1
|
Al Fahad MA, Lee HY, Park M, Lee BT. A cardiac extracellular matrix-based bilayer vascular graft with controlled microstructures for the reconstruction of small-diameter blood vessels. Biomaterials 2025; 320:123264. [PMID: 40121829 DOI: 10.1016/j.biomaterials.2025.123264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Despite recent progress, challenges with small-diameter vascular grafts, including mechanical strength, intimal hyperplasia, thrombosis, and poor endothelialization, remain unresolved. The present study reports a novel bilayer vascular graft designed to mimic the anatomical features of small-diameter blood vessels. The electrospun graft consists of a dense micro/nanofibrous inner layer of cardiac extracellular matrix (cECM), polycaprolactone (PCL) loaded with heparin (P-cECM-H), and a super porous and micro-fibrous PCL outer layer. Liquid chromatography-mass spectrometry (LC-MS/MS) proteome analysis of the cECM revealed that it is enriched with several bioactive proteins related to angiogenesis, wound regeneration, cell migration, etc. The porosities of the two layers are tailored according to endothelial and smooth muscle cell biology. The graft exhibited excellent mechanical properties, and the heparinized P-cECM inner layer improved hemocompatibility and anticoagulation efficacy. A significant increase in endothelial cell proliferation was noted in the P-cECM-H group after 7 days compared with the control group (p < 0.05). The bilayer graft maintained 100 % patency after 10 weeks of rat abdominal aorta implantation. Histological evaluation revealed smooth muscle cell infiltration inside the highly porous outer layer and neointima regeneration in the inner layer with a complete endothelial lining. RNA sequencing (RNA-Seq) analysis further confirmed smooth muscle formation and endothelial layer formation. The gene expression data also suggested that the hypoxia-inducible factor-1 (HIF-) and vascular endothelial growth factor (VEGF) signaling pathways are involved in endothelial layer remodeling. These promising results indicate that cECM could be a key material for vascular tissue regeneration.
Collapse
Affiliation(s)
- Md Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Hyun-Yong Lee
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, 31151, Republic of Korea; Institute of Tissue Regeneration, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| |
Collapse
|
2
|
Wang L, Yang L, Tian L, Guo B, Dai T, Lv Q, Xie J, Liu F, Bao H, Cao F, Liu Y, Gao Y, Hou Y, Ye Z, Wang S, Zhang Q, Kong L, Cai B. Exosome-capturing scaffold promotes endogenous bone regeneration through neutrophil-derived exosomes by enhancing fast vascularization. Biomaterials 2025; 319:123215. [PMID: 40023128 DOI: 10.1016/j.biomaterials.2025.123215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/19/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Exosomes (Exos), extracellular vesicles of endosomal origin, are a promising therapeutic platform for tissue regeneration. In the current study, an exosome-capturing scaffold (ECS) was designed to attract and anchor exosomes via electrostatic adherence followed by lipophilic interactions. Our findings demonstrate that local enrichment of exosomes in the ECS implanted into critical mandibular defects could significantly accelerate endogenous bone regeneration by enhancing vascularization at the defect site. Notably, neutrophil (PMN)-derived exosomes (PMN-Exos) were identified as the predominant exosome subtype among all captured exosomes. During endogenous bone regeneration, PMN-Exos promoted endogenous vascularization primarily by stimulating the proliferation of endothelial progenitor cells (EPCs), which play a pivotal role in the vasculogenesis of new blood vessels. Mechanistically, vascularization involved PMN-Exo-derived miR455-3p, which promotes EPC proliferation by targeting the Smad4 pathway. In conclusion, this study offers an ECS with broad application prospects for enhancing tissue regeneration by accelerating vascularization. The elucidation of underlying mechanisms paves the way for developing novel strategies to regenerate various tissues and organs.
Collapse
Affiliation(s)
- Le Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Luying Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Lei Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Taiqiang Dai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Qianxin Lv
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Jirong Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Fuwei Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Han Bao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Feng Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Ya Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China; College of Life Sciences, Northwest University, Xi'an, 710069, China.
| | - Ye Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yan Hou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R, China.
| | - Shenqiang Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China.
| | - Liang Kong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Bolei Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Wang J, Xu M, Liu H, Wang D, Zhang H, Xu Z, Shi X, Liu X, Tan Z. Vascular grafts with a mimetic microenvironment extracted from extracellular matrix of adipocytes can promote endothelialization in vivo. Acta Biomater 2025; 198:49-62. [PMID: 40169081 DOI: 10.1016/j.actbio.2025.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
Synthetic vascular substitutes are widely studied for small-caliber arteries replacement but their efficacy requires further improvement. Vascular tissue engineering holds great promise for preparing small-caliber vascular grafts with therapeutic effects, and previous work has demonstrated that the cellular layer at the luminal surface of vascular grafts has the potential to provide high functionality to vascular tissue. Improved endothelialization has been proven to be a key strategy for promoting the efficacy of vascular regeneration. However, there still remains a challenge of finding proper endothelialization methods or cell types to guarantee vascular grafts the long-term patency and functions. Herein, a biomimetic bilayer vascular graft was developed by 3D printing and electrospinning techniques. The electrospun PCL nanofiber was fabricated as the outer supporting layer while a biomimetic inner layer structure composed of cell extracellular matrix microenvironment was prepared by a decellularization process. This inner layer was designed to favor endothelial cell (EC) adhesion and enhance endothelialization on the surfaces of vascular grafts. Fibronectin, derived from adipocytes, provided a naturally occurring substrate for EC adhesion. The findings showed that by binding fibronectin, integrin α5β1 mediates EC adherence to the designed vascular graft. The bilayer graft with a mimetic microenvironment extracted from extracellular matrix of adipocytes can promote endothelialization and sustain good patency in vivo, which may represent a promising biomaterial for clinical vascular transplantation. STATEMENT OF SIGNIFICANCE: This study proposed a universal method for including any substrate type in vascular cell type-specific extracellular matrices (ECM) via regulating selective adhesion to promote vascular tissue regeneration. The reconstructed 3D ECM recapitulating a vascular-like microenvironment promoted the orderly regeneration and functional recovery of vascular tissues in vivo. The findings represent a proof of principle for vascular cell selectivity in cell type-specific ECM microenvironments, and provide a valuable perspective for further investigations on the controlled regeneration of heterogeneous tissues.
Collapse
Affiliation(s)
- Jian Wang
- College of Biology, Hunan University, Changsha 410082, China; Institute of Shenzhen, Hunan University, Shenzhen 518000, China
| | - Miaomiao Xu
- College of Biology, Hunan University, Changsha 410082, China
| | - Hui Liu
- College of Biology, Hunan University, Changsha 410082, China; Institute of Shenzhen, Hunan University, Shenzhen 518000, China
| | - Danling Wang
- College of Biology, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Hengyuan Zhang
- College of Biology, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Zilong Xu
- College of Biology, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Xiuyuan Shi
- College of Biology, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Xiao Liu
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China.
| | - Zhikai Tan
- College of Biology, Hunan University, Changsha 410082, China; Institute of Shenzhen, Hunan University, Shenzhen 518000, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China.
| |
Collapse
|
4
|
Lv CL, Li B. Interface morphodynamics in living tissues. SOFT MATTER 2025; 21:3670-3687. [PMID: 40226989 DOI: 10.1039/d5sm00145e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Interfaces between distinct tissues or between tissues and environments are common in multicellular organisms. The evolution and stability of these interfaces are essential for tissue development, and their dysfunction can lead to diseases such as cancer. Mounting efforts, either theoretical or experimental, have been devoted to uncovering the morphodynamics of tissue interfaces. Here, we review the recent progress of studies on interface morphodynamics. The regulatory mechanisms governing interface evolution are dissected, with a focus on adhesion, cortical tension, cell activity, extracellular matrix, and microenvironment. We examine the methodologies used to study morphodynamics, emphasizing the characteristics of experimental techniques and theoretical models. Finally, we explore the broader implications of interface morphodynamics in tissue morphogenesis and diseases, offering a comprehensive perspective on this rapidly developing field.
Collapse
Affiliation(s)
- Cheng-Lin Lv
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
- Mechano-X Institute, Department of Engineering Mechanics, Tsinghua University, Beijing, China
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Ding X, Sha D, Sun K, Fan Y. Biomechanical insights into the development and optimization of small-diameter vascular grafts. Acta Biomater 2025:S1742-7061(25)00270-3. [PMID: 40239752 DOI: 10.1016/j.actbio.2025.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/22/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Small-diameter vascular grafts (SDVGs; inner diameter ≤6 mm) offer transformative potential for treating cardiovascular diseases, yet their clinical application remains limited due to high rates of complications such as acute thrombosis and intimal hyperplasia (IH), which compromise long-term patency. While advancements in biological and material science have driven progress, the critical role of biomechanical factors-such as hemodynamic forces and mechanical mismatch-in graft failure is often overlooked. This review presents insights from recent clinical trials of SDVG products and summarizes biomechanical contributors to failure, including disturbed flow patterns, mechanical mismatch, and insufficient mechanical strength. We outline essential mechanical performance criteria (e.g., compliance, burst pressure) and evaluation methodologies to assess SDVG performance. Furthermore, we present optimization strategies based on biomechanical principles: (1) graft morphological design optimization to improve hemodynamic stability, (2) structural, material, and fabrication innovations to achieve compliance matching with native arteries, and (3) biomimetic approaches to mimic vascular tissue and promote endothelialization. By systematically addressing these biomechanical challenges, next-generation SDVGs may achieve superior patency, accelerating their clinical translation. This review highlights the necessity of considering biomechanical compatibility in SDVG development, thereby providing initial insights for the clinical translation of SDVG. STATEMENT OF SIGNIFICANCE: Small-diameter vascular grafts (SDVGs) offer transformative potential for cardiovascular disease treatment but face clinical limitations. While significant progress has been made in biological and material innovations, the critical role of biomechanical factors in graft failure has often been underestimated. This review highlights the importance of biomechanical compatibility in SDVG design and performance, emphasizing the need to address disturbed flow patterns, mechanical mismatch, and inadequate mechanical strength. By proposing optimization strategies based on biomechanical principles, such as graft morphological design, compliance matching, and biomimetic approaches, this work provides a roadmap for developing next-generation SDVGs with improved patency. These advancements have the potential to overcome current limitations, accelerate clinical translation, ultimately benefiting patients worldwide.
Collapse
Affiliation(s)
- Xili Ding
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China; Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, 100083, China
| | - Dongyu Sha
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Kaixin Sun
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Superior College for Engineers, Beihang University, Beijing, 100191, China
| | - Yubo Fan
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China; Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, 100083, China.
| |
Collapse
|
6
|
Singh J, Ruhoff AM, Ashok D, Wise SG, Waterhouse A. Engineering advanced in vitro models of endothelial dysfunction. Trends Biotechnol 2025:S0167-7799(25)00089-7. [PMID: 40187930 DOI: 10.1016/j.tibtech.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/30/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
Endothelial dysfunction is an important initiator of cardiovascular disease, the leading cause of death globally, and often manifests in arterial regions with disturbed blood flow. Experimental model advances have crucially helped unravel physiological mechanisms. While in vivo models provide a dynamic environment, they often fail to mimic human physiology precisely and face significant ethical barriers. Advanced in vitro models, including organs-on-chips and bioreactors, combine human cells and blood flow to accurately replicate endothelial dysfunction. Newer models have enhanced scalability and accuracy, with organs-on-chips commonly outperforming standard preclinical methods. Importantly, recent endothelial dysfunction discoveries leverage dynamic models to identify and evaluate clinically promising therapeutics. Here, we examine these developments and explore opportunities to develop next-generation in vitro models of endothelial dysfunction.
Collapse
Affiliation(s)
- Jasneil Singh
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alexander M Ruhoff
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Deepu Ashok
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia; School of Biomedical Engineering, Faculty of Engineering and IT, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Steven G Wise
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Anna Waterhouse
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
7
|
Zhang J, Guo J, Zhang J, Li D, Zhong M, Gu Y, Yan X, Huang P. Heparin and Gelatin Co-Functionalized Polyurethane Artificial Blood Vessel for Improving Anticoagulation and Biocompatibility. Bioengineering (Basel) 2025; 12:304. [PMID: 40150768 PMCID: PMC11939800 DOI: 10.3390/bioengineering12030304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
The primary challenges in the tissue engineering of small-diameter artificial blood vessels include inadequate mechanical properties and insufficient anticoagulation capabilities. To address these challenges, urea-pyrimidone (Upy)-based polyurethane elastomers (PIIU-B) were synthesized by incorporating quadruple hydrogen bonding within the polymer backbone. The synthesis process employed poly(L-lactide-ε-caprolactone) (PLCL) as the soft segment, while di-(isophorone diisocyanate)-Ureido pyrimidinone (IUI) and isophorone diisocyanate (IPDI) were utilized as the hard segment. The resulting PIIU-B small-diameter artificial blood vessel with a diameter of 4 mm was fabricated using the electrospinning technique, achieving an optimized IUI/IPDI composition ratio of 1:1. Enhanced by multiple hydrogen bonds, the vessels exhibited a robust elastic modulus of 12.45 MPa, an extracellular matrix (ECM)-mimetic nanofiber morphology, and a high porosity of 41.31%. Subsequently, the PIIU-B vessel underwent dual-functionalization with low-molecular-weight heparin and gelatin via ultraviolet (UV) crosslinking (designated as PIIU-B@LHep/Gel), which conferred superior biocompatibility and exceptional anticoagulation properties. The study revealed improved anti-platelet adhesion characteristics as well as a prolonged activated partial thromboplastin time (APTT) of 157.2 s and thrombin time (TT) of 64.2 s in vitro. Following a seven-day subcutaneous implantation, the PIIU-B@LHep/Gel vessel exhibited excellent biocompatibility, evidenced by complete integration with the surrounding peri-implant tissue, significant cell infiltration, and collagen formation in vivo. Consequently, polyurethane-based artificial blood vessels, reinforced by multiple hydrogen bonds and dual-functionalized with heparin and gelatin, present as promising candidates for vascular tissue engineering.
Collapse
Affiliation(s)
- Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (J.Z.); (J.G.); (J.Z.); (D.L.); (M.Z.); (Y.G.); (X.Y.)
| | - Jingzhe Guo
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (J.Z.); (J.G.); (J.Z.); (D.L.); (M.Z.); (Y.G.); (X.Y.)
| | - Junxian Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (J.Z.); (J.G.); (J.Z.); (D.L.); (M.Z.); (Y.G.); (X.Y.)
| | - Danting Li
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (J.Z.); (J.G.); (J.Z.); (D.L.); (M.Z.); (Y.G.); (X.Y.)
| | - Meihui Zhong
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (J.Z.); (J.G.); (J.Z.); (D.L.); (M.Z.); (Y.G.); (X.Y.)
| | - Yuxuan Gu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (J.Z.); (J.G.); (J.Z.); (D.L.); (M.Z.); (Y.G.); (X.Y.)
| | - Xiaozhe Yan
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (J.Z.); (J.G.); (J.Z.); (D.L.); (M.Z.); (Y.G.); (X.Y.)
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
8
|
Liu Z, Tang C, Han N, Jiang Z, Liang X, Wang S, Hu Q, Xiong C, Yao S, Wang Z, Wang ZL, Zou D, Li L. Electronic vascular conduit for in situ identification of hemadostenosis and thrombosis in small animals and nonhuman primates. Nat Commun 2025; 16:2671. [PMID: 40102408 PMCID: PMC11920275 DOI: 10.1038/s41467-025-58056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Patients suffering from coronary artery disease (CAD) or peripheral arterial disease (PAD) can benefit from bypass graft surgery. For this surgery, arterial vascular grafts have become promising alternatives when autologous grafts are inaccessible but suffer from numerous postimplantation challenges, particularly delayed endothelialization, intimal hyperplasia, high risk of thrombogenicity and restenosis, and difficulty in timely detection of these subtle pathological changes. We present an electronic vascular conduit that integrates flexible electronics into bionic vascular grafts for in situ, real-time and long-term monitoring for hemadostenosis and thrombosis concurrent with postoperative vascular repair. Following bypass surgery, the integrated bioelectronic sensor based on the triboelectric effect enables monitoring of the blood flow in the vascular graft and identification of lesions in real time for up to three months. In male nonhuman primate cynomolgus monkeys, the electronic vascular conduit, with an integrated wireless signal transmission module, enables wireless and real-time hemodynamic monitoring and timely identification of thrombi. This electronic vascular conduit demonstrates potential as a treatment-monitoring platform, providing a sensitive and intuitive monitoring technique during the critical period after bypass surgery in patients with CAD and PAD.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China
| | - Chuyu Tang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Nannan Han
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoheng Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Liang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shaobo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Quanhong Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Cheng Xiong
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China.
- Yonsei Frontier Lab, Yonsei University, Seoul, Republic of Korea.
| | - Duohong Zou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Wei X, Wang L, Xing Z, Chen P, He X, Tuo X, Su H, Zhou G, Liu H, Fan Y. Glutamine synthetase accelerates re-endothelialization of vascular grafts by mitigating endothelial cell dysfunction in a rat model. Biomaterials 2025; 314:122877. [PMID: 39378796 DOI: 10.1016/j.biomaterials.2024.122877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Endothelial cell (EC) dysfunction within the aorta has long been recognized as a prominent contributor to the progression of atherosclerosis and the subsequent failure of vascular graft transplantation. However, the direct relationship between EC dysfunction and vascular remodeling remains to be investigated. In this study, we sought to address this knowledge gap by employing a strategy involving the release of glutamine synthetase (GS), which effectively activated endothelial metabolism and mitigates EC dysfunction. To achieve this, we developed GS-loaded small-diameter vascular grafts (GSVG) through the electrospinning technique, utilizing dual-component solutions consisting of photo-crosslinkable hyaluronic acid and polycaprolactone. Through an in vitro model of oxidized low-density lipoprotein-induced injury in human umbilical vein endothelial cells (HUVECs), we provided compelling evidence that the GSVG promoted the restoration of motility, angiogenic sprouting, and proliferation in dysfunctional HUVECs by enhancing cellular metabolism. Furthermore, the sequencing results indicated that these effects were mediated by miR-122-5p-related signaling pathways. Remarkably, the GSVG also exhibited regulatory capabilities in shifting vascular smooth muscle cells towards a contractile phenotype, mitigating inflammatory responses and thereby preventing vascular calcification. Finally, our data demonstrated that GS incorporation significantly enhanced re-endothelialization of vascular grafts in a ferric chloride-injured rat model. Collectively, our results offer insights into the promotion of re-endothelialization in vascular grafts by restoring dysfunctional ECs through the augmentation of cellular metabolism.
Collapse
Affiliation(s)
- Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Li Wang
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Zheng Xing
- School of Pharmacy, Changzhou University, Changzhou, 213164, PR China
| | - Peng Chen
- Department of Ultrasound, The Third Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Xiaoye Tuo
- Department of Reparative and Reconstructive Surgery, 9 Jinyuanzhuang Rd., Peking University Shougang Hospital, PR China
| | - Haoran Su
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Gang Zhou
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China.
| |
Collapse
|
10
|
Wang H, Yang L, Yang Y. A review of sodium alginate-based hydrogels: Structure, mechanisms, applications, and perspectives. Int J Biol Macromol 2025; 292:139151. [PMID: 39725117 DOI: 10.1016/j.ijbiomac.2024.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
With the global emphasis on green and sustainable development, sodium alginate-based hydrogels (SAHs), as a renewable and biocompatible environmental material, have garnered widespread attention for their research and application. This review summarizes the latest advancements in the study of SAHs, thoroughly discussing their structural characteristics, formation mechanisms, and current applications in various fields, as well as prospects for future development. Initially, the chemical structure of SA and the network structure of hydrogels are introduced, and the impact of factors such as molecular weight, crosslinking density, and environmental conditions on the hydrogel structure is explored. Subsequently, the formation mechanisms of SAHs, including physical and chemical crosslinking, are detailed. Furthermore, a systematic review of the applications of SAHs in tissue engineering, drug delivery, medical dressings, wastewater treatment, strain sensor, and food science is provided. Finally, future research directions for SAHs are outlined. This work not only offers researchers a comprehensive framework for the study of SAHs but also provides significant theoretical and experimental foundations for the development of new hydrogel materials.
Collapse
Affiliation(s)
- Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| | - Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China.
| | - Yanning Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| |
Collapse
|
11
|
Shi H, Li S, Liu Y, Shang Z, Zhao L, Lang Y, Liu H, Wang Y, Zhang J, Wang D. Transparent and Antifouling Lubrication Coating for Medical Applications Formed by a Self-Assembled Method. NANO LETTERS 2025; 25:1067-1075. [PMID: 39791463 DOI: 10.1021/acs.nanolett.4c05051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Lubrication surfaces reduce the risk of cross-contamination and enhance the long-term stability of medical devices, which holds significance in the realm of antifouling medical materials. However, the complexity of constructing micronano structures to immobilize lubricating fluids and the fluorine content typically found in silane coupling agents restrict their widespread adoption. In this study, we prepared a biomimetic lubricating coating (BLC) through the one-step self-assembly of octadecyltrichlorosilane and oil infusion. The BLC exhibits pronounced repellency to liquids of different surface tensions while maintaining a high transparency. Mechanism exploration indicates that the low surface tension of the coating impedes the binding of fibrinogen to the substrate, thus preventing the adhesion of coagulated blood. To prove this concept, we applied the BLC to pipet tips and endoscope lenses to evaluate the coating's effectiveness. The results indicate that the coating shows significantly less residue, maintains clear visibility, and demonstrates excellent biocompatibility.
Collapse
Affiliation(s)
- Hongxiao Shi
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Saiya Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yunge Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ziying Shang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Lei Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yafang Lang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - He Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yiqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Dianyu Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Wu Y, You F, Hou S. Application of natural materials containing carbohydrate polymers in rheological modification and fluid loss control of water-based drilling fluids: A review. Carbohydr Polym 2025; 348:122928. [PMID: 39567146 DOI: 10.1016/j.carbpol.2024.122928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/05/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024]
Abstract
As the concept of green and sustainable development gains widespread acceptance, the demand for non-toxic, biodegradable, renewable, and widely sourced natural materials (NMs) is increasing across various fields. In oil and gas well drilling operations, water-based drilling fluids (WBDFs) are at the forefront of eco-friendly practices. Their rheological modification and fluid loss control properties are two fundamental and crucial aspects ensuring safe drilling. This review explores the research progress in enhancing these key properties of WBDFs using NMs, primarily focusing on polysaccharide polymers. It analyzes the sources, effective components, and potential functions of these NMs, and introduces three clean production methods: mechanical processing, extraction, and fermentation. Furthermore, the review focuses on the contributions of NMs obtained through these methods to the rheological and fluid loss control properties of WBDFs, highlighting their advantages and disadvantages. Despite challenges such as raw material supply stability, material synergy, compatibility, process scalability, field application, resistance to complex geological conditions, and economic feasibility, NMs, due to their outstanding environmental benefits, remain strong candidates for sustainable drilling fluid additives. Future research should focus on optimizing the performance of these materials and addressing existing issues to promote green and sustainable development in the drilling industry.
Collapse
Affiliation(s)
- Yu Wu
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Jingzhou, Hubei 434023, China
| | - Fuchang You
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, China; School of Petroleum Engineering, Yangtze University: National Engineering Research Center for Oil & Gas Drilling and Completion Technology, Wuhan, Hubei 430100, China; Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Jingzhou, Hubei 434023, China.
| | - Shanshan Hou
- Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Jingzhou, Hubei 434023, China
| |
Collapse
|
13
|
Pan D, Wang J, Wang H, Wu S, Guo J, Guo L, Sun L, Gu Y. Mapping the blueprint of artificial blood vessels research: a bibliometric analysis. Int J Surg 2025; 111:1014-1031. [PMID: 38913439 PMCID: PMC11745618 DOI: 10.1097/js9.0000000000001877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Vascular diseases represent a significant cause of disability and death worldwide. The demand for artificial blood vessels is increasing due to the scarce supply of healthy autologous vessels. Nevertheless, the literature in this area remains sparse and inconclusive. METHODS Bibliometrics is the study of quantitative analysis of publications and their patterns. This study conducts a bibliometric analysis of publications on artificial blood vessels in the 21st century, examining performance distribution, research trajectories, the evolution of research hotspots, and the exploration of the knowledge base. This approach provides comprehensive insights into the knowledge structure of the field. RESULTS The search retrieved 2060 articles, showing a consistent rise in the publication volume and average annual citation frequency related to artificial blood vessels research. The United States is at the forefront of high-quality publications and international collaborations. Among academic institutions, Yale University is a leading contributor. The dominant disciplines within the artificial blood vessels sector include engineering, biomedical sciences, materials science, biomaterials science, and surgery, with surgery experiencing the most rapid expansion. CONCLUSIONS This study is the inaugural effort to bibliometrically analyze and visualize the scholarly output in the domain of artificial blood vessels. It provides clinicians and researchers with a reliable synopsis of the field's current state, offering a reference point for existing research and suggesting new avenues for future investigations.
Collapse
Affiliation(s)
- Dikang Pan
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingyu Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Hui Wang
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sensen Wu
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianming Guo
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lianrui Guo
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Sun
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yongquan Gu
- Vascular Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Gorbenko N, Vaccaro JC, Fagan R, Cerro RA, Khorrami JM, Galindo L, Merna N. Perfusion Bioreactor Conditioning of Small-diameter Plant-based Vascular Grafts. Tissue Eng Regen Med 2024; 21:1189-1201. [PMID: 39354262 PMCID: PMC11589060 DOI: 10.1007/s13770-024-00670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Vascular grafts are mainly composed of synthetic materials, but are prone to thrombosis and intimal hyperplasia at small diameters. Decellularized plant scaffolds have emerged that provide promising alternatives for tissue engineering. We previously developed robust, endothelialized small-diameter vessels from decellularized leatherleaf viburnum. This is the first study to precondition and analyze plant-based vessels under physiological fluid flow and pressure waveforms. Using decellularized leatherleaf viburnum as tissue-engineered grafts for implantation can have profound impacts on healthcare due to their biocompatibility and cost-effective production. METHODS A novel perfusion bioreactor was designed, capable of accurately controlling fluid flow rate and pressure waveforms for preconditioning of small-diameter vascular grafts. A closed-loop system controlled pressure waveforms, mimicking physiological values of 50-120 mmHg at a frequency of 8.75 Hz for fluid flow reaching 5 mL/min. Plant-based vascular grafts were recellularized with endothelial and vascular smooth muscle cells and cultured for up to 3 weeks in this bioreactor. Cell density, scaffold structure and mechanics, thrombogenicity, and immunogenicity of grafts were evaluated. RESULTS Bioreactor treatment with fluid flow significantly increased luminal endothelial cell density, while pressure waveforms reduced thrombus formation and maintained viable vascular smooth muscle cells within inner layers of grafts compared to static controls. Suture retention of grafts met transplantation standards and white cell viability was suitable for vascular remodeling. CONCLUSION Low thrombogenicity of endothelialized leatherleaf viburnum holds great potential for vascular repair. This study provides insight into benefits of conditioning plant-based materials with hemodynamic forces at higher frequencies that have not previously been investigated.
Collapse
Affiliation(s)
- Nicole Gorbenko
- Bioengineering Program, Fred DeMatteis School of Engineering and Applied Science, Hofstra University, 229 Science and Innovation Center, Hempstead, NY, 11549, USA
| | - John C Vaccaro
- Mechanical Engineering Program, Fred DeMatteis School of Engineering and Applied Science, Hofstra University, 200B Weed Hall, Hempstead, NY, 11549, USA
| | - Ryan Fagan
- Bioengineering Program, Fred DeMatteis School of Engineering and Applied Science, Hofstra University, 229 Science and Innovation Center, Hempstead, NY, 11549, USA
| | - Robert A Cerro
- Fred DeMatteis School of Engineering and Applied Science, Hofstra University, 016 Adams Hall, Hempstead, NY, 11549, USA
| | - Jonah M Khorrami
- Bioengineering Program, Fred DeMatteis School of Engineering and Applied Science, Hofstra University, 229 Science and Innovation Center, Hempstead, NY, 11549, USA
| | - Lucia Galindo
- Bioengineering Program, Fred DeMatteis School of Engineering and Applied Science, Hofstra University, 229 Science and Innovation Center, Hempstead, NY, 11549, USA
| | - Nick Merna
- Bioengineering Program, Fred DeMatteis School of Engineering and Applied Science, Hofstra University, 229 Science and Innovation Center, Hempstead, NY, 11549, USA.
| |
Collapse
|
15
|
Mehta AS, Zhang SL, Xie X, Khanna S, Tropp J, Ji X, Daso RE, Franz CK, Jordan SW, Rivnay J. Decellularized Biohybrid Nerve Promotes Motor Axon Projections. Adv Healthc Mater 2024; 13:e2401875. [PMID: 39219219 PMCID: PMC11616264 DOI: 10.1002/adhm.202401875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Developing nerve grafts with intact mesostructures, superior conductivity, minimal immunogenicity, and improved tissue integration is essential for the treatment and restoration of neurological dysfunctions. A key factor is promoting directed axon growth into the grafts. To achieve this, biohybrid nerves are developed using decellularized rat sciatic nerve modified by in situ polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). Nine biohybrid nerves are compared with varying polymerization conditions and cycles, selecting the best candidate through material characterization. These results show that a 1:1 ratio of FeCl3 oxidant to ethylenedioxythiophene (EDOT) monomer, cycled twice, provides superior conductivity (>0.2 mS cm-1), mechanical alignment, intact mesostructures, and high compatibility with cells and blood. To test the biohybrid nerve's effectiveness in promoting motor axon growth, human Spinal Cord Spheroids (hSCSs) derived from HUES 3 Hb9:GFP cells are used, with motor axons labeled with green fluorescent protein (GFP). Seeding hSCS onto one end of the conduit allows motor axon outgrowth into the biohybrid nerve. The construct effectively promotes directed motor axon growth, which improves significantly after seeding the grafts with Schwann cells. This study presents a promising approach for reconstructing axonal tracts in humans.
Collapse
Affiliation(s)
- Abijeet Singh Mehta
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Sophia L. Zhang
- Biologics LaboratoryShirley Ryan Ability LabChicagoIL60611USA
- Division of Plastic SurgeryFeinberg School of MedicineNorthwestern University420 E Superior St.ChicagoIL60611USA
- Section for Injury Repair and Regeneration ResearchStanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIL60611USA
- Department of PediatricsDivision of Critical CareNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Xinran Xie
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Shreyaa Khanna
- Biologics LaboratoryShirley Ryan Ability LabChicagoIL60611USA
| | - Joshua Tropp
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Xudong Ji
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Rachel E. Daso
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Colin K. Franz
- Biologics LaboratoryShirley Ryan Ability LabChicagoIL60611USA
- Physical Medicine and RehabilitationNorthwestern University Feinberg School of MedicineChicagoIL60611USA
- Ken & Ruth Davee Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Sumannas W. Jordan
- Biologics LaboratoryShirley Ryan Ability LabChicagoIL60611USA
- Division of Plastic SurgeryFeinberg School of MedicineNorthwestern University420 E Superior St.ChicagoIL60611USA
| | - Jonathan Rivnay
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| |
Collapse
|
16
|
Zuo X, Xiao Y, Yang J, He Y, He Y, Liu K, Chen X, Guo J. Engineering collagen-based biomaterials for cardiovascular medicine. COLLAGEN AND LEATHER 2024; 6:33. [DOI: 10.1186/s42825-024-00174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/25/2024] [Accepted: 08/21/2024] [Indexed: 01/06/2025]
Abstract
AbstractCardiovascular diseases have been the leading cause of global mortality and disability. In addition to traditional drug and surgical treatment, more and more studies investigate tissue engineering therapeutic strategies in cardiovascular medicine. Collagen interweaves in the form of trimeric chains to form the physiological network framework of the extracellular matrix of cardiac and vascular cells, possessing excellent biological properties (such as low immunogenicity and good biocompatibility) and adjustable mechanical properties, which renders it a vital tissue engineering biomaterial for the treatment of cardiovascular diseases. In recent years, promising advances have been made in the application of collagen materials in blood vessel prostheses, injectable cardiac hydrogels, cardiac patches, and hemostatic materials, although their clinical translation still faces some obstacles. Thus, we reviewed these findings and systematically summarizes the application progress as well as problems of clinical translation of collagen biomaterials in the cardiovascular field. The present review contributes to a comprehensive understanding of the application of collagen biomaterials in cardiovascular medicine.
Graphical abstract
Collapse
|
17
|
Wiseman JP, Chari DM. Neural Cell Interactions with a Surgical Grade Biomaterial Using a Simulated Injury in Brain Organotypic Slices. J Funct Biomater 2024; 15:362. [PMID: 39728162 DOI: 10.3390/jfb15120362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Tissue engineering research for neurological applications has demonstrated that biomaterial-based structural bridges present a promising approach for promoting regeneration. This is particularly relevant for penetrating traumatic brain injuries, where the clinical prognosis is typically poor, with no available regeneration-enhancing therapies. Specifically, repurposing clinically approved biomaterials offers many advantages (reduced approval time and achieving commercial scaleup for clinical applications), highlighting the need for detailed screening of potential neuromaterials. A major challenge in experimental testing is the limited availability of neuromimetic, technically accessible, cost-effective, and humane models of neurological injury for efficient biomaterial testing in injury-simulated environments. Three dimensional (3D) organotypic brain slices bridge the gap between live animal models and simplified co-cultures and are a versatile tool for studies on neural development, neurodegenerative disease and in drug testing. Despite this, their utility for investigation of neural cell responses to biomaterial implantation is poorly investigated. We demonstrate that murine brain organotypic slices can be used to develop a model of penetrating traumatic brain injury, wherein a surgical-grade biomaterial scaffold can be implanted into the lesion cavity. Critically, the model allowed for examination of key cellular responses involved in CNS injury pathology/biomaterial handling: astrogliosis, microglial activation and axonal sprouting. The approach offers a technically simple and versatile methodology to study biomaterial interventions as a regenerative therapy for neurological injuries.
Collapse
Affiliation(s)
- Jessica Patricia Wiseman
- School of Medicine, Keele University, Keele ST5 5BG, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Divya Maitreyi Chari
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
18
|
Wu J, Chen Y, Liu X, Liu S, Deng L, Tang K. Human acellular amniotic membrane/polycaprolactone vascular grafts prepared by electrospinning enable vascular remodeling in vivo. Biomed Eng Online 2024; 23:112. [PMID: 39506815 PMCID: PMC11542409 DOI: 10.1186/s12938-024-01302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Vascular transplantation is an effective treatment for severe vascular lesions. The design of the bioactive and mechanical properties of small-caliber vascular grafts is critical for their application in tissue engineering. In this study, we sought to develope a small-caliber vascular graft by electrospinning a mixture of a human acellular amniotic membrane (HAAM) and polycaprolactone (PCL). RESULTS Mechanical tests showed that the vascular grafts were strong enough to endure stress from adjacent blood vessels and blood pressure. The biocompatibility of the HAAM/PCL vascular grafts was evaluated based on cell proliferation in vitro. The tubular formation test demonstrated that vascular grafts containing HAAM could improve human umbilical vein endothelial cell function, and in vivo implantation was performed by replacing the rat abdominal aorta. The HAAM/PCL vascular graft was found to promote attachment and endothelial cell retention. The regenerated smooth muscle layer was similar to native arteries' smooth muscle layer and the endothelium coverage was complete. CONCLUSIONS These results suggest that our constructs may be promising vascular graft candidates and can potentially be used to develop vascular grafts that can endothelialize rapidly in vivo.
Collapse
Affiliation(s)
- Jiayi Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yixin Chen
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing, 100037, China
| | - Xiaoxi Liu
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing, 100037, China
| | - Shun Liu
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing, 100037, China
| | - Long Deng
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing, 100037, China
| | - Kai Tang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing, 100037, China.
| |
Collapse
|
19
|
Conner AA, David D, Yim EKF. The Effects of Biomimetic Surface Topography on Vascular Cells: Implications for Vascular Conduits. Adv Healthc Mater 2024; 13:e2400335. [PMID: 38935920 DOI: 10.1002/adhm.202400335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide and represent a pressing clinical need. Vascular occlusions are the predominant cause of CVD and necessitate surgical interventions such as bypass graft surgery to replace the damaged or obstructed blood vessel with a synthetic conduit. Synthetic small-diameter vascular grafts (sSDVGs) are desired to bypass blood vessels with an inner diameter <6 mm yet have limited use due to unacceptable patency rates. The incorporation of biophysical cues such as topography onto the sSDVG biointerface can be used to mimic the cellular microenvironment and improve outcomes. In this review, the utility of surface topography in sSDVG design is discussed. First, the primary challenges that sSDVGs face and the rationale for utilizing biomimetic topography are introduced. The current literature surrounding the effects of topographical cues on vascular cell behavior in vitro is reviewed, providing insight into which features are optimal for application in sSDVGs. The results of studies that have utilized topographically-enhanced sSDVGs in vivo are evaluated. Current challenges and barriers to clinical translation are discussed. Based on the wealth of evidence detailed here, substrate topography offers enormous potential to improve the outcome of sSDVGs and provide therapeutic solutions for CVDs.
Collapse
Affiliation(s)
- Abigail A Conner
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Dency David
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
20
|
Kan Z, Chen Y, Zhang Q, Pan L, Chen A, Wang D, Wang Y, Wan G, He B. Covalent bonding coating of quantum-sized TiO 2 with polydopamine on catheter surface for synergistically enhanced antimicrobial and anticoagulant performances. Colloids Surf B Biointerfaces 2024; 245:114249. [PMID: 39303386 DOI: 10.1016/j.colsurfb.2024.114249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
The catheters coating can be effective in reducing bloodstream infection and thrombosis, which are the major complications in blood contact catheters. However, the surface functional coating is difficult to be implemented due to the high surface stretching force from the minor-caliber. In this work, we propose a covalent bonding coating of polydopamine/titanium dioxide quantum dots (PDA/TiO2 QDs) on polyurethane (PU) catheters, which can fulfill a dual-function of antibacterial and antithrombosis. The PDA/TiO2 QDs layer was prepared by dip-coating, where the intermediate transition layer of PDA was reacted with the internal hydroxyls of PU surface by pre-oxidation and bonds with the external TiO2 QDs coating. The surface microstructures are analyzed by SEM, TEM and XPS methods, and the antimicrobial and anticoagulant performances are investigated by bacterial plate count and platelet adhesion tests. The oxidizing and hydrophilic effect of the top layer of TiO2 QDs were enhanced by the QD-sized particles. The antibacterial activities of the PDA/TiO2 QDs coating on PU catheters against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), especially to S. aureus, are evidenced by bacterial plate count test, reaching good bactericidal rates of 49.9 % against E. coli and 83.7 % against S. aureus, respectively. Platelet adhesion test and whole blood dynamic circulation modeling demonstrate that the PDA/TiO2 QDs coating effectively inhibits platelet adhesion due to an excellent hydrophilicity of TiO2 QDs surface, and thereafter reduce thrombus formation.
Collapse
Affiliation(s)
- Ziwei Kan
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ye Chen
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Qianyun Zhang
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Luyi Pan
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Aiying Chen
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Ding Wang
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yi Wang
- Dahua Hospital, Xuhui District, Shanghai, China
| | - Guangming Wan
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China.
| | - Bin He
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China.
| |
Collapse
|
21
|
Jiang S, Yang N, Tan RP, Moh ESX, Fu L, Packer NH, Whitelock JM, Wise SG, Rnjak-Kovacina J, Lord MS. Tuning Recombinant Perlecan Domain V to Regulate Angiogenic Growth Factors and Enhance Endothelialization of Electrospun Silk Vascular Grafts. Adv Healthc Mater 2024; 13:e2400855. [PMID: 38780418 DOI: 10.1002/adhm.202400855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Synthetic vascular grafts are used to bypass significant arterial blockage when native blood vessels are unsuitable, yet their propensity to fail due to poor blood compatibility and progressive graft stenosis remains an intractable challenge. Perlecan is the major heparan sulfate (HS) proteoglycan in the blood vessel wall with an inherent ability to regulate vascular cell activities associated with these major graft failure modes. Here the ability of the engineered form of perlecan domain V (rDV) to bind angiogenic growth factors is tuned and endothelial cell proliferation via the composition of its glycosaminoglycan (GAG) chain is supported. It is shown that the HS on rDV supports angiogenic growth factor signaling, including fibroblast growth factor (FGF) 2 and vascular endothelial growth factor (VEGF)165, while both HS and chondroitin sulfate on rDV are involved in VEGF189 signaling. It is also shown that physisorption of rDV on emerging electrospun silk fibroin vascular grafts promotes endothelialization and patency in a murine arterial interposition model, compared to the silk grafts alone. Together, this study demonstrates the potential of rDV as a tunable, angiogenic biomaterial coating that both potentiates growth factors and regulates endothelial cells.
Collapse
Affiliation(s)
- Shouyuan Jiang
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nanji Yang
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Richard P Tan
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Edward S X Moh
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, 2109, Australia
- School of Natural Science, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Lu Fu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicolle H Packer
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, 2109, Australia
- School of Natural Science, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Steven G Wise
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
22
|
Lu Y, Mehling M, Huan S, Bai L, Rojas OJ. Biofabrication with microbial cellulose: from bioadaptive designs to living materials. Chem Soc Rev 2024; 53:7363-7391. [PMID: 38864385 DOI: 10.1039/d3cs00641g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Nanocellulose is not only a renewable material but also brings functions that are opening new technological opportunities. Here we discuss a special subset of this material, in its fibrillated form, which is produced by aerobic microorganisms, namely, bacterial nanocellulose (BNC). BNC offers distinct advantages over plant-derived counterparts, including high purity and high degree of polymerization as well as crystallinity, strength, and water-holding capacity, among others. More remarkably, beyond classical fermentative protocols, it is possible to grow BNC on non-planar interfaces, opening new possibilities in the assembly of advanced bottom-up structures. In this review, we discuss the recent advances in the area of BNC-based biofabrication of three-dimensional (3D) designs by following solid- and soft-material templating. These methods are shown as suitable platforms to achieve bioadaptive constructs comprising highly interlocked biofilms that can be tailored with precise control over nanoscale morphological features. BNC-based biofabrication opens applications that are not possible by using traditional manufacturing routes, including direct ink writing of hydrogels. This review emphasizes the critical contributions of microbiology, colloid and surface science, as well as additive manufacturing in achieving bioadaptive designs from living matter. The future impact of BNC biofabrication is expected to take advantage of material and energy integration, residue utilization, circularity and social latitudes. Leveraging existing infrastructure, the scaleup of biofabrication routes will contribute to a new generation of advanced materials rooted in exciting synergies that combine biology, chemistry, engineering and material sciences.
Collapse
Affiliation(s)
- Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Marina Mehling
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Siqi Huan
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China.
| | - Long Bai
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China.
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Chemistry, The University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Department of Wood Science, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
23
|
Wang X, Fu H, Wu H, Peng X, Peng X, Yu X, Liu H, Wu J, Luo L, Yan S, Cheng X, Zhou X, Yuan X. Corilagin functionalized decellularized extracellular matrix as artificial blood vessels with improved endothelialization and anti-inflammation by reactive oxygen species scavenging. Regen Biomater 2024; 11:rbae074. [PMID: 39664941 PMCID: PMC11631697 DOI: 10.1093/rb/rbae074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 12/13/2024] Open
Abstract
The performance of biological-originated blood vessels in clinical remains disappointing due to fast occlusion caused by acute thrombosis or long-standing inflammation. How to prevent rapid degradation and inhibit acute inflammation but maintain their high bioactivity is still a significant challenge. As a bioactive polyphenol in various traditional Chinese medicine, Corilagin (Cor) exhibits excellent anticoagulant, anti-inflammatory and rapid ROS consumption properties. Inspired by abundant supramolecular interactions in organisms, we selected it to crosslink tissues via purely H-bonds to simulate these natural interactions without introducing potential toxic aldehyde or carboxyl groups. Results show that 2 mg/ml was selected as the optimal Cor concentration to form a stable crosslinking network (FI > 95%) and effectively delay their degradation. Cor modification not only enhances ECs adhesion and monolayer function via accelerating VEGF and TGF-β secretion but also promotes macrophage transformation from pro-inflammatory M1 phenotype to anti-inflammatory M2 ones. In vitro and ex-vivo studies implied that Cor-crosslinked samples exhibited low platelet accumulation and decreased thrombin generation. In vivo evaluation further confirmed that Cor-introducing could effectively consume ROS, thus exhibiting rapid endothelialization, suppressed inflammation and reduced mineral deposition. Overall, Cor crosslinking provided a bright future for blood vessels' long-term patency and adapted to various blood-contacting surfaces.
Collapse
Affiliation(s)
- Xu Wang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hanmei Fu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Huibin Wu
- College of Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Xiaohua Peng
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xu Peng
- College of Polymer Science and Engineering & Laboratory Animal Center, Sichuan University, Chengdu 610065, China
| | - Xixun Yu
- College of Polymer Science and Engineering & Laboratory Animal Center, Sichuan University, Chengdu 610065, China
| | - Hui Liu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Junmei Wu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- College of Traditional Chinese Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ling Luo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shan Yan
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xinglin Cheng
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiong Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Xiangyang Yuan
- College of Science, Sichuan Agricultural University, Ya’an 625014, China
| |
Collapse
|
24
|
Gao Y, Bai S, Zhu K, Yuan X. Electrospun membranes of diselenide-containing poly(ester urethane)urea for in situ catalytic generation of nitric oxide. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1157-1176. [PMID: 38386369 DOI: 10.1080/09205063.2024.2319416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Nitric oxide (NO) plays an important role as a signalling molecule in the biological system. Organoselenium-coated or grafted biomaterials have the potential to achieve controlled NO release as they can catalyse decomposition of endogenous S-nitrosothiols to NO. However, such biomaterials are often challenged by the loss of the catalytic sites, which can affect the stability in tissue repair applications. In this work, we prepare a diselenide-containing poly(ester urethane)urea (SePEUU) polymer with Se-Se in the backbone, which is further electrospun into fibrous membranes by blending with poly(ester urethane)urea (PEUU) without diselenide bonds. The presence of catalytic sites in the main chain demonstrates stable and long-lasting NO catalytic activity, while the porous structure of the fibrous membranes ensures uniform distribution of the catalytic sites and better contact with the donor-containing solution. PEUU/SePEUU50 in 50/50 mass ratio has a physiologically adapted rate of NO release, with a sustained generation of NO after exposure to PBS at 37 °C for 30 d. PEUU/SePEUU50 has a low hemolysis and protein adsorption, with mechanical properties in the wet state matching those of natural vascular tissues. It can promote the adhesion and proliferation of human umbilical vein endothelial cells in vitro and control the proliferation of vascular smooth muscle cells in the presence of NO generation. This study exhibits the electrospun fibrous membranes have potential for utilizing as hemocompatible biomaterials for regeneration of blood-contacting tissues.
Collapse
Affiliation(s)
- Yong Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Shan Bai
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Kongying Zhu
- Analysis and Measurement Center, Tianjin University, Tianjin, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| |
Collapse
|
25
|
Zuo X, Han P, Yuan D, Xiao Y, Huang Y, Li R, Jiang X, Feng L, Li Y, Zhang Y, Zhu P, Wang H, Wang N, Kang YJ. Implantation of Adipose-Derived Mesenchymal Stromal Cells (ADSCs)-Lining Prosthetic Graft Promotes Vascular Regeneration in Monkeys and Pigs. Tissue Eng Regen Med 2024; 21:641-651. [PMID: 38190095 PMCID: PMC11087433 DOI: 10.1007/s13770-023-00615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Current replacement procedures for stenosis or occluded arteries using prosthetic grafts have serious limitations in clinical applications, particularly, endothelialization of the luminal surface is a long-standing unresolved problem. METHOD We produced a cell-based hybrid vascular graft using a bioink engulfing adipose-derived mesenchymal stromal cells (ADSCs) and a 3D bioprinting process lining the ADSCs on the luminal surface of GORE-Tex grafts. The hybrid graft was implanted as an interposition conduit to replace a 3-cm-long segment of the infrarenal abdominal aorta in Rhesus monkeys. RESULTS Complete endothelium layer and smooth muscle layer were fully developed within 21 days post-implantation, along with normalized collagen deposition and crosslinking in the regenerated vasculature in all monkeys. The regenerated blood vessels showed normal functionality for the longest observation of more than 1650 days. The same procedure was also conducted in miniature pigs for the interposition replacement of a 10-cm-long right iliac artery and showed the same long-term effective and safe outcome. CONCLUSION This cell-based vascular graft is ready to undergo clinical trials for human patients.
Collapse
Affiliation(s)
- Xiao Zuo
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
- Sichuan 3D Bioprinting Institute, Chengdu, China
| | - Pengfei Han
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
| | - Ding Yuan
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
- Division of Vascular Surgery, Department of General Surgery, Sichuan University West China Hospital, Chengdu, China
| | - Ying Xiao
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
| | - Yushi Huang
- Sichuan 3D Bioprinting Institute, Chengdu, China
| | - Rui Li
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
| | - Xia Jiang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
| | - Li Feng
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
| | - Yijun Li
- Sichuan 3D Bioprinting Institute, Chengdu, China
| | - Yaya Zhang
- Sichuan 3D Bioprinting Institute, Chengdu, China
| | - Ping Zhu
- Sichuan 3D Bioprinting Institute, Chengdu, China
| | - Hongge Wang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
| | - Ning Wang
- Sichuan 3D Bioprinting Institute, Chengdu, China
| | - Y James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China.
- Sichuan 3D Bioprinting Institute, Chengdu, China.
| |
Collapse
|
26
|
Jin W, Liu H, Nie P, Li Z, Cheng X, Jiao K, Zhao G, Zheng G. Design and preparation of an artificial vascular scaffold with internal surface modification. Artif Organs 2024; 48:456-471. [PMID: 38230806 DOI: 10.1111/aor.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Advances in regeneration methods have brought us improved vascular scaffolds with small diameters (φ < 6 mm) for enhancing biological suitability that solve their propensity for causing intimal hyperplasia post-transplantation. METHODS The correlation between the rehydration ratio of the hydrogel and its material concentration is obtained by adjusting the material ratio of the hydrogel solution. The vascular model with helical structure has been established and analyzed to verify the effect of helical microvascular structure on thrombosis formation by the fluid simulation methods. Then, the helical structure vascular has been fabricated by self-developed 3D bioprinter, the vascular scaffolds are freeze-dried and rehydrated in polyethylene glycol (PEG) solution. RESULTS The experimental results showed that the hybrid hydrogel had a qualified rehydration ratio when the content of gelatin, sodium alginate, and glycerol was 5, 6, and 3 wt%. The established flow channel model can effectively reduce thrombus deposition and improve long-term patency ratio. After PEG solution modification, the contact angle of the inner wall of the vascular scaffold was less than 30°, showing better hydrophilic characteristics. CONCLUSION In study, a small-diameter inner wall vascular scaffold with better long-term patency was successfully designed and prepared by wrinkling and PEG modification of the inner wall of the vascular scaffold. This study not only creates small-diameter vascular scaffolds with helical structure that improves the surface hydrophilicity to reduce the risk of thrombosis but also rekindles confidence in the regeneration of small caliber vascular structures.
Collapse
Affiliation(s)
- Wenyu Jin
- School of Mechanical Engineering, Shandong University of Technology, Zibo, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo, China
| | - Huanbao Liu
- School of Mechanical Engineering, Shandong University of Technology, Zibo, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo, China
| | - Ping Nie
- School of Mechanical Engineering, Shandong University of Technology, Zibo, China
| | - Zihan Li
- School of Mechanical Engineering, Shandong University of Technology, Zibo, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo, China
| | - Xiang Cheng
- School of Mechanical Engineering, Shandong University of Technology, Zibo, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo, China
| | - Kunpeng Jiao
- School of Mechanical Engineering, Shandong University of Technology, Zibo, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo, China
| | - Guangxi Zhao
- School of Mechanical Engineering, Shandong University of Technology, Zibo, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo, China
| | - Guangming Zheng
- School of Mechanical Engineering, Shandong University of Technology, Zibo, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo, China
| |
Collapse
|
27
|
Li B, Shu Y, Ma H, Cao K, Cheng YY, Jia Z, Ma X, Wang H, Song K. Three-dimensional printing and decellularized-extracellular-matrix based methods for advances in artificial blood vessel fabrication: A review. Tissue Cell 2024; 87:102304. [PMID: 38219450 DOI: 10.1016/j.tice.2024.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Blood vessels are the tubes through which blood flows and are divided into three types: millimeter-scale arteries, veins, and capillaries as well as micrometer-scale capillaries. Arteries and veins are the conduits that carry blood, while capillaries are where blood exchanges substances with tissues. Blood vessels are mainly composed of collagen fibers, elastic fibers, glycosaminoglycans and other macromolecular substances. There are about 19 feet of blood vessels per square inch of skin in the human body, which shows how important blood vessels are to the human body. Because cardiovascular disease and vascular trauma are common in the population, a great number of researches have been carried out in recent years by simulating the structures and functions of the person's own blood vessels to create different levels of tissue-engineered blood vessels that can replace damaged blood vessels in the human body. However, due to the lack of effective oxygen and nutrient delivery mechanisms, these tissue-engineered vessels have not been used clinically. Therefore, in order to achieve better vascularization of engineered vascular tissue, researchers have widely explored the design methods of vascular systems of various sizes. In the near future, these carefully designed and constructed tissue engineered blood vessels are expected to have practical clinical applications. Exploring how to form multi-scale vascular networks and improve their compatibility with the host vascular system will be very beneficial in achieving this goal. Among them, 3D printing has the advantages of high precision and design flexibility, and the decellularized matrix retains active ingredients such as collagen, elastin, and glycosaminoglycan, while removing the immunogenic substance DNA. In this review, technologies and advances in 3D printing and decellularization-based artificial blood vessel manufacturing methods are systematically discussed. Recent examples of vascular systems designed are introduced in details, the main problems and challenges in the clinical application of vascular tissue restriction are discussed and pointed out, and the future development trends in the field of tissue engineered blood vessels are also prospected.
Collapse
Affiliation(s)
- Bing Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yan Shu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Kun Cao
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Zhilin Jia
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China.
| | - Xiao Ma
- Department of Anesthesia, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Hongfei Wang
- Department of Orthopedics, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
28
|
Sun J, Gong Y, Xu M, Chen H, Shao H, Zhou R. Coaxial 3D Bioprinting Process Research and Performance Tests on Vascular Scaffolds. MICROMACHINES 2024; 15:463. [PMID: 38675274 PMCID: PMC11051886 DOI: 10.3390/mi15040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Three-dimensionally printed vascularized tissue, which is suitable for treating human cardiovascular diseases, should possess excellent biocompatibility, mechanical performance, and the structure of complex vascular networks. In this paper, we propose a method for fabricating vascularized tissue based on coaxial 3D bioprinting technology combined with the mold method. Sodium alginate (SA) solution was chosen as the bioink material, while the cross-linking agent was a calcium chloride (CaCl2) solution. To obtain the optimal parameters for the fabrication of vascular scaffolds, we first formulated theoretical models of a coaxial jet and a vascular network. Subsequently, we conducted a simulation analysis to obtain preliminary process parameters. Based on the aforementioned research, experiments of vascular scaffold fabrication based on the coaxial jet model and experiments of vascular network fabrication were carried out. Finally, we optimized various parameters, such as the flow rate of internal and external solutions, bioink concentration, and cross-linking agent concentration. The performance tests showed that the fabricated vascular scaffolds had levels of satisfactory degradability, water absorption, and mechanical properties that meet the requirements for practical applications. Cellular experiments with stained samples demonstrated satisfactory proliferation of human umbilical vein endothelial cells (HUVECs) within the vascular scaffold over a seven-day period, observed under a fluorescent inverted microscope. The cells showed good biocompatibility with the vascular scaffold. The above results indicate that the fabricated vascular structure initially meet the requirements of vascular scaffolds.
Collapse
Affiliation(s)
- Jiarun Sun
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (J.S.); (Y.G.); (H.C.); (H.S.)
| | - Youping Gong
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (J.S.); (Y.G.); (H.C.); (H.S.)
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Manli Xu
- The 2nd Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Huipeng Chen
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (J.S.); (Y.G.); (H.C.); (H.S.)
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huifeng Shao
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (J.S.); (Y.G.); (H.C.); (H.S.)
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210042, China
| | - Rougang Zhou
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (J.S.); (Y.G.); (H.C.); (H.S.)
- Mstar Technologies, Inc., Room 406, Building 19, Hangzhou Future Science and Technology City (Haichuang Park), No. 998, Wenyi West Road, Yuhang District, Hangzhou 311121, China
| |
Collapse
|
29
|
Laowpanitchakorn P, Zeng J, Piantino M, Uchida K, Katsuyama M, Matsusaki M. Biofabrication of engineered blood vessels for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2330339. [PMID: 38633881 PMCID: PMC11022926 DOI: 10.1080/14686996.2024.2330339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/10/2024] [Indexed: 04/19/2024]
Abstract
To successfully engineer large-sized tissues, establishing vascular structures is essential for providing oxygen, nutrients, growth factors and cells to prevent necrosis at the core of the tissue. The diameter scale of the biofabricated vasculatures should range from 100 to 1,000 µm to support the mm-size tissue while being controllably aligned and spaced within the diffusion limit of oxygen. In this review, insights regarding biofabrication considerations and techniques for engineered blood vessels will be presented. Initially, polymers of natural and synthetic origins can be selected, modified, and combined with each other to support maturation of vascular tissue while also being biocompatible. After they are shaped into scaffold structures by different fabrication techniques, surface properties such as physical topography, stiffness, and surface chemistry play a major role in the endothelialization process after transplantation. Furthermore, biological cues such as growth factors (GFs) and endothelial cells (ECs) can be incorporated into the fabricated structures. As variously reported, fabrication techniques, especially 3D printing by extrusion and 3D printing by photopolymerization, allow the construction of vessels at a high resolution with diameters in the desired range. Strategies to fabricate of stable tubular structures with defined channels will also be discussed. This paper provides an overview of the many advances in blood vessel engineering and combinations of different fabrication techniques up to the present time.
Collapse
Affiliation(s)
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Kentaro Uchida
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Misa Katsuyama
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
30
|
Li X, Jiang G, Wang G, Zhou J, Zhang Y, Zhao D. Promising cellulose-based functional gels for advanced biomedical applications: A review. Int J Biol Macromol 2024; 260:129600. [PMID: 38266849 DOI: 10.1016/j.ijbiomac.2024.129600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Novel biomedical materials provide a new horizon for the diagnosis/treatment of diseases and tissue repair in medical engineering. As the most abundant biomass polymer on earth, cellulose is characterized by natural biocompatibility, good mechanical properties, and structure-performance designability. Owing to these outstanding features, cellulose as a biomacromolecule can be designed as functional biomaterials via hydrogen bonding (H-bonding) interaction or chemical modification for human tissue repair, implantable tissue organs, and controlling drug release. Moreover, cellulose can also be used to construct medical sensors for monitoring human physiological signals. In this study, the structural characteristics, functionalization approaches, and advanced biomedical applications of cellulose are reviewed. The current status and application prospects of cellulose and its functional materials for wound dressings, drug delivery, tissue engineering, and electronic skin (e-skin) are discussed. Finally, the key technologies and methods used for designing cellulosic biomaterials and broadening their application prospects in biomedical fields are highlighted.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Geyuan Jiang
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Gang Wang
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Jianhong Zhou
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, PR China.
| | - Yuehong Zhang
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, PR China.
| | - Dawei Zhao
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
31
|
Zhang W, Fukazawa K, Mahara A, Jiang H, Yamaoka T. Photo-induced universal modification of small-diameter decellularized blood vessels with a hemocompatible peptide improves in vivo patency. Acta Biomater 2024; 176:116-127. [PMID: 38232911 DOI: 10.1016/j.actbio.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Decellularized vessels (DVs) have the potential to serve as available grafts for small-diameter vascular (<6 mm) reconstruction. However, the absence of functional endothelia makes them likely to trigger platelet aggregation and thrombosis. Luminal surface modification is an efficient approach to prevent thrombosis and promote endothelialization. Previously, we identified a hemocompatible peptide, HGGVRLY, that showed endothelial affinity and antiplatelet ability. By conjugating HGGVRLY with a phenylazide group, we generated a photoreactive peptide that can be modified onto multiple materials, including non-denatured extracellular matrices. To preserve the natural collagen of DVs as much as possible, we used a lower ultrahydrostatic pressure than that previously reported to prepare decellularized grafts. The photoreactive HGGVRLY peptide could be modified onto DV grafts via UV exposure for only 2 min. Modified DVs showed improved endothelial affinity and antiplatelet ability in vitro. When rat abdominal aortas were replaced with DVs, modified DVs with more natural collagen demonstrated the highest patent rate after 10 weeks. Moreover, the photoreactive peptide remained on the lumen surface of DVs over two months after implantation. Therefore, the photoreactive peptide could be efficiently and sustainably modified onto DVs with more natural collagens, resulting in improved hemocompatibility. STATEMENT OF SIGNIFICANCE: We employed a relatively lower ultrahydrostatic pressure to prepare decellularized vessels (DVs) with less denatured collagens to provide a more favorable environment for cell migration and proliferation. The hemocompatibility of DV luminal surface can be enhanced by peptide modification, but undenatured collagens are difficult to modify. We innovatively introduce a phenylazide group into the hemocompatible peptide HGGVRLY, which we previously identified to possess endothelial affinity and antiplatelet ability, to generate a photoreactive peptide. The photoreactive peptide can be efficiently and stably modified onto DVs with more natural collagens. DV grafts modified with photoreactive peptide exhibit enhanced in vivo patency. Furthermore, the sustainability of photoreactive peptide modification on DV grafts within bloodstream is evident after two months of transplantation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan; Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing China
| | - Kyoko Fukazawa
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing China
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan.
| |
Collapse
|
32
|
Jiang S, Wise SG, Kovacic JC, Rnjak-Kovacina J, Lord MS. Biomaterials containing extracellular matrix molecules as biomimetic next-generation vascular grafts. Trends Biotechnol 2024; 42:369-381. [PMID: 37852854 DOI: 10.1016/j.tibtech.2023.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
The performance of synthetic biomaterial vascular grafts for the bypass of stenotic and dysfunctional blood vessels remains an intractable challenge in small-diameter applications. The functionalization of biomaterials with extracellular matrix (ECM) molecules is a promising approach because these molecules can regulate multiple biological processes in vascular tissues. In this review, we critically examine emerging approaches to ECM-containing vascular graft biomaterials and explore opportunities for future research and development toward clinical use.
Collapse
Affiliation(s)
- Shouyuan Jiang
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Steven G Wise
- School of Medical Sciences, Faculty of Health and Medicine, University of Sydney, Sydney, NSW 2006, Australia; Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
33
|
Sun H, Zhang Y, Shi L. Advances in exercise-induced vascular adaptation: mechanisms, models, and methods. Front Bioeng Biotechnol 2024; 12:1370234. [PMID: 38456010 PMCID: PMC10917942 DOI: 10.3389/fbioe.2024.1370234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Insufficient physical activity poses a significant risk factor for cardiovascular diseases. Exercise plays a crucial role in influencing the vascular system and is essential for maintaining vascular health. Hemodynamic stimuli generated by exercise, such as shear stress and circumferential stress, directly impact vascular structure and function, resulting in adaptive changes. In clinical settings, incorporating appropriate exercise interventions has become a powerful supplementary approach for treating and rehabilitating various cardiovascular conditions. However, existing models for studying exercise-induced vascular adaptation primarily rely on in vivo animal and in vitro cellular models, each with its inherent limitations. In contrast, human research faces challenges in conducting mechanistic analyses due to ethics issues. Therefore, it is imperative to develop highly biomimetic in vitro/ex vivo vascular models that can replicate exercise stimuli in human systems. Utilizing various vascular assessment techniques is also crucial to comprehensively evaluate the effects of exercise on the vasculature and uncover the molecular mechanisms that promote vascular health. This article reviews the hemodynamic mechanisms that underlie exercise-induced vascular adaptation. It explores the advancements in current vascular models and measurement techniques, while addressing their future development and challenges. The overarching goal is to unravel the molecular mechanisms that drive the positive effects of exercise on the cardiovascular system. By providing a scientific rationale and offering novel perspectives, the aim is to contribute to the formulation of precise cardiovascular rehabilitation exercise prescriptions.
Collapse
Affiliation(s)
- Hualing Sun
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| |
Collapse
|
34
|
Yang L, Wang X, Xiong M, Liu X, Luo S, Luo J, Wang Y. Electrospun silk fibroin/fibrin vascular scaffold with superior mechanical properties and biocompatibility for applications in tissue engineering. Sci Rep 2024; 14:3942. [PMID: 38365964 PMCID: PMC10873321 DOI: 10.1038/s41598-024-54638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024] Open
Abstract
Electrospun scaffolds play important roles in the fields of regenerative medicine and vascular tissue engineering. The aim of the research described here was to develop a vascular scaffold that mimics the structural and functional properties of natural vascular scaffolding. The mechanical properties of artificial vascular tissue represent a key issue for successful transplantation in small diameter engineering blood vessels. We blended silk fibroin (SF) and fibrin to fabricate a composite scaffold using electrospinning to overcome the shortcomings of fibrin with respect to its mechanical properties. Subsequently, we then carefully investigated the morphological, mechanical properties, hydrophilicity, hemocompatibility, degradation, cytocompatibility and biocompatibility of the SF/fibrin (0:100), SF/fibrin (15:85), SF/fibrin (25:75), and SF/fibrin (35:65) scaffolds. Based on these in vitro results, we implanted SF/fibrin (25:75) vascular scaffold subcutaneously and analyzed its in vivo degradation and histocompatibility. The fiber structure of the SF/fibrin hybrid scaffold was smooth and uniform, and its fiber diameters were relatively small. Compared with the fibrin scaffold, the SF/fibrin scaffold clearly displayed increased mechanical strength, but the hydrophilicity weakened correspondingly. All of the SF/fibrin scaffolds showed excellent blood compatibility and appropriate biodegradation rates. The SF/fibrin (25:75) scaffold increased the proliferation and adhesion of MSCs. The results of animal experiments confirmed that the degradation of the SF/fibrin (25:75) scaffold was faster than that of the SF scaffold and effectively promoted tissue regeneration and cell infiltration. All in all, the SF/fibrin (25:75) electrospun scaffold displayed balanced and controllable biomechanical properties, degradability, and good cell compatibility. Thus, this scaffold proved to be an ideal candidate material for artificial blood vessels.
Collapse
Affiliation(s)
- Lei Yang
- Department of Surgical Base, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xu Wang
- Biomedical College, Guangdong University of Technology, Guangzhou, China
| | - Man Xiong
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinfang Liu
- Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Sidong Luo
- Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jinxian Luo
- Department of Thyroid and Mammary Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yeyang Wang
- Orthopaedic Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
- Orthopaedic Center, Zhaoqing Central People's Hospital, Zhaoqing, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
35
|
Zhen S, Wang G, Li X, Yang J, Yu J, Wang Y. Discovering peptide inhibitors of thrombin as a strategy for anticoagulation. Medicine (Baltimore) 2024; 103:e36849. [PMID: 38215083 PMCID: PMC10783423 DOI: 10.1097/md.0000000000036849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024] Open
Abstract
Unusual blood clots can cause serious health problems, such as lung embolism, stroke, and heart attack. Inhibiting thrombin activity was adopted as an effective strategy for preventing blood clots. In this study, we explored computational-based method for designing peptide inhibitors of human thrombin therapeutic peptides to prevent platelet aggregation. The random peptides and their 3-dimentional structures were generated to build a virtual peptide library. The generated peptides were docked into the binding pocket of human thrombin. The designed strong binding peptides were aligned with the native binder by comparative study, and we showed the top 5 peptide binders display strong binding affinity against human thrombin. The 5 peptides were synthesized and validated their inhibitory activity. Our result showed the 5-mer peptide AEGYA, EVVNQ, and FASRW with inhibitory activity against thrombin, range from 0.53 to 4.35 μM. In vitro anti-platelet aggregation assay was carried out, suggesting the 3 peptides can inhibit the platelet aggregation induced by thrombin. This study showed computer-aided peptide inhibitor design can be a robust method for finding potential binders for thrombin, which provided solutions for anticoagulation.
Collapse
Affiliation(s)
- Shuxin Zhen
- Department of Internal Medicine, Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Guiping Wang
- Department of Cardiology, Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Xiaoli Li
- Department of General Practice, Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Jing Yang
- Department of Cardiology, Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Jiaxin Yu
- Department of Cardiology, Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Yucong Wang
- Department of Visual Communication Design, Gengdan Institute of Beijing University of Technology, Beijing, China
| |
Collapse
|
36
|
Zhao Y, Zhong W. Recent Progress in Advanced Polyester Elastomers for Tissue Engineering and Bioelectronics. Molecules 2023; 28:8025. [PMID: 38138515 PMCID: PMC10745526 DOI: 10.3390/molecules28248025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Polyester elastomers are highly flexible and elastic materials that have demonstrated considerable potential in various biomedical applications including cardiac, vascular, neural, and bone tissue engineering and bioelectronics. Polyesters are desirable candidates for future commercial implants due to their biocompatibility, biodegradability, tunable mechanical properties, and facile synthesis and fabrication methods. The incorporation of bioactive components further improves the therapeutic effects of polyester elastomers in biomedical applications. In this review, novel structural modification methods that contribute to outstanding mechanical behaviors of polyester elastomers are discussed. Recent advances in the application of polyester elastomers in tissue engineering and bioelectronics are outlined and analyzed. A prospective of the future research and development on polyester elastomers is also provided.
Collapse
Affiliation(s)
- Yawei Zhao
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
37
|
Bai S, Zhang J, Gao Y, Chen X, Wang K, Yuan X. Surface Functionalization of Electrospun Scaffolds by QK-AG73 Peptide for Enhanced Interaction with Vascular Endothelial Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14162-14172. [PMID: 37722015 DOI: 10.1021/acs.langmuir.3c02174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Rapid endothelialization still remains challenging for blood-contacting biomaterials, especially for long-term, functional, small-diameter vascular grafts. The vascular endothelial growth factor (VEGF)-mimicking QK peptide holds great promise in promoting vascular endothelial cellular activities such as adhesion, spreading, proliferation, and migration. Syndecans are transmembrane proteoglycans that are highly expressed on cell surfaces, including vascular endothelial cells, which can act as docking receptors to provide binding sites for a variety of cellular growth and signaling molecules. Herein, a novel peptide QK-AG73 that coupled the QK domain with the syndecan binding peptide AG73 was proposed, aiming to synergistically enhance the interaction with vascular endothelial cells. In addition, mechanically matched bioactive scaffolds based on poly(l-lactide-co-ε-caprolactone) were successfully prepared by surface functionalization of the covalently combined QK-AG73 peptide. The result showed that the adhesion of human umbilical vein endothelial cells (HUVECs) was increased by approximately 2-fold on QK-AG73-modified surface compared with those modified with a single QK or AG73 peptide. Moreover, surface functionalization of electrospun scaffolds by this QK-AG73 peptide was more efficient in specifically promoting the proliferation of HUVECs and allowing them to grow with an elongated cobblestone-like cell morphology. It was hypothesized that both VEGF receptors and transmembrane syndecan receptors were involved in cellular regulation by the QK-AG73 peptide, which resulted in synergistic improvement of the interactions with vascular endothelial cells and provided a promising strategy to promote endothelialization of small-diameter vascular grafts.
Collapse
Affiliation(s)
- Shan Bai
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jingai Zhang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yong Gao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaoqi Chen
- Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang 050081, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoyan Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
38
|
Li S, Zhao F, Tang Y, Zhang Y, Rong H, Liu L, Gao R, Liu X, Huangfu Y, Bai Y, Feng Z, Guo Z, Dong A, Wang W, Kong D, Huang P. Bioinspired, Anticoagulative, 19 F MRI-Visualizable Bilayer Hydrogel Tubes as High Patency Small-Diameter Vascular Grafts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302621. [PMID: 37340585 DOI: 10.1002/smll.202302621] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/29/2023] [Indexed: 06/22/2023]
Abstract
The clinical patency of small-diameter vascular grafts (SDVGs) (ID < 6 mm) is limited, with the formation of mural thrombi being a major threat of this limitation. Herein, a bilayered hydrogel tube based on the essential structure of native blood vessels is developed by optimizing the relation between vascular functions and the molecular structure of hydrogels. The inner layer of the SDVGs comprises a zwitterionic fluorinated hydrogel, avoiding the formation of thromboinflammation-induced mural thrombi. Furthermore, the position and morphology of the SDVGs can be visualized via 19 F/1 H magnetic resonance imaging. The outer poly(N-acryloyl glycinamide) hydrogel layer of SDVGs provides matched mechanical properties with native blood vessels through the multiple and controllable intermolecular hydrogen-bond interactions, which can withstand the accelerated fatigue test under pulsatile radial pressure for 380 million cycles (equal to a service life of 10 years in vivo). Consequently, the SDVGs exhibit higher patency (100%) and more stable morphology following porcine carotid artery transplantation for 9 months and rabbit carotid artery transplantation for 3 months. Therefore, such a bioinspired, antithrombotic, and visualizable SDVG presents a promising design approach for long-term patency products and great potential of helping patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Shuangyang Li
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Feng Zhao
- Chest hospital, Tianjin University, Tianjin, 300222, China
| | - Yipeng Tang
- Chest hospital, Tianjin University, Tianjin, 300222, China
| | - Yiqun Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hui Rong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Lingyuan Liu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Rui Gao
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xiang Liu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yini Huangfu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yunpeng Bai
- Chest hospital, Tianjin University, Tianjin, 300222, China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Zhigang Guo
- Chest hospital, Tianjin University, Tianjin, 300222, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin, 300072, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
39
|
Di Francesco D, Pigliafreddo A, Casarella S, Di Nunno L, Mantovani D, Boccafoschi F. Biological Materials for Tissue-Engineered Vascular Grafts: Overview of Recent Advancements. Biomolecules 2023; 13:1389. [PMID: 37759789 PMCID: PMC10526356 DOI: 10.3390/biom13091389] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical demand for tissue-engineered vascular grafts is still rising, and there are many challenges that need to be overcome, in particular, to obtain functional small-diameter grafts. The many advances made in cell culture, biomaterials, manufacturing techniques, and tissue engineering methods have led to various promising solutions for vascular graft production, with available options able to recapitulate both biological and mechanical properties of native blood vessels. Due to the rising interest in materials with bioactive potentials, materials from natural sources have also recently gained more attention for vascular tissue engineering, and new strategies have been developed to solve the disadvantages related to their use. In this review, the progress made in tissue-engineered vascular graft production is discussed. We highlight, in particular, the use of natural materials as scaffolds for vascular tissue engineering.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Alexa Pigliafreddo
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Luca Di Nunno
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| |
Collapse
|
40
|
Ren ZY, Pan B, Wang FF, Lyu SC, He Q. Effects of different preservation methods of human iliac veins. Cell Tissue Bank 2023; 24:571-582. [PMID: 36441442 DOI: 10.1007/s10561-022-10055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Abstract
With the progress of vascular anastomosis technology, the radical resection surgery of cancer combining with vascular resection and reconstruction has been focused by surgeon. As a natural substitute material for blood vessel, vascular allografts have good vascular compliance and histocompatibility. Generally, the donated veins could not be used immediately, and need to be well preserved. So, it is greatly significant to do research in the preservation effects of different preservation methods on veins. In this study, the effects of different preservative methods of human iliac veins were compared and analyzed in terms of cell viability, vascular wall structure and tension resistance. The donated human iliac veins were randomly divided into three groups: Cold Storage Group (4 °C) (CSG), Frozen Storage Group (-186 °C) (FSG)and Fresh Control Group (FCG). Six detection time-points of preservation for 1, 3, 5, 7, 14, 28 days were set respectively. There are ten samples in each group and each time-point separately. Survival and apoptosis of vascular cell were evaluated by MTT assay and Tunel fluorescence staining. Tensile test was used to evaluate mechanical properties of vessels. The changes of vascular endothelial cells, smooth muscle cells, collagen fibers and elastic fibers were evaluated by HE staining, Masson staining and EVG staining. Furthermore, the changes of organelles were observed by transmission electron microscope. With the extension of preservation period, the vascular cell viability and tension resistance of two groups decreased, and the apoptotic cells increased gradually. The apoptosis index of CSG was higher than FSG at each time point (P < 0.05). In terms of cell viability, CSG was higher within 3 days (P < 0.05), both groups were same between 3 and 14 days, and then CSG lower than FSG after 14 days (P < 0.05). In terms of tension resistance, CSG was stronger than FSG (P < 0.05) in first 7 days, both groups were same in 2nd week, and then CSG was weaker in 4th week (P < 0.05). In terms of vascular wall structure, in CSG, vascular endothelial cells were damaged and shed, smooth muscle cells were edema after 14 days, but the cell membrane and intercellular connection were still intact. In 4th week, endothelial cells were completely damaged and shed, the boundary of smooth muscle cell membrane was unclear, intercellular connection was damaged. Moreover, organelles were destroyed and disappeared, perinuclear condensation of chromatin was observed, and some cells had incomplete nuclear membrane or nuclear fragmentation; However, there were no obvious changes in the FSG within 28 days. Finally, local exfoliation and destruction of endothelial cells and edema-like changes of organelles were observed; the collagen fibers and elastic fibers of blood vessels in the two groups had no obvious damage and change within 28 days. For excised human iliac vein, cold and frozen storage can effectively preserve the cell viability, wall structure and tension resistance of blood vessels. With the extension of preservation time, the related performance of vessels declined in varying degrees. Within first week, the effect of cold storage is better than frozen storage, but frozen storage is significantly better than cold storage after 2 weeks.
Collapse
Affiliation(s)
- Zhang-Yong Ren
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Bing Pan
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Fang-Fei Wang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Shao-Cheng Lyu
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
41
|
Cheng C, Li H, Liu J, Wu L, Fang Z, Xu G. MCP-1-Loaded Poly(l-lactide- co-caprolactone) Fibrous Films Modulate Macrophage Polarization toward an Anti-inflammatory Phenotype and Improve Angiogenesis. ACS Biomater Sci Eng 2023. [PMID: 37367696 DOI: 10.1021/acsbiomaterials.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Tissue engineering approaches such as the electrospinning technique can fabricate nanofibrous scaffolds which are widely used for small-diameter vascular grafting. However, foreign body reaction (FBR) and lack of endothelial coverage are still the main cause of graft failure after the implantation of nanofibrous scaffolds. Macrophage-targeting therapeutic strategies have the potential to address these issues. Here, we fabricate a monocyte chemotactic protein-1 (MCP-1)-loaded coaxial fibrous film with poly(l-lactide-co-ε-caprolactone) (PLCL/MCP-1). The PLCL/MCP-1 fibrous film can polarize macrophages toward anti-inflammatory M2 macrophages through the sustained release of MCP-1. Meanwhile, these specific functional polarization macrophages can mitigate FBR and promote angiogenesis during the remodeling of implanted fibrous films. These studies indicate that MCP-1-loaded PLCL fibers have a higher potential to modulate macrophage polarity, which provides a new strategy for small-diameter vascular graft designing.
Collapse
Affiliation(s)
- Can Cheng
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Heng Li
- Department of Comprehensive Surgery, Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Hefei, Anhui 230001, P. R. China
| | - Jingwen Liu
- Anhui Provincial Hospital Health Management Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Liang Wu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Zhengdong Fang
- Department of Vascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Geliang Xu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| |
Collapse
|
42
|
Oliveira TS, Smirnow I, Santee KM, Miglino MA, Barreto RDSN. Decellularized Vascular Scaffolds Derived from Bovine Placenta Blood Vessels. Arq Bras Cardiol 2023; 120:e20220816. [PMID: 37311129 PMCID: PMC10263409 DOI: 10.36660/abc.20220816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/10/2023] [Accepted: 04/05/2023] [Indexed: 06/15/2023] Open
Abstract
OBJECTIVES Diseases associated with the circulatory system are the main causes of worldwide morbidity and mortality, implying the need for vascular implants. Thus, the production of vascular biomaterials has proven to be a promising alternative to therapies used in studies and research related to vascular physiology. The present project aims to achieve the artificial development of blood vessels through the recellularization of vascular scaffolds derived from bovine placental vessels. METHODS The chorioallantoic surface of the bovine placenta was used to produce decellularized biomaterials. For recellularization, 2.5 x 104 endothelial cells were seeded above each decellularized vessel fragment during three or seven days, when culture were interrupted, and the fragments were fixed for cell attachment analysis. Decellularized and recellularized biomaterials were evaluated by basic histology, scanning electron microscopy, and immunohistochemistry. RESULTS The decellularization process produced vessels that maintained natural structure and elastin content, and no cells or gDNA remains were observed. Endothelial precursor cells were also attached to lumen and external surface of the decellularized vessel.Conclusion: Our results show a possibility of future uses of this biomaterial in cardiovascular medicine, as in the development of engineered vessels.
Collapse
Affiliation(s)
- Tarley Santos Oliveira
- Departamento de CirurgiaFaculdade de Medicina Veterinária e ZootecniaUniversidade de São PauloSão PauloSPBrasilDepartamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP – Brasil
| | - Igor Smirnow
- Departamento de CirurgiaFaculdade de Medicina Veterinária e ZootecniaUniversidade de São PauloSão PauloSPBrasilDepartamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP – Brasil
| | - Kadija Mohamed Santee
- Departamento de CirurgiaFaculdade de Medicina Veterinária e ZootecniaUniversidade de São PauloSão PauloSPBrasilDepartamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP – Brasil
| | - Maria Angelica Miglino
- Departamento de CirurgiaFaculdade de Medicina Veterinária e ZootecniaUniversidade de São PauloSão PauloSPBrasilDepartamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP – Brasil
| | - Rodrigo da Silva Nunes Barreto
- Departamento de CirurgiaFaculdade de Medicina Veterinária e ZootecniaUniversidade de São PauloSão PauloSPBrasilDepartamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP – Brasil
| |
Collapse
|
43
|
Garcia LR, Garzesi AM, Brito FDS, Felicio ML, Bertanha M. Scaffolds for Use in Blood Vessel Bioengineering: What are the Prospects? Arq Bras Cardiol 2023; 120:e20230341. [PMID: 37403875 PMCID: PMC10344349 DOI: 10.36660/abc.20230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023] Open
Affiliation(s)
- Leonardo Rufino Garcia
- Hospital das Clínicas de BotucatuFaculdade de Medicina de BotucatuUniversidade Estadual PaulistaSão PauloSPBrasilHospital das Clínicas de Botucatu e Faculdade de Medicina de Botucatu – Universidade Estadual Paulista (UNESP) – Serviço de Cirurgia Cardiovascular e Transplante Cardíaco, São Paulo, SP – Brasil
| | - André Monti Garzesi
- Hospital das Clínicas de BotucatuFaculdade de Medicina de BotucatuUniversidade Estadual PaulistaSão PauloSPBrasilHospital das Clínicas de Botucatu e Faculdade de Medicina de Botucatu – Universidade Estadual Paulista (UNESP) – Serviço de Cirurgia Cardiovascular e Transplante Cardíaco, São Paulo, SP – Brasil
| | - Flávio de Souza Brito
- Hospital das Clínicas de BotucatuFaculdade de Medicina de BotucatuUniversidade Estadual PaulistaSão PauloSPBrasilHospital das Clínicas de Botucatu e Faculdade de Medicina de Botucatu – Universidade Estadual Paulista (UNESP) – Serviço de Cardiologia, São Paulo, SP – Brasil
| | - Marcello Laneza Felicio
- Hospital das Clínicas de BotucatuFaculdade de Medicina de BotucatuUniversidade Estadual PaulistaSão PauloSPBrasilHospital das Clínicas de Botucatu e Faculdade de Medicina de Botucatu – Universidade Estadual Paulista (UNESP) – Serviço de Cirurgia Cardiovascular e Transplante Cardíaco, São Paulo, SP – Brasil
| | - Matheus Bertanha
- Hospital das Clínicas de BotucatuFaculdade de Medicina de BotucatuUniversidade Estadual PaulistaSão PauloSPBrasilHospital das Clínicas de Botucatu e Faculdade de Medicina de Botucatu – Universidade Estadual Paulista (UNESP) – Serviço de Cirurgia Vascular, São Paulo, SP – Brasil
| |
Collapse
|
44
|
Chen J, Zhang D, Wu LP, Zhao M. Current Strategies for Engineered Vascular Grafts and Vascularized Tissue Engineering. Polymers (Basel) 2023; 15:polym15092015. [PMID: 37177162 PMCID: PMC10181238 DOI: 10.3390/polym15092015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Blood vessels not only transport oxygen and nutrients to each organ, but also play an important role in the regulation of tissue regeneration. Impaired or occluded vessels can result in ischemia, tissue necrosis, or even life-threatening events. Bioengineered vascular grafts have become a promising alternative treatment for damaged or occlusive vessels. Large-scale tubular grafts, which can match arteries, arterioles, and venules, as well as meso- and microscale vasculature to alleviate ischemia or prevascularized engineered tissues, have been developed. In this review, materials and techniques for engineering tubular scaffolds and vasculature at all levels are discussed. Examples of vascularized tissue engineering in bone, peripheral nerves, and the heart are also provided. Finally, the current challenges are discussed and the perspectives on future developments in biofunctional engineered vessels are delineated.
Collapse
Affiliation(s)
- Jun Chen
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Center for Chemical Biology and Drug Discovery, Laboratory of Computational Biomedicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Di Zhang
- Center for Chemical Biology and Drug Discovery, Laboratory of Computational Biomedicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lin-Ping Wu
- Center for Chemical Biology and Drug Discovery, Laboratory of Computational Biomedicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ming Zhao
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
45
|
Adipose-Derived Stem Cells in Reinforced Collagen Gel: A Comparison between Two Approaches to Differentiation towards Smooth Muscle Cells. Int J Mol Sci 2023; 24:ijms24065692. [PMID: 36982766 PMCID: PMC10058441 DOI: 10.3390/ijms24065692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Scaffolds made of degradable polymers, such as collagen, polyesters or polysaccharides, are promising matrices for fabrication of bioartificial vascular grafts or patches. In this study, collagen isolated from porcine skin was processed into a gel, reinforced with collagen particles and with incorporated adipose tissue-derived stem cells (ASCs). The cell-material constructs were then incubated in a DMEM medium with 2% of FS (DMEM_part), with added polyvinylalcohol nanofibers (PVA_part sample), and for ASCs differentiation towards smooth muscle cells (SMCs), the medium was supplemented either with human platelet lysate released from PVA nanofibers (PVA_PL_part) or with TGF-β1 + BMP-4 (TGF + BMP_part). The constructs were further endothelialised with human umbilical vein endothelial cells (ECs). The immunofluorescence staining of alpha-actin and calponin, and von Willebrand factor, was performed. The proteins involved in cell differentiation, the extracellular matrix (ECM) proteins, and ECM remodelling proteins were evaluated by mass spectrometry on day 12 of culture. Mechanical properties of the gels with ASCs were measured via an unconfined compression test on day 5. Gels evinced limited planar shrinkage, but it was higher in endothelialised TGF + BMP_part gel. Both PVA_PL_part samples and TGF + BMP_part samples supported ASC growth and differentiation towards SMCs, but only PVA_PL_part supported homogeneous endothelialisation. Young modulus of elasticity increased in all samples compared to day 0, and PVA_PL_part gel evinced a slightly higher ratio of elastic energy. The results suggest that PVA_PL_part collagen construct has the highest potential to remodel into a functional vascular wall.
Collapse
|
46
|
Li Y, Zhou Y, Qiao W, Shi J, Qiu X, Dong N. Application of decellularized vascular matrix in small-diameter vascular grafts. Front Bioeng Biotechnol 2023; 10:1081233. [PMID: 36686240 PMCID: PMC9852870 DOI: 10.3389/fbioe.2022.1081233] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Coronary artery bypass grafting (CABG) remains the most common procedure used in cardiovascular surgery for the treatment of severe coronary atherosclerotic heart disease. In coronary artery bypass grafting, small-diameter vascular grafts can potentially replace the vessels of the patient. The complete retention of the extracellular matrix, superior biocompatibility, and non-immunogenicity of the decellularized vascular matrix are unique advantages of small-diameter tissue-engineered vascular grafts. However, after vascular implantation, the decellularized vascular matrix is also subject to thrombosis and neoplastic endothelial hyperplasia, the two major problems that hinder its clinical application. The keys to improving the long-term patency of the decellularized matrix as vascular grafts include facilitating early endothelialization and avoiding intravascular thrombosis. This review article sequentially introduces six aspects of the decellularized vascular matrix as follows: design criteria of vascular grafts, components of the decellularized vascular matrix, the changing sources of the decellularized vascular matrix, the advantages and shortcomings of decellularization technologies, modification methods and the commercialization progress as well as the application prospects in small-diameter vascular grafts.
Collapse
Affiliation(s)
| | | | | | | | - Xuefeng Qiu
- *Correspondence: Xuefeng Qiu, ; Nianguo Dong,
| | | |
Collapse
|
47
|
Biological Scaffolds for Congenital Heart Disease. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010057. [PMID: 36671629 PMCID: PMC9854830 DOI: 10.3390/bioengineering10010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023]
Abstract
Congenital heart disease (CHD) is the most predominant birth defect and can require several invasive surgeries throughout childhood. The absence of materials with growth and remodelling potential is a limitation of currently used prosthetics in cardiovascular surgery, as well as their susceptibility to calcification. The field of tissue engineering has emerged as a regenerative medicine approach aiming to develop durable scaffolds possessing the ability to grow and remodel upon implantation into the defective hearts of babies and children with CHD. Though tissue engineering has produced several synthetic scaffolds, most of them failed to be successfully translated in this life-endangering clinical scenario, and currently, biological scaffolds are the most extensively used. This review aims to thoroughly summarise the existing biological scaffolds for the treatment of paediatric CHD, categorised as homografts and xenografts, and present the preclinical and clinical studies. Fixation as well as techniques of decellularisation will be reported, highlighting the importance of these approaches for the successful implantation of biological scaffolds that avoid prosthetic rejection. Additionally, cardiac scaffolds for paediatric CHD can be implanted as acellular prostheses, or recellularised before implantation, and cellularisation techniques will be extensively discussed.
Collapse
|
48
|
Wang M, Xu P, Lei B. Engineering multifunctional bioactive citrate-based biomaterials for tissue engineering. Bioact Mater 2023; 19:511-537. [PMID: 35600971 PMCID: PMC9096270 DOI: 10.1016/j.bioactmat.2022.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/21/2022] Open
Abstract
Developing bioactive biomaterials with highly controlled functions is crucial to enhancing their applications in regenerative medicine. Citrate-based polymers are the few bioactive polymer biomaterials used in biomedicine because of their facile synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, and functional groups available for modification. In recent years, various multifunctional designs and biomedical applications, including cardiovascular, orthopedic, muscle tissue, skin tissue, nerve and spinal cord, bioimaging, and drug or gene delivery based on citrate-based polymers, have been extensively studied, and many of them have good clinical application potential. In this review, we summarize recent progress in the multifunctional design and biomedical applications of citrate-based polymers. We also discuss the further development of multifunctional citrate-based polymers with tailored properties to meet the requirements of various biomedical applications.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710000, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710000, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
49
|
Sellahewa SG, Li JY, Xiao Q. Updated Perspectives on Direct Vascular Cellular Reprogramming and Their Potential Applications in Tissue Engineered Vascular Grafts. J Funct Biomater 2022; 14:21. [PMID: 36662068 PMCID: PMC9866165 DOI: 10.3390/jfb14010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease is a globally prevalent disease with far-reaching medical and socio-economic consequences. Although improvements in treatment pathways and revascularisation therapies have slowed disease progression, contemporary management fails to modulate the underlying atherosclerotic process and sustainably replace damaged arterial tissue. Direct cellular reprogramming is a rapidly evolving and innovative tissue regenerative approach that holds promise to restore functional vasculature and restore blood perfusion. The approach utilises cell plasticity to directly convert somatic cells to another cell fate without a pluripotent stage. In this narrative literature review, we comprehensively analyse and compare direct reprogramming protocols to generate endothelial cells, vascular smooth muscle cells and vascular progenitors. Specifically, we carefully examine the reprogramming factors, their molecular mechanisms, conversion efficacies and therapeutic benefits for each induced vascular cell. Attention is given to the application of these novel approaches with tissue engineered vascular grafts as a therapeutic and disease-modelling platform for cardiovascular diseases. We conclude with a discussion on the ethics of direct reprogramming, its current challenges, and future perspectives.
Collapse
Affiliation(s)
- Saneth Gavishka Sellahewa
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jojo Yijiao Li
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
50
|
Antonova L, Kutikhin A, Sevostianova V, Lobov A, Repkin E, Krivkina E, Velikanova E, Mironov A, Mukhamadiyarov R, Senokosova E, Khanova M, Shishkova D, Markova V, Barbarash L. Controlled and Synchronised Vascular Regeneration upon the Implantation of Iloprost- and Cationic Amphiphilic Drugs-Conjugated Tissue-Engineered Vascular Grafts into the Ovine Carotid Artery: A Proteomics-Empowered Study. Polymers (Basel) 2022; 14:polym14235149. [PMID: 36501545 PMCID: PMC9736446 DOI: 10.3390/polym14235149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Implementation of small-diameter tissue-engineered vascular grafts (TEVGs) into clinical practice is still delayed due to the frequent complications, including thrombosis, aneurysms, neointimal hyperplasia, calcification, atherosclerosis, and infection. Here, we conjugated a vasodilator/platelet inhibitor, iloprost, and an antimicrobial cationic amphiphilic drug, 1,5-bis-(4-tetradecyl-1,4-diazoniabicyclo [2.2.2]octan-1-yl) pentane tetrabromide, to the luminal surface of electrospun poly(ε-caprolactone) (PCL) TEVGs for preventing thrombosis and infection, additionally enveloped such TEVGs into the PCL sheath to preclude aneurysms, and implanted PCLIlo/CAD TEVGs into the ovine carotid artery (n = 12) for 6 months. The primary patency was 50% (6/12 animals). TEVGs were completely replaced with the vascular tissue, free from aneurysms, calcification, atherosclerosis and infection, completely endothelialised, and had clearly distinguishable medial and adventitial layers. Comparative proteomic profiling of TEVGs and contralateral carotid arteries found that TEVGs lacked contractile vascular smooth muscle cell markers, basement membrane components, and proteins mediating antioxidant defense, concurrently showing the protein signatures of upregulated protein synthesis, folding and assembly, enhanced energy metabolism, and macrophage-driven inflammation. Collectively, these results suggested a synchronised replacement of PCL with a newly formed vascular tissue but insufficient compliance of PCLIlo/CAD TEVGs, demanding their testing in the muscular artery position or stimulation of vascular smooth muscle cell specification after the implantation.
Collapse
Affiliation(s)
- Larisa Antonova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
- Correspondence: ; Tel.: +7-9609077067
| | - Viktoriia Sevostianova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Arseniy Lobov
- Department of Regenerative Biomedicine, Research Institute of Cytology, 4 Tikhoretskiy Prospekt, Saint Petersburg 194064, Russia
| | - Egor Repkin
- Centre for Molecular and Cell Technologies, Saint Petersburg State University, Universitetskaya Embankment, 7/9, Saint Petersburg 199034, Russia
| | - Evgenia Krivkina
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Elena Velikanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Andrey Mironov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Rinat Mukhamadiyarov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Evgenia Senokosova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Mariam Khanova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| | - Leonid Barbarash
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Sosnovy Boulevard, Kemerovo 650002, Russia
| |
Collapse
|