1
|
Demling P, Rosenthal K, Grünberger A. Window of sustainable bioprocess operation: towards merging environmental sustainability assessment and process operation at early-stage bioprocess development. Curr Opin Biotechnol 2025; 93:103292. [PMID: 40107145 DOI: 10.1016/j.copbio.2025.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
Developing and optimizing sustainable bioprocesses require integrating technical feasibility and environmental sustainability assessment at an early stage of process development. Therefore, environmental impact estimations need to be performed alongside the development of novel bioprocesses, and 'feasibility' windows need to be defined, in which a bioprocess can be operated robustly and economically while being as environmentally friendly as possible. In this opinion, we summarize the progress made in the field of environmental sustainability assessment and its integration into bioprocesses at an early stage. We propose the 'window of sustainable bioprocess operation' (SBO window) as a concept to find operating conditions that match economic and environmental constraints. The insights obtained by the SBO window enable the back-translation of environmental constraints into bioprocess design optimizations and thus lay the foundation for a successful implementation of sustainable bioprocesses in the future.
Collapse
Affiliation(s)
- Philipp Demling
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52074 Aachen, Germany
| | - Katrin Rosenthal
- Biotechnology, School of Science, Constructor University, 28759 Bremen, Germany
| | - Alexander Grünberger
- Microsystems in Bioprocess Engineering, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
| |
Collapse
|
2
|
El-Araby R. Biofuel production: exploring renewable energy solutions for a greener future. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:129. [PMID: 39407282 PMCID: PMC11481588 DOI: 10.1186/s13068-024-02571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024]
Abstract
Biofuel production has emerged as a leading contender in the quest for renewable energy solutions, offering a promising path toward a greener future. This comprehensive state-of-the-art review delves into the current landscape of biofuel production, exploring its potential as a viable alternative to conventional fossil fuels. This study extensively examines various feedstock options, encompassing diverse sources such as plants, algae, and agricultural waste, and investigates the technological advancements driving biofuel production processes. This review highlights the environmental benefits of biofuels, emphasizing their capacity to significantly reduce greenhouse gas emissions compared to those of fossil fuels. Additionally, this study elucidates the role of biofuels in enhancing energy security by decreasing reliance on finite fossil fuel reserves, thereby mitigating vulnerabilities to geopolitical tensions and price fluctuations. The economic prospects associated with biofuel production are also elucidated, encompassing job creation, rural development, and the potential for additional revenue streams for farmers and landowners engaged in biofuel feedstock cultivation. While highlighting the promise of biofuels, the review also addresses the challenges and considerations surrounding their production. Potential issues such as land use competition, resource availability, and sustainability implications are critically evaluated. Responsible implementation, including proper land-use planning, resource management, and adherence to sustainability criteria, is emphasized as critical for the long-term viability of biofuel production. Moreover, the review underscores the importance of ongoing research and development efforts aimed at enhancing biofuel production efficiency, feedstock productivity, and conversion processes. Technological advancements hold the key to increasing biofuel yields, reducing production costs, and improving overall sustainability. This review uniquely synthesizes the latest advancements across the entire spectrum of biofuel production, from feedstock selection to end-use applications. It addresses critical research gaps by providing a comprehensive analysis of emerging technologies, sustainability metrics, and economic viability of various biofuel pathways. Unlike previous reviews, this work offers an integrated perspective on the interplay between technological innovation, environmental impact, and socio-economic factors in biofuel development, thereby providing a holistic framework for future research and policy directions in renewable energy.
Collapse
Affiliation(s)
- R El-Araby
- Chemical Engineering and Pilot Plant Department, Institute of Engineering Research and New and Renewable Energy, National Research Centre, Cairo, Egypt.
| |
Collapse
|
3
|
Shapiro A, Brigandi PJ, Moubarak M, Sengupta SS, Epps TH. Cross-Linked Polyolefins: Opportunities for Fostering Circularity Throughout the Materials Lifecycle. ACS APPLIED POLYMER MATERIALS 2024; 6:11859-11876. [PMID: 39416717 PMCID: PMC11474822 DOI: 10.1021/acsapm.4c01959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Cross-linked polyolefins (XLPOs) constitute a significant portion of the plastics commercial market, with a market size of a similar order of magnitude to those of polystyrene and polyethylene terephthalate. However, few aspects of XLPO materials circularity have been examined relative to thermoplastic polyolefins. The cross-linking of polyolefins imparts superior performance properties, such as impact strength, chemical and electrical resistance, and thermal stability vs thermoplastic analogues, but it also makes the reprocessing of XLPOs to valuable products more challenging, as XLPOs cannot be molten. Thus, most XLPOs are incinerated or landfilled at the end of the first lifecycle, even though XLPO products are commonly collected as a relatively clean waste stream-providing a unique opportunity for valorization. In this review, we discuss approaches to improve XLPO circularity throughout the entire materials lifecycle by examining biobased feedstocks as alternative olefinic monomer sources and by assessing both traditional mechanical and advanced XLPO recycling methods based on industrial feasibility and potential product value. We also consider how advancing materials longevity can reduce environmental impacts and lifecycle costs and how recyclable-by-design strategies can enable better end-of-life opportunities for future generations of XLPO materials. Throughout this review, we highlight XLPO circularity routes that have the potential to balance the performance, circularity, and scalability necessary to impart economic and environmental viability at an industrial scale.
Collapse
Affiliation(s)
- Alison
J. Shapiro
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Paul J. Brigandi
- The
Dow Chemical Company, Collegeville, Pennsylvania 19426, United States
| | - Maria Moubarak
- The
Dow Chemical Company, Rheingaustrasse 34, 65201 Wiesbaden, Germany
| | - Saurav S. Sengupta
- The
Dow Chemical Company, Collegeville, Pennsylvania 19426, United States
| | - Thomas H. Epps
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department
of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center
for Research in Soft matter & Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
4
|
Hosoda S, Iwata H, Miura T, Tanabe M, Okada T, Mochizuki A, Sato M. BayesianSSA: a Bayesian statistical model based on structural sensitivity analysis for predicting responses to enzyme perturbations in metabolic networks. BMC Bioinformatics 2024; 25:297. [PMID: 39256657 PMCID: PMC11389226 DOI: 10.1186/s12859-024-05921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Chemical bioproduction has attracted attention as a key technology in a decarbonized society. In computational design for chemical bioproduction, it is necessary to predict changes in metabolic fluxes when up-/down-regulating enzymatic reactions, that is, responses of the system to enzyme perturbations. Structural sensitivity analysis (SSA) was previously developed as a method to predict qualitative responses to enzyme perturbations on the basis of the structural information of the reaction network. However, the network structural information can sometimes be insufficient to predict qualitative responses unambiguously, which is a practical issue in bioproduction applications. To address this, in this study, we propose BayesianSSA, a Bayesian statistical model based on SSA. BayesianSSA extracts environmental information from perturbation datasets collected in environments of interest and integrates it into SSA predictions. RESULTS We applied BayesianSSA to synthetic and real datasets of the central metabolic pathway of Escherichia coli. Our result demonstrates that BayesianSSA can successfully integrate environmental information extracted from perturbation data into SSA predictions. In addition, the posterior distribution estimated by BayesianSSA can be associated with the known pathway reported to enhance succinate export flux in previous studies. CONCLUSIONS We believe that BayesianSSA will accelerate the chemical bioproduction process and contribute to advancements in the field.
Collapse
Affiliation(s)
- Shion Hosoda
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji-shi, Tokyo, 185-8601, Japan.
| | - Hisashi Iwata
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji-shi, Tokyo, 185-8601, Japan
| | - Takuya Miura
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji-shi, Tokyo, 185-8601, Japan
| | - Maiko Tanabe
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji-shi, Tokyo, 185-8601, Japan
| | - Takashi Okada
- Laboratory of Mathematical Biology, Institute for Life and Medical Sciences, Kyoto University, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Atsushi Mochizuki
- Laboratory of Mathematical Biology, Institute for Life and Medical Sciences, Kyoto University, Kyoto-shi, Kyoto, 606-8507, Japan
| | - Miwa Sato
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji-shi, Tokyo, 185-8601, Japan
| |
Collapse
|
5
|
Ye L, Bogicevic B, Bolten CJ, Wittmann C. Single-cell protein: overcoming technological and biological challenges towards improved industrialization. Curr Opin Biotechnol 2024; 88:103171. [PMID: 39024923 DOI: 10.1016/j.copbio.2024.103171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024]
Abstract
The commercialization of single-cell protein (SCP) obtained from microbial fermentation in large-scale bioreactors emerged almost 50 years ago, with Pruteen marketed as animal feed in the 1970s and Quorn®, released for human nutrition in 1985. SCP holds great promises to feed the meanwhile doubled world population in a sustainable way, but its application is still limited by price and availability on scale. There is a need to optimize the underlying manufacturing processes with enhanced affordability and productivity. From the industrial perspective, it is crucial to identify key process components and prioritize innovations that best promote cost efficiency and large-scale production. Here, we present the state-of-art in SCP manufacturing and provide a comprehensive insight into recent techno-economic analyses and life-cycle assessments of different production scenarios. Thereby, we identified the most influential technical hotspots and challenges for each of the main production scenarios and evaluated the technological opportunities to overcome them.
Collapse
Affiliation(s)
- Lijuan Ye
- Nestlé Research, Lausanne, Switzerland.
| | | | | | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
6
|
Ji H, Yang Q. Does tourism development, financial development and renewable energy drive high-quality economic development? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26242-26260. [PMID: 38499923 DOI: 10.1007/s11356-024-32149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/19/2024] [Indexed: 03/20/2024]
Abstract
Tourism development is generally agreed upon to be a key tool in promoting economic growth, and green development has emerged as a significant idea and an efficient approach to accomplish this goal in a manner that is environmentally responsible. It is common knowledge that making the switch to renewable sources of energy may act as a catalyst for economic development in both developed and developing nations. Therefore, people all over the globe are beginning to realize the significance of advancing renewable energy's rising importance that suggests that it will be used extensively in the years to come. The purpose of this study is to examine the effect that increasing tourism and adopting renewable energy sources impact on green economic growth development in the region using the AMG test BRICS nations from 2001 to 2022. This research additionally makes use of a rigorous check by means of the CCEMG exam and the DCCEMG test. According to the findings, green economic growth is influenced favorably by the expansion of the tourist industry, renewable energy, and the digital economy, but urbanization and the rise financial industry are detrimental to green economic growth. D-H panel causality test results show that tourism development is causally related to green economic growth, green economic growth to urbanization, and green economic growth to the usage of renewable energy sources. According to these results, the management authorities of BRICS nations should embrace policies of green growth while also controlling environmental pollution in order to achieve sustainable economic development whereas in rural areas. The findings have major policy implications for the nations that make up the BRICS bloc. These implications pertain to the enhancement of tourist development, the digital economy (DIG), and financial institutions, all of which have the potential to improve environmental quality.
Collapse
Affiliation(s)
- Hongtong Ji
- Jin Zhong Municipal Party School, Jinzhong, 030600, China.
| | - Qing Yang
- China Academy of Space Technology, Beijing, 100094, China
| |
Collapse
|
7
|
Bidart GN, Teze D, Jansen CU, Pasutto E, Putkaradze N, Sesay AM, Fredslund F, Lo Leggio L, Ögmundarson O, Sukumara S, Qvortrup K, Welner DH. Chemoenzymatic indican for light-driven denim dyeing. Nat Commun 2024; 15:1489. [PMID: 38413572 PMCID: PMC10899603 DOI: 10.1038/s41467-024-45749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Blue denim, a billion-dollar industry, is currently dyed with indigo in an unsustainable process requiring harsh reducing and alkaline chemicals. Forming indigo directly in the yarn through indican (indoxyl-β-glucoside) is a promising alternative route with mild conditions. Indican eliminates the requirement for reducing agent while still ending as indigo, the only known molecule yielding the unique hue of blue denim. However, a bulk source of indican is missing. Here, we employ enzyme and process engineering guided by techno-economic analyses to develop an economically viable drop-in indican synthesis technology. Rational engineering of PtUGT1, a glycosyltransferase from the indigo plant, alleviated the severe substrate inactivation observed with the wildtype enzyme at the titers needed for bulk production. We further describe a mild, light-driven dyeing process. Finally, we conduct techno-economic, social sustainability, and comparative life-cycle assessments. These indicate that the presented technologies have the potential to significantly reduce environmental impacts from blue denim dyeing with only a modest cost increase.
Collapse
Affiliation(s)
- Gonzalo Nahuel Bidart
- Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Kgs. Lyngby, Denmark
| | - David Teze
- Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Kgs. Lyngby, Denmark
| | - Charlotte Uldahl Jansen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, DK-2800, Kgs. Lyngby, Denmark
| | - Eleonora Pasutto
- Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Kgs. Lyngby, Denmark
| | - Natalia Putkaradze
- Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Kgs. Lyngby, Denmark
| | - Anna-Mamusu Sesay
- Lab for Sustainability and Design, Designskolen Kolding, Ågade 10, DK-6000, Kolding, Denmark
| | - Folmer Fredslund
- Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Kgs. Lyngby, Denmark
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Olafur Ögmundarson
- Faculty of Food Science and Nutrition, University of Iceland, Aragata 14, 102, Reykjavík, Iceland
| | - Sumesh Sukumara
- Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Kgs. Lyngby, Denmark
| | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Kemitorvet 206, DK-2800, Kgs. Lyngby, Denmark.
| | - Ditte Hededam Welner
- Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Etit D, Ögmundarson Ó, Zhang J, Krogh Jensen M, Sukumara S. Early-stage economic and environmental impact assessment for optimized bioprocess development: Monoterpenoid indole alkaloids. BIORESOURCE TECHNOLOGY 2024; 391:130005. [PMID: 37952588 DOI: 10.1016/j.biortech.2023.130005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Microbial refactoring offers sustainable production of plant-sourced pharmaceuticals associated with high production costs, ecological harms, and supply chain dependencies. Here, microbial tabersonine production in Saccharomyces cerevisiae is modeled during early-stage development (TRL: 3-5), guiding decisions for process-scale economic and environmental optimization. The base-case 0.7 mg/L titer indicated a minimum selling price (MSP) of $3,910,000/kg and global warming potential (GWP) of 2,540 kgCO2eq/g. The industrial process at 1 g/L resulted in an MSP of 4,262 $/kg and a GWP of 6.36 kgCO2eq/g. Location analysis indicated a sustainability trade-off between France, USA, Poland, and China, with the written order of declining MSP and increasing GWP. Continuous processing promised reducing the MSP by 18-27 %, and the GWP by 17-31 %. In-situ product extraction during fermentation was estimated to lower the MSP by 41-61 %, and the GWP by 30-75 %. In addition to showcasing a combined TEA-LCA on biopharmaceuticals, the early-stage assessment approach guides bioprocess optimization.
Collapse
Affiliation(s)
- Deniz Etit
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ólafur Ögmundarson
- Faculty of Food Science and Nutrition, University of Iceland, Aragata 14, 102 Reykjavík, Iceland
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sumesh Sukumara
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
9
|
Eng T, Banerjee D, Menasalvas J, Chen Y, Gin J, Choudhary H, Baidoo E, Chen JH, Ekman A, Kakumanu R, Diercks YL, Codik A, Larabell C, Gladden J, Simmons BA, Keasling JD, Petzold CJ, Mukhopadhyay A. Maximizing microbial bioproduction from sustainable carbon sources using iterative systems engineering. Cell Rep 2023; 42:113087. [PMID: 37665664 DOI: 10.1016/j.celrep.2023.113087] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
Maximizing the production of heterologous biomolecules is a complex problem that can be addressed with a systems-level understanding of cellular metabolism and regulation. Specifically, growth-coupling approaches can increase product titers and yields and also enhance production rates. However, implementing these methods for non-canonical carbon streams is challenging due to gaps in metabolic models. Over four design-build-test-learn cycles, we rewire Pseudomonas putida KT2440 for growth-coupled production of indigoidine from para-coumarate. We explore 4,114 potential growth-coupling solutions and refine one design through laboratory evolution and ensemble data-driven methods. The final growth-coupled strain produces 7.3 g/L indigoidine at 77% maximum theoretical yield in para-coumarate minimal medium. The iterative use of growth-coupling designs and functional genomics with experimental validation was highly effective and agnostic to specific hosts, carbon streams, and final products and thus generalizable across many systems.
Collapse
Affiliation(s)
- Thomas Eng
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Deepanwita Banerjee
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Menasalvas
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yan Chen
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer Gin
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hemant Choudhary
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA
| | - Edward Baidoo
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jian Hua Chen
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Axel Ekman
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ramu Kakumanu
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yuzhong Liu Diercks
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alex Codik
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Carolyn Larabell
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; National Center for X-ray Tomography, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John Gladden
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biomanufacturing and Biomaterials Department, Sandia National Laboratories, Livermore, CA, USA
| | - Blake A Simmons
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jay D Keasling
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; QB3 Institute, University of California, Berkeley, 5885 Hollis Street, 4th Floor, Emeryville, CA 94608, USA; Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, 2970 Horsholm, Denmark; Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Christopher J Petzold
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aindrila Mukhopadhyay
- The Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
10
|
Wowra K, Hegel E, Scharf A, Grünberger A, Rosenthal K. Estimating environmental impacts of early-stage bioprocesses. Trends Biotechnol 2023; 41:1199-1212. [PMID: 37188575 DOI: 10.1016/j.tibtech.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 05/17/2023]
Abstract
The use of bioprocesses in industrial production promises resource- and energy-efficient processes starting from renewable, nonfossil feedstocks. Thus, the environmental benefits must be demonstrated, ideally in the early development phase with standardized methods such as life cycle assessment (LCA). Herein we discuss selected LCA studies of early-stage bioprocesses, highlighting their potential and contribution to estimating environmental impacts and decision support in bioprocess development. However, LCAs are rarely performed among bioprocess engineers due to challenges such as data availability and process uncertainties. To address this issue, recommendations are provided for conducting LCAs of early-stage bioprocesses. Opportunities are identified to facilitate future applicability, for example, by establishing dedicated bioprocess databases that could enable the use of LCAs as standard tools for bioprocess engineers.
Collapse
Affiliation(s)
- Karoline Wowra
- Subdivision Biotechnology, Dechema e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Esther Hegel
- Subdivision Biotechnology, Dechema e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Andreas Scharf
- Subdivision Biotechnology, Dechema e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Alexander Grünberger
- Microsystems in Bioprocess Engineering, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Katrin Rosenthal
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
11
|
Shapiro AJ, O'Dea RM, Li SC, Ajah JC, Bass GF, Epps TH. Engineering Innovations, Challenges, and Opportunities for Lignocellulosic Biorefineries: Leveraging Biobased Polymer Production. Annu Rev Chem Biomol Eng 2023; 14:109-140. [PMID: 37040783 DOI: 10.1146/annurev-chembioeng-101121-084152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Alternative polymer feedstocks are highly desirable to address environmental, social, and security concerns associated with petrochemical-based materials. Lignocellulosic biomass (LCB) has emerged as one critical feedstock in this regard because it is an abundant and ubiquitous renewable resource. LCB can be deconstructed to generate valuable fuels, chemicals, and small molecules/oligomers that are amenable to modification and polymerization. However, the diversity of LCB complicates the evaluation of biorefinery concepts in areas including process scale-up, production outputs, plant economics, and life-cycle management. We discuss aspects of current LCB biorefinery research with a focus on the major process stages, including feedstock selection, fractionation/deconstruction, and characterization, along with product purification, functionalization, and polymerization to manufacture valuable macromolecular materials. We highlight opportunities to valorize underutilized and complex feedstocks, leverage advanced characterization techniques to predict and manage biorefinery outputs, and increase the fraction of biomass converted into valuable products.
Collapse
Affiliation(s)
- Alison J Shapiro
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; , , , , ,
| | - Robert M O'Dea
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; , , , , ,
| | - Sonia C Li
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; , , , , ,
| | - Jamael C Ajah
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; , , , , ,
| | - Garrett F Bass
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; , , , , ,
| | - Thomas H Epps
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; , , , , ,
- Department of Materials Science and Engineering and Center for Research in Soft Matter and Polymers (CRiSP), University of Delaware, Newark, Delaware, USA
| |
Collapse
|
12
|
Hocking S, Toop T, Jones D, Graham I, Eastwood D. Assessing the relative impacts and economic costs of Japanese knotweed management methods. Sci Rep 2023; 13:3872. [PMID: 36932085 PMCID: PMC10023688 DOI: 10.1038/s41598-023-30366-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/21/2023] [Indexed: 03/19/2023] Open
Abstract
Sustainable land management encompasses a range of activity that balance land use requirements with wider conservation and ecosystem impact considerations. Perennial invasive alien plants (IAPs), such as Japanese knotweed, cause severe ecological and socio-economic impacts, and methods to control their spread also come at a cost. Synthetic herbicides are generally viewed as less sustainable and more ecologically damaging than alternative approaches. Here we used a comparative Life Cycle Assessment to evaluate the sustainability of herbicide-based management approaches and physical alternatives, using a large-scale Japanese knotweed field study as a model IAP system. Glyphosate-based methods elicited the lowest environmental impacts and economic costs during production. Geomembrane covering and integrated physiochemical methods were the costliest and imposed the greatest impacts. We discuss the costs and benefits of chemical and physical approaches for the sustainable management of invaded land and question how sustainable environmental stewardship is defined for the control of IAPs.
Collapse
Affiliation(s)
- Sophie Hocking
- Department of Biosciences, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| | - Trisha Toop
- Agri-EPI Centre, Poultry Lane, Edgmond, Newport, TF10 8JZ, England, UK
- Harper Adams University, Poultry Lane, Edgmond, Newport, TF10 8NB, England, UK
| | - Daniel Jones
- Department of Biosciences, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
- Advanced Invasives Ltd., Sophia House, 28 Cathedral Road, Cardiff, CF11 9LJ, UK
| | - Ian Graham
- Complete Weed Control Ltd., Unit 16, Hurworth Road, Newton Aycliffe, DL5 6UD, UK
| | - Daniel Eastwood
- Department of Biosciences, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
13
|
Linke JA, Rayat A, Ward JM. Production of indigo by recombinant bacteria. BIORESOUR BIOPROCESS 2023; 10:20. [PMID: 36936720 PMCID: PMC10011309 DOI: 10.1186/s40643-023-00626-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/06/2023] [Indexed: 03/15/2023] Open
Abstract
Indigo is an economically important dye, especially for the textile industry and the dyeing of denim fabrics for jeans and garments. Around 80,000 tonnes of indigo are chemically produced each year with the use of non-renewable petrochemicals and the use and generation of toxic compounds. As many microorganisms and their enzymes are able to synthesise indigo after the expression of specific oxygenases and hydroxylases, microbial fermentation could offer a more sustainable and environmentally friendly manufacturing platform. Although multiple small-scale studies have been performed, several existing research gaps still hinder the effective translation of these biochemical approaches. No article has evaluated the feasibility and relevance of the current understanding and development of indigo biocatalysis for real-life industrial applications. There is no record of either established or practically tested large-scale bioprocess for the biosynthesis of indigo. To address this, upstream and downstream processing considerations were carried out for indigo biosynthesis. 5 classes of potential biocatalysts were identified, and 2 possible bioprocess flowsheets were designed that facilitate generating either a pre-reduced dye solution or a dry powder product. Furthermore, considering the publicly available data on the development of relevant technology and common bioprocess facilities, possible platform and process values were estimated, including titre, DSP yield, potential plant capacities, fermenter size and batch schedule. This allowed us to project the realistic annual output of a potential indigo biosynthesis platform as 540 tonnes. This was interpreted as an industrially relevant quantity, sufficient to provide an annual dye supply to a single industrial-size denim dyeing plant. The conducted sensitivity analysis showed that this anticipated output is most sensitive to changes in the reaction titer, which can bring a 27.8% increase or a 94.4% drop. Thus, although such a biological platform would require careful consideration, fine-tuning and optimization before real-life implementation, the recombinant indigo biosynthesis was found as already attractive for business exploitation for both, luxury segment customers and mass-producers of denim garments. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1186/s40643-023-00626-7.
Collapse
Affiliation(s)
- Julia A. Linke
- grid.83440.3b0000000121901201Chemical Engineering Department, University College London (UCL), Torrington Place, London, WC1E 7JE UK
- grid.83440.3b0000000121901201Division of Medicine, University College London (UCL), 5 University Street, London, WC1E 6JF UK
| | - Andrea Rayat
- grid.83440.3b0000000121901201Biochemical Engineering Department, University College London (UCL), Gower St., London, WC1E 6BT UK
| | - John M. Ward
- grid.83440.3b0000000121901201Biochemical Engineering Department, University College London (UCL), Gower St., London, WC1E 6BT UK
| |
Collapse
|
14
|
Meramo S, Fantke P, Sukumara S. Advances and opportunities in integrating economic and environmental performance of renewable products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:144. [PMID: 36550529 PMCID: PMC9783408 DOI: 10.1186/s13068-022-02239-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
There is a growing global need to transition from a fossil-based to a bio-based economy to produce fuels, chemicals, food, and materials. In the specific context of industrial biotechnology, a successful transition toward a sustainable development requires not only steering investment toward a bioeconomy, but also responsibly introducing bio-based products with lower footprints and competitive market prices. A comprehensive sustainability assessment framework applied along various research stages to guide bio-based product development is urgently needed but currently missing. To support holistic approaches to strengthen the global bioeconomy, the present study discusses methodologies and provides perspectives on the successful integration of economic and environmental performance aspects to guide product innovation in biotechnology. Efforts on quantifying the economic and environmental performance of bio-based products are analyzed to highlight recent trends, challenges, and opportunities. We critically analyze methods to integrate Techno-Economic Assessment (TEA) and Life Cycle Assessment (LCA) as example tools that can be used to broaden the scope of assessing biotechnology systems performance. We highlight the lack of social assessment aspects in existing frameworks. Data need for jointly applying TEA and LCA of succinic acid as example commodity chemical are assessed at various Technology readiness levels (TRLs) to illustrate the relevance of the level of integration and show the benefits of the use of combined assessments. The analysis confirms that the implementation of integrated TEA and LCA at lower TRLs will provide more freedom to improve bio-based product's sustainability performance. Consequently, optimizing the system across TRLs will guide sustainability-driven innovation in new biotechnologies transforming renewable feedstock into valuable bio-based products.
Collapse
Affiliation(s)
- Samir Meramo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs. Lyngby, Denmark
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Sumesh Sukumara
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Nagarajan D, Chen CY, Ariyadasa TU, Lee DJ, Chang JS. Macroalgal biomass as a potential resource for lactic acid fermentation. CHEMOSPHERE 2022; 309:136694. [PMID: 36206920 DOI: 10.1016/j.chemosphere.2022.136694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Lactic acid is an essential platform chemical with various applications in the chemicals, food, pharmaceutical, and cosmetic industries. Currently, the demand for lactic acid is driven by the role of lactic acid as the starting material for the production of bioplastic polylactide. Microbial fermentation for lactic acid production is favored due to the production of enantiomerically pure lactic acid required for polylactide synthesis, as opposed to the racemic mixture obtained via chemical synthesis. The utilization of first-generation feedstock for commercial lactic acid production is challenged by feedstock costs and sustainability issues. Macroalgae are photosynthetic benthic aquatic plants that contribute tremendously towards carbon capture with subsequent carbon-rich biomass production. Macroalgae are commercially cultivated to extract hydrocolloids, and recent studies have focused on applying biomass as a fermentation feedstock. This review provides comprehensive information on the design and development of sustainable and cost-effective, algae-based lactic acid production. The central carbon regulation in lactic acid bacteria and the metabolism of seaweed-derived sugars are described. An exhaustive compilation of lactic acid fermentation of macroalgae hydrolysates revealed that lactic acid bacteria can effectively ferment the mixture of sugars present in the hydrolysate with comparable yields. The environmental impacts and economic prospects of macroalgal lactic acid are analyzed. Valorization of the vast amounts of spent macroalgal biomass residue post hydrocolloid extraction in a biorefinery is a viable strategy for cost-effective lactic acid production.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan, Taiwan
| | - Thilini U Ariyadasa
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa, 10400, Sri Lanka
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
16
|
Wang XL, Zhou JJ, Liu S, Sun YQ, Xiu ZL. In situ carbon dioxide capture to co-produce 1,3-propanediol, biohydrogen and micro-nano calcium carbonate from crude glycerol by Clostridium butyricum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:91. [PMID: 36057610 PMCID: PMC9440576 DOI: 10.1186/s13068-022-02190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Background Climate change caused by greenhouse gas emission has become a global hot topic. Although biotechnology is considered as an environmentally friendly method to produce chemicals, almost all biochemicals face carbon dioxide emission from inevitable respiration and energy metabolism of most microorganisms. To cater for the broad prospect of biochemicals, bioprocess optimization of diverse valuable products is becoming increasingly important for environmental sustainability and cleaner production. Based on Ca(OH)2 as a CO2 capture agent and pH regulator, a bioprocess was proposed for co-production of 1,3-propanediol (1,3-PDO), biohydrogen and micro-nano CaCO3 by Clostridium butyricum DL07. Results In fed-batch fermentation, the maximum concentration of 1,3-PDO reached up to 88.6 g/L with an overall productivity of 5.54 g/L/h. This productivity is 31.9% higher than the highest value previously reports (4.20 g/L/h). In addition, the ratio of H2 to CO2 in exhaust gas showed a remarkable 152-fold increase in the 5 M Ca(OH)2 group compared to 5 M NaOH as the CO2 capture agent. Green hydrogen in exhaust gas ranged between 17.2% and 20.2%, with the remainder being N2 with negligible CO2 emissions. During CO2 capture in situ, micro-nano calcite particles of CaCO3 with sizes in the range of 300 nm to 20 µm were formed simultaneously. Moreover, when compared with 5M NaOH group, the concentrations of soluble salts and proteins in the fermentation broth of 5 M Ca(OH)2 group were notably reduced by 53.6% and 44.1%, respectively. The remarkable reduction of soluble salts and proteins would contribute to the separation of 1,3-PDO. Conclusions Ca(OH)2 was used as a CO2 capture agent and pH regulator in this study to promote the production of 1,3-PDO. Meanwhile, micro-nano CaCO3 and green H2 were co-produced. In addition, the soluble salts and proteins in the fermentation broth were significantly reduced. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02190-2.
Collapse
|
17
|
Minden S, Aniolek M, Sarkizi Shams Hajian C, Teleki A, Zerrer T, Delvigne F, van Gulik W, Deshmukh A, Noorman H, Takors R. Monitoring Intracellular Metabolite Dynamics in Saccharomyces cerevisiae during Industrially Relevant Famine Stimuli. Metabolites 2022; 12:metabo12030263. [PMID: 35323706 PMCID: PMC8953226 DOI: 10.3390/metabo12030263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon limitation is a common feeding strategy in bioprocesses to enable an efficient microbiological conversion of a substrate to a product. However, industrial settings inherently promote mixing insufficiencies, creating zones of famine conditions. Cells frequently traveling through such regions repeatedly experience substrate shortages and respond individually but often with a deteriorated production performance. A priori knowledge of the expected strain performance would enable targeted strain, process, and bioreactor engineering for minimizing performance loss. Today, computational fluid dynamics (CFD) coupled to data-driven kinetic models are a promising route for the in silico investigation of the impact of the dynamic environment in the large-scale bioreactor on microbial performance. However, profound wet-lab datasets are needed to cover relevant perturbations on realistic time scales. As a pioneering study, we quantified intracellular metabolome dynamics of Saccharomyces cerevisiae following an industrially relevant famine perturbation. Stimulus-response experiments were operated as chemostats with an intermittent feed and high-frequency sampling. Our results reveal that even mild glucose gradients in the range of 100 µmol·L−1 impose significant perturbations in adapted and non-adapted yeast cells, altering energy and redox homeostasis. Apparently, yeast sacrifices catabolic reduction charges for the sake of anabolic persistence under acute carbon starvation conditions. After repeated exposure to famine conditions, adapted cells show 2.7% increased maintenance demands.
Collapse
Affiliation(s)
- Steven Minden
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Maria Aniolek
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Christopher Sarkizi Shams Hajian
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Tobias Zerrer
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
| | - Frank Delvigne
- Microbial Processes and Interactions (MiPI), TERRA Research and Teaching Centre, Gembloux Agro Bio Tech, University of Liege, 5030 Gembloux, Belgium;
| | - Walter van Gulik
- Department of Biotechnology, Delft University of Technology, van der Maasweg 6, 2629 HZ Delft, The Netherlands;
| | - Amit Deshmukh
- Royal DSM, 2613 AX Delft, The Netherlands; (A.D.); (H.N.)
| | - Henk Noorman
- Royal DSM, 2613 AX Delft, The Netherlands; (A.D.); (H.N.)
- Department of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany; (S.M.); (M.A.); (C.S.S.H.); (A.T.); (T.Z.)
- Correspondence:
| |
Collapse
|
18
|
Lips D. Fuelling the future of sustainable sugar fermentation across generations. ENGINEERING BIOLOGY 2022; 6:3-16. [PMID: 36968555 PMCID: PMC9995162 DOI: 10.1049/enb2.12017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 11/20/2022] Open
Abstract
Biomanufacturing in the form of industrial sugar fermentation is moving beyond pharmaceuticals and biofuels into chemicals, materials, and food ingredients. As the production scale of these increasingly consumer-facing applications expands over the next decades, considerations regarding the environmental impact of the renewable biomass feedstocks used to extract fermentable sugars will become more important. Sugars derived from first-generation biomass in the form of, for example, corn and sugarcane are easily accessible and support high-yield fermentation processes, but are associated with the environmental impacts of industrial agriculture, land use, and competition with other applications in food and feed. Fermentable sugars can also be extracted from second- and third-generation feedstocks in the form of lignocellulose and macroalgae, respectively, potentially overcoming some of these concerns. Doing so, however, comes with various challenges, including the need for more extensive pretreatment processes and the fermentation of mixed and unconventional sugars. In this review, we provide a broad overview of these three generations of biomass feedstocks, outlining their challenges and prospects for fuelling the industrial fermentation industry throughout the 21st century.
Collapse
|
19
|
Dong Y, Zhao Y, Wang H, Liu P, He Y, Lin G. Integration of life cycle assessment and life cycle costing for the eco-design of rubber products. Sci Rep 2022; 12:595. [PMID: 35022485 PMCID: PMC8755712 DOI: 10.1038/s41598-021-04633-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/20/2021] [Indexed: 11/14/2022] Open
Abstract
Rubber hoses are a category of rubber products that are widely and intensively employed in construction sites for concrete conveying. There has been lack of study to investigate the life cycle environmental and economic impacts of the rubber hoses as an industrial product. In this study, we analyze four types of rubber hoses with the inner layer made of different rubber composites to resist abrasion, i.e., Baseline, S-I, S-II and S-III. Tests of the wear resistance are carried out in the laboratory and S-III shows high abrasion resisting performance with the concrete conveying volume up to 20,000 m3 during the service life. Life cycle assessment (LCA) and life cycle costing (LCC) models are established for evaluating the four types of rubber hoses. A target function is developed to integrate LCA and LCC by converting the LCA results to the environmental costs. It is found that S-III can save 13% total cost comparing to Baseline. The production stage is the largest contributor to the environmental single score, while the use stage is the largest contributor to the life cycle cost. Sensitivity analyses are conducted and the results of this study are validated with the previous studies. The integrated method of LCA and LCC developed in this study paves a way for the eco-design of industrial rubber hoses and is potentially applicable to other rubber products.
Collapse
Affiliation(s)
- Yahong Dong
- School of Electromechanical Engineering, Qingdao University of Science and Technology, No. 99 Songling Road, Qingdao, 266061, China.,Qingdao Research Center for Green Development and Ecological Environment, Qingdao University of Science and Technology, No. 99 Songling Road, Qingdao, 266061, China
| | - Yating Zhao
- School of Electromechanical Engineering, Qingdao University of Science and Technology, No. 99 Songling Road, Qingdao, 266061, China.,Qingdao Research Center for Green Development and Ecological Environment, Qingdao University of Science and Technology, No. 99 Songling Road, Qingdao, 266061, China
| | - Hong Wang
- School of Electromechanical Engineering, Qingdao University of Science and Technology, No. 99 Songling Road, Qingdao, 266061, China
| | - Peng Liu
- School of Electromechanical Engineering, Qingdao University of Science and Technology, No. 99 Songling Road, Qingdao, 266061, China
| | - Yan He
- School of Electromechanical Engineering, Qingdao University of Science and Technology, No. 99 Songling Road, Qingdao, 266061, China.,Qingdao Research Center for Green Development and Ecological Environment, Qingdao University of Science and Technology, No. 99 Songling Road, Qingdao, 266061, China
| | - Guangyi Lin
- School of Electromechanical Engineering, Qingdao University of Science and Technology, No. 99 Songling Road, Qingdao, 266061, China.
| |
Collapse
|
20
|
Espinel‐Ríos S, Bettenbrock K, Klamt S, Findeisen R. Maximizing batch fermentation efficiency by constrained model‐based optimization and predictive control of adenosine triphosphate turnover. AIChE J 2022. [DOI: 10.1002/aic.17555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sebastián Espinel‐Ríos
- Laboratory for Systems Theory and Automatic Control Otto von Guericke University Magdeburg Germany
- Analysis and Redesign of Biological Networks Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany
| | - Katja Bettenbrock
- Analysis and Redesign of Biological Networks Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany
- Technische Universität Darmstadt Darmstadt Germany
| | - Rolf Findeisen
- Laboratory for Systems Theory and Automatic Control Otto von Guericke University Magdeburg Germany
- Control and Cyber‐Physical Systems Laboratory Technical University of Darmstadt Darmstadt Germany
| |
Collapse
|
21
|
Shahid MK, Batool A, Kashif A, Nawaz MH, Aslam M, Iqbal N, Choi Y. Biofuels and biorefineries: Development, application and future perspectives emphasizing the environmental and economic aspects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113268. [PMID: 34280865 DOI: 10.1016/j.jenvman.2021.113268] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/11/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The fossil fuel utilization adversely affected the environmental health due to the rising emission levels of greenhouse gases. Consequently, the challenges of climate change loaded great stress on renewable energy sources. It is noted that extreme consumption of fossil fuels increased the earth temperature by 1.9 °C that adversely influenced the life and biodiversity. Biorefinery is the sustainable process for the production of biofuels and other bio-products from biomass feedstock using different conversion technologies. Biofuel is an important component of renewable energy sources contributing to overall carbon-neutral energy system. Studies reported that on global scale, over 90% of petroleum goods could be produced from renewable resources by 2023, whereas, 33% chemicals, and 50% of the pharmaceutical market share is also expected to be bio-based. This study details the brief review of operation, development, application, limitations, future perspectives, circular bioeconomy, and life cycle assessment of biorefinery. The economic and environmental aspects of biofuels and biorefineries are briefly discussed. Lastly, considering the present challenges, the future perspectives of biofuels and biorefineries are highlighted.
Collapse
Affiliation(s)
- Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Daejeon, Republic of Korea.
| | - Ayesha Batool
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Kashif
- Department of Senior Health Care, Graduate School, Eulji University, Uijeongbu, Republic of Korea
| | - Muhammad Haq Nawaz
- Department of Physics, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Nafees Iqbal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Younggyun Choi
- Department of Environmental & IT Engineering, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
22
|
Hu X, Subramanian K, Wang H, Roelants SLKW, Soetaert W, Kaur G, Lin CSK, Chopra SS. Bioconversion of Food Waste to produce Industrial-scale Sophorolipid Syrup and Crystals: dynamic Life Cycle Assessment (dLCA) of Emerging Biotechnologies. BIORESOURCE TECHNOLOGY 2021; 337:125474. [PMID: 34320754 DOI: 10.1016/j.biortech.2021.125474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Bioconversion of food waste into sophorolipid-based biosurfactants is a promising emerging technology. It is important to evaluate the environmental impacts associated with the latest advancements in sophorolipid production as it matures to maximize sustainability on scale-up. This study takes a dynamic Life Cycle Assessment (dLCA) approach to address the inherent uncertainties and evaluate the environmental performances. It demonstrates the dLCA framework by conducting the new traversal of food waste-derived industrial-scale sophorolipid production, with the combination of Techno-Economic Analysis (TEA). A systematic investigation of the environmental-economic implications of the two pathways to produce SL crystals and syrup. The global warming potential (GWP) for 1 kg of SL crystals and syrup was 7.9 kg CO2 eq. and 5.7 kg CO2 eq., respectively. The Ashby-like charts based on the LCA and TEA results at the pilot plant highlighted the trade-offs between systemic environmental costs and economic benefits for design decisions.
Collapse
Affiliation(s)
- Xiaomeng Hu
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - Karpagam Subramanian
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - Huaimin Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - Sophie L K W Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Bio Base Europe Pilot Plant, Ghent, Belgium
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Bio Base Europe Pilot Plant, Ghent, Belgium
| | - Guneet Kaur
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, M3J 1P3, Canada
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - Shauhrat S Chopra
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
23
|
Rathore AS, Mishra S, Nikita S, Priyanka P. Bioprocess Control: Current Progress and Future Perspectives. Life (Basel) 2021; 11:life11060557. [PMID: 34199245 PMCID: PMC8231968 DOI: 10.3390/life11060557] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Typical bioprocess comprises of different unit operations wherein a near optimal environment is required for cells to grow, divide, and synthesize the desired product. However, bioprocess control caters to unique challenges that arise due to non-linearity, variability, and complexity of biotech processes. This article presents a review of modern control strategies employed in bioprocessing. Conventional control strategies (open loop, closed loop) along with modern control schemes such as fuzzy logic, model predictive control, adaptive control and neural network-based control are illustrated, and their effectiveness is highlighted. Furthermore, it is elucidated that bioprocess control is more than just automation, and includes aspects such as system architecture, software applications, hardware, and interfaces, all of which are optimized and compiled as per demand. This needs to be accomplished while keeping process requirement, production cost, market value of product, regulatory constraints, and data acquisition requirements in our purview. This article aims to offer an overview of the current best practices in bioprocess control, monitoring, and automation.
Collapse
|
24
|
Zhao X, Zhang Y, Cheng Y, Sun H, Bai S, Li C. Identifying environmental hotspots and improvement strategies of vanillin production with life cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144771. [PMID: 33477040 DOI: 10.1016/j.scitotenv.2020.144771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Vanillin, an important aroma chemical, can be synthesized through industrial oxidation processes and biotechnological processes. Studying the environmental impacts of synthetic vanillin production processes is fundamental to making these processes feasible and sustainable; however, few studies have focused on such analyses. This study involved performing a life cycle assessment (LCA) to evaluate multiple industrial synthesis and biosynthesis processes for producing synthetic vanillin. The results indicated that human toxicity potential (HTP) appeared to be the most affected indicator among all the impact categories considered. The dominant drivers of the HTP of the vanillin synthesis process were electricity consumption and ultrapure water consumption. Improvement strategies were then proposed to investigate the possibility of reducing the environmental burdens created by vanillin synthesis. Natural gas power generation was determined to be the best choice for replacing traditional coal-fired power generation, thus reducing the negative impacts of these processes on the environment. The best ways to reduce chemical consumption were to recover organic solvents and to replace ultrapure water with industrial or distilled water. All these improvement strategies were demonstrated to be able to effectively reduce the HTP. In addition, suggestions for evaluating scaled-up vanillin production, increasing the LCA coverage to include technological advancements in biosynthesis techniques, and introducing cost-benefit analysis into the LCA were discussed.
Collapse
Affiliation(s)
- Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuting Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yi Cheng
- College of Science, China Agricultural University, Beijing 100083, China
| | - Hongliang Sun
- Changchun Municipal Engineering Design & Research Institute, 130033 Changchun, China
| | - Shunwen Bai
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
25
|
Assessing New Biotechnologies by Combining TEA and TM-LCA for an Efficient Use of Biomass Resources. SUSTAINABILITY 2020. [DOI: 10.3390/su12093676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An efficient use of biomass resources is a key element of the bioeconomy. Ideally, options leading to the highest environmental and economic gains can be singled out for any given region. In this study, to achieve this goal of singling out an ideal technology for a given region, biotechnologies are assessed by a combination of techno-economic assessment (TEA) and territorial metabolism life cycle assessment (TM-LCA). Three technology variations for anaerobic digestion (AD) were assessed at two different scales (200 kW and 1 MW) and for two different regions. First, sustainable feedstock availability for two European regions was quantified. Then, the environmental impact and economic potential of each technology when scaled up to the regional level, considering all of the region’s unique sustainably available feedstock, was investigated. Multiple criteria decision analysis and internalized damage monetization were used to generate single scores for the assessments. Preference for the technology scenario producing the most energy was shown for all regions and scales, while producing bioplastic was less preferable since the value of the produced bioplastic plastic was not great enough to offset the resultant reduction in energy production. Assessing alternatives in a regional context provided valuable information about the influence of different types of feedstock on environmental performance.
Collapse
|