate the improved cell proliferation and GSIS in 1% alginate-encapsulated MIN6 cells. CONCLUSION This study may contribute to the construction of in vitro culture systems for pancreatic islets to meet clinical requirements.
Collapse
Affiliation(s)
- Xinxin Chao
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- The Affiliated Hospital of Jining Medical University, Shandong, China
| | - Furong Zhao
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong, China
| | - Jiawei Hu
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yanrong Yu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Renjian Xie
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Jianing Zhong
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Miao Huang
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Tai Zeng
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Hui Yang
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.
| | - Dan Luo
- Department of Physiology, School of Basic Medicine, Nanchang University, Nanchang, China.
| | - Weijie Peng
- Jiangxi Provincial Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, China.
| |
Collapse
|
13
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022; 189:114481. [PMID: 36002043 PMCID: PMC9531713 DOI: 10.1016/j.addr.2022.114481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic β-cells, pathology of T1D and current state of β-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Aline Zbinden
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Munich, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
14
|
Osouli-Bostanabad K, Masalehdan T, Kapsa RMI, Quigley A, Lalatsa A, Bruggeman KF, Franks SJ, Williams RJ, Nisbet DR. Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine. ACS Biomater Sci Eng 2022; 8:2764-2797. [PMID: 35696306 DOI: 10.1021/acsbiomaterials.2c00094] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Three-dimensional (3D) printing and 3D bioprinting are promising technologies for a broad range of healthcare applications from frontier regenerative medicine and tissue engineering therapies to pharmaceutical advancements yet must overcome the challenges of biocompatibility and resolution. Through comparison of traditional biofabrication methods with 3D (bio)printing, this review highlights the promise of 3D printing for the production of on-demand, personalized, and complex products that enhance the accessibility, effectiveness, and safety of drug therapies and delivery systems. In addition, this review describes the capacity of 3D bioprinting to fabricate patient-specific tissues and living cell systems (e.g., vascular networks, organs, muscles, and skeletal systems) as well as its applications in the delivery of cells and genes, microfluidics, and organ-on-chip constructs. This review summarizes how tailoring selected parameters (i.e., accurately selecting the appropriate printing method, materials, and printing parameters based on the desired application and behavior) can better facilitate the development of optimized 3D-printed products and how dynamic 4D-printed strategies (printing materials designed to change with time or stimulus) may be deployed to overcome many of the inherent limitations of conventional 3D-printed technologies. Comprehensive insights into a critical perspective of the future of 4D bioprinting, crucial requirements for 4D printing including the programmability of a material, multimaterial printing methods, and precise designs for meticulous transformations or even clinical applications are also given.
Collapse
Affiliation(s)
- Karim Osouli-Bostanabad
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Tahereh Masalehdan
- Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz 51666-16444, Iran
| | - Robert M I Kapsa
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Anita Quigley
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Aikaterini Lalatsa
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Kiara F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Stephanie J Franks
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Richard J Williams
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,The Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
15
|
Mouré A, Bekir S, Bacou E, Pruvost Q, Haurogné K, Allard M, De Beaurepaire L, Bosch S, Riochet D, Gauthier O, Blancho G, Soulillou JP, Poncelet D, Mignot G, Courcoux P, Jegou D, Bach JM, Mosser M. Optimization of an O 2-balanced bioartificial pancreas for type 1 diabetes using statistical design of experiment. Sci Rep 2022; 12:4681. [PMID: 35304495 PMCID: PMC8933496 DOI: 10.1038/s41598-022-07887-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/03/2022] [Indexed: 01/17/2023] Open
Abstract
A bioartificial pancreas (BAP) encapsulating high pancreatic islets concentration is a promising alternative for type 1 diabetes therapy. However, the main limitation of this approach is O2 supply, especially until graft neovascularization. Here, we described a methodology to design an optimal O2-balanced BAP using statistical design of experiment (DoE). A full factorial DoE was first performed to screen two O2-technologies on their ability to preserve pseudo-islet viability and function under hypoxia and normoxia. Then, response surface methodology was used to define the optimal O2-carrier and islet seeding concentrations to maximize the number of viable pseudo-islets in the BAP containing an O2-generator under hypoxia. Monitoring of viability, function and maturation of neonatal pig islets for 15 days in vitro demonstrated the efficiency of the optimal O2-balanced BAP. The findings should allow the design of a more realistic BAP for humans with high islets concentration by maintaining the O2 balance in the device.
Collapse
Affiliation(s)
- Anne Mouré
- Oniris, INRAE, IECM, USC 1383, 44300, Nantes, France
| | - Sawsen Bekir
- Oniris, INRAE, IECM, USC 1383, 44300, Nantes, France
| | - Elodie Bacou
- Oniris, INRAE, IECM, USC 1383, 44300, Nantes, France
| | | | | | - Marie Allard
- Oniris, INRAE, IECM, USC 1383, 44300, Nantes, France
| | | | - Steffi Bosch
- Oniris, INRAE, IECM, USC 1383, 44300, Nantes, France
| | - David Riochet
- SSR Pédiatriques ESEAN-APF France Handicap, Nantes University Hospital, Nantes, France
| | - Olivier Gauthier
- Oniris, Nantes Université, INSERM, RMeS, UMR 1229, F-44000, Nantes, France
| | - Gilles Blancho
- CRTI, UMR 1064, INSERM, Nantes Université, 44000, Nantes, France
- ITUN, CHU Nantes, 44000, Nantes, France
| | - Jean-Paul Soulillou
- CRTI, UMR 1064, INSERM, Nantes Université, 44000, Nantes, France
- ITUN, CHU Nantes, 44000, Nantes, France
| | - Denis Poncelet
- GEPEA, UMR CNRS 6144 FR, Nantes Université, 44000, Nantes, France
| | | | | | | | | | | |
Collapse
|
16
|
Polymer nanotherapeutics to correct autoimmunity. J Control Release 2022; 343:152-174. [PMID: 34990701 DOI: 10.1016/j.jconrel.2021.12.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
The immune system maintains homeostasis and protects the body from pathogens, mutated cells, and other harmful substances. When immune homeostasis is disrupted, excessive autoimmunity will lead to diseases. To inhibit the unexpected immune responses and reduce the impact of treatment on immunoprotective functions, polymer nanotherapeutics, such as nanomedicines, nanovaccines, and nanodecoys, were developed as part of an advanced strategy for precise immunomodulation. Nanomedicines transport cytotoxic drugs to target sites to reduce the occurrence of side effects and increase the stability and bioactivity of various immunomodulating agents, especially nucleic acids and cytokines. In addition, polymer nanomaterials carrying autoantigens used as nanovaccines can induce antigen-specific immune tolerance without interfering with protective immune responses. The precise immunomodulatory function of nanovaccines has broad prospects for the treatment of immune related-diseases. Besides, nanodecoys, which are designed to protect the body from various pathogenic substances by intravenous administration, are a simple and relatively noninvasive treatment. Herein, we have discussed and predicted the application of polymer nanotherapeutics in the correction of autoimmunity, including treating autoimmune diseases, controlling hypersensitivity, and avoiding transplant rejection.
Collapse
|
17
|
Hui L, Wang D, Liu Z, Zhao Y, Ji Z, Zhang M, Zhu HH, Luo W, Cheng X, Gui L, Gao W. The Cell-Isolation Capsules with Rod-Like Channels Ensure the Survival and Response of Cancer Cells to Their Microenvironment. Adv Healthc Mater 2022; 11:e2101723. [PMID: 34699694 DOI: 10.1002/adhm.202101723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/18/2021] [Indexed: 12/16/2022]
Abstract
Current macrocapsules with semipermeable but immunoprotective polymeric membranes are attractive devices to achieve the purpose of immunoisolation, however, their ability to allow diffusion of essential nutrients and oxygen is limited, which leads to a low survival rate of encapsulated cells. Here, a novel method is reported by taking advantage of thermotropic liquid crystals, sodium laurylsulfonate (SDS) liquid crystals (LCs), and rod-like crystal fragments (LCFs) to develop engineered alginate hydrogels with rod-like channels. This cell-isolation capsule with an engineered alginate hydrogel-wall allows small molecules, large molecules, and bacteria to diffuse out from the capsules freely but immobilizes the encapsulated cells inside and prevents cells in the microenvironment from moving in. The encapsulated cells show a high survival rate with isolation of host immune cells and long-term growth with adequate nutrients and oxygen supply. In addition, by sharing and responding to the normal molecular and vesicular microenvironment (NMV microenvironment), encapsulated cancer cells display a transition from tumorous phenotypes to ductal features of normal epithelial cells. Thus, this device will be potentially useful for clinical application in cell therapy by secreting molecules and for establishment of patient-derived xenograft (PDX) models that are often difficult to achieve for certain types of tumors, such as prostate cancer.
Collapse
Affiliation(s)
- Lanlan Hui
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
- Med‐X Research Institute Shanghai Jiao Tong University Shanghai 200030 China
| | - Deng Wang
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
- Med‐X Research Institute Shanghai Jiao Tong University Shanghai 200030 China
| | - Zhao Liu
- Ping An Life Insurance of China, Ltd Shanghai 200120 China
| | - Yueqi Zhao
- Department of Orthopaedic Surgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou 310016 China
| | - Zhongzhong Ji
- Shanghai Cancer Institute Renji Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200017 China
| | - Man Zhang
- Med‐X Research Institute Shanghai Jiao Tong University Shanghai 200030 China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Department of Urology Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Wenqing Luo
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Xiaomu Cheng
- Med‐X Research Institute Shanghai Jiao Tong University Shanghai 200030 China
| | - Liming Gui
- Med‐X Research Institute Shanghai Jiao Tong University Shanghai 200030 China
| | - Wei‐Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
- Med‐X Research Institute Shanghai Jiao Tong University Shanghai 200030 China
| |
Collapse
|
18
|
Aghlara-Fotovat S, Nash A, Kim B, Krencik R, Veiseh O. Targeting the extracellular matrix for immunomodulation: applications in drug delivery and cell therapies. Drug Deliv Transl Res 2021; 11:2394-2413. [PMID: 34176099 DOI: 10.1007/s13346-021-01018-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Host immune cells interact bi-directionally with their extracellular matrix (ECM) to receive and deposit molecular signals, which orchestrate cellular activation, proliferation, differentiation, and function to maintain healthy tissue homeostasis. In response to pathogens or damage, immune cells infiltrate diseased sites and synthesize critical ECM molecules such as glycoproteins, proteoglycans, and glycosaminoglycans to promote healing. When the immune system misidentifies pathogens or fails to survey damaged cells effectively, maladies such as chronic inflammation, autoimmune diseases, and cancer can develop. In these conditions, it is essential to restore balance to the body through modulation of the immune system and the ECM. This review details the components of dysregulated ECM implicated in pathogenic environments and therapeutic approaches to restore tissue homeostasis. We evaluate emerging strategies to overcome inflamed, immune inhibitory, and otherwise diseased microenvironments, including mechanical stimulation, targeted proteases, adoptive cell therapy, mechanomedicine, and biomaterial-based cell therapeutics. We highlight various strategies that have produced efficacious responses in both pre-clinical and human trials and identify additional opportunities to develop next-generation interventions. Significantly, we identify a need for therapies to address dense or fibrotic tissue for the treatment of organ tissue damage and various cancer subtypes. Finally, we conclude that therapeutic techniques that disrupt, evade, or specifically target the pathogenic microenvironment have a high potential for improving therapeutic outcomes and should be considered a priority for immediate exploration. A schematic showing the various methods of extracellular matrix disruption/targeting in both fibrotic and cancerous environments. a Biomaterial-based cell therapy can be used to deliver anti-inflammatory cytokines, chemotherapeutics, or other factors for localized, slow release of therapeutics. b Mechanotherapeutics can be used to inhibit the deposition of molecules such as collagen that affect stiffness. c Ablation of the ECM and target tissue can be accomplished via mechanical degradation such as focused ultrasound. d Proteases can be used to improve the distribution of therapies such as oncolytic virus. e Localization of therapeutics such as checkpoint inhibitors can be improved with the targeting of specific ECM components, reducing off-target effects and toxicity.
Collapse
Affiliation(s)
| | - Amanda Nash
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Boram Kim
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Robert Krencik
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Vieira S, da Silva Morais A, Garet E, Silva-Correia J, Reis RL, González-Fernández Á, Oliveira JM. Methacrylated Gellan Gum/Poly-l-lysine Polyelectrolyte Complex Beads for Cell-Based Therapies. ACS Biomater Sci Eng 2021; 7:4898-4913. [PMID: 34533303 DOI: 10.1021/acsbiomaterials.1c00486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell encapsulation strategies using hydrogel beads have been considered as an alternative to immunosuppression in cell-based therapies. They rely on layer-by-layer (LbL) deposition of polymers to tune beads' permeability, creating a physical barrier to the host immune system. However, the LbL approach can also create diffusion barriers, hampering the flow of essential nutrients and therapeutic cell products. In this work, the polyelectrolyte complex (PEC) methodology was used to circumvent the drawbacks of the LbL strategy by inducing hydrogel bead formation through the interaction of anionic methacrylated gellan gum (GG-MA) with cationic poly-l-lysine (PLL). The interfacial complexation between both polymers resulted in beads with a cell-friendly GG-MA hydrogel core surrounded by a PEC semipermeable membrane. The beads showed great in vitro stability over time, a semi-permeable behavior, and supported human adipose-derived stem cell encapsulation. Additionally, and regarding immune recognition, the in vitro and in vivo studies pointed out that the hydrogel beads behave as an immunocompatible system. Overall, the engineered beads showed great potential for hydrogel-mediated cell therapies, when immunoprotection is required, as when treating different metabolic disorders.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Alain da Silva Morais
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Elina Garet
- Immunology, Biomedical Research Center (CINBIO), Centro Singular de Investigación de Galicia. de Investigación Sanitaria Galicia Sur (IIS-GS), Universidad de Vigo, Campus Universitario de Vigo, Vigo 36310, Spain
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - África González-Fernández
- Immunology, Biomedical Research Center (CINBIO), Centro Singular de Investigación de Galicia. de Investigación Sanitaria Galicia Sur (IIS-GS), Universidad de Vigo, Campus Universitario de Vigo, Vigo 36310, Spain
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| |
Collapse
|
20
|
Wu S, Wang L, Fang Y, Huang H, You X, Wu J. Advances in Encapsulation and Delivery Strategies for Islet Transplantation. Adv Healthc Mater 2021; 10:e2100965. [PMID: 34480420 DOI: 10.1002/adhm.202100965] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease caused by the destruction of pancreatic β-cells in response to autoimmune reactions. Shapiro et al. conducted novel islet transplantation with a glucocorticoid-free immunosuppressive agent in 2000 and achieved great success; since then, islet transplantation has been increasingly regarded as a promising strategy for the curative treatment of T1DM. However, many unavoidable challenges, such as a lack of donors, poor revascularization, blood-mediated inflammatory reactions, hypoxia, and side effects caused by immunosuppression have severely hindered the widespread application of islet transplantation in clinics. Biomaterial-based encapsulation and delivery strategies are proposed for overcoming these obstacles, and have demonstrated remarkable improvements in islet transplantation outcomes. Herein, the major problems faced by islet transplantation are summarized and updated biomaterial-based strategies for islet transplantation, including islet encapsulation across different scales, delivery of stem cell-derived beta cells, co-delivery of islets with accessory cells and immunomodulatory molecules are highlighted.
Collapse
Affiliation(s)
- Siying Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Liying Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Yifen Fang
- The Affiliated TCM Hospital of Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Hai Huang
- Department of Urology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou 510120 P. R. China
| | - Xinru You
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| |
Collapse
|
21
|
Zhang J, Xu J, Lim J, Nolan JK, Lee H, Lee CH. Wearable Glucose Monitoring and Implantable Drug Delivery Systems for Diabetes Management. Adv Healthc Mater 2021; 10:e2100194. [PMID: 33930258 DOI: 10.1002/adhm.202100194] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Indexed: 12/11/2022]
Abstract
The global cost of diabetes care exceeds $1 trillion each year with more than $327 billion being spent in the United States alone. Despite some of the advances in diabetes care including continuous glucose monitoring systems and insulin pumps, the technology associated with managing diabetes has largely remained unchanged over the past several decades. With the rise of wearable electronics and novel functional materials, the field is well-poised for the next generation of closed-loop diabetes care. Wearable glucose sensors implanted within diverse platforms including skin or on-tooth tattoos, skin-mounted patches, eyeglasses, contact lenses, fabrics, mouthguards, and pacifiers have enabled noninvasive, unobtrusive, and real-time analysis of glucose excursions in ambulatory care settings. These wearable glucose sensors can be integrated with implantable drug delivery systems, including an insulin pump, glucose responsive insulin release implant, and islets transplantation, to form self-regulating closed-loop systems. This review article encompasses the emerging trends and latest innovations of wearable glucose monitoring and implantable insulin delivery technologies for diabetes management with a focus on their advanced materials and construction. Perspectives on the current unmet challenges of these strategies are also discussed to motivate future technological development toward improved patient care in diabetes management.
Collapse
Affiliation(s)
- Jinyuan Zhang
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Jian Xu
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Jongcheon Lim
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - James K. Nolan
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
- School of Mechanical Engineering School of Materials Engineering Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
22
|
Kharbikar BN, Chendke GS, Desai TA. Modulating the foreign body response of implants for diabetes treatment. Adv Drug Deliv Rev 2021; 174:87-113. [PMID: 33484736 PMCID: PMC8217111 DOI: 10.1016/j.addr.2021.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Diabetes Mellitus is a group of diseases characterized by high blood glucose levels due to patients' inability to produce sufficient insulin. Current interventions often require implants that can detect and correct high blood glucose levels with minimal patient intervention. However, these implantable technologies have not reached their full potential in vivo due to the foreign body response and subsequent development of fibrosis. Therefore, for long-term function of implants, modulating the initial immune response is crucial in preventing the activation and progression of the immune cascade. This review discusses the different molecular mechanisms and cellular interactions involved in the activation and progression of foreign body response (FBR) and fibrosis, specifically for implants used in diabetes. We also highlight the various strategies and techniques that have been used for immunomodulation and prevention of fibrosis. We investigate how these general strategies have been applied to implants used for the treatment of diabetes, offering insights on how these devices can be further modified to circumvent FBR and fibrosis.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gauree S Chendke
- University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
23
|
Jiang LL, Li H, Liu L. Xenogeneic stem cell transplantation: Research progress and clinical prospects. World J Clin Cases 2021; 9:3826-3837. [PMID: 34141739 PMCID: PMC8180210 DOI: 10.12998/wjcc.v9.i16.3826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Organ transplantation is the ultimate treatment for end-stage diseases such as heart and liver failure. However, the severe shortage of donor organs has limited the organ transplantation progress. Xenogeneic stem cell transplantation provides a new strategy to solve this problem. Researchers have shown that xenogeneic stem cell transplantation has significant therapeutic effects and broad application prospects in treating liver failure, myocardial infarction, advanced type 1 diabetes mellitus, myelosuppression, and other end-stage diseases by replacing the dysfunctional cells directly or improving the endogenous regenerative milieu. In this review, the sources, problems and solutions, and potential clinical applications of xenogeneic stem cell transplantation will be discussed.
Collapse
Affiliation(s)
- Lin-Li Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hui Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
24
|
Mohammadi MR, Rodriguez SM, Luong JC, Li S, Cao R, Alshetaiwi H, Lau H, Davtyan H, Jones MB, Jafari M, Kessenbrock K, Villalta SA, de Vos P, Zhao W, Lakey JRT. Exosome loaded immunomodulatory biomaterials alleviate local immune response in immunocompetent diabetic mice post islet xenotransplantation. Commun Biol 2021; 4:685. [PMID: 34083739 PMCID: PMC8175379 DOI: 10.1038/s42003-021-02229-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Foreign body response (FBR) to biomaterials compromises the function of implants and leads to medical complications. Here, we report a hybrid alginate microcapsule (AlgXO) that attenuated the immune response after implantation, through releasing exosomes derived from human Umbilical Cord Mesenchymal Stem Cells (XOs). Upon release, XOs suppress the local immune microenvironment, where xenotransplantation of rat islets encapsulated in AlgXO led to >170 days euglycemia in immunocompetent mouse model of Type 1 Diabetes. In vitro analyses revealed that XOs suppressed the proliferation of CD3/CD28 activated splenocytes and CD3+ T cells. Comparing suppressive potency of XOs in purified CD3+ T cells versus splenocytes, we found XOs more profoundly suppressed T cells in the splenocytes co-culture, where a heterogenous cell population is present. XOs also suppressed CD3/CD28 activated human peripheral blood mononuclear cells (PBMCs) and reduced their cytokine secretion including IL-2, IL-6, IL-12p70, IL-22, and TNFα. We further demonstrate that XOs mechanism of action is likely mediated via myeloid cells and XOs suppress both murine and human macrophages partly by interfering with NFκB pathway. We propose that through controlled release of XOs, AlgXO provide a promising new platform that could alleviate the local immune response to implantable biomaterials.
Collapse
Affiliation(s)
- M Rezaa Mohammadi
- Department of Materials Science and Engineering, University of California Irvine, Irvine, CA, USA
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- Department of Surgery, University of California Irvine, Irvine, CA, USA
| | | | - Jennifer Cam Luong
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Shiri Li
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Rui Cao
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Hamad Alshetaiwi
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Hien Lau
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, USA
| | - Hayk Davtyan
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA
| | - Mathew Blurton Jones
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Mahtab Jafari
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - S Armando Villalta
- Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Paul de Vos
- Department of Pathology and Medical Biology, Section Immunoendocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Weian Zhao
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center; Edwards Life Sciences Center for Advanced Cardiovascular Technology; Department of Biomedical Engineering, Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Jonathan R T Lakey
- Sue and Bill Stem Cell Center, University of California Irvine, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
- Department of Surgery, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
25
|
Abstract
Type 1 diabetes mellitus is a common and highly morbid disease for which there is no cure. Treatment primarily involves exogenous insulin administration, and, under specific circumstances, islet or pancreas transplantation. However, insulin replacement alone fails to replicate the endocrine function of the pancreas and does not provide durable euglycemia. In addition, transplantation requires lifelong use of immunosuppressive medications, which has deleterious side effects, is expensive, and is inappropriate for use in adolescents. A bioartificial pancreas that provides total endocrine pancreatic function without immunosuppression is a potential therapy for treatment of type 1 diabetes. Numerous models are in development and take different approaches to cell source, encapsulation method, and device implantation location. We review current therapies for type 1 diabetes mellitus, the requirements for a bioartificial pancreas, and quantitatively compare device function.
Collapse
Affiliation(s)
- Sara J. Photiadis
- From the Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA
| | - Rebecca C. Gologorsky
- From the Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA
| | - Deepika Sarode
- From the Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA
| |
Collapse
|
26
|
Wang J, Dai P, Zou T, Lv Y, Zhao W, Zhang X, Zhang Y. Transcriptome analysis of the transdifferentiation of canine BMSCs into insulin producing cells. BMC Genomics 2021; 22:134. [PMID: 33632121 PMCID: PMC7905582 DOI: 10.1186/s12864-021-07426-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/05/2021] [Indexed: 12/31/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells are a potential resource for the clinical therapy of certain diseases. Canine, as a companion animal, living in the same space with human, is an ideal new model for human diseases research. Because of the high prevalence of diabetes, alternative transplantation islets resource (i.e. insulin producing cells) for diabetes treatment will be in urgent need, which makes our research on the transdifferentiation of Bone marrow mesenchymal stem cells into insulin producing cells become more important. Result In this study, we completed the transdifferentiation process and achieved the transcriptome profiling of five samples with two biological duplicates, namely, “BMSCs”, “islets”, “stage 1”, “stage 2” and “stage 3”, and the latter three samples were achieved on the second, fifth and eighth day of induction. A total of 11,530 differentially expressed transcripts were revealed in the profiling data. The enrichment analysis of differentially expressed genes revealed several signaling pathways that are essential for regulating proliferation and transdifferentiation, including focal adhesion, ECM-receptor interaction, tight junction, protein digestion and absorption, and the Rap1 signaling pathway. Meanwhile, the obtained protein–protein interaction network and functional identification indicating involvement of three genes, SSTR2, RPS6KA6, and VIP could act as a foundation for further research. Conclusion In conclusion, to the best of our knowledge, this is the first survey of the transdifferentiation of canine BMSCs into insulin-producing cells according with the timeline using next-generation sequencing technology. The three key genes we pick out may regulate decisive genes during the development of transdifferentiation of insulin producing cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07426-3.
Collapse
Affiliation(s)
- Jinglu Wang
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Pengxiu Dai
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Tong Zou
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Yangou Lv
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Wen Zhao
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Xinke Zhang
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China
| | - Yihua Zhang
- The College of Veterinary Medicine of the Northwest Agriculture and Forestry University, No.3 Taicheng Road, Yangling, 712100, Shaanxi, P. R. China.
| |
Collapse
|
27
|
Kuwabara R, Hu S, Smink AM, Orive G, Lakey JRT, de Vos P. Applying Immunomodulation to Promote Longevity of Immunoisolated Pancreatic Islet Grafts. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:129-140. [PMID: 33397201 DOI: 10.1089/ten.teb.2020.0326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Islet transplantation is a promising therapy for insulin-dependent diabetes, but large-scale application is hampered by the lack of a consistent source of insulin-producing cells and need for lifelong administration of immunosuppressive drugs, which are associated with severe side effects. To avoid chronic immunosuppression, islet grafts can be enveloped in immunoisolating polymeric membranes. These immunoisolating polymeric membranes protect islet grafts from cell-mediated rejection while allowing diffusion of oxygen, nutrients, and insulin. Although clinical trials have shown the safety and feasibility of encapsulated islets to control glucose homeostasis, the strategy does up till now not support long-term graft survival. This partly can be explained by a significant loss of insulin-producing cells in the immediate period after implantation. The loss can be prevented by combining immunoisolation with immunomodulation, such as combined administration of immunomodulating cytokines or coencapsulation of immunomodulating cell types such as regulatory T cells, mesenchymal stem cells, or Sertoli cells. Also, administration of specific antibodies or apoptotic donor leucocytes is considered to create a tolerant microenvironment around immunoisolated grafts. In this review, we describe the outcomes and limitations of these approaches, as well as the recent progress in immunoisolating devices. Impact statement Immunoisolation by enveloping islets in semipermeable membranes allows for successful transplantation of islet grafts in the absence of chronic immunosuppression, but the duration of graft survival is still not permanent. The reasons for long-term final graft failure is not fully understood, but combining immunoisolation with immunomodulation of tissues or host immune system has been proposed to enhance the longevity of grafts. This article reviews the recent progress and challenges of immunoisolation, as well as the benefits and feasibility of combining encapsulation approaches with immunomodulation to promote longevity of encapsulated grafts.
Collapse
Affiliation(s)
- Rei Kuwabara
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shuxian Hu
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Jonathan R T Lakey
- Department of Surgery and Biomedical Engineering, University of California Irvine, Irvine, California, USA
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Santos AP, Chevallier SS, de Haan B, de Vos P, Poncelet D. Impact of electrostatic potential on microcapsule-formation and physicochemical analysis of surface structure: Implications for therapeutic cell-microencapsulation. J Biomater Appl 2021; 36:638-647. [PMID: 33541171 DOI: 10.1177/0885328221988979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell-encapsulation is used for preventing therapeutic cells from being rejected by the host. The technology to encapsulate cells in immunoprotective biomaterials, such as alginate, commonly involves application of an electrostatic droplet generator for reproducible manufacturing droplets of similar size and with similar surface properties. As many factors influencing droplet formation are still unknown, we investigated the impact of several parameters and fitted them to equations to make procedures more reproducible and allow optimal control of capsule size and properties. We demonstrate that droplet size is dependent on an interplay between the critical electric potential (Uc,), the needle size, and the distance between the needle and the gelation bath, and that it can be predicted with the equations proposed. The droplet formation was meticulously studied and followed by a high-speed camera. The X-ray photoelectron analysis demonstrated optimal gelation and substitution of sodium with calcium on alginate surfaces while the atomic force microscopy analysis demonstrated a low but considerable variation in surface roughness and low surface stiffness. Our study shows the importance of documenting critical parameters to guarantee reproducible manufacturing of beads with constant and adequate size and preventing batch-to-batch variations.
Collapse
Affiliation(s)
- Ana Paula Santos
- Planta Piloto de Procesos Industriales Microbiologicos, Avenida Belgrano y pasaje Caseros, Tucumán, Argentina
| | | | - Bart de Haan
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Denis Poncelet
- Oniris Nantes - Site de la Géraudière, Nantes, Pays de la Loire France.,EncapProcess, Suce sur Erdre, Pays de la Loire, France
| |
Collapse
|
29
|
Izeia L, Eufrasio-da-Silva T, Dolatshahi-Pirouz A, Ostrovidov S, Paolone G, Peppas NA, De Vos P, Emerich D, Orive G. Cell-laden alginate hydrogels for the treatment of diabetes. Expert Opin Drug Deliv 2021; 17:1113-1118. [PMID: 32515621 DOI: 10.1080/17425247.2020.1778667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Diabetes mellitus is an ever-increasing medical condition that currently suffers 1 of 11 adults who may have lifelong commitment with insulin injections. Cell-laden hydrogels releasing insulin may provide the ultimate means of correcting diabetes. Here, we provide insights of this cell-based approach including latest preclinical and clinical progress both from academia and industry. AREA COVERED The present article focuses on reviewing latest advances in cell-laden hydrogels both from the technological and biological perspective. The most relevant clinical results including clinical trials are also discussed. EXPERT OPINION Current progress in technological issues (stem cells, devices, biomaterials) have contributed cell encapsulation science to have a very relevant progress in the field of diabetes treatment.
Collapse
Affiliation(s)
- Lukin Izeia
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz, Spain
| | - Tatiane Eufrasio-da-Silva
- Department of Dentistry - Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands
| | - Alireza Dolatshahi-Pirouz
- Department of Dentistry - Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands.,Department of Health Technology, Institute of Biotherapeutic Engineering and Drug Targeting, Center for Intestinal Absorption and Transport of Biopharmaceuticals Technical University of Denmark , Lyngby, Denmark
| | - Serge Ostrovidov
- Center for Minimally Invasive Therapeutics (C-MIT) Department of Radiological Sciences, University of California , Los Angeles, CA, USA
| | - Giovanna Paolone
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona , Verona, Italy
| | - Nicholas A Peppas
- Departments of Pharmaceutics, Chemical and Biomedical Engineering, The University of Texas at Austin , Austin, TX, USA
| | - Paul De Vos
- Pathology and Medical Biology Section, Immunoendocrinology, University of Groningen , Groningen, The Netherlands
| | - Dwaine Emerich
- Gloriana Therapeutics, Inc. (Formerly NsGene Inc.) , Providence, RI, USA
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU , Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (Upv/ehu-fundación Eduardo Anitua) , Vitoria, Spain.,The Academia, Singapore Eye Research Institute , Discovery Tower, Singapore
| |
Collapse
|
30
|
Sikorska W, Wasyłeczko M, Przytulska M, Wojciechowski C, Rokicki G, Chwojnowski A. Chemical Degradation of PSF-PUR Blend Hollow Fiber Membranes-Assessment of Changes in Properties and Morphology after Hydrolysis. MEMBRANES 2021; 11:51. [PMID: 33445806 PMCID: PMC7828234 DOI: 10.3390/membranes11010051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/02/2022]
Abstract
In this study, we focused on obtaining polysulfone-polyurethane (PSF-PUR) blend partly degradable hollow fiber membranes (HFMs) with different compositions while maintaining a constant PSF:PUR = 8:2 weight ratio. It was carried out through hydrolysis, and evaluation of the properties and morphology before and after the hydrolysis process while maintaining a constant cut-off. The obtained membranes were examined for changes in ultrafiltration coefficient (UFC), retention, weight loss, morphology assessment using scanning electron microscopy (SEM) and MeMoExplorer™ Software, as well as using the Fourier-transform infrared spectroscopy (FT-IR) method. The results of the study showed an increase in the UFC value after the hydrolysis process, changes in retention, mass loss, and FT-IR spectra. The evaluation in MeMoExplorer™ Software showed the changes in membranes' morphology. It was confirmed that polyurethane (PUR) was partially degraded, the percentage of ester bonds has an influence on the degradation process, and PUR can be used as a pore precursor instead of superbly known polymers.
Collapse
Affiliation(s)
- Wioleta Sikorska
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 Street, 02-109 Warsaw, Poland; (M.W.); (M.P.); (C.W.); (A.C.)
| | - Monika Wasyłeczko
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 Street, 02-109 Warsaw, Poland; (M.W.); (M.P.); (C.W.); (A.C.)
| | - Małgorzata Przytulska
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 Street, 02-109 Warsaw, Poland; (M.W.); (M.P.); (C.W.); (A.C.)
| | - Cezary Wojciechowski
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 Street, 02-109 Warsaw, Poland; (M.W.); (M.P.); (C.W.); (A.C.)
| | - Gabriel Rokicki
- Warsaw University of Technology, Noakowskiego 3 Street, 00-644 Warsaw, Poland;
| | - Andrzej Chwojnowski
- Nałęcz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 Street, 02-109 Warsaw, Poland; (M.W.); (M.P.); (C.W.); (A.C.)
| |
Collapse
|
31
|
Changsorn K, Pang Y, Matsumoto H, Hong H, Wüthrich P, Sun W, Sakai Y. 3D perfusion culture of mouse insulinoma in macro-porous scaffolds enhanced insulin production response. Int J Artif Organs 2020; 45:96-102. [PMID: 33380250 DOI: 10.1177/0391398820985515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To address the remaining issue of poor cell immobilization and insufficient mass transfer in scaffold-based tissue engineering approach for future islet transplantation, we employed a macro-porous poly-l-lactide (PLLA) scaffold immobilizing mouse insulinoma cells and studied its function toward an implantable pancreatic tissue in 7-day perfusion culture. The murine pancreatic β cells could be immobilized in the PLLA scaffold at a high density of 107 cells per cm3 close to the estimated range in normal pancreas. The perfusion culture promoted the 3D cellular organization as observed with live/dead staining and histological staining. The insulin production was significantly enhanced in comparison with static 2D culture and 3D rotational suspension culture by two and six folds, respectively (p < 0.001). As enhanced insulin response was only observed where both the perfusion and 3D cellular organization were present, this could represent important elements in engineering a functional bioartificial pancreas.
Collapse
Affiliation(s)
- Karn Changsorn
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuan Pang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
| | - Hiroaki Matsumoto
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, China
| | - Haofeng Hong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, China
| | - Pierre Wüthrich
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China.,Department of Mechanical Engineering and Mechanics, College of Engineering, Drexel University, Philadelphia, PA, USA
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
32
|
Akolpoglu MB, Inceoglu Y, Bozuyuk U, Sousa AR, Oliveira MB, Mano JF, Kizilel S. Recent advances in the design of implantable insulin secreting heterocellular islet organoids. Biomaterials 2020; 269:120627. [PMID: 33401104 DOI: 10.1016/j.biomaterials.2020.120627] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Islet transplantation has proved one of the most remarkable transmissions from an experimental curiosity into a routine clinical application for the treatment of type I diabetes (T1D). Current efforts for taking this technology one-step further are now focusing on overcoming islet donor shortage, engraftment, prolonged islet availability, post-transplant vascularization, and coming up with new strategies to eliminate lifelong immunosuppression. To this end, insulin secreting 3D cell clusters composed of different types of cells, also referred as heterocellular islet organoids, spheroids, or pseudoislets, have been engineered to overcome the challenges encountered by the current islet transplantation protocols. β-cells or native islets are accompanied by helper cells, also referred to as accessory cells, to generate a cell cluster that is not only able to accurately secrete insulin in response to glucose, but also superior in terms of other key features (e.g. maintaining a vasculature, longer durability in vivo and not necessitating immunosuppression after transplantation). Over the past decade, numerous 3D cell culture techniques have been integrated to create an engineered heterocellular islet organoid that addresses current obstacles. Here, we first discuss the different cell types used to prepare heterocellular organoids for islet transplantation and their contribution to the organoids design. We then introduce various cell culture techniques that are incorporated to prepare a fully functional and insulin secreting organoids with select features. Finally, we discuss the challenges and present a future outlook for improving clinical outcomes of islet transplantation.
Collapse
Affiliation(s)
- M Birgul Akolpoglu
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey
| | - Yasemin Inceoglu
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey
| | - Ugur Bozuyuk
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey
| | - Ana Rita Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials. University of Aveiro. Campus Universitário de Santiago. 3810-193 Aveiro. Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials. University of Aveiro. Campus Universitário de Santiago. 3810-193 Aveiro. Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials. University of Aveiro. Campus Universitário de Santiago. 3810-193 Aveiro. Portugal
| | - Seda Kizilel
- Chemical and Biological Engineering, Koc University, Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
33
|
Mohammadi MR, Dehkordi-Vakil F, Ricks-Oddie J, Mansfield R, Kashimiri H, Daniels M, Zhao W, Lakey JR. Preferences of Type 1 Diabetic Patients on Devices for Islet Transplantation. Cell Transplant 2020; 29:963689720952343. [PMID: 33023311 PMCID: PMC7784499 DOI: 10.1177/0963689720952343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transplantation of pancreatic islets within a biomaterial device is currently
under investigation in clinical trials for the treatment of patients with type 1
diabetes (T1D). Patients’ preferences on such implants could guide the designs
of next-generation implantable devices; however, such information is not
currently available. We surveyed the preferences of 482 patients with T1D on the
size, shape, visibility, and transplantation site of islet containing implants.
More than 83% of participants were willing to receive autologous stem cells, and
there was no significant association between implant fabricated by one’s own
stem cell with gender (χ2 (1, n = 468) = 0.28; P = 0.6) or
with age (χ2 (4, n = 468) = 2.92; P = 0.6).
Preferred location for islet transplantation within devices was under the skin
(52.7%). 48.3% preferred microscopic disks, and 32.3% preferred a thin device
(like a credit card). Moreover, 58.4% preferred the implant to be as small as
possible, 25.4% did not care about visibility, and 16.2% preferred their
implants not to be visible. Among female participants, 81% cared about the
implant visibility, whereas this number was 64% for male respondents
(χ2 test (1, n = 468) = 16.34; P <
0.0001). 22% of those younger than 50 years of age and 30% of those older than
50 did not care about the visibility of implant (χ2 test (4, n = 468) = 23.69; P <
0.0001). These results suggest that subcutaneous sites and micron-sized devices
are preferred choices among patients with T1D who participated in our
survey.
Collapse
Affiliation(s)
- M Rezaa Mohammadi
- Department of Materials Science and Engineering, 8788University of California, Irvine, CA, USA.,Sue and Bill Gross Stem Cell Research Center, 8788University of California, Irvine, CA, USA
| | - Farideh Dehkordi-Vakil
- Center for Statistical Consulting, Department of Statistics, 8788University of California, Irvine, CA, USA
| | - Joni Ricks-Oddie
- Center for Statistical Consulting, Department of Statistics, 8788University of California, Irvine, CA, USA
| | - Robert Mansfield
- 369679Juvenile Diabetes Research Foundation Orange County Chapter, Irvine, CA, USA
| | | | - Mark Daniels
- CHOC Children's Endocrine & Diabetes Center, Orange, CA, USA
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, 8788University of California, Irvine, CA, USA.,Department of Pharmaceutical Sciences, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, 8788University of California, Irvine, Irvine, CA, USA.,Department of Biomedical Engineering, 8788University of California, Irvine, Irvine, CA, USA.,Department of Biological Chemistry, 8788University of California, Irvine, Irvine, CA, USA
| | - Jonathan Rt Lakey
- Sue and Bill Gross Stem Cell Research Center, 8788University of California, Irvine, CA, USA.,Department of Surgery and Biomedical Engineering, 8788University of California Irvine, Orange, CA, USA
| |
Collapse
|
34
|
Paez‐Mayorga J, Capuani S, Farina M, Lotito ML, Niles JA, Salazar HF, Rhudy J, Esnaola L, Chua CYX, Taraballi F, Corradetti B, Shelton KA, Nehete PN, Nichols JE, Grattoni A. Enhanced In Vivo Vascularization of 3D-Printed Cell Encapsulation Device Using Platelet-Rich Plasma and Mesenchymal Stem Cells. Adv Healthc Mater 2020; 9:e2000670. [PMID: 32864893 DOI: 10.1002/adhm.202000670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/25/2020] [Indexed: 12/14/2022]
Abstract
The current standard for cell encapsulation platforms is enveloping cells in semipermeable membranes that physically isolate transplanted cells from the host while allowing for oxygen and nutrient diffusion. However, long-term viability and function of encapsulated cells are compromised by insufficient oxygen and nutrient supply to the graft. To address this need, a strategy to achieve enhanced vascularization of a 3D-printed, polymeric cell encapsulation platform using platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs) is investigated. The study is conducted in rats and, for clinical translation relevance, in nonhuman primates (NHP). Devices filled with PRP, MSCs, or vehicle hydrogel are subcutaneously implanted in rats and NHP and the amount and maturity of penetrating blood vessels assessed via histopathological analysis. In rats, MSCs drive the strongest angiogenic response at early time points, with the highest vessel density and endothelial nitric oxide synthase (eNOS) expression. In NHP, PRP and MSCs result in similar vessel densities but incorporation of PRP ensues higher levels of eNOS expression. Overall, enrichment with PRP and MSCs yields extensive, mature vascularization of subcutaneous cell encapsulation devices. It is postulated that the individual properties of PRP and MSCs can be leveraged in a synergistic approach for maximal vascularization of cell encapsulation platforms.
Collapse
Affiliation(s)
- Jesus Paez‐Mayorga
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- School of Medicine and Health Sciences Tecnologico de Monterrey Monterrey NL 64849 Mexico
| | - Simone Capuani
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Marco Farina
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Electronics and Telecommunications Politecnico di Torino Torino TO 10129 Italy
| | - Maria Luisa Lotito
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Mechanical and Aerospace Engineering Politecnico di Torino Torino TO 10129 Italy
| | - Jean A. Niles
- University of Texas Medical Branch Galveston TX 77550 USA
| | - Hector F. Salazar
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Jessica Rhudy
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Lucas Esnaola
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | | | - Francesca Taraballi
- Regenerative Medicine Program Houston Methodist Research Institute Houston TX 77030 USA
- Orthopedics and Sports Medicine Houston Methodist Hospital Houston TX 77030 USA
| | - Bruna Corradetti
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Center for NanoHealth Swansea University Medical School Swansea Wales SA2 8QA UK
| | - Kathryn A. Shelton
- Department of Comparative Medicine Michael E. Keeling Center for Comparative Medicine and Research MD Anderson Cancer Center Bastrop TX 78602 USA
| | - Pramod N. Nehete
- Department of Comparative Medicine Michael E. Keeling Center for Comparative Medicine and Research MD Anderson Cancer Center Bastrop TX 78602 USA
- The University of Texas Graduate School of Biomedical Sciences at Houston Houston TX 77030 USA
| | | | - Alessandro Grattoni
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Surgery Houston Methodist Hospital Houston TX 77030 USA
- Department of Radiation Oncology Houston Methodist Hospital Houston TX 77030 USA
| |
Collapse
|
35
|
Wassmer CH, Lebreton F, Bellofatto K, Bosco D, Berney T, Berishvili E. Generation of insulin-secreting organoids: a step toward engineering and transplanting the bioartificial pancreas. Transpl Int 2020; 33:1577-1588. [PMID: 32852858 PMCID: PMC7756715 DOI: 10.1111/tri.13721] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Diabetes is a major health issue of increasing prevalence. ß‐cell replacement, by pancreas or islet transplantation, is the only long‐term curative option for patients with insulin‐dependent diabetes. Despite good functional results, pancreas transplantation remains a major surgery with potentially severe complications. Islet transplantation is a minimally invasive alternative that can widen the indications in view of its lower morbidity. However, the islet isolation procedure disrupts their vasculature and connection to the surrounding extracellular matrix, exposing them to ischemia and anoikis. Implanted islets are also the target of innate and adaptive immune attacks, thus preventing robust engraftment and prolonged full function. Generation of organoids, defined as functional 3D structures assembled with cell types from different sources, is a strategy increasingly used in regenerative medicine for tissue replacement or repair, in a variety of inflammatory or degenerative disorders. Applied to ß‐cell replacement, it offers the possibility to control the size and composition of islet‐like structures (pseudo‐islets), and to include cells with anti‐inflammatory or immunomodulatory properties. In this review, we will present approaches to generate islet cell organoids and discuss how these strategies can be applied to the generation of a bioartificial pancreas for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Charles-Henri Wassmer
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.,Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Kevin Bellofatto
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.,Division of Transplantation, Department of Surgery, University of Geneva Hospitals, Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.,Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
36
|
Yin J, Yang L, Mou L, Dong K, Jiang J, Xue S, Xu Y, Wang X, Lu Y, Ye H. A green tea-triggered genetic control system for treating diabetes in mice and monkeys. Sci Transl Med 2020; 11:11/515/eaav8826. [PMID: 31645456 DOI: 10.1126/scitranslmed.aav8826] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/20/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
Cell-based therapies are recognized as the next frontier in medicine, but the translation of many promising technologies into the clinic is currently limited by a lack of remote-control inducers that are safe and can be tightly regulated. Here, we developed therapeutically active engineered cells regulated by a control system that is responsive to protocatechuic acid (PCA), a metabolite found in green tea. We constructed multiple genetic control technologies that could toggle a PCA-responsive ON/OFF switch based on a transcriptional repressor from Streptomyces coelicolor We demonstrated that PCA-controlled switches can be used for guide RNA expression-mediated control of the CRISPR-Cas9 systems for gene editing and epigenetic remodeling. We showed how these technologies could be used as implantable biocomputers in live mice to perform complex logic computations that integrated signals from multiple food metabolites. Last, we used our system to treat type 1 and type 2 diabetes in mice and cynomolgus monkeys. This biocompatible and versatile food phenolic acid-controlled transgenic device opens opportunities for dynamic interventions in gene- and cell-based precision medicine.
Collapse
Affiliation(s)
- Jianli Yin
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Linfeng Yang
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Kaili Dong
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Jian Jiang
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Shuai Xue
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Ying Xu
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Xinyi Wang
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| |
Collapse
|
37
|
Gurlin RE, Giraldo JA, Latres E. 3D Bioprinting and Translation of Beta Cell Replacement Therapies for Type 1 Diabetes. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:238-252. [PMID: 32907514 DOI: 10.1089/ten.teb.2020.0192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder in which the body's own immune system selectively attacks beta cells within pancreatic islets resulting in insufficient insulin production and loss of the ability to regulate blood glucose (BG) levels. Currently, the standard of care consists of BG level monitoring and insulin administration, which are essential to avoid the consequences of dysglycemia and long-term complications. Although recent advances in continuous glucose monitoring and automated insulin delivery systems have resulted in improved clinical outcomes for users, nearly 80% of people with T1D fail to achieve their target hemoglobin A1c (HbA1c) levels defined by the American Diabetes Association. Intraportal islet transplantation into immunosuppressed individuals with T1D suffering from impaired awareness of hypoglycemia has resulted in lower HbA1c, elimination of severe hypoglycemic events, and insulin independence, demonstrating the unique potential of beta cell replacement therapy (BCRT) in providing optimal glycemic control and a functional cure for T1D. BCRTs need to maximize cell engraftment, long-term survival, and function in the absence of immunosuppression to provide meaningful clinical outcomes to all people living with T1D. One innovative technology that could enable widespread translation of this approach into the clinic is three-dimensional (3D) bioprinting. Herein, we review how bioprinting could facilitate translation of BCRTs as well as the current and forthcoming techniques used for bioprinting of a BCRT product. We discuss the strengths and weaknesses of 3D bioprinting in this context in addition to the road ahead for the development of BCRTs. Impact statement Significant research developments in beta cell replacement therapies show its promise in providing a functional cure for type 1 diabetes (T1D); yet, their widespread clinical use has been difficult to achieve. This review provides a brief overview of the requirements for a beta cell replacement product followed by a discussion on both the promise and limitations of three-dimensional bioprinting in facilitating the fabrication of such products to enable translation into the clinic. Advancements in this area could be a key component to unlocking the safety and effectiveness of beta cell therapy for T1D.
Collapse
Affiliation(s)
- Rachel E Gurlin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
38
|
Orive G, Taebnia N, Erezuma I, Andresen TL, Dolatshahi-Pirouz A. Hacking Human Beings with Machine Biology to Increase Lifespan. Trends Biotechnol 2020; 38:1312-1315. [PMID: 32499063 DOI: 10.1016/j.tibtech.2020.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 11/30/2022]
Abstract
Imagine a world where machines can program cells to deliver therapeutics in a remote-controlled, time-specific, and targeted manner. Or, what if physicians could collect data continuously to establish intimate links between therapy and disease progression? Such machine biology systems could empower physicians beyond imagination and give rise to personalized treatments.
Collapse
Affiliation(s)
- Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| | - Nayere Taebnia
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs, Denmark
| | - Itsasne Erezuma
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Thomas L Andresen
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs, Denmark
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs, Denmark; Department of Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Philips van Leydenlaan 25, 6525, EX, Nijmegen, The Netherlands.
| |
Collapse
|
39
|
Facklam AL, Volpatti LR, Anderson DG. Biomaterials for Personalized Cell Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902005. [PMID: 31495970 DOI: 10.1002/adma.201902005] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/26/2019] [Indexed: 05/13/2023]
Abstract
Cell therapy has already had an important impact on healthcare and provided new treatments for previously intractable diseases. Notable examples include mesenchymal stem cells for tissue regeneration, islet transplantation for diabetes treatment, and T cell delivery for cancer immunotherapy. Biomaterials have the potential to extend the therapeutic impact of cell therapies by serving as carriers that provide 3D organization and support cell viability and function. With the growing emphasis on personalized medicine, cell therapies hold great potential for their ability to sense and respond to the biology of an individual patient. These therapies can be further personalized through the use of patient-specific cells or with precision biomaterials to guide cellular activity in response to the needs of each patient. Here, the role of biomaterials for applications in tissue regeneration, therapeutic protein delivery, and cancer immunotherapy is reviewed, with a focus on progress in engineering material properties and functionalities for personalized cell therapies.
Collapse
Affiliation(s)
- Amanda L Facklam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lisa R Volpatti
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
40
|
Stock AA, Manzoli V, De Toni T, Abreu MM, Poh YC, Ye L, Roose A, Pagliuca FW, Thanos C, Ricordi C, Tomei AA. Conformal Coating of Stem Cell-Derived Islets for β Cell Replacement in Type 1 Diabetes. Stem Cell Reports 2020; 14:91-104. [PMID: 31839542 PMCID: PMC6962554 DOI: 10.1016/j.stemcr.2019.11.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/29/2022] Open
Abstract
The scarcity of donors and need for immunosuppression limit pancreatic islet transplantation to a few patients with labile type 1 diabetes. Transplantation of encapsulated stem cell-derived islets (SC islets) might extend the applicability of islet transplantation to a larger cohort of patients. Transplantation of conformal-coated islets into a confined well-vascularized site allows long-term diabetes reversal in fully MHC-mismatched diabetic mice without immunosuppression. Here, we demonstrated that human SC islets reaggregated from cryopreserved cells display glucose-stimulated insulin secretion in vitro. Importantly, we showed that conformally coated SC islets displayed comparable in vitro function with unencapsulated SC islets, with conformal coating permitting physiological insulin secretion. Transplantation of SC islets into the gonadal fat pad of diabetic NOD-scid mice revealed that both unencapsulated and conformal-coated SC islets could reverse diabetes and maintain human-level euglycemia for more than 80 days. Overall, these results provide support for further evaluation of safety and efficacy of conformal-coated SC islets in larger species.
Collapse
Affiliation(s)
- Aaron A Stock
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10(th) Avenue, Miami, FL 33136, USA; Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Vita Manzoli
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10(th) Avenue, Miami, FL 33136, USA
| | - Teresa De Toni
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10(th) Avenue, Miami, FL 33136, USA; Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA
| | - Maria M Abreu
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10(th) Avenue, Miami, FL 33136, USA
| | | | - Lillian Ye
- Semma Therapeutics, Inc., Cambridge, MA 02142, USA
| | - Adam Roose
- Semma Therapeutics, Inc., Cambridge, MA 02142, USA
| | | | - Chris Thanos
- Semma Therapeutics, Inc., Cambridge, MA 02142, USA
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10(th) Avenue, Miami, FL 33136, USA; Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10(th) Avenue, Miami, FL 33136, USA; Department of Biomedical Engineering, University of Miami, Miami, FL 33146, USA; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
41
|
Santos-Vizcaino E, Orive G, Pedraz JL, Hernandez RM. Clinical Applications of Cell Encapsulation Technology. Methods Mol Biol 2020; 2100:473-491. [PMID: 31939144 DOI: 10.1007/978-1-0716-0215-7_32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell encapsulation comprises immunoisolation three-dimensional systems for housing therapeutic cells that secrete bioactive compounds de novo and in a sustained manner. This allows transplantation of multiple allo- or xenogeneic cells without the aid of immunosuppressant drugs. Recent advances in the field have provided improvements to these cell-based drug delivery systems, which have gained the attention of the scientific community and inspired many biotechnological companies to develop their own product candidates. From micro- to macroencapsulation devices, this chapter describes some of the most important approaches that are being currently tested in late-stage clinical trials and are likely to reach the market as future game changers. Most studies involve the treatment of diabetes, eye disorders, and diseases of the central nervous system. However, many other pathologies are also amenable to benefit from this technology. Latest advances to overcome major pending challenges related to biosafety and efficacy are also discussed.
Collapse
Affiliation(s)
- Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.,BTI Biotechnology Institute, Vitoria, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain. .,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
42
|
Arifin DR, Kulkarni M, Kadayakkara D, Bulte JWM. Fluorocapsules allow in vivo monitoring of the mechanical stability of encapsulated islet cell transplants. Biomaterials 2019; 221:119410. [PMID: 31421313 PMCID: PMC6717436 DOI: 10.1016/j.biomaterials.2019.119410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
Clinical trials that have used encapsulated islet cell therapy have been few and overall disappointing. This is due in part to the lack of suitable methods to monitor the integrity vs. rupture of transplanted microcapsules over time. Fluorocapsules were synthesized by embedding emulsions of perfluoro-15-crown-5-ether (PFC), a bioinert compound detectable by 19F MRI, into dual-alginate layer, Ba2+-gelled alginate microcapsules. Fluorocapsules were spherical with an apparent smooth surface and an average diameter of 428 ± 52 μm. After transplantation into mice, the 19F MRI signal of capsules remained stable for up to 90 days, corresponding to the total number of intact fluorocapsules. When single-alginate layer capsules were ruptured with alginate lyase, the 19F MRI signal dissipated within 4 days. For fluoroencapsulated luciferase-expressing mouse βTC6 insulinoma cells implanted into autoimmune NOD/ShiLtJ mice and subjected to alginate-lyase induced capsule rupture in vivo, the 19F MRI signal decreased sharply over time along with a decrease in bioluminescence imaging signal used as a measure of cell viability in vivo. These results indicate that maintenance of capsule integrity is essential for preserving transplanted cell survival, where a decrease in 19F MRI signal may serve as a predictive imaging surrogate biomarker for impending failure of encapsulated islet cell therapy.
Collapse
Affiliation(s)
- Dian R Arifin
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mangesh Kulkarni
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Deepak Kadayakkara
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, MD, 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
43
|
Orive G, Echave MC, Pedraz JL, Golafshan N, Dolatshahi-Pirouz A, Paolone G, Emerich D. Advances in cell-laden hydrogels for delivering therapeutics. Expert Opin Biol Ther 2019; 19:1219-1222. [PMID: 31414944 DOI: 10.1080/14712598.2019.1654452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.,Discovery Tower, Singapore Eye Research Institute, The Academia, Singapore, Singapore
| | - Mari Carmen Echave
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Nasim Golafshan
- Department of Orthopedics, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Denmark.,Department of Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Giovanna Paolone
- Department of Diagnostic and Public Health, Section of Pharmacology, University of Verona, Verona, Italy
| | - Dwaine Emerich
- Gloriana Therapeutics, Inc. (formerly NsGene Inc.), Providence, Rhode Island, USA
| |
Collapse
|
44
|
Lukin I, Musquiz S, Erezuma I, Al-Tel TH, Golafshan N, Dolatshahi-Pirouz A, Orive G. Can 4D bioprinting revolutionize drug development? Expert Opin Drug Discov 2019; 14:953-956. [DOI: 10.1080/17460441.2019.1636781] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Izeia Lukin
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Saioa Musquiz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Taleb H. Al-Tel
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Nasim Golafshan
- Department of Orthopedics, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Denmark
- Department of Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
- Singapore Eye Research Institute, The Academia, Singapore
| |
Collapse
|
45
|
Espona-Noguera A, Ciriza J, Cañibano-Hernández A, Villa R, Saenz del Burgo L, Alvarez M, Pedraz JL. 3D printed polyamide macroencapsulation devices combined with alginate hydrogels for insulin-producing cell-based therapies. Int J Pharm 2019; 566:604-614. [DOI: 10.1016/j.ijpharm.2019.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/14/2019] [Accepted: 06/04/2019] [Indexed: 12/23/2022]
|
46
|
Hu S, de Vos P. Polymeric Approaches to Reduce Tissue Responses Against Devices Applied for Islet-Cell Encapsulation. Front Bioeng Biotechnol 2019; 7:134. [PMID: 31214587 PMCID: PMC6558039 DOI: 10.3389/fbioe.2019.00134] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Immunoisolation of pancreatic islets is a technology in which islets are encapsulated in semipermeable but immunoprotective polymeric membranes. The technology allows for successful transplantation of insulin-producing cells in the absence of immunosuppression. Different approaches of immunoisolation are currently under development. These approaches involve intravascular devices that are connected to the bloodstream and extravascular devices that can be distinguished in micro- and macrocapsules and are usually implanted in the peritoneal cavity or under the skin. The technology has been subject of intense fundamental research in the past decade. It has co-evolved with novel replenishable cell sources for cure of diseases such as Type 1 Diabetes Mellitus that need to be protected for the host immune system. Although the devices have shown significant success in animal models and even in human safety studies most technologies still suffer from undesired tissue responses in the host. Here we review the past and current approaches to modulate and reduce tissue responses against extravascular cell-containing micro- and macrocapsules with a focus on rational choices for polymer (combinations). Choices for polymers but also choices for crosslinking agents that induce more stable and biocompatible capsules are discussed. Combining beneficial properties of molecules in diblock polymers or application of these molecules or other anti-biofouling molecules have been reviewed. Emerging are also the principles of polymer brushes that prevent protein and cell-adhesion. Recently also immunomodulating biomaterials that bind to specific immune receptors have entered the field. Several natural and synthetic polymers and even combinations of these polymers have demonstrated significant improvement in outcomes of encapsulated grafts. Adequate polymeric surface properties have been shown to be essential but how the surface should be composed to avoid host responses remains to be identified. Current insight is that optimal biocompatible devices can be created which raises optimism that immunoisolating devices can be created that allows for long term survival of encapsulated replenishable insulin-producing cell sources for treatment of Type 1 Diabetes Mellitus.
Collapse
Affiliation(s)
- Shuixan Hu
- Division of Medical Biology, Department of Pathology and Medical Biology, Immunoendocrinology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
47
|
Abuid NJ, Gattás-Asfura KM, Schofield EA, Stabler CL. Layer-by-Layer Cerium Oxide Nanoparticle Coating for Antioxidant Protection of Encapsulated Beta Cells. Adv Healthc Mater 2019; 8:e1801493. [PMID: 30633854 PMCID: PMC6625950 DOI: 10.1002/adhm.201801493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/21/2018] [Indexed: 01/15/2023]
Abstract
In type 1 diabetes, the replacement of the destroyed beta cells could restore physiological glucose regulation and eliminate the need for exogenous insulin. Immunoisolation of these foreign cellular transplants via biomaterial encapsulation is widely used to prevent graft rejection. While highly effective in blocking direct cell-to-cell contact, nonspecific inflammatory reactions to the implant lead to the overproduction of reactive oxygen species, which contribute to foreign body reaction and encapsulated cell loss. For antioxidant protection, cerium oxide nanoparticles (CONPs) are a self-renewable, ubiquitous, free radical scavenger currently explored in several biomedical applications. Herein, 2-12 alternating layers of CONP/alginate are assembled onto alginate microbeads containing beta cells using a layer-by-layer (LbL) technique. The resulting nanocomposite coatings demonstrate robust antioxidant activity. The degree of cytoprotection correlates with layer number, indicating tunable antioxidant protection. Coating of alginate beads with 12 layers of CONP/alginate provides complete protection to the entrapped beta cells from exposure to 100 × 10-6 m H2 O2 , with no significant changes in cellular metabolic activity, oxidant capacity, or insulin secretion dynamics, when compared to untreated controls. The flexibility of this LbL method, as well as its nanoscale profile, provides a versatile approach for imparting antioxidant protection to numerous biomedical implants, including beta cell transplantation.
Collapse
Affiliation(s)
- Nicholas J Abuid
- Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Kerim M Gattás-Asfura
- Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Emily A Schofield
- Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Cherie L Stabler
- Department of Biomedical Engineering, UF Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
48
|
Ernst AU, Wang L, Ma M. Interconnected Toroidal Hydrogels for Islet Encapsulation. Adv Healthc Mater 2019; 8:e1900423. [PMID: 31111686 DOI: 10.1002/adhm.201900423] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/30/2019] [Indexed: 11/07/2022]
Abstract
Islet encapsulation and transplantation promises to improve upon current treatments for type 1 diabetes mellitus, though several limitations remain. Macroscale devices have been designed for in vivo transplantation and retrieval, but traditional geometries do not support clinically adequate mass transfer of nutrients to and insulin from the encapsulated tissue. Microcapsule technologies have improved mass transfer properties, but their clinical translation remains challenging as their complete retrieval is difficult, should the graft become a safety concern. Here, the design, characterization and testing of a novel encapsulation structure, comprised of elastomer-reinforced interconnected toroidal hydrogels is reported. These donut-shaped hydrogels feature a high surface area, higher than conventional spherical capsules of the same volume, bestowing suitable mass transport conditions, while allowing interconnection and reversible deformation for intraperitoneal implantation and retrieval. Diabetes correction up to 12 weeks and complete retrieval is achieved in a diabetic mouse model, providing a proof-of-concept for the potential application as a type 1 diabetes cell replacement therapy.
Collapse
|
49
|
Kumar SA, Delgado M, Mendez VE, Joddar B. Applications of stem cells and bioprinting for potential treatment of diabetes. World J Stem Cells 2019; 11:13-32. [PMID: 30705712 PMCID: PMC6354103 DOI: 10.4252/wjsc.v11.i1.13] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/26/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023] Open
Abstract
Currently, there does not exist a strategy that can reduce diabetes and scientists are working towards a cure and innovative approaches by employing stem cell-based therapies. On the other hand, bioprinting technology is a novel therapeutic approach that aims to replace the diseased or lost β-cells, insulin-secreting cells in the pancreas, which can potentially regenerate damaged organs such as the pancreas. Stem cells have the ability to differentiate into various cell lines including insulin-producing cells. However, there are still barriers that hamper the successful differentiation of stem cells into β-cells. In this review, we focus on the potential applications of stem cell research and bioprinting that may be targeted towards replacing the β-cells in the pancreas and may offer approaches towards treatment of diabetes. This review emphasizes on the applicability of employing both stem cells and other cells in 3D bioprinting to generate substitutes for diseased β-cells and recover lost pancreatic functions. The article then proceeds to discuss the overall research done in the field of stem cell-based bioprinting and provides future directions for improving the same for potential applications in diabetic research.
Collapse
Affiliation(s)
- Shweta Anil Kumar
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States
| | - Monica Delgado
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States
| | - Victor E Mendez
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States
| | - Binata Joddar
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, United States.
| |
Collapse
|
50
|
Farina M, Alexander JF, Thekkedath U, Ferrari M, Grattoni A. Cell encapsulation: Overcoming barriers in cell transplantation in diabetes and beyond. Adv Drug Deliv Rev 2019; 139:92-115. [PMID: 29719210 DOI: 10.1016/j.addr.2018.04.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/19/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
Cell-based therapy is emerging as a promising strategy for treating a wide range of human diseases, such as diabetes, blood disorders, acute liver failure, spinal cord injury, and several types of cancer. Pancreatic islets, blood cells, hepatocytes, and stem cells are among the many cell types currently used for this strategy. The encapsulation of these "therapeutic" cells is under intense investigation to not only prevent immune rejection but also provide a controlled and supportive environment so they can function effectively. Some of the advanced encapsulation systems provide active agents to the cells and enable a complete retrieval of the graft in the case of an adverse body reaction. Here, we review various encapsulation strategies developed in academic and industrial settings, including the state-of-the-art technologies in advanced preclinical phases as well as those undergoing clinical trials, and assess their advantages and challenges. We also emphasize the importance of stimulus-responsive encapsulated cell systems that provide a "smart and live" therapeutic delivery to overcome barriers in cell transplantation as well as their use in patients.
Collapse
|