1
|
Kim SA, Go EJ, Bae BS, Jung JW, Cho ML, Shetty AA, Kim SJ. In vivo evaluation of biocompatibility and biodegradation of porcine collagen membranes. Regen Ther 2025; 29:292-302. [PMID: 40230352 PMCID: PMC11995709 DOI: 10.1016/j.reth.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/18/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction Collagen-based materials differ in absorption time, biodegradation patterns, and inflammatory cell infiltration. This study aimed to evaluate the biocompatibility and biodegradation of native, differently processed, and cross-linked porcine collagen membranes implanted in the subcutaneous tissue of rats, following ISO 10993-6:2016. Methods Sixty Sprague-Dawley rats were randomly divided into four groups: Group 1 (lyophilized 3 % porcine type I collagen membrane), Group 2 (lyophilized 3 % porcine type I collagen membrane, dehydrothermal [DHT]), Group 3 (1,4-butanediol diglycidyl ether [BDDE] cross-linked, lyophilized 3 % porcine type I collagen), and Group 4 (BDDE cross-linked, lyophilized 3 % porcine type I collagen, DHT). The experimental periods were 1, 2, 4, 8, and 12 weeks, with three animals per group per period. After each period, specimens were extracted and analyzed for membrane structure, biodegradation, cell infiltration, angiogenesis, tissue integration, and foreign body reaction using histological staining and scoring according to ISO 10993-6:2016. Results The cross-linked collagen membrane groups maintained their porous structure, with cell infiltration and blood vessel formation observed within this structure. Non-cross-linked collagen membranes (Group 1) appeared as lumps under the subcutaneous tissue and exhibited minimal or no response throughout the observation periods. Groups 2 and 4 biodegraded the fastest. Group 2 membranes were not detected in the subcutaneous tissue at 8 weeks, classified as a slight response. Cross-linked collagen membranes in all groups showed a slight response, whereas Group 4 exhibited a moderate response (11.0-16.9) only at 12 weeks. The tissue response to collagen membranes in all groups aligned with physiological inflammatory processes, scoring from minimal or no response (0.0-5.9) to slight response (6.0-10.9), confirming their biocompatibility. Conclusions Cross-linking methods, temperature, and chemical reagents influence collagen membrane properties. Cross-linked collagen formed a porous structure, and high-temperature DHT cross-linking accelerated the biodegradation of the collagen membrane.
Collapse
Affiliation(s)
- Seon Ae Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Jeong Go
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bo Seung Bae
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, 02453 Seoul, Republic of Korea
| | - Jae Woong Jung
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Asode Ananthram Shetty
- Institute of Medical Sciences, Faculty of Health and Social Care, Canterbury Christ Church University, United Kingdom
| | - Seok Jung Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Chen Q, Zhang Y, Zhang Y, Han X, Zhang L, Meng H, Luo J, Yu R, Zhang C, Liu Y. Rational designation and characterization of a novel humanized collagen capable of self-assembling into triple helix and fibrils with D-period. Protein Expr Purif 2025; 230:106698. [PMID: 40054512 DOI: 10.1016/j.pep.2025.106698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/14/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
The triple helix and D-period are distinctive features of native collagen, crucial for its physicochemical properties and bioactivities. However, developing recombinant humanized collagen with D-period features remains elusive. Here, we present a strategy for preparing a novel recombinant humanized collagen using a 'charged-hydrophobic-charged amino acid' sequence with the capacity of self-assembling. The hydrophobic amino acids in the middle region are believed to be crucial for the triple helix formation while the charged amino acids at the C- and N-terminal drive the triple-helix to self-assemble into higher-order structures like fibrils, with D-period formation during this process. To prove this concept, the particular fragment of Gly1059-Ala1103 of human type III collagen, featuring arginine (R), lysine (K), aspartic acid (D), and glutamic acid (E)-rich termini and a Glycine-Proline-Alanine (G-P-A) central motif, was selected and repeated to construct a recombinant humanized collagen, designated as rhCL04. This construct successfully formed hierarchical structures, including triple helices, rod-like fibrils, and hydrogels, exhibiting a distinct 10 nm D-period across a broad pH range from 4 to 10. Additionally, cell adhesion and biocompatibility were confirmed using L929 mouse fibroblast cells, demonstrating the ability to promote cell adhesion activity and no significant cytotoxicity. Our study provides valuable insights into the self-assembling mechanisms of native collagens. Moreover, these results highlight the efficacy of this strategy in producing recombinant humanized collagen with collagen-like characteristics. The simplicity and versatility of the approach, combined with the excellent self-assembling properties and biological activity of rhCL04, underscore its potential for biomaterial production.
Collapse
Affiliation(s)
- Qiexin Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Development of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Yao Zhang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuxiang Zhang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiao Han
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Development of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Luyao Zhang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Huan Meng
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jian Luo
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Rong Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Development of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China
| | - Chun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Development of Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, 610041, PR China.
| | - Yongdong Liu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
3
|
Yang X, Ahmad K, Yang T, Fan Y, Zhao F, Jiang S, Chen P, Hou H. Collagen-based hydrogel sol-gel phase transition mechanism and their applications. Adv Colloid Interface Sci 2025; 340:103456. [PMID: 40037018 DOI: 10.1016/j.cis.2025.103456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
Collagen-based hydrogels represent a crucial class of biomaterials for their desirable physicochemical and biochemical properties. The variation in ingredients, gelation conditions, and crosslinking techniques may impact the physicochemical and biological properties of collagen-based hydrogels. However, the specific effects of these parameters on the gelation mechanisms of novel hydrogels and the relationships between fabrication parameters and the resultant characteristics of these hydrogels remain elusive. This review discussed the sol-gel phase transition mechanisms of collagen-based hydrogels, emphasizing the impact of gelation conditions, crosslinking agents, and additional polymers. This article highlights the potential of natural ingredients and safe modification technologies as effective strategies to mitigate the harmful effects of synthetic toxic components in products. Furthermore, this review summarizes constitutive models of collagen hydrogels, which serve as valuable tools for designing and customizing hydrogels to meet specific application requirements by simulating their mechanical and rheological properties. Additionally, the article concludes by briefly introducing applications of novel collagen-based hydrogels with desirable functions and properties. This review further deals with the theoretical support for the rational design and customization of innovative hydrogels and inspires future collagen-based biomaterial development.
Collapse
Affiliation(s)
- Xia Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Qingdao, Shandong Province 266404, PR China; Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Qingdao, Shandong Province 266404, PR China
| | - Tingting Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Qingdao, Shandong Province 266404, PR China
| | - Yan Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Qingdao, Shandong Province 266404, PR China
| | - Fei Zhao
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China
| | - Shanshan Jiang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, PR China
| | - Peng Chen
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Qingdao, Shandong Province 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province 266000, PR China.
| |
Collapse
|
4
|
Vaez M, Odlyha M, Farzana S, Lee PC, Hinz B, Bozec L. Glycated Cross-Linked Collagen Membranes with Tunable Permeability and Multifunctional Properties for Tissue Regeneration. ACS Biomater Sci Eng 2025; 11:2946-2957. [PMID: 40214646 DOI: 10.1021/acsbiomaterials.5c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Interface tissue engineering focuses on developing bioengineered constructs that integrate with the body's natural tissues. Collagen-based membranes, due to their inherent bioactivity and compatibility, are widely used in tissue engineering applications such as wound healing, guided tissue regeneration, and guided bone regeneration. This study investigates the in vitro development and characterization of methylglyoxal (MGO)-cross-linked collagen membranes, which exhibit enhanced mechanical strength, thermal stability, hydrophilicity, and tunable permeability. To evaluate the properties of these membranes, we employed several techniques, including scanning electron microscopy for morphological analysis, differential scanning calorimetry for thermal stability assessment, tensile strength tests for mechanical evaluation, water contact angle measurements for wettability, dielectric analysis for moisture absorption, and permeability assays using fluorescein diffusion. Additionally, the fibroblast barrier function was assessed using a red cell tracking dye with confocal microscopy. The ability to fine-tune the properties of collagen membranes through MGO cross-linking opens new possibilities for their use in tissue engineering. These membranes can serve as effective barriers in guided tissue regeneration and guided bone regeneration, promoting tissue regeneration and healing by preventing undesired cell migration and creating a conducive environment for bone and tissue growth. MGO-cross-linked collagen membranes offer a promising solution for enhancing the functionality and efficacy of bioengineered constructs in tissue engineering. Their improved mechanical and thermal properties, coupled with their biocompatibility, make them ideal candidates for various clinical applications.
Collapse
Affiliation(s)
- Mina Vaez
- Faculty of Dentistry, University of Toronto, Toronto M5G 1G6, Canada
| | - Marianne Odlyha
- Department of Biological Sciences,, Birkbeck College, University of London, London WC1E 7HX, U.K
| | - Sumaiya Farzana
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto M5G 1G6, Canada
| | - Patrick C Lee
- Department of Biological Sciences,, Birkbeck College, University of London, London WC1E 7HX, U.K
- Department of Materials Science and Engineering, University of Toronto, Toronto M5G 1G6, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto M5G 1G6, Canada
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1W8,Canada
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto, Toronto M5G 1G6, Canada
| |
Collapse
|
5
|
Clerkin S, Singh K, Davis JL, Treacy NJ, Krupa I, Reynaud EG, Lees RM, Needham SR, MacWhite-Begg D, Wychowaniec JK, Brougham DF, Crean J. Tuneable gelatin methacryloyl (GelMA) hydrogels for the directed specification of renal cell types for hiPSC-derived kidney organoid maturation. Biomaterials 2025; 322:123349. [PMID: 40315627 DOI: 10.1016/j.biomaterials.2025.123349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/14/2025] [Accepted: 04/15/2025] [Indexed: 05/04/2025]
Abstract
Diabetic Kidney Disease (DKD) represents a significant global health burden and is recognised as the leading cause of end-stage renal disease. Kidney organoids derived from human induced Pluripotent Stem Cells (hiPSCs) have the potential to transform how we model renal disease and may provide personalised replacement tissues for patients with renal failure. However, kidney organoids remain poorly reproducible, and are structurally and functionally immature. Three-dimensional cultures that more appropriately mimic the complexity of the in vivo microenvironment are required to improve organoid maturation and structural authenticity. Here, we describe the application of semi-synthetic Gelatin Methacryloyl (GelMA) hydrogels as extracellular support matrices for the differentiation of hiPSC-derived kidney organoids. Hydrogels of defined mechanical strengths were generated by varying the concentration of GelMA solution in the presence of low concentration photo-initiator. After confirming a high level of mechanical stability of the hydrogels over extended culture periods, their effect on kidney organoid maturation was investigated. Organoids differentiated within GelMA hydrogels generated typical renal cell types including podocytes, tubular epithelia, renal interstitial cells, and some nascent vascularisation. Interestingly, kidney organoids derived within hydrogels that closely approximate the stiffness of the adult human kidney (∼5000-10,000 Pa) demonstrated improved podocyte maturation and were shown to upregulate renal vesicle-associated genes at an earlier stage following encapsulation when compared to organoids derived within softer hydrogels (∼400 Pa). A model of TGFβ-induced injury was also developed to investigate the influence of the mechanical environment in propagating early, fibrotic-like features of DKD within organoids. Growth within the softer matrix was shown to reduce pSMAD3 expression following TGFβ1 treatment, and accordingly ameliorate the expression of the myofibroblast marker α-Smooth Muscle Actin (α-SMA). This work demonstrates the suitability of GelMA hydrogels as mechanically-stable, highly-tuneable, batch-to-batch reproducible three-dimensional supports for hiPSC-derived kidney organoid growth and differentiation, and further substantiates the role of the biophysical environment in guiding processes of cell fate determination and organoid maturation.
Collapse
Affiliation(s)
- Shane Clerkin
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Krutika Singh
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jessica L Davis
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niall J Treacy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ivan Krupa
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Emmanuel G Reynaud
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Robert M Lees
- Science and Technology Research Council Central Laser Facility (STFC-CLF), Rutherford Appleton Laboratory, Harwell, Didcot, OX11 0DE, United Kingdom
| | - Sarah R Needham
- Science and Technology Research Council Central Laser Facility (STFC-CLF), Rutherford Appleton Laboratory, Harwell, Didcot, OX11 0DE, United Kingdom
| | - Delphi MacWhite-Begg
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jacek K Wychowaniec
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dermot F Brougham
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - John Crean
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
6
|
Zheng Z, Wang M, Ren A, Cheng Z, Li X, Guo C. 3D-Printed Silk Fibroin Mesh with Guidance of Directional Cell Growth for Treating Pelvic Organ Prolapse. ACS Biomater Sci Eng 2025; 11:2367-2377. [PMID: 40036493 DOI: 10.1021/acsbiomaterials.5c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Damages to the supportive structure of the pelvic floor frequently result in pelvic organ prolapse (POP), which diminishes the quality of life. Surgical repair typically involves mesh implantation to reinforce the weakened tissues. However, the commonly used polypropylene (PP) mesh can lead to severe complications due to the mechanical mismatch of the mesh with the pelvic tissues. In this study, 3D-printed silk fibroin (SF) meshes are developed and optimized through cryogenic 3D printing followed by post-stretching treatment to enhance mechanical properties and biocompatibility for POP repair. Rheological analysis shows that the 30 wt % SF-based ink exhibited a zero shear viscosity of 1838 Pa·s and shear-thinning behavior, ensuring smooth extrusion during 3D printing. During the cryogenic incubation following 3D printing, self-assembly of SF occurs with the formation of β-sheet structures, leading to robust constructs with good shape fidelity. The post-stretching treatment further improves SF chain alignment and fibrilization, resulting in enhanced mechanical performance and a microstrip surface that promotes cell attachment, alignment, and differentiation. The SF mesh with a post-stretching ratio of 150% shows an ultimate tensile strength of 1.49 ± 0.14 MPa, an elongation at break of 104 ± 13%, and a Young's modulus of 5.0 ± 0.1 MPa at a hydrated condition, matching the properties of soft pelvic tissues. In vitro studies show that post-stretched SF meshes facilitated better cell alignment and myogenic differentiation than PP meshes. In vivo assessments demonstrate enhanced biocompatibility of the SF meshes, with better cellular infiltration and tissue integration than PP meshes in the long-term implantation, showing potential as a safe, effective alternative to traditional synthetic meshes for POP repair and other clinical applications.
Collapse
Affiliation(s)
- Zili Zheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China
| | - Min Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China
| | - An Ren
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, China
| | - Zhangyuan Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China
| | - Xiangjuan Li
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, China
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
7
|
Alberts A, Bratu AG, Niculescu AG, Grumezescu AM. Collagen-Based Wound Dressings: Innovations, Mechanisms, and Clinical Applications. Gels 2025; 11:271. [PMID: 40277707 PMCID: PMC12026876 DOI: 10.3390/gels11040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/30/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
Collagen-based wound dressings have developed as an essential component of contemporary wound care, utilizing collagen's inherent properties to promote healing. This review thoroughly analyzes collagen dressing advances, examining different formulations such as hydrogels, films, and foams that enhance wound care. The important processes by which collagen promotes healing (e.g., promoting angiogenesis, encouraging cell proliferation, and offering structural support) are discussed to clarify its function in tissue regeneration. The effectiveness and adaptability of collagen dressings are demonstrated via clinical applications investigated in acute and chronic wounds. Additionally, commercially accessible collagen-based skin healing treatments are discussed, demonstrating their practical use in healthcare settings. Despite the progress, the study discusses the obstacles and restrictions encountered in producing and adopting collagen-based dressings, such as the difficulties of manufacturing and financial concerns. Finally, the current landscape's insights indicate future research possibilities for collagen dressing optimization, bioactive agent integration, and overcoming existing constraints. This analysis highlights the potential of collagen-based innovations to improve wound treatment methods and patient care.
Collapse
Affiliation(s)
- Adina Alberts
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Andreea Gabriela Bratu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
8
|
Qiao M, Li Y, Yan S, Zhang RJ, Dong H. Modulation of arterial wall remodeling by mechanical stress: Focus on abdominal aortic aneurysm. Vasc Med 2025; 30:238-249. [PMID: 39895313 DOI: 10.1177/1358863x241309836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The rupture of an abdominal aortic aneurysm (AAA) poses a significant threat, with a high mortality rate, and the mechanical stability of the arterial wall determines both its growth and potential for rupture. Owing to extracellular matrix (ECM) degradation, wall-resident cells are subjected to an aberrant mechanical stress environment. In response to stress, the cellular mechanical signaling pathway is activated, initiating the remodeling of the arterial wall to restore stability. A decline in mechanical signal responsiveness, coupled with inadequate remodeling, significantly contributes to the AAA's progressive expansion and eventual rupture. In this review, we summarize the main stresses experienced by the arterial wall, emphasizing the critical role of the ECM in withstanding stress and the importance of stress-exposed cells in maintaining mechanical stability. Furthermore, we will discuss the application of biomechanical analyses as a predictive tool for assessing AAA stability.
Collapse
Affiliation(s)
- Maolin Qiao
- Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - Yaling Li
- Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - Sheng Yan
- Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - Rui Jing Zhang
- Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| | - Honglin Dong
- Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi, China
| |
Collapse
|
9
|
Zhai X, Geng X, Li W, Cui H, Wang Y, Qin S. Comprehensive Review on Application Progress of Marine Collagen Cross-Linking Modification in Bone Repairs. Mar Drugs 2025; 23:151. [PMID: 40278272 PMCID: PMC12028942 DOI: 10.3390/md23040151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/26/2025] Open
Abstract
Bone tissue injuries are a significant health risk, and their repair is challenging. While various materials have potential for bone repair, issues like sourcing and immune rejection limit their use. Marine-derived collagen, abundant and free from religious and disease transmission concerns, is a promising biomaterial in bone tissue engineering. Cross-linking modification can enhance its mechanical properties and degradation rate, making it more suitable for bone repair. However, detailed analysis of cross-linking methods, property changes post-cross-linking, and their impact on bone repair is needed. This review examines marine collagen's modification methods, improved characteristics, and potential in bone tissue repair, providing a foundation for its effective use in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaofei Zhai
- Research Institute of Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; (X.Z.); (X.G.); (W.L.); (S.Q.)
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xinrong Geng
- Research Institute of Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; (X.Z.); (X.G.); (W.L.); (S.Q.)
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Wenjun Li
- Research Institute of Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; (X.Z.); (X.G.); (W.L.); (S.Q.)
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Hongli Cui
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yunqing Wang
- Research Institute of Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; (X.Z.); (X.G.); (W.L.); (S.Q.)
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Song Qin
- Research Institute of Marine Traditional Chinese Medicine (Qingdao Academy of Chinese Medical Sciences), Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; (X.Z.); (X.G.); (W.L.); (S.Q.)
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
10
|
Li S, Chen H, Dan X, Ju Y, Li T, Liu B, Li Y, Lei L, Fan X. Silk fibroin for cosmetic dermatology. CHEMICAL ENGINEERING JOURNAL 2025; 506:159986. [DOI: 10.1016/j.cej.2025.159986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
|
11
|
Gui N, Zhang X, Yang C, Ran R, Yang C, Zeng X, Li G. A high-strength collagen-based antimicrobial film grafted with ε-polylysine fabrication by riboflavin-mediated ultraviolet irradiation for pork preservation. Food Chem 2024; 461:140889. [PMID: 39173254 DOI: 10.1016/j.foodchem.2024.140889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/27/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
In this study, a UV-cured collagen-based film (C-P-H film) with high mechanical strength and antimicrobial properties was developed by riboflavin-mediated ultraviolet irradiation of collagen solution containing histidine-modified ε-polylysine. Fourier transform infrared analysis indicated that covalent cross-linking was formed between the collagen molecule and the histidine-grafted ε-polylysine. Compared with the pure collagen film, the C-P-H film containing 5 wt% histidine-modified ε-polylysine showed higher tensile strength (145.98 MPa), higher thermal denaturation temperature (76.5 °C), lower water vapor permeability (5.54 × 10-11 g m-1 s-1 Pa) and excellent antimicrobial activities against Escherichia coli and Staphylococcus aureus. In addition, the wrapping of the C-P-H film effectively inhibited bacterial growth of pork during storage time, successfully prolonging the shelf-life of pork by approximately 4 days compared to that of plastic wrap. These results suggested that collagen-based film grafted with histidine-modified ε-polylysine via riboflavin-mediated ultraviolet irradiation process had a great potential for pork preservation.
Collapse
Affiliation(s)
- Nina Gui
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Xiaoxia Zhang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Chun Yang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Ruimin Ran
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China
| | - Changkai Yang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Xingling Zeng
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Guoying Li
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
12
|
Feng Y, Li HP. Optimizing collagen-based biomaterials for periodontal regeneration: clinical opportunities and challenges. Front Bioeng Biotechnol 2024; 12:1469733. [PMID: 39703793 PMCID: PMC11655217 DOI: 10.3389/fbioe.2024.1469733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
Periodontal disease (PD) is a chronic inflammatory condition that affects the teeth and their supporting tissues, ultimately culminating in tooth loss. Currently, treatment modalities, such as systemic and local administration of antibiotics, serve to mitigate the progression of inflammation yet fall short in restoring the original anatomical structure and physiological function of periodontal tissues. Biocompatible material-based tissue engineering seems to be a promising therapeutic strategy for treating PD. Collagen, a component of the extracellular matrix commonly used for tissue engineering, has been regarded as a promising biogenic material for tissue regeneration owing to its high cell-activating and biocompatible properties. The structural and chemical similarities between collagen and components of the oral tissue extracellular matrix render it a promising candidate for dental regeneration. This review explored the properties of collagen and its current applications in periodontal regeneration. We also discussed the recent progression in collagen therapies and preparation techniques. The review also scrutinizes the pros and cons associated with the application of collagen-based biomaterials in PD treatment, aiming to pave the way for future applications of collagen-based biomaterials in the management of PD.
Collapse
Affiliation(s)
- Ye Feng
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong-Peng Li
- Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| |
Collapse
|
13
|
Zhang L, Long H, Zhang P, Liu B, Li S, Sun R, Diao T, Li F. Development and characterization of a novel injectable thyroid extracellular matrix hydrogel for enhanced thyroid tissue engineering applications. Front Bioeng Biotechnol 2024; 12:1481295. [PMID: 39664883 PMCID: PMC11631613 DOI: 10.3389/fbioe.2024.1481295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Hypothyroidism, a condition characterized by decreased synthesis and secretion of thyroid hormones, significantly impacts intellectual development and physical growth. Current treatments, including hormone replacement therapy and thyroid transplantation, have limitations due to issues like hormone dosage control and immune rejection. Tissue engineering presents a potential solution by combining cells and biomaterials to construct engineered thyroid tissue. This study focuses on the development and characterization of a novel 3D injectable hydrogel derived from thyroid extracellular matrix (TEM) for thyroid tissue engineering. TEM hydrogels were prepared through decellularization of rat thyroid tissue, followed by extensive physicochemical and mechanical property evaluations. The TEM hydrogels exhibited properties similar to natural thyroid tissue, including high biocompatibility and a complex 3D ultrastructure. Thyroid hormone-secreting cells cultured in TEM hydrogels demonstrated superior viability, hormone secretion, and thyroid-related gene expression compared to those in traditional type I collagen hydrogels. The study also confirmed the significant retention of key growth factors and ECM proteins within the TEM hydrogels. The results indicate that TEM hydrogels can provide a biomimetic microenvironment, promoting the long-term survival and function of thyroid cells, thus holding great promise for the treatment of hypothyroidism. This research contributes a potential new avenue for thyroid tissue engineering, offering a promising alternative for hypothyroidism treatment.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Houlong Long
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Peng Zhang
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Bin Liu
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Shuheng Li
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Rong Sun
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Tongmei Diao
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| | - Feng Li
- Department of Thyroid and Breast Surgery, Tengzhou Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
- Department of Thyroid and Breast Surgery, Tengzhou City Center People’s Hospital, Zaozhuang, Shandong, China
| |
Collapse
|
14
|
Xie Q, Wang T, He L, Liang H, Sun J, Huang X, Xie W, Niu Y. Biological and structural properties of curcumin-loaded graphene oxide incorporated collagen as composite scaffold for bone regeneration. Front Bioeng Biotechnol 2024; 12:1505102. [PMID: 39634102 PMCID: PMC11614606 DOI: 10.3389/fbioe.2024.1505102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction To address the challenges related to bone defects, including osteoinductivity deficiency and post-implantation infection risk, this study developed the collagen composite scaffolds (CUR-GO-COL) with multifunctionality by integrating the curcumin-loaded graphene oxide with collagen through a freeze-drying-cross-linking process. Methods The morphological and structural characteristics of the composite scaffolds were analyzed, along with their physicochemical properties, including water absorption capacity, water retention rate, porosity, in vitro degradation, and curcumin release. To evaluate the biocompatibility, cell viability, proliferation, and adhesion capabilities of the composite scaffolds, as well as their osteogenic and antimicrobial properties, in vitro cell and bacterial assays were conducted. These assays were designed to assess the impact of the composite scaffolds on cell behavior and bacterial growth, thereby providing insights into their potential for promoting osteogenesis and inhibiting infection. Results The CUR-GO-COL composite scaffold with a CUR-GO concentration of 0.05% (w/v) exhibits optimal biological compatibility and stable and slow curcumin release rate. Furthermore, in vitro cell and bacterial tests demonstrated that the prepared CUR-GO-COL composite scaffolds enhance cell viability, proliferation and adhesion, and offer superior osteogenic and antimicrobial properties compared with the CUR-GO composite scaffold, confirming the osteogenesis promotion and antimicrobial effects. Discussion The introduction of CUR-GO into collagen scaffold creates a bone-friendly microenvironment, and offers a theoretical foundation for the design, investigation and utilization of multifunctional bone tissue biomaterials.
Collapse
Affiliation(s)
- Qi Xie
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Tianqi Wang
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Lina He
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Hongbo Liang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Jingxuan Sun
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Xiaoxiao Huang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, China
| | - Weili Xie
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| | - Yumei Niu
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Valdez-Montoya M, Avendaño-Félix MM, Basurto-Flores JC, Ramírez-Álvarez M, Cázarez-Camacho MDR, Casillas-Santana MÁ, Zavala-Alonso NV, Sarmiento-Hernández SN, Silva-Benítez EDL, Soto-Sainz JE. Role of Metalloproteinases in Adhesion to Radicular Dentin: A Literature Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5674. [PMID: 39597497 PMCID: PMC11596517 DOI: 10.3390/ma17225674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Root dentin is a porous and complex dental surface that may have irregularities and deposits of organic material. To achieve an effective bond between restorative materials and root dentin, it is necessary that the restorative materials adhere intimately to the dentin surface. Metalloproteinases (MMPs) are a group of proteolytic enzymes that perform an important role in degrading the extracellular matrix and remodeling connective tissue. The aim of this research was to determine the scientific evidence available on the role played by MMPs in adhesion to root dentin and their putative inhibitors. MATERIALS AND METHODS Several techniques have been used to evaluate the presence of MMPs in the root dentin of human and bovine teeth, such as Western blot, immunohistochemistry, immunofluorescence, and zymography, the latter also being used together with the EnzCheck assay to evaluate the inhibitory effect of adhesion protocols on the activity of root MMPs in vitro. RESULTS When analyzing the databases, 236 articles were found, 12 of which met the selection criteria. The variables analyzed were articles that evaluated different MMP inhibitors in root dentin. CONCLUSIONS In the adhesion to radicular dentin, MMPs have a crucial role in the degradation of the extracellular matrix of dentin and the remodeling of the dentin surface because excessive MMP activity can be harmful to dental health, since excessive degradation of the extracellular matrix of dentin can weaken the tooth structure and decrease fracture resistance. Therefore, it is important to monitor MMP activity during root dentin bonding procedures.
Collapse
Affiliation(s)
- Marihana Valdez-Montoya
- Maestría en Ciencias Odontológicas, Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico; (M.V.-M.); (N.V.Z.-A.)
| | - Mariana Melisa Avendaño-Félix
- Maestría en Rehabilitación Oral Avanzada, Facultad de Odontología, Universidad Autónoma de Sinaloa, Sinaloa 80040, Mexico; (M.M.A.-F.); (J.C.B.-F.); (E.d.L.S.-B.)
| | - Julio César Basurto-Flores
- Maestría en Rehabilitación Oral Avanzada, Facultad de Odontología, Universidad Autónoma de Sinaloa, Sinaloa 80040, Mexico; (M.M.A.-F.); (J.C.B.-F.); (E.d.L.S.-B.)
| | - Maricela Ramírez-Álvarez
- Facultad de Odontología, Universidad Autónoma de Sinaloa, Sinaloa 80040, Mexico; (M.R.-Á.); (M.d.R.C.-C.)
| | | | | | - Norma Verónica Zavala-Alonso
- Maestría en Ciencias Odontológicas, Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico; (M.V.-M.); (N.V.Z.-A.)
| | - Seyla Nayjaá Sarmiento-Hernández
- Maestría en Odontología Integral del Niño y el Adolescente, Facultad de Odontología, Universidad Autónoma de Sinaloa, Sinaloa 80040, Mexico;
| | - Erika de Lourdes Silva-Benítez
- Maestría en Rehabilitación Oral Avanzada, Facultad de Odontología, Universidad Autónoma de Sinaloa, Sinaloa 80040, Mexico; (M.M.A.-F.); (J.C.B.-F.); (E.d.L.S.-B.)
| | - Jesús Eduardo Soto-Sainz
- Maestría en Rehabilitación Oral Avanzada, Facultad de Odontología, Universidad Autónoma de Sinaloa, Sinaloa 80040, Mexico; (M.M.A.-F.); (J.C.B.-F.); (E.d.L.S.-B.)
| |
Collapse
|
16
|
Shubina VS, Kobyakova MI, Penkov NV, Mitenko GV, Udaltsov SN, Shatalin YV. Two Novel Membranes Based on Collagen and Polyphenols for Enhanced Wound Healing. Int J Mol Sci 2024; 25:12353. [PMID: 39596422 PMCID: PMC11594507 DOI: 10.3390/ijms252212353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Two novel membranes based on collagen and two polyphenols, taxifolin pentaglutarate (TfG5) and a conjugate of taxifolin with glyoxylic acid (DfTf), were prepared. Fourier transform infrared spectroscopy examination confirmed the preservation of the triple helical structure of collagen. A scanning electron microscopy study showed that both materials had a porous structure. The incorporation of DfTf into the freeze-dried collagen matrix increased the aggregation of collagen fibers to a higher extent than the incorporation of TfG5, resulting in a more compact structure of the material containing DfTf. It was found that NIH/3T3 mouse fibroblasts were attached to, and relatively evenly spread out on, the surface of both newly obtained membranes. In addition, it was shown that the membranes enhanced skin wound healing in rats with a chemical burn induced by acetic acid. The treatment with the materials led to a faster reepithelization and granulation tissue formation compared with the use of other agents (collagen without polyphenols and buffer saline). It was also found that, in the wound tissue, the level of thiobarbituric acid reactive substances (TBARS) was significantly higher and the level of low-molecular-weight SH-containing compounds (RSH) was significantly lower than those in healthy skin, indicating a rise in oxidative stress at the site of injury. The treatment with collagen membranes containing polyphenols significantly decreased the TBARS level and increased the RSH level, suggesting the antioxidant/anti-inflammatory effect of the materials. The membrane containing TfG5 was more effective than other ones (the collagen membrane containing DfTf and collagen without polyphenols). On the whole, the data obtained indicate that collagen materials containing DfTf and TfG5 have potential as powerful therapeutic agents for the treatment of burn wounds.
Collapse
Affiliation(s)
- Victoria S. Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| | - Margarita I. Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| | - Nikita V. Penkov
- Institute of Cell Biophysics, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya 3, 142290 Pushchino, Russia;
| | - Gennady V. Mitenko
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya 2, 142290 Pushchino, Russia; (G.V.M.); (S.N.U.)
| | - Sergey N. Udaltsov
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya 2, 142290 Pushchino, Russia; (G.V.M.); (S.N.U.)
| | - Yuri V. Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| |
Collapse
|
17
|
Feng X, Zhang J, Yang R, Lei H, Chen W, Bai J, Feng K, Gao F, Yang W, Jiang X, Zhang B. The novel peptide PEP-Z-2 potentially treats renal fibrosis in vivo and in vitro by regulating TGF-β/Smad/AKT/MAPK signaling. Eur J Pharmacol 2024; 982:176942. [PMID: 39182546 DOI: 10.1016/j.ejphar.2024.176942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Renal fibrosis is a process in which excessive deposition of extracellular matrix leads to an increase in tissue hardness and gradual destruction of the renal parenchyma. Chronic kidney disease (CKD) commonly progresses to end-stage renal disease (ESRD), ultimately leading to renal failure. This disease has high incidence and mortality rates, but to date, effective treatment options are lacking. PEP-Z-2 is a collagen peptide isolated from redlip croaker scales and may have potential fibroprotective activity. In this study, PEP-Z-2 was found to alleviate unilateral ureteral obstruction (UUO)- and folic acid (FA)-induced kidney injury in a mouse model, reduce collagen deposition in tissues, normalize renal function, reduce the expression of fibrosis markers, reduce reactive oxygen species (ROS) production, and restore the balance of the oxidant/antioxidant system. In vitro experiments also demonstrated that PEP-Z-2 inhibits the TGF-β-induced differentiation of fibroblasts and renal tubular epithelial cells into myofibroblasts and reduces the production of extracellular matrix (ECM) proteins such as fibronectin, Col I, and α-SMA, demonstrating notable therapeutic effects on renal fibrosis. This effect is achieved by regulating the TGF-β/Smad/AKT/MAPK pathway. Our research suggested that PEP-Z-2 is a potential therapeutic drug for renal fibrosis, and peptides from aquatic organisms may constitute a new class of candidate drugs for the treatment of renal fibrosis and even other types of organ fibrosis.
Collapse
Affiliation(s)
- Xiaocui Feng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Jianfeng Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Runling Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Hong Lei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Wanru Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Jingya Bai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China; Northwest Minzu University, Lanzhou, 730030, China.
| | - Kai Feng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Feiyun Gao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Outer Ring Road, Guangzhou, 510006, China.
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Science, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
18
|
Yang S, Leung AYP, Wang Z, Yiu CKY, Dissanayaka WL. Proanthocyanidin surface preconditioning of dental pulp stem cell spheroids enhances dimensional stability and biomineralization in vitro. Int Endod J 2024; 57:1639-1654. [PMID: 39046812 DOI: 10.1111/iej.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/15/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
AIM Lack of adequate mechanical strength and progressive shrinkage over time remain challenges in scaffold-free microtissue-based dental pulp regeneration. Surface collagen cross-linking holds the promise to enhance the mechanical stability of microtissue constructs and trigger biological regulations. In this study, we proposed a novel strategy for surface preconditioning microtissues using a natural collagen cross-linker, proanthocyanidin (PA). We evaluated its effects on cell viability, tissue integrity, and biomineralization of dental pulp stem cell (DPSCs)-derived 3D cell spheroids. METHODOLOGY Microtissue and macrotissue spheroids were fabricated from DPSCs and incubated with PA solution for surface collagen cross-linking. Microtissue viability was examined by live/dead staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, with transverse dimension change monitored. Microtissue surface stiffness was measured by an atomic force microscope (AFM). PA-preconditioned microtissues and macrotissues were cultured under basal or osteogenic conditions. Immunofluorescence staining of PA-preconditioned microtissues was performed to detect dentin sialophosphoprotein (DSPP) and F-actin expressions. PA-preconditioned macrotissues were subjected to histological analysis, including haematoxylin-eosin (HE), alizarin red, and Masson trichrome staining. Immunohistochemistry staining was used to detect alkaline phosphatase (ALP) and dentin matrix acidic phosphoprotein 1 (DMP-1) expressions. RESULTS PA preconditioning had no adverse effects on microtissue spheroid viability and increased surface stiffness. It reduced dimensional shrinkage for over 7 days in microtissues and induced a larger transverse-section area in the macrotissue. PA preconditioning enhanced collagen formation, mineralized nodule formation, and elevated ALP and DMP-1 expressions in macrotissues. Additionally, PA preconditioning induced higher F-actin and DSPP expression in microtissues, while inhibition of F-actin activity by cytochalasin B attenuated PA-induced dimensional change and DSPP upregulation. CONCLUSION PA surface preconditioning of DPSCs spheroids demonstrates excellent biocompatibility while effectively enhancing tissue structure stability and promoting biomineralization. This strategy strengthens tissue integrity in DPSC-derived spheroids and amplifies osteogenic differentiation potential, advancing scaffold-free tissue engineering applications in regenerative dentistry.
Collapse
Affiliation(s)
- Shengyan Yang
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Andy Yu Pan Leung
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Zheng Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Cynthia Kar Yung Yiu
- Paediatric Dentistry & Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Swapnil SI, Shoudho MTH, Rahman A, Ahmed T, Arafat MT. DOTAGEL: a hydrogen and amide bonded, gelatin based, tunable, antibacterial, and high strength adhesive synthesized in an unoxidized environment. J Mater Chem B 2024; 12:11025-11041. [PMID: 39355893 DOI: 10.1039/d4tb00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
The development of bioadhesives that concurrently exhibit high adhesion strength, biocompatibility, and tunable properties and involve simple fabrication processes continues to be a significant challenge. In this study, a novel bioadhesive named DOTAGEL is synthesized by crosslinking gelatin (GA), dopamine (DA), and tannic acid (TA) in an unoxidized environment due to the advantage of controlling the degree of protonation in GA and TA, as well as controlling the degree of intermolecular amide and hydrogen bonding in the acidic medium. DOTAGEL (DA + TA + GA) shows superior adhesion strengths of 104.6 ± 46 kPa on dry skin and 35.6 ± 4.5 kPa on wet skin, up to 13 attachment-detachment cycles, retains adhesion strength under water for up to 10 days and is capable of joining two cut parts of internal organs of mice. Moreover, DOTAGEL shows strong antibacterial properties, self-healing, and biocompatibility since it contains TA, a natural and antibacterial cross-linker with abundant hydroxyl groups and the capability of forming non-covalent bonds in an unoxidized environment, and dopamine hydrochloride, a mussel inspired biomaterial containing both the amine and catechol groups for amide bonding and hydrogen bonding with TA and GA. The cross-linking among 20% (w/v) GA, 0.2% (w/v) DA, and 20% (w/v) TA is done by the centrifugation process at room temperature. Two different acids, hydrochloric acid and acetic acid, were used for tuning the pH of the medium, which led to two different samples named DOTAGEL/AA and DOTAGEL/HCL. The degree of cross-linking and mechanical and biochemical properties, like adhesion strength, degradation rate, antibacterial properties, stickiness, etc., are tuned by adjusting the pH of the medium. DOTAGEL/HCL showed 6.5 times faster degradation in 10 days, a faster release rate in the antibacterial study, 2 times adhesion strength in a dry medium, and more stickiness. The novelty lies not only in increased adhesion strength but also in the single-step fabrication process of the adhesive in the acidic medium. This research proposes the formation of a tunable antibacterial adhesive that is capable of working on wet surfaces within the body and that has the potential to become a successful tissue adhesive with a wide range of possibilities in controlled drug delivery at wound sites and other biomedical applications.
Collapse
Affiliation(s)
- Soham Irtiza Swapnil
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| | - Md Tashdid Hossain Shoudho
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| | - Abdur Rahman
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| | - Tahmed Ahmed
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh.
| |
Collapse
|
20
|
Zhao Z, Yuwen W, Duan Z, Zhu C, Fan D. Novel Collagen Analogs with Multicopy Mucin-Type Sequences for Multifunctional Enhancement Properties Using SUMO Fusion Tags. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22173-22185. [PMID: 39318025 DOI: 10.1021/acs.jafc.4c07179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Multifunctional enhanced collagen materials in green biomanufacturing are highly desired yet challenging due to the poor comprehensive performance caused by the adoption of targeting monofunctional peptides. Herein, novel collagen analog design strategy using multicopy tandem of mucin-type sequence (GAPGAPGSQGAPGLQ) derived from human COL1α1 to construct basic building blocks is reported, in which SUMO tag is added to the N-terminal of the protein as a stabilizing core. In particular, novel collagen analogs (named S1506, S1511, S1523, and S1552) with multicopy mucin-type sequences (repeated 6, 11, 23, and 52 times), which were constructed in Escherichia coli, have distinct orientation preferences of functional enhancement (including cell proliferation, differentiation, migration, antioxidant activity, and anti-inflammatory property) compared to COL1α1 in HaCaT and THP-1 cell experiments due to variant three-dimensional structures (the different-length mucin-type polypeptide chains wind around central SUMO tag). Our findings suggest that the innovative protein design and synthesis approaches employed in the construction of these novel S15 proteins have the potential to advance the development of new types of recombinant collagen analogs.
Collapse
Affiliation(s)
- Zilong Zhao
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Weigang Yuwen
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China
| |
Collapse
|
21
|
Yue C, Ding C, Xu M, Hu M, Zhang R. Self-Assembly Behavior of Collagen and Its Composite Materials: Preparation, Characterizations, and Biomedical Engineering and Allied Applications. Gels 2024; 10:642. [PMID: 39451295 PMCID: PMC11507467 DOI: 10.3390/gels10100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Collagen is the oldest and most abundant extracellular matrix protein and has many applications in biomedical, food, cosmetic, and other industries. Previous reviews have already introduced collagen's sources, structures, and biosynthesis. The biological and mechanical properties of collagen-based composite materials, their modification and application forms, and their interactions with host tissues are pinpointed. It is worth noting that self-assembly behavior is the main characteristic of collagen molecules. However, there is currently relatively little review on collagen-based composite materials based on self-assembly. Herein, we briefly reviewed the biosynthesis, extraction, structure, and properties of collagen, systematically presented an overview of the various factors and corresponding characterization techniques that affect the collagen self-assembly process, and summarize and discuss the preparation methods and application progress of collagen-based composite materials in different fields. By combining the self-assembly behavior of collagen with preparation methods of collagen-based composite materials, collagen-based composite materials with various functional reactions can be selectively prepared, and these experiences and outcomes can provide inspiration and practical techniques for the future development directions and challenges of collagen-based composite biomaterials in related applications fields.
Collapse
Affiliation(s)
- Chengfei Yue
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Changkun Ding
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Minjie Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
| | - Min Hu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
| | - Ruquan Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
| |
Collapse
|
22
|
Qin X, Song C, Yao L, Cai X, Xiao J. A Highly Specific and Versatile Biochip for Ultra-Sensitive Quantification of Denatured Collagen in Assessing Collagen Quality. Anal Chem 2024; 96:15640-15647. [PMID: 39231145 DOI: 10.1021/acs.analchem.4c02883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Collagen, a widely used biomaterial, is susceptible to denaturation during production from native tissues, posing serious challenges for its applications in tissue engineering. Accurate quantification of denatured collagen (DC) is essential for evaluating the quality of collagen-based biomaterials, yet quantitative methods for assessing collagen denaturation are lacking. Here, we for the first time present a highly specific biochip for sensitive quantification of denatured collagen levels (Ldc), addressing this critical need in collagen quality analysis. The denatured collagen-specific chip (DCSC) features an intrinsically nontrimerizing peptide probe, F-GOP-14, targeting denatured collagen and a fully denatured collagen-coated capture surface. The DCSC demonstrates exceptional sensitivity and accuracy in quantifying DC concentration (Cdc) and total collagen concentration (Ctc), enabling precise calculation of Ldc. Importantly, DCSC is versatile, detecting Ldc across various denaturing scenarios, including UV radiation, thermal environments, and decellularization. This denatured collagen-specific biochip offers a robust method for accurately analyzing Ldc, with significant potential for enhancing collagen quality assessment in biomaterial development and production.
Collapse
Affiliation(s)
- Xiaoyu Qin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chen Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiangdong Cai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
23
|
Setoyama S, Haraguchi R, Aoki S, Oishi Y, Narita T. pH-Responsive Collagen Hydrogels Prepared by UV Irradiation in the Presence of Riboflavin. Int J Mol Sci 2024; 25:10439. [PMID: 39408768 PMCID: PMC11476811 DOI: 10.3390/ijms251910439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
This study reveals the pH-responsive behavior of collagen hydrogels prepared using ultraviolet (UV) irradiation with riboflavin as a photosensitizer. By varying the UV exposure time, we modulated the crosslinking density, thereby influencing the mechanical properties and pH responsiveness. Rheological analysis confirmed successful network formation, whereas swelling studies revealed significant pH-dependent behavior, with maximum swelling at a pH of four and minimal swelling above a pH of six, demonstrating partial reversibility over multiple pH cycles. Mechanical testing showed a pH-dependent elastic modulus, which increased 10 fold from a pH of 6 to 10. Fibroblast proliferation assays confirmed the biocompatibility of the hydrogels, with cell growth positively correlating with the UV exposure time. This research demonstrates the potential of UV-crosslinked collagen hydrogels in biomedical applications, such as tissue engineering and drug delivery, where pH responsiveness is essential.
Collapse
Affiliation(s)
- Shoki Setoyama
- Department of Chemistry and Applied Chemistry, Saga University, Saga 840-8502, Japan
| | - Ryota Haraguchi
- Department of Chemistry and Applied Chemistry, Saga University, Saga 840-8502, Japan
| | - Shigehisa Aoki
- Department of Pathology and Microbiology, Saga University, Saga 849-8501, Japan
| | - Yushi Oishi
- Department of Chemistry and Applied Chemistry, Saga University, Saga 840-8502, Japan
| | - Takayuki Narita
- Department of Chemistry and Applied Chemistry, Saga University, Saga 840-8502, Japan
| |
Collapse
|
24
|
Hu S, Chen J, Jin J, Liu Y, Xu GT, Ou Q. Construction of living-cell tissue engineered amniotic membrane for ocular surface disease. BMC Ophthalmol 2024; 24:409. [PMID: 39300402 PMCID: PMC11412061 DOI: 10.1186/s12886-024-03680-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Human amniotic membrane (AM) transplantation has been applied to treat ocular surface diseases, including corneal trauma. The focus of much deliberation is to balance the mechanical strength of the amniotic membrane, its resistance to biodegradation, and its therapeutic efficacy. It is commonly observed that the crosslinked human decellularized amniotic membranes lose the functional human amniotic epithelial cells (hAECs), which play a key role in curing the injured tissues. METHODS AND RESULTS In this study, we crosslinked human decellularized amniotic membranes (dAM) with genipin and re-planted the hAECs onto the genipin crosslinked AM. The properties of the AM were evaluated based on optical clarity, biodegradation, cytotoxicity, and ultrastructure. The crosslinked AM maintained its transparency. The color of crosslinked AM deepened with increasing concentrations of genipin. And the extracts from low concentrations of genipin crosslinked AM had no toxic effect on human corneal epithelial cells (HCECs), while high concentrations of genipin exhibited cytotoxicity. The microscopic observation and H&E staining revealed that 2 mg/mL genipin-crosslinked dAM (2 mg/mL cl-dAM) was more favorable for the attachment, migration, and proliferation of hAECs. Moreover, the results of the CCK-8 assay and the transwell assay further indicated that the living hAECs' tissue-engineered amniotic membranes could facilitate the proliferation and migration of human corneal stromal cells (HCSCs) in vitro. CONCLUSIONS In conclusion, the cl-dAM with living hAECs demonstrates superior biostability and holds significant promise as a material for ocular surface tissue repair in clinical applications.
Collapse
Affiliation(s)
- Shuqin Hu
- Department of Ophthalmology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Ophthalmology and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Chen
- Department of Ophthalmology and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiahui Jin
- Department of Ophthalmology and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yifan Liu
- Department of Ophthalmology and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Qingjian Ou
- Department of Ophthalmology and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
25
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
26
|
Zheng H, Bian M, Zhou Z, Shi Y, Shen M, Wang M, Jiang W, Shao C, Tang R, Pan H, He J, Fu B, Wu Z. Small Charged Molecule-Mediated Fibrillar Mineralization: Implications for Ectopic Calcification. ACS NANO 2024; 18:23537-23552. [PMID: 39133543 DOI: 10.1021/acsnano.4c07378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Numerous small biomolecules exist in the human body and play roles in various biological and pathological processes. Small molecules are believed not to induce intrafibrillar mineralization alone. They are required to work in synergy with noncollagenous proteins (NCPs) and their analogs, e.g. polyelectrolytes, for inducing intrafibrillar mineralization, as the polymer-induced liquid-like precursor (PILP) process has been well-documented. In this study, we demonstrate that small charged molecules alone, such as sodium tripolyphosphate, sodium citrate, and (3-aminopropyl) triethoxysilane, could directly mediate fibrillar mineralization. We propose that small charged molecules might be immobilized in collagen fibrils to form the polyelectrolyte-like collagen complex (PLCC) via hydrogen bonds. The PLCC could attract CaP precursors along with calcium and phosphate ions for inducing mineralization without any polyelectrolyte additives. The small charged molecule-mediated mineralization process was evidenced by Cryo-TEM, AFM, SEM, FTIR, ICP-OES, etc., as the PLCC exhibited both characteristic features of collagen fibrils and polyelectrolyte with increased charges, hydrophilicity, and density. This might hint at one mechanism of pathological biomineralization, especially for understanding the ectopic calcification process.
Collapse
Affiliation(s)
- Haiyan Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Mengyao Bian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Zihuai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Minjian Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Manting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Wenxiang Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haihua Pan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jianxiang He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Zhifang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
27
|
Yang J, Xiao S, Deng J, Li Y, Hu H, Wang J, Lu C, Li G, Zheng L, Wei Q, Zhong J. Oxygen vacancy-engineered cerium oxide mediated by copper-platinum exhibit enhanced SOD/CAT-mimicking activities to regulate the microenvironment for osteoarthritis therapy. J Nanobiotechnology 2024; 22:491. [PMID: 39155382 PMCID: PMC11330606 DOI: 10.1186/s12951-024-02678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/30/2024] [Indexed: 08/20/2024] Open
Abstract
Cerium oxide (CeO2) nanospheres have limited enzymatic activity that hinders further application in catalytic therapy, but they have an "oxidation switch" to enhance their catalytic activity by increasing oxygen vacancies. In this study, according to the defect-engineering strategy, we developed PtCuOX/CeO2-X nanozymes as highly efficient SOD/CAT mimics by introducing bimetallic copper (Cu) and platinum (Pt) into CeO2 nanospheres to enhance the oxygen vacancies, in an attempt to combine near-infrared (NIR) irradiation to regulate microenvironment for osteoarthritis (OA) therapy. As expected, the Cu and Pt increased the Ce3+/Ce4+ ratio of CeO2 to significantly enhance the oxygen vacancies, and simultaneously CeO2 (111) facilitated the uniform dispersion of Cu and Pt. The strong metal-carrier interaction synergy endowed the PtCuOX/CeO2-X nanozymes with highly efficient SOD/CAT-like activity by the decreased formation energy of oxygen vacancy, promoted electron transfer, the increased adsorption energy of intermediates, and the decreased reaction activation energy. Besides, the nanozymes have excellent photothermal conversion efficiency (55.41%). Further, the PtCuOX/CeO2-X antioxidant system effectively scavenged intracellular ROS and RNS, protected mitochondrial function, and inhibited the inflammatory factors, thus reducing chondrocyte apoptosis. In vivo, experiments demonstrated the biosafety of PtCuOX/CeO2-X and its potent effect on OA suppression. In particular, NIR radiation further enhanced the effects. Mechanistically, PtCuOX/CeO2-X nanozymes reduced ras-related C3 botulinum toxin substrate 1 (Rac-1) and p-p65 protein expression, as well as ROS levels to remodel the inflammatory microenvironment by inhibiting the ROS/Rac-1/nuclear factor kappa-B (NF-κB) signaling pathway. This study introduces new clinical concepts and perspectives that can be applied to inflammatory diseases.
Collapse
Affiliation(s)
- Junxu Yang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Shihui Xiao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jiejia Deng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Life Sciences Institute, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Yuquan Li
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, No. 166 East University Road, Nanning, Guangxi, 530005, People's Republic of China
| | - Hao Hu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jiawei Wang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chun Lu
- School of Materials and Environment, Guangxi Minzu University, Nanning, Guangxi, 53000, People's Republic of China
| | - Guanhua Li
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Qingjun Wei
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, No. 166 East University Road, Nanning, Guangxi, 530005, People's Republic of China.
| | - Jingping Zhong
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
28
|
Rasouli R, Yaghoobi H, Frampton J. A Comparative Study of the Effects of Different Crosslinking Methods on the Physicochemical Properties of Collagen Multifilament Bundles. Chemphyschem 2024; 25:e202400259. [PMID: 38662530 DOI: 10.1002/cphc.202400259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Indexed: 06/11/2024]
Abstract
Crosslinking is usually required to improve the mechanical properties and stability of collagen-based scaffolds. Introducing exogenous crosslinks into collagen may however affect the collagen structure. Since the architecture of collagen is tied to its functionality, it is important to study the effect of crosslinking and to select a crosslinking method that preserves both the collagen structure and mechanical properties. The objective of this study is to compare the effect of various crosslinking methods on the structure and mechanical properties of bioartificial tendon-like materials (collagen multifilament bundles) fabricated by contact drawing. We examine both physical (ultraviolet light, UVC) and chemical (genipin, carbodiimide (EDC), and glutaraldehyde) crosslinking methods. The presence of collagen and the formation of well-ordered collagen structures are confirmed by attenuated total reflectance Fourier-transform infrared spectromicroscopy and wide-angle X-ray scattering for all crosslinking methods. The morphology of the collagen multifilament bundles is similar across crosslinking methods. Swelling of the multifilament bundles is dramatically reduced following crosslinking and varies by crosslinking method, with genipin- and carbodiimide-crosslinked specimens swelling the least. Ultimate tensile strength (UTS) and Young's modulus significantly improve for all crosslinked specimens compared to non-crosslinked specimens. Glutaraldehyde crosslinked collagen multifilament bundles display the highest UTS values ranging from 33.82±0.0 MPa to 45.59±0.76 MPa.
Collapse
Affiliation(s)
- Rahimeh Rasouli
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Hessameddin Yaghoobi
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - John Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
29
|
Xia Y, Yan S, Wei H, Zhang H, Hou K, Chen G, Cao R, Zhu M. Multifunctional Porous Bilayer Artificial Skin for Enhanced Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34578-34590. [PMID: 38946497 DOI: 10.1021/acsami.4c05074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Meeting the exacting demands of wound healing encompasses rapid coagulation, superior exudate absorption, high antibacterial efficacy, and imperative support for cell growth. In this study, by emulating the intricate structure of natural skin, we prepare a multifunctional porous bilayer artificial skin to address these critical requirements. The bottom layer, mimicking the dermis, is crafted through freeze-drying a gel network comprising carboxymethyl chitosan (CMCs) and gelatin (GL), while the top layer, emulating the epidermis, is prepared via electrospinning poly(l-lactic acid) (PLLA) nanofibers. With protocatechuic aldehyde and gallium ion complexation (PA@Ga) as cross-linking agents, the bottom PA@Ga-CMCs/GL layer featured an adjustable pore size (78-138 μm), high hemostatic performance (67s), and excellent bacterial inhibition rate (99.9%), complemented by an impressive liquid-absorbing capacity (2000% swelling rate). The top PLLA layer, with dense micronanostructure and hydrophobic properties, worked as a shield to effectively thwarted liquid or bacterial penetration. Furthermore, accelerated wound closure, reduced inflammatory responses, and enhanced formation of hair follicles and blood vessels are achieved by the porous artificial skin covered on the surface of wound. Bilayer artificial skin integrates the advantages of nanofibers and freeze-drying porous materials to effectively replicate the protective properties of the epidermal layer of the skin, as well as the cell migration and tissue regeneration of the dermis. This bioabsorbable artificial skin demonstrates structural and functional comparability to real skin, which would advance the field of wound care through its multifaceted capabilities.
Collapse
Affiliation(s)
- Yuhan Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Sai Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huidan Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Han Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kai Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Guoyin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ran Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
30
|
Sun L, Shen Y, Li M, Wang Q, Li R, Gong S. Comprehensive Assessment of Collagen/Sodium Alginate-Based Sponges as Hemostatic Dressings. Molecules 2024; 29:2999. [PMID: 38998951 PMCID: PMC11243721 DOI: 10.3390/molecules29132999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
In our search for a biocompatible composite hemostatic dressing, we focused on the design of a novel biomaterial composed of two natural biological components, collagen and sodium alginate (SA), cross-linked using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) and oxidized sodium alginate (OSA). We conducted a series of tests to evaluate the physicochemical properties, acute systemic toxicity, skin irritation, intradermal reaction, sensitization, cytotoxicity, and in vivo femoral artery hemorrhage model. The results demonstrated the excellent biocompatibility of the collagen/sodium alginate (C/SA)-based dressings before and after crosslinking. Specifically, the femoral artery hemorrhage model revealed a significantly shortened hemostasis time of 132.5 ± 12.82 s for the EDC/NHS cross-linked dressings compared to the gauze in the blank group (hemostasis time of 251.43 ± 10.69 s). These findings indicated that C/SA-based dressings exhibited both good biocompatibility and a significant hemostatic effect, making them suitable for biomedical applications.
Collapse
Affiliation(s)
- Leilei Sun
- College of Life Science, Yantai University, Yantai 264005, China; (Y.S.); (M.L.); (Q.W.); (R.L.); (S.G.)
| | | | | | | | | | | |
Collapse
|
31
|
Della Sala F, Longobardo G, Borzacchiello A. Collagen-Mesenchymal Stem Cell Microspheres Embedded in Hyaluronic Acid Solutions as Biphasic Stem Niche Delivery Systems for Pulmonary Differentiation. ACS APPLIED BIO MATERIALS 2024; 7:3675-3686. [PMID: 38743786 DOI: 10.1021/acsabm.3c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cell therapy has the potential to become a feasible solution for several diseases, such as those related to the lungs and airways, considering the more beneficial intratracheal administration route. However, in lung diseases, an impaired pulmonary extracellular matrix (ECM) precludes injury resolution with a faulty engraftment of mesenchymal stem cells (MSCs) at the lung level. Furthermore, a shielding strategy to avoid cell damage as well as cell loss due to backflow through the injection path is required. Here, an approach to deliver cells encapsulated in a biomimetic stem niche is used, in which the interplay between cells and physiological lung ECM constituents, such as collagen and hyaluronic acid (HA), can occur. To this aim, a biphasic delivery system based on MSCs encapsulated in collagen microspheres (mCOLLs) without chemical modification and embedded in an injectable HA solution has been developed. Such biphasic delivery systems can both increase the mucoadhesive properties at the site of interest and improve cell viability and pulmonary differentiation. Rheological results showed a similar viscosity at high shear rates compared to the MSC suspension used in intratracheal administration. The size of the mCOLLs can be controlled, resulting in a lower value of 200 μm, suitable for delivery in alveolar sacs. Biological results showed that mCOLLs maintained good cell viability, and when they were suspended in lung medium implemented with low molecular weight HA, the differentiation ability of the MSCs was further enhanced compared to their differentiation ability in only lung medium. Overall, the results showed that this strategy has the potential to improve the delivery and viability of MSCs, along with their differentiation ability, in the pulmonary lineage.
Collapse
Affiliation(s)
- Francesca Della Sala
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy
| | - Gennaro Longobardo
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
32
|
López-Valverde N, Macedo de Sousa B, Blanco Rueda JA. Changes of the Alveolar Bone Ridge Using Bone Mineral Grafts and Collagen Membranes after Tooth Extraction: A Systematic Review and Meta-Analysis. Bioengineering (Basel) 2024; 11:565. [PMID: 38927801 PMCID: PMC11200736 DOI: 10.3390/bioengineering11060565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Alveolar preservation techniques for esthetic or functional purposes, or both, are a frequently used alternative for the treatment of post-extraction sockets, the aim of which is the regeneration of the lesion and the preservation of the alveolar bone crest. METHODS Studies published in PubMed (Medline), Web of Science, Embase, and Cochrane Library databases up to January 2024 were consulted. Inclusion criteria were established as intervention studies, according to the PICOs strategy: adult subjects undergoing dental extractions (participants), with alveoli treated with bone mineral grafts and collagen membranes (intervention), compared to spontaneous healing (comparison), and observing the response to treatment in clinical and radiological measures of the alveolar bone crest (outcomes). RESULTS We obtained 561 results and selected 12 studies. Risk of bias was assessed using the Cochrane Risk of Bias Tool, and methodological quality was assessed using the Joanna Briggs Institute. Due to the high heterogeneity of the studies (I2 > 75%), a random-effects meta-analysis was used. Despite the trend, no statistical significance (p > 0.05) was found in the experimental groups. CONCLUSIONS The use of bone mineral grafts in combination with resorbable collagen barriers provides greater preservation of the alveolar ridge, although more clinical studies are needed.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Surgery, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, 37008 Salamanca, Spain;
| | - Bruno Macedo de Sousa
- Institute for Occlusion and Orofacial Pain, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal;
| | - José Antonio Blanco Rueda
- Department of Surgery, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, 37008 Salamanca, Spain;
| |
Collapse
|
33
|
Rostamani H, Fakhraei O, Zamirinadaf N, Mahjour M. An overview of nasal cartilage bioprinting: from bench to bedside. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1273-1320. [PMID: 38441976 DOI: 10.1080/09205063.2024.2321636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Nasal cartilage diseases and injuries are known as significant challenges in reconstructive medicine, affecting a substantial number of individuals worldwide. In recent years, the advent of three-dimensional (3D) bioprinting has emerged as a promising approach for nasal cartilage reconstruction, offering potential breakthroughs in the field of regenerative medicine. This paper provides an overview of the methods and challenges associated with 3D bioprinting technologies in the procedure of reconstructing nasal cartilage tissue. The process of 3D bioprinting entails generating a digital 3D model using biomedical imaging techniques and computer-aided design to integrate both internal and external scaffold features. Then, bioinks which consist of biomaterials, cell types, and bioactive chemicals, are applied to facilitate the precise layer-by-layer bioprinting of tissue-engineered scaffolds. After undergoing in vitro and in vivo experiments, this process results in the development of the physiologically functional integrity of the tissue. The advantages of 3D bioprinting encompass the ability to customize scaffold design, enabling the precise incorporation of pore shape, size, and porosity, as well as the utilization of patient-specific cells to enhance compatibility. However, various challenges should be considered, including the optimization of biomaterials, ensuring adequate cell viability and differentiation, achieving seamless integration with the host tissue, and navigating regulatory attention. Although numerous studies have demonstrated the potential of 3D bioprinting in the rebuilding of such soft tissues, this paper covers various aspects of the bioprinted tissues to provide insights for the future development of repair techniques appropriate for clinical use.
Collapse
Affiliation(s)
- Hosein Rostamani
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Omid Fakhraei
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Niloufar Zamirinadaf
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mehran Mahjour
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
34
|
Chen H, Huang J, Li X, Zhao W, Hua Y, Song Z, Wang X, Guo Z, Zhou G, Ren W, Sun Y. Trilayered biomimetic hydrogel scaffolds with dual-differential microenvironment for articular osteochondral defect repair. Mater Today Bio 2024; 26:101051. [PMID: 38633867 PMCID: PMC11021956 DOI: 10.1016/j.mtbio.2024.101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Commonly, articular osteochondral tissue exists significant differences in physiological architecture, mechanical function, and biological microenvironment. However, the development of biomimetic scaffolds incorporating upper cartilage, middle tidemark-like, and lower subchondral bone layers for precise articular osteochondral repair remains elusive. This study proposed here a novel strategy to construct the trilayered biomimetic hydrogel scaffolds with dual-differential microenvironment of both mechanical and biological factors. The cartilage-specific microenvironment was achieved through the grafting of kartogenin (KGN) into gelatin via p-hydroxyphenylpropionic acid (HPA)-based enzyme crosslinking reaction as the upper cartilage layer. The bone-specific microenvironment was achieved through the grafting of atorvastatin (AT) into gelatin via dual-crosslinked network of both HP-based enzyme crosslinking and glycidyl methacrylate (GMA)-based photo-crosslinking reactions as the lower subchondral bone layer. The introduction of tidemark-like middle layer is conducive to the formation of well-defined cartilage-bone integrated architecture. The in vitro experiments demonstrated the significant mechanical difference of three layers, successful grafting of drugs, good cytocompatibility and tissue-specific induced function. The results of in vivo experiments also confirmed the mechanical difference of the trilayered bionic scaffold and the ability of inducing osteogenesis and chondrogenesis. Furthermore, the articular osteochondral defects were successfully repaired using the trilayered biomimetic hydrogel scaffolds by the activation of endogenous recovery, which offers a promising alternative for future clinical treatment.
Collapse
Affiliation(s)
- Hongying Chen
- School of Basic Medical Sciences of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Medical and Protective Products, Xinxiang, Henan, 453003, China
- The Key Laboratory of Medical Tissue Regeneration in Henan Province of Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Jinyi Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Weiwei Zhao
- School of Basic Medical Sciences of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Medical and Protective Products, Xinxiang, Henan, 453003, China
| | - Yujie Hua
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
- Institute of Regenerative Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Zhenfeng Song
- School of Basic Medical Sciences of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Medical and Protective Products, Xinxiang, Henan, 453003, China
| | - Xianwei Wang
- The Key Laboratory of Medical Tissue Regeneration in Henan Province of Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Zhikun Guo
- The Key Laboratory of Medical Tissue Regeneration in Henan Province of Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Tissue Engineering Center of China, Shanghai, 200241, China
- Institute of Regenerative Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Wenjie Ren
- School of Basic Medical Sciences of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Medical and Protective Products, Xinxiang, Henan, 453003, China
- The Key Laboratory of Medical Tissue Regeneration in Henan Province of Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Institute of Regenerative Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yongkun Sun
- School of Basic Medical Sciences of Xinxiang Medical University, The Third Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Medical and Protective Products, Xinxiang, Henan, 453003, China
- The Key Laboratory of Medical Tissue Regeneration in Henan Province of Xinxiang Medical University, Xinxiang, Henan, 453003, China
| |
Collapse
|
35
|
Zhang Q, Yan K, Zheng X, Liu Q, Han Y, Liu Z. Research progress of photo-crosslink hydrogels in ophthalmology: A comprehensive review focus on the applications. Mater Today Bio 2024; 26:101082. [PMID: 38774449 PMCID: PMC11107262 DOI: 10.1016/j.mtbio.2024.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Hydrogel presents a three-dimensional polymer network with high water content. Over the past decade, hydrogel has developed from static material to intelligent material with controllable response. Various stimuli are involved in the formation of hydrogel network, among which photo-stimulation has attracted wide attention due to the advantages of controllable conditions, which has a good application prospect in the treatment of ophthalmic diseases. This paper reviews the application of photo-crosslink hydrogels in ophthalmology, focusing on the types of photo-crosslink hydrogels and their applications in ophthalmology, including drug delivery, tissue engineering and 3D printing. In addition, the limitations and future prospects of photo-crosslink hydrogels are also provided.
Collapse
Affiliation(s)
- Qinghe Zhang
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Ke Yan
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Xiaoqin Zheng
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Qiuping Liu
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Yi Han
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
| | - Zuguo Liu
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China
- Xiamen University Affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen Fujian 361005, China
| |
Collapse
|
36
|
Ichise SF, Koide T. A Transparent and Injectable Biomaterial Prepared by Mixing Collagen and Anti-Cancer Platinum Derivatives. Macromol Biosci 2024; 24:e2300553. [PMID: 38459799 DOI: 10.1002/mabi.202300553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/04/2024] [Indexed: 03/10/2024]
Abstract
This study presents the synthesis of a cross-linked collagen material, named platinum-containing collagen gel (PCG), which is achieved by simply mixing collagen and derivatives of an anti-cancer platinum complex. The cross-linking reagents are derivatives of cisplatin or transplatin, generated through a ligand exchange with dimethyl sulfoxide. PCG exhibits superior physical strength and transparency compared with the native collagen gel formed through spontaneous fibril formation. The versatility of PCG as a cell culture scaffold, applicable to both 2D and 3D models, with low cytotoxicity is demonstrated. Furthermore, PCG exhibits pH-responsive gel-forming properties. This enables the removal of free cross-linker by dialysis in an acidic solution and subsequent gel formation upon neutralization. This material holds promise for application in cell culture scaffolds and medical injections.
Collapse
Affiliation(s)
- Shinichiro F Ichise
- Department of Clinical Nutrition, Kitasato Junior College of Health and Hygienic Sciences, Niigata, 949-7241, Japan
- Waseda Research Institute for Science and Engineering, Tokyo, 169-8555, Japan
| | - Takaki Koide
- Waseda Research Institute for Science and Engineering, Tokyo, 169-8555, Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| |
Collapse
|
37
|
Wang Q, Yan H, Yao L, Li W, Xiao J. A highly biocompatible CE-crosslinked collagen implant with exceptional anti-calcification and collagen regeneration capabilities for aging skin rejuvenation. J Mater Chem B 2024; 12:4467-4477. [PMID: 38629894 DOI: 10.1039/d3tb03032f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Skin aging, a complex and inevitable biological process, results in wrinkles, dermal laxity, and skin cancer, profoundly influencing appearance and overall health. Collagen serves as the fundamental element of the dermal matrix; nevertheless, collagen is susceptible to enzymatic degradation within the body. Crosslinking is employed to enhance the physicochemical properties of collagen. However, conventional crosslinking agents may harbor potential issues such as cytotoxicity and calcification risks, constraining their application in the biomedical field. Therefore, we have for the first time developed a highly biocompatible CE-crosslinked collagen implant with exceptional anti-calcification and collagen regeneration capabilities for aging skin rejuvenation. A novel collagen crosslinking agent (CE) was synthesized through a reaction involving chitosan quaternary ammonium salt with 1,4-butanediol diglycidyl ether. Compared to collagen crosslinked with glutaraldehyde (GA), the CE-crosslinked collagen implant exhibited notable stability and durability. The implant demonstrated excellent injectability and viscosity, resisting displacement after implantation. Additionally, the CE-crosslinked collagen implant displayed superior biocompatibility, effectively promoting the proliferation and adhesion of HFF-1 cells compared with the GA-crosslinked collagen. The CE-crosslinked collagen represented a safer and more biologically active implant material. In vivo experiments further substantiated that the implant significantly facilitated collagen regeneration without inducing calcification. The innovative collagen implant has made substantial strides in enhancing aesthetics and reducing wrinkles, presenting the potential for revolutionary progress in the fields of skin rejuvenation and collagen regeneration.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, P. R. China
| | - Huiyu Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, P. R. China
| | - Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, P. R. China
| | - Wenhua Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, P. R. China
| |
Collapse
|
38
|
Li Z, Qian C, Zheng X, Qi X, Bi J, Wang H, Cao J. Collagen/chitosan/genipin hydrogel loaded with phycocyanin nanoparticles and ND-336 for diabetic wound healing. Int J Biol Macromol 2024; 266:131220. [PMID: 38554920 DOI: 10.1016/j.ijbiomac.2024.131220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Diabetic wound healing remains a healthcare challenge due to the overexpression of matrix metalloproteinase-9 (MMP-9) and the imbalance between angiogenic factors and vascular inhibitory factors. In this study, we developed a nanocomposite injectable collagen/chitosan hydrogel for the treatment of delayed diabetic wound healing, which can promote cell migration to the wound site (through the addition of phycocyanin) and reduce the expression of MMP-9 (through the use of ND-336) to improve the therapeutic effect of diabetic wound healing. Furthermore, different weight ratios of collagen and chitosan hydrogels were prepared to select the hydrogel with proper mechanical properties. In vitro experiments confirmed that all hydrogels have favorable biocompatibility and hemocompatibility. Notably, Gel 2, with a weight ratio of collagen and chitosan at 25:75, was found to have an excellent capability to facilitate cell migration and in vivo studies further proved that Gel 2 nanocomposite hydrogel had the best ability to improve diabetic wound healing by promoting cell migration and decreasing MMP-9 expression. The collagen/chitosan/genipin hydrogel loaded phycocyanin and ND-336 can be harnessed for non-toxic and efficient treatment of wound healing management of diabetes.
Collapse
Affiliation(s)
- Zhiye Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212000, China
| | - Chenyao Qian
- School of Pharmacy, Jiangsu University, Zhenjiang 212000, China
| | - Xiaodan Zheng
- School of Pharmacy, Jiangsu University, Zhenjiang 212000, China
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang 212000, China
| | - Jingyue Bi
- School of Pharmacy, Jiangsu University, Zhenjiang 212000, China
| | - Huan Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212000, China
| | - Jin Cao
- School of Pharmacy, Jiangsu University, Zhenjiang 212000, China.
| |
Collapse
|
39
|
Li Y, Qi X, Fan C, Fan Y, Zhang H, Zhang J, Hou H. Novel synergistic cross-linking ameliorate ready-to-eat sea cucumber deterioration and its quantum chemical analysis. Food Chem 2024; 439:138097. [PMID: 38061304 DOI: 10.1016/j.foodchem.2023.138097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/12/2023] [Accepted: 11/25/2023] [Indexed: 01/10/2024]
Abstract
Synergistic cross-linkers could improve the taste acceptability of ready-to-eat sea cucumber (RSC). Besides, the hardness of RSC was increased by 331.00% and 266.87% after synergistic cross-linking. Synergistic cross-linking treatment could ameliorate the non-enzymatic degradation of RSC collagen and polysaccharides. Gaussian calculations results showed that dipeptides containing asparagine residues may have different reaction pathways. The main cleavage pathways of CH3CO-Asn-Gly-NHCH3 (NG) might be water-assisted side chain cyclization, stepwise cyclamide hydrolysis via a Gemdiol Intermediate, deamination, and peptide bond breakage. The relative free energy of cyclamide hydrolysis process of NG was increased by 8.2 kcal/mol after synergistic cross-linking. The mass spectrometry results showed that typical peptides could cleavage at NG, CH3CO-Asn-Lys-NHCH3 (NK) and CH3CO-Asn-Leu-NHCH3 (NL) sites after heating, which justified the breakage pattern of peptides in Gaussian calculations. It can offer a comprehensive theoretical basis for the processing of the ready-to-eat sea cucumber with storage stability.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Xin Qi
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Chaozhong Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Yan Fan
- College of Marine Life Sciences, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Hongwei Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Technology Center of Qingdao Customs District, No. 83, Xinyue Road, Qingdao, Shandong Province 266109, PR China
| | - Jiangjiang Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China.
| |
Collapse
|
40
|
Qiao S, Peijie T, Nan J. Crosslinking strategies of decellularized extracellular matrix in tissue regeneration. J Biomed Mater Res A 2024; 112:640-671. [PMID: 37990863 DOI: 10.1002/jbm.a.37650] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
By removing the immunogenic cellular components through various decellularization methods, decellularized extracellular matrix (dECM) is considered a promising material in the field of tissue engineering and regenerative medicine with highly preserved physicochemical properties and superior biocompatibility. However, decellularization treatment can lead to some loss of structural integrity, mechanical strength, degradation stability, and biological performance of dECM biomaterials. Therefore, physical and chemical crosslinking methods are preferred to restore or even improve the biomechanical properties, stability, and bioactivity, and to achieve a delicate balance between degradation of the implanted biomaterial and regeneration of the host tissue. This review provides an overview of dECM biomaterials, and describes and compares the mechanisms and characteristics of commonly used crosslinking methods for dECM, with a focus on the potential applications of versatile dECM-based biomaterials derived from skin, cardiac tissues (pericardium, heart valves, myocardial tissue), blood vessels, liver, and kidney, modified with different chemical crosslinking reagents, in tissue and organ regeneration.
Collapse
Affiliation(s)
- Su Qiao
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tan Peijie
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiang Nan
- State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
41
|
Tan SH, Liu S, Teoh SH, Bonnard C, Leavesley D, Liang K. A sustainable strategy for generating highly stable human skin equivalents based on fish collagen. BIOMATERIALS ADVANCES 2024; 158:213780. [PMID: 38280287 DOI: 10.1016/j.bioadv.2024.213780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
Tissue engineered skin equivalents are increasingly recognized as potential alternatives to traditional skin models such as human ex vivo skin or animal skin models. However, most of the currently investigated human skin equivalents (HSEs) are constructed using mammalian collagen which can be expensive and difficult to extract. Fish skin is a waste product produced by fish processing industries and identified as a cost-efficient and sustainable source of type I collagen. In this work, we describe a method for generating highly stable HSEs based on fibrin fortified tilapia fish collagen. The fortified fish collagen (FFC) formulation is optimized to enable reproducible fabrication of full-thickness HSEs that undergo limited contraction, facilitating the incorporation of human donor-derived skin cells and formation of biomimetic dermal and epidermal layers. The morphology and barrier function of the FFC HSEs are compared with a commercial skin model and validated with immunohistochemical staining and transepithelial electrical resistance testing. Finally, the potential of a high throughput screening platform with FFC HSE is explored by scaling down its fabrication to 96-well format.
Collapse
Affiliation(s)
- Shi Hua Tan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shaoqiong Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Swee Hin Teoh
- College of Materials Science and Engineering, Hunan University, People's Republic of China
| | - Carine Bonnard
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore; Skin Research Institute of Singapore (SRIS), Singapore
| | | | - Kun Liang
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore; Skin Research Institute of Singapore (SRIS), Singapore.
| |
Collapse
|
42
|
Tian Y, Cheng T, Sun F, Zhou Y, Yuan C, Guo Z, Wang Z. Effect of biophysical properties of tumor extracellular matrix on intratumoral fate of nanoparticles: Implications on the design of nanomedicine. Adv Colloid Interface Sci 2024; 326:103124. [PMID: 38461766 DOI: 10.1016/j.cis.2024.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Nanomedicine has a profound impact on various research domains including drug delivery, diagnostics, theranostics, and regenerative medicine. Nevertheless, the clinical translation of nanomedicines for solid cancer remains limited due to the abundant physiological and pathological barriers in tumor that hinder the intratumoral penetration and distribution of these nanomedicines. In this article, we review the dynamic remodeling of tumor extracellular matrix during the tumor progression, discuss the impact of biophysical obstacles within tumors on the penetration and distribution of nanomedicines within the solid tumor and collect innovative approaches to surmount these obstacles for improving the penetration and accumulation of nanomedicines in tumor. Furthermore, we dissect the challenges and opportunities of the respective approaches, and propose potential avenues for future investigations. The purpose of this review is to provide a perspective guideline on how to effectively enhance the penetration of nanomedicines within tumors using promising methods.
Collapse
Affiliation(s)
- Yachao Tian
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Guoru Biotechnology Co., Ltd., Xiangfang District, Harbin City 150030, China; School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yaxin Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chao Yuan
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
43
|
Angolkar M, Paramshetti S, Gahtani RM, Al Shahrani M, Hani U, Talath S, Osmani RAM, Spandana A, Gangadharappa HV, Gundawar R. Pioneering a paradigm shift in tissue engineering and regeneration with polysaccharides and proteins-based scaffolds: A comprehensive review. Int J Biol Macromol 2024; 265:130643. [PMID: 38467225 DOI: 10.1016/j.ijbiomac.2024.130643] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
In the realm of modern medicine, tissue engineering and regeneration stands as a beacon of hope, offering the promise of restoring form and function to damaged or diseased organs and tissues. Central to this revolutionary field are biological macromolecules-nature's own blueprints for regeneration. The growing interest in bio-derived macromolecules and their composites is driven by their environmentally friendly qualities, renewable nature, minimal carbon footprint, and widespread availability in our ecosystem. Capitalizing on these unique attributes, specific composites can be tailored and enhanced for potential utilization in the realm of tissue engineering (TE). This review predominantly concentrates on the present research trends involving TE scaffolds constructed from polysaccharides, proteins and glycosaminoglycans. It provides an overview of the prerequisites, production methods, and TE applications associated with a range of biological macromolecules. Furthermore, it tackles the challenges and opportunities arising from the adoption of these biomaterials in the field of TE. This review also presents a novel perspective on the development of functional biomaterials with broad applicability across various biomedical applications.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | | | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
44
|
Guo Y, Shao Z, Wang W, Liu H, Zhao W, Wang L, Bao C. Periodontium-Mimicking, Multifunctional Biomass-Based Hydrogel Promotes Full-Course Socket Healing. Biomacromolecules 2024; 25:1246-1261. [PMID: 38305191 DOI: 10.1021/acs.biomac.3c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Preserving stable tooth-periodontal tissue integration is vital for maintaining alveolar bone stability under physiological conditions. However, tooth extraction compromises this integration and impedes socket healing. Therefore, it becomes crucial to provide early stage coverage of the socket to promote optimal healing. Drawing inspiration from the periodontium, we have developed a quaternized methacryloyl chitosan/dopamine-grafted oxidized sodium alginate hydrogel, termed the quaternized methacryloyl chitosan/dopamine-grafted oxidized sodium alginate hydrogel (QDL hydrogel). Through blue-light-induced cross-linking, the QDL hydrogel serves as a comprehensive wound dressing for socket healing. The QDL hydrogel exhibits remarkable efficacy in closing irregular tooth extraction wounds. Its favorable mechanical properties, flexible formability, and strong adhesion are achieved through modifications of chitosan and sodium alginate derived from biomass sources. Moreover, the QDL hydrogel demonstrates a superior hemostatic ability, facilitating swift blood clot formation. Additionally, the inherent antibacterial properties of the QDL hydrogel effectively inhibit oral microorganisms. Furthermore, the QDL hydrogel promotes angiogenesis, which facilitates the nutrient supply for subsequent tissue regeneration. Notably, the hydrogel accelerates socket healing by upregulating the expression of genes associated with wound healing. In conclusion, the periodontium-mimicking multifunctional hydrogel exhibits significant potential as a clinical tooth extraction wound dressing.
Collapse
Affiliation(s)
- Yuxuan Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Zijian Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wenjie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Huaze Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Liao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Ren Min Nan Rd, Chengdu, Sichuan 610041, China
| |
Collapse
|
45
|
Russu E, Arbanasi EM, Chirila TV, Muresan AV. Therapeutic strategies based on non-ionizing radiation to prevent venous neointimal hyperplasia: the relevance for stenosed arteriovenous fistula, and the role of vascular compliance. Front Cardiovasc Med 2024; 11:1356671. [PMID: 38374996 PMCID: PMC10875031 DOI: 10.3389/fcvm.2024.1356671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
We have reviewed the development and current status of therapies based on exposure to non-ionizing radiation (with a photon energy less than 10 eV) aimed at suppressing the venous neointimal hyperplasia, and consequentially at avoiding stenosis in arteriovenous grafts. Due to the drawbacks associated with the medical use of ionizing radiation, prominently the radiation-induced cardiovascular disease, the availability of procedures using non-ionizing radiation is becoming a noteworthy objective for the current research. Further, the focus of the review was the use of such procedures for improving the vascular access function and assuring the clinical success of arteriovenous fistulae in hemodialysis patients. Following a brief discussion of the physical principles underlying radiotherapy, the current methods based on non-ionizing radiation, either in use or under development, were described in detail. There are currently five such techniques, including photodynamic therapy (PDT), far-infrared therapy, photochemical tissue passivation (PTP), Alucent vascular scaffolding, and adventitial photocrosslinking. The last three are contingent on the mechanical stiffening achievable by the exogenous photochemical crosslinking of tissular collagen, a process that leads to the decrease of venous compliance. As there are conflicting opinions on the role of compliance mismatch between arterial and venous conduits in a graft, this aspect was also considered in our review.
Collapse
Affiliation(s)
- Eliza Russu
- Clinic of Vascular Surgery, Mures County Emergency Hospital, Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
| | - Emil-Marian Arbanasi
- Clinic of Vascular Surgery, Mures County Emergency Hospital, Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
- Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
| | - Traian V. Chirila
- Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
- Queensland Eye Institute, Woolloongabba, QLD, Australia
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Institute of Bioengineering and Nanotechnology (AIBN), University of Queensland, St Lucia, QLD, Australia
| | - Adrian V. Muresan
- Clinic of Vascular Surgery, Mures County Emergency Hospital, Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
| |
Collapse
|
46
|
Xu R, Zheng L, Huang M, Zhao M. High gastrointestinal digestive stability endows chondroitin sulfate-soluble undenatured type II collagen complex with high activity: Improvement of osteoarthritis in rats. Int J Biol Macromol 2024; 257:128630. [PMID: 38070808 DOI: 10.1016/j.ijbiomac.2023.128630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/08/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Previously, we prepared a chondroitin sulfate-soluble undenatured type II collagen complex (CS-SC II) with low salt content. This paper further explored the differences between CS-SC II and SC II in terms of gastrointestinal digestive characteristics and osteoarthritis (OA) improvement. In vitro and in vivo experiments showed that the gastric digestive stability of CS-SC II was high under both pH 2.0 and pH 3.0, the α1 chain and triple helix structure of type II collagen retained >60 %. However, SC II had high gastric digestive stability only under pH 3.0. Furthermore, intestinal digestion had little effect on α1 chains of CS-SC II and SC II, and distribution experiments showed that they might exert their biological activities in the intestine. CS-SC II had obvious improvement in OA rats at 1.0 mg/kg/d, that is, the joint swelling was significantly reduced and the weight-bearing ratio of the right hind limb was increased to 49 %, which was close to that of 4.0 mg/kg/d SC II. The wear of articular cartilage, Mankin and OARSI scores of rats in CS-SC II group were significantly reduced. The effects of low-dose CS-SC II on the proportion of regulatory T cells (Treg), mRNA expression of OA key biomarkers (Il6, Ccl7, MMP-3 and MMP13) and signaling pathway genes (NF-κB, AKT or AMPKα) were comparable to those of high-dose SC II. These results showed that CS-SC II might have greater potential to improve OA at a lower dose than SC II due to its high gastrointestinal digestive stability at a wide range of pH conditions.
Collapse
Affiliation(s)
- Rong Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China.
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
47
|
Pugliese E, Rossoni A, Zeugolis DI. Enthesis repair - State of play. BIOMATERIALS ADVANCES 2024; 157:213740. [PMID: 38183690 DOI: 10.1016/j.bioadv.2023.213740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
The fibrocartilaginous enthesis is a highly specialised tissue interface that ensures a smooth mechanical transfer between tendon or ligament and bone through a fibrocartilage area. This tissue is prone to injury and often does not heal, even after surgical intervention. Enthesis augmentation approaches are challenging due to the complexity of the tissue that is characterised by the coexistence of a range of cellular and extracellular components, architectural features and mechanical properties within only hundreds of micrometres. Herein, we discuss enthesis repair and regeneration strategies, with particular focus on elegant interfacial and functionalised scaffold-based designs.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland
| | - Andrea Rossoni
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
48
|
Sun L, Shen Y, Li M, Wang Q, Li R, Gong S. Preparation and Modification of Collagen/Sodium Alginate-Based Biomedical Materials and Their Characteristics. Polymers (Basel) 2024; 16:171. [PMID: 38256970 PMCID: PMC10818764 DOI: 10.3390/polym16020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
(1) Background: Collagen and sodium alginate are commonly used in the field of biomedical materials due to their excellent biocompatibility. This study focuses on the preparation, modification, and characterization of collagen/sodium alginate (C/SA)-based biomedical materials. (2) Methods: The characteristics, including surface chemistry, mechanical properties, hygroscopicity, and porosity, were analyzed. The hemostatic activity in vitro was measured using a blood clotting assay and dynamic blood clotting assay. (3) Results: The results from microstructure and porosity measurement revealed that all of the sponges exhibited a porosity of more than 95 percent. The sponge cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) showed better tensile strength and lower elongation at break. The sponges cross-linked with EDC/NHS and oxidized sodium alginate (OSA) exhibited the highest hygroscopicity in comparison with the uncross-linked sponge. (4) Conclusions: Our study demonstrated that the C/SA-based material we prepared exhibited a high level of porosity, enabling efficient absorption of tissue exudate and blood. Additionally, the materials revealed excellent hemocompatibility, making them suitable for use as a hemostatic dressing in the field of biomedical materials.
Collapse
Affiliation(s)
- Leilei Sun
- College of Life Science, Yantai University, Yantai 264005, China; (Y.S.); (M.L.); (Q.W.); (R.L.); (S.G.)
| | | | | | | | | | | |
Collapse
|
49
|
Wu M, Zheng K, Li W, He W, Qian C, Lin Z, Xiao H, Yang H, Xu Y, Wei M, Bai J, Geng D. Nature‐Inspired Strategies for the Treatment of Osteoarthritis. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202305603] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 01/06/2025]
Abstract
AbstractArticular cartilage is devoid of nerves and blood vessels, and its nutrients must be obtained from the joint fluid; therefore, its ability to repair itself is limited. Manufactured materials such as artificial cartilage or synthetic materials are typically used in traditional approaches for knee cartilage repair. However, durability, postimplant rejection, and tissue incompatibility are the problems associated with these materials. In recent decades, tissue engineering and regenerative medicine have focused on the development of functional substitutes, particularly those based on naturally inspired biopolymers. This review focuses on sustainably produced biopolymers based on materials derived from natural sources. Furthermore, these materials have many advantages, including low antigenicity, biocompatibility, and degradability. Of course, there are also many challenges associated with natural materials, such as the lack of clinical studies and long‐term follow‐up data, unstable mechanical properties of the materials, and high demands placed on preparation and molding techniques. In this review, an overview of natural and nature‐inspired polymers that are the subject of research to date, as well as their structural designs and product performances is provided. This review provides scientific guidance for enhancing the development of naturally inspired materials for treating cartilage injuries.
Collapse
Affiliation(s)
- Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
- Department of Orthopedics Taicang TCM Hospital Affiliated to Nanjing University of Chinese Medicine No. 140 Renmin South Road Suzhou Jiangsu 215400 China
| | - Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230031 China
- National Center for Translational Medicine (Shanghai) SHU Branch Shanghai University Shanghai 215031 China
| | - Weiming He
- Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing Jiangsu 210004 China
| | - Chen Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Zhixiang Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| | - Minggang Wei
- Department of Traditional Chinese Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu 215006 China
| | - Jiaxiang Bai
- Department of Orthopedics The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui 230031 China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University No. 188 Shizi Road Suzhou Jiangsu 215006 China
| |
Collapse
|
50
|
Salvatore L, Russo F, Natali ML, Rajabimashhadi Z, Bagheri S, Mele C, Lionetto F, Sannino A, Gallo N. On the effect of pepsin incubation on type I collagen from horse tendon: Fine tuning of its physico-chemical and rheological properties. Int J Biol Macromol 2024; 256:128489. [PMID: 38043667 DOI: 10.1016/j.ijbiomac.2023.128489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Type I collagen is commonly recognized as the gold standard biomaterial for the manufacturing of medical devices for health-care related applications. In recent years, with the final aim of developing scaffolds with optimal bioactivity, even more studies focused on the influence of processing parameters on collagen properties, since processing can strongly affect the architecture of collagen at various length scales and, consequently, scaffolds macroscopic performances. The ability to finely tune scaffold properties in order to closely mimic the tissues' hierarchical features, preserving collagen's natural conformation, is actually of great interest. In this work, the effect of the pepsin-based extraction step on the material final properties was investigated. Thus, the physico-chemical properties of fibrillar type I collagens upon being extracted under various conditions were analyzed in depth. Correlations of collagen structure at the supramolecular scale with its microstructural properties were done, confirming the possibility of tuning rheological, viscoelastic and degradation properties of fibrillar type I collagen.
Collapse
Affiliation(s)
- Luca Salvatore
- Typeone Biomaterials Srl, Via Europa 167, Calimera, 73021 Lecce, Italy.
| | - Francesca Russo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | | | - Zahra Rajabimashhadi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Sonia Bagheri
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Claudio Mele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Nunzia Gallo
- Typeone Biomaterials Srl, Via Europa 167, Calimera, 73021 Lecce, Italy; Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|