1
|
Pan M, Qian C, Huo S, Wu Y, Zhao X, Ying Y, Wang B, Yang H, Yeerken A, Wang T, Fu M, Wang L, Wei Y, Zhao Y, Shao C, Wang H, Zhao C. Gut-derived lactic acid enhances tryptophan to 5-hydroxytryptamine in regulation of anxiety via Akkermansia muciniphila. Gut Microbes 2025; 17:2447834. [PMID: 39782002 PMCID: PMC11730363 DOI: 10.1080/19490976.2024.2447834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
The gut microbiota plays a pivotal role in anxiety regulation through pathways involving neurotransmitter production, immune signaling, and metabolic interactions. Among these, gut-derived serotonin (5-hydroxytryptamine, 5-HT), synthesized from tryptophan metabolism, has been identified as a key mediator. However, it remains unclear whether specific microbial factors regulate tryptophan metabolism to influence 5-HT production and anxiety regulation. In this study, we analyzed 110 athletes undergoing closed training and found that fecal lactate levels were significantly associated with anxiety indicators. We observed a significant negative correlation between Akkermansia abundance and anxiety levels in athletes. Co-supplementation with lactate and Akkermansia muciniphila (A. muciniphila) modulated tryptophan metabolism by increasing key enzyme TPH1 and reducing IDO1, thus shifting metabolism from kynurenine (Kyn) to 5-HT. In addition, lactate enhanced the propionate production capacity of A. muciniphila, potentially contributing to anxiety reduction in mice. Taken together, these findings suggest that enteric lactate and A. muciniphila collaboratively restore the imbalance in tryptophan metabolism, leading to increased 5-HT activity and alleviating anxiety phenotypes. This study highlights the intricate interplay between gut metabolites and anxiety regulation, offering potential avenues for microbiota-targeted therapeutic strategies for anxiety.
Collapse
Affiliation(s)
- Miaomiao Pan
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenglang Qian
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shaoye Huo
- Department of Clinical Nutrition, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yuchen Wu
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | | | | | - Boyu Wang
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Yang
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anaguli Yeerken
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tongyao Wang
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengwei Fu
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lihong Wang
- Department of Clinical Nutrition, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yuhuan Wei
- Department of Clinical Nutrition, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yunhua Zhao
- Department of Clinical Nutrition, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Chunhai Shao
- Department of Clinical Nutrition, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- Department of Clinical Nutrition, Huashan Hospital, Fudan University, Shanghai, China
| | - Huijing Wang
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Chao Zhao
- MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Eskandar K. Genetic contributions to the stability and satisfaction in Sexual Relationships. Glob Med Genet 2025; 12:100043. [PMID: 40093333 PMCID: PMC11910089 DOI: 10.1016/j.gmg.2025.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 03/19/2025] Open
Abstract
The stability and satisfaction of sexual relationships are critical determinants of individual well-being and societal cohesion. While much is known about the psychological and social factors influencing these outcomes, the genetic underpinnings remain an emerging field of inquiry. This literature review synthesizes findings from 42 peer-reviewed studies published between 2003 and 2023, exploring the genetic contributions to relationship stability and satisfaction. Key findings indicate that neuroticism, with an estimated heritability of ∼40 %, is a strong predictor of relationship instability, while agreeableness and extraversion are associated with greater relationship satisfaction. The review examines the genetic foundations of personality traits, attachment styles, emotional regulation, hormonal influences, sexual compatibility, communication styles, and mental health predispositions. Additionally, it highlights the interplay between genetic and environmental factors, presenting case studies and empirical evidence that elucidate the complex interactions at play. Ethical considerations and future research directions are discussed to provide a comprehensive understanding of how genetics can shape successful sexual relationships. By bridging the gap between genetic research and relationship science, this review offers data-driven insights to guide future investigations in this interdisciplinary domain.
Collapse
|
3
|
Wu J, Tang J, Huang D, Wang Y, Zhou E, Ru Q, Xu G, Chen L, Wu Y. Study on the comorbid mechanisms of sarcopenia and late-life depression. Behav Brain Res 2025; 485:115538. [PMID: 40122287 DOI: 10.1016/j.bbr.2025.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
The increasing global aging population has brought greater focus to age-related diseases, particularly muscle-brain comorbidities such as sarcopenia and late-life depression. Sarcopenia, defined by the gradual loss of muscle mass and function, is notably prevalent among older individuals, while late-life depression profoundly affects their mental health and overall well-being. Epidemiological evidence suggests a high co-occurrence of these two conditions, although the precise biological mechanisms linking them remain inadequately understood. This review synthesizes the existing body of literature on sarcopenia and late-life depression, examining their definitions, prevalence, clinical presentations, and available treatments. The goal is to clarify the potential connections between these comorbidities and offer a theoretical framework for the development of future preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Jiale Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Jun Tang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Di Huang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yu Wang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Enyuan Zhou
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Guodong Xu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
4
|
Shokrnejad-namin T, Amini E, Khakpai F, Zarrindast MR. The additive effect between citalopram and muscimol upon induction of antinociceptive effect in male mice. IBRO Neurosci Rep 2024; 17:58-64. [PMID: 39807389 PMCID: PMC11725972 DOI: 10.1016/j.ibneur.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 01/16/2025] Open
Abstract
Previous investigations have revealed the role of GABAergic and serotonergic systems in the modulation of pain behavior. This research aimed to examine the effects of intracerebroventricular (i.c.v.) infusion of GABAA receptor agonist and antagonist as well as citalopram on pain behavior in male mice. For i.c.v. microinjection, a guide cannula was surgically implanted in the left lateral ventricle of male mice. Pain behavior was evaluated using a tail-flick test. Tail flick latency was measured in each experimental group of mice every 15 min (for 60 min). I.c.v. microinjection of muscimol (0.5 and 1 µg/mouse; GABAA receptor agonist) into the left lateral ventricle dose-dependently induced an antinociceptive effect. On the other hand, i.c.v. infusion of bicuculline (1 µg/mouse; GABAA receptor antagonist) induced a hyperalgesia response. Moreover, intraperitoneally (i.p.) administration of citalopram (8 mg/kg) produced an antinociceptive effect. Co-treatment of citalopram (8 mg/kg) along with muscimol (0.25 µg/mouse) or bicuculline (0.25 µg/mouse) potentiated the antinociceptive effect produced by citalopram. We found an additive antinociceptive effect of citalopram and muscimol in male mice. In conclusion, our results suggested an interaction between citalopram and GABAergic agents on the modulation of pain behavior in male mice.
Collapse
Affiliation(s)
- Taha Shokrnejad-namin
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Amini
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| |
Collapse
|
5
|
Tanada S, Nakagomi T, Nakano-Doi A, Sawano T, Kubo S, Kuramoto Y, Uchida K, Yamahara K, Doe N, Yoshimura S. Human-Brain-Derived Ischemia-Induced Stem Cell Transplantation Is Associated with a Greater Neurological Functional Improvement Compared with Human-Bone Marrow-Derived Mesenchymal Stem Cell Transplantation in Mice After Stroke. Int J Mol Sci 2024; 25:12065. [PMID: 39596134 PMCID: PMC11593343 DOI: 10.3390/ijms252212065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The transplantation of injury/ischemia-induced stem cells (iSCs) extracted from post-stroke human brains can improve the neurological functions of mice after stroke. However, the usefulness of iSCs as an alternative stem cell source remains unclear. The current study aimed to assess the efficacy of iSC and mesenchymal stem cell (MSC) transplantation. In this experiment, equal numbers of human brain-derived iSCs (h-iSCs) (5.0 × 104 cells/μL) and human bone marrow-derived MSCs (h-MSCs) (5.0 × 104 cells/μL) were intracranially transplanted into post-stroke mouse brains after middle cerebral artery occlusion. Results showed that not only h-iSC transplantation but also h-MSC transplantation activated endogenous neural stem/progenitor cells (NSPCs) around the grafted sites and promoted neurological functional improvement. However, mice that received h-iSC transplantation experienced improvement in a higher number of behavioral tasks compared with those that received h-MSC transplantation. To investigate the underlying mechanism, NSPCs extracted from the ischemic areas of post-stroke mouse brains were cocultured with h-iSCs or h-MSCs. After coincubation, NSPCs, h-iSCs, and h-MSCs were selectively collected via fluorescence-activated cell sorting. Next, their traits were analyzed via microarray analysis. The genes related to various neuronal lineages in NSPCs after coincubation with h-iSCs were enriched compared with those in NSPCs after coincubation with h-MSCs. In addition, the gene expression patterns of h-iSCs relative to those of h-MSCs showed that the expression of genes related to synapse formation and neurotransmitter-producing neurons increased more after coincubation with NSPCs. Hence, cell-cell interactions with NSPCs promoted transdifferentiation toward functional neurons predominantly in h-iSCs. In accordance with these findings, immunohistochemistry showed that the number of neuronal networks between NSPCs and h-iSCs was higher than that between NSPCs and h-MSCs. Therefore, compared with h-MSC transplantation, h-iSC transplantation is associated with a higher neurological functional improvement, presumably by more effectively modulating the fates of endogenous NSPCs and grafted h-iSCs themselves.
Collapse
Affiliation(s)
- Shuichi Tanada
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.T.); (Y.K.); (K.U.); (S.Y.)
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.); (K.Y.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.); (K.Y.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Toshinori Sawano
- Department of Biomedical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan;
| | - Shuji Kubo
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.); (K.Y.)
| | - Yoji Kuramoto
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.T.); (Y.K.); (K.U.); (S.Y.)
| | - Kazutaka Uchida
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.T.); (Y.K.); (K.U.); (S.Y.)
| | - Kenichi Yamahara
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.); (K.Y.)
| | - Nobutaka Doe
- Department of Rehabilitation, Hyogo Medical University (Kobe Campus), 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530, Japan;
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.T.); (Y.K.); (K.U.); (S.Y.)
| |
Collapse
|
6
|
Song Y, Sun X, Shen L, Qu Z, Yin J, Wang Z, Zhang H. Genes of cancer-related fatigue: a scoping review. Front Oncol 2024; 14:1446321. [PMID: 39372868 PMCID: PMC11449716 DOI: 10.3389/fonc.2024.1446321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/08/2024] [Indexed: 10/08/2024] Open
Abstract
Background Cancer-related fatigue (CRF) is a prevalent adverse effect experienced by cancer patients while receiving and after treatment, impacting as many as 90% of individuals. Although CRF is common, the genetic processes responsible for it and their influence on individual vulnerability are not well understood and are still being investigated. Objective The primary objective of this scoping review is to identify and assess genes linked to the vulnerability and severity of CRF. This will help us better understand the genetic factors involved and assist in developing targeted nursing treatments in clinical settings. Methods This review followed the PRISMA guidelines. A comprehensive search was performed in databases, such as PubMed, EMBASE, Web of Science, Cochrane Library, SinoMed, CNKI, and VIP, encompassing genetic association studies on CRF published up to February 25, 2024. The JBI Critical Appraisal Tools were used to assess the quality of observational studies. Results This evaluation encompassed a comprehensive analysis of 14 studies that involved 3,254 patients. The results indicate strong connections between CRF and various inflammatory cytokines (IL-4, IL-6, IL-8, IL-10, IL-1β), tumor necrosis factor-alpha (TNF-α), catechol-O-methyltransferase (COMT), and circadian rhythm genes (CLOCK, PER). Conclusion This scoping review emphasizes the significant genetic factor in CRF, with multiple genes showing distinct effects on cancer fatigue symptoms. Identifying these genes enhances our comprehension of CRF and unveils novel avenues for cancer treatment approaches. Future research should prioritize conducting cohort studies to monitor alterations in gene expression pre- and post-treatment, hence improving individualized medicinal strategies in oncology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongshi Zhang
- College of Nursing, Changchun University of Chinese Medicine,
Changchun, Jilin, China
| |
Collapse
|
7
|
Kambur H, Dolunay A. A research on copyright issues impacting artists emotional states in the framework of artificial intelligence. Front Psychol 2024; 15:1409646. [PMID: 39171225 PMCID: PMC11335679 DOI: 10.3389/fpsyg.2024.1409646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Art and artistic creation serve as a means for artists to communicate with their environment, society, and the external world. However, the protection of artistic creations, as forms of communication, is not only a right for artists but also serves as a crucial safeguard that nurtures them during the creative process. Beyond the traditional issues of copyright, the significant advancements in Artificial Intelligence (AI) in today's digital world have introduced a new debate regarding the ownership of copyright in artistic creations generated by AI. The question arises whether copyright belongs to the AI itself or to the individuals who guide the creative process behind it. In this study, based on the concepts of art, artistic creation, and emotional states, copyright issues will be examined. Data obtained from semi-structured in-depth interviews with artists and academic experts (eight artists, two communication experts, two law experts, and eight psychology experts) in the field will be analysed through content analysis to explore their perspectives regarding the discussion on emotional states, AI, and copyrights. The research highlights the variability of emotional states and their significant effects on individuals. Addressing the increasing trend of copyright issues, particularly within the framework of digitalization and inadequate legal regulations, it was found that artists' emotional states are negatively impacted by these problems. This negative influence can adversely affect artists' creativity and desire to produce. On the other hand, it was also identified that in artworks produced especially through AI, if artists' rights are not protected, there is a possibility of negative emotional states arising. In conclusion, suggestions are as follows: Emphasising the importance of awareness-raising educational activities nationally and internationally, national copyright law (in Northern Cyprus) needs to be revised to protect traditional copyright and be expanded to include digital copyright, especially for works produced through AI. On an international level, emphasising the need to revise international agreements to include regulations for works produced through AI or to create a new agreement based on the importance of this issue.
Collapse
Affiliation(s)
- Hüseyin Kambur
- Faculty of Communication, Near East University, Nicosia, Cyprus
| | - Ayhan Dolunay
- Faculty of Communication, Grand Library, Near East University, Nicosia, Cyprus
| |
Collapse
|
8
|
O'Gorman ET, Meyer GJ. Developmental cascades from early childhood attachment security to adolescent level of personality functioning among high-risk youth. Dev Psychopathol 2024:1-14. [PMID: 38934483 PMCID: PMC11671614 DOI: 10.1017/s0954579424001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
This study examines associations between early childhood attachment security and adolescent personality functioning in a high-risk sample within a developmental psychopathology framework. Data from 2,268 children (1165 male; 1103 female) and caregivers participating in Future of Families and Child Well-Being Study (FFCWS) were used to examine (1) effects of genetic polymorphisms of the serotonin transporter (5-HTTLPR) and dopamine D4 receptor (DRD4) genes and adverse childhood experiences (ACEs) on attachment security and emotional and behavioral dysregulation in early childhood and (2) longitudinal associations and transactional relationships among attachment security, dysregulation, negative parenting attitudes and behaviors, social competence, and adolescent personality functioning. Results revealed that ACEs predicted attachment security over and above sex or the genetic risk, and gene × environment interactions did not increment prediction. Results of cascade models showed that greater early childhood attachment security predicted higher adolescent level of personality functioning via pathways through intermediary variables. Limitations and future research directions are discussed.
Collapse
Affiliation(s)
- Emily T O'Gorman
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gregory J Meyer
- Department of Psychology, University of Toledo, Toledo, OH, USA
| |
Collapse
|
9
|
Neukam PT, Müller DK, Deza-Lougovski YI, Pooseh S, Witt SH, Rietschel M, Smolka MN. Connection Failure: Differences in White Matter Microstructure Are Associated with 5-HTTLPR but Not with Risk Seeking for Losses. Int J Mol Sci 2024; 25:6666. [PMID: 38928372 PMCID: PMC11203796 DOI: 10.3390/ijms25126666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
S/S carriers of 5-HTTLPR have been found to be more risk seeking for losses compared to L/L carriers. This finding may be the result of reduced top-down control from the frontal cortex due to altered signal pathways involving the amygdala and ventral striatum. The serotonergic system is known to be involved in neurodevelopment and neuroplasticity. Therefore, the aim of this study was to investigate whether structural differences in white matter can explain the differences in risk-seeking behaviour. Lower structural connectivity in S/S compared to L/L carriers and a negative relationship between risk seeking for losses and connectivity were assumed. Diffusion-weighted imaging was used to compute diffusion parameters for the frontostriatal and uncinate tract in 175 genotyped individuals. The results showed no significant relationship between diffusion parameters and risk seeking for losses. Furthermore, we did not find significant differences in diffusion parameters of the S/S vs. L/L group. There were only group differences in the frontostriatal tract showing stronger structural connectivity in the S/L group, which is also reflected in the whole brain approach. Therefore, the data do not support the hypothesis that the association between 5-HTTLPR and risk seeking for losses is related to differences in white matter pathways implicated in decision-making.
Collapse
Affiliation(s)
- Philipp T. Neukam
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Dirk K. Müller
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Shakoor Pooseh
- Center for Interdisciplinary Digital Sciences (CIDS), Technische Universität Dresden, 01069 Dresden, Germany;
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, 01307 Dresden, Germany;
| |
Collapse
|
10
|
Abdolsamadi M, Rasouli S, Alizadeh Severi A, Khirehgesh MR, Safari F, Mahdieh N, Khazaie H, Soleymani B, Akbari B. The Association Between the 5-Hydroxytryptamine Receptor 2A Gene Variants rs6311 and rs6313 and Obstructive Sleep Apnea in the Iranian Kurdish Population. Genet Test Mol Biomarkers 2024; 28:159-164. [PMID: 38657123 DOI: 10.1089/gtmb.2023.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Introduction: Sleep is one of the most significant parts of everyone's life. Most people sleep for about one-third of their lives. Sleep disorders negatively impact the quality of life. Obstructive sleep apnea (OSA) is a severe sleep disorder that significantly impacts the patient's life and their family members. This study aimed to investigate the relationship between rs6313 and rs6311 polymorphisms in the serotonin receptor type 2A gene and OSA in the Kurdish population. Materials and Methods: The study's population comprises 100 OSA sufferers and 100 healthy people. Polysomnography diagnostic tests were done on both the patient and control groups. The polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) was used to investigate the relationship between OSA and LEPR gene polymorphisms. Results: Statistical analysis showed a significant relationship between genotype frequencies of patient and control groups of rs6311 with OSA in dominant [odds ratio (OR) = 5.203, p < 0.001) and codominant models (OR = 9.7, p < 0.001). Also, there was a significant relationship between genotype frequencies of patient and control groups of rs6313 with OSA in dominant (OR = 10.565, p < 0.001) and codominant models (OR = 5.938, p < 0.001). Conclusions: Findings from the study demonstrated that the two polymorphisms rs6311 and rs6313 could be effective at causing OSA; however, there was no correlation between the severity of the disease and either of the two polymorphisms.
Collapse
Affiliation(s)
- Mohammad Abdolsamadi
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Sharareh Rasouli
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Ali Alizadeh Severi
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nejat Mahdieh
- Cardiogenetic Research Laboratory, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bijan Soleymani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bahman Akbari
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
11
|
Tassone VK, Gholamali Nezhad F, Demchenko I, Rueda A, Bhat V. Amygdala biomarkers of treatment response in major depressive disorder: An fMRI systematic review of SSRI antidepressants. Psychiatry Res Neuroimaging 2024; 338:111777. [PMID: 38183847 DOI: 10.1016/j.pscychresns.2023.111777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Functional neuroimaging studies have demonstrated abnormal activity and functional connectivity (FC) of the amygdala among individuals with major depressive disorder (MDD), which may be rectified with selective serotonin reuptake inhibitor (SSRI) treatment. This systematic review aimed to identify changes in the amygdala on functional magnetic resonance imaging (fMRI) scans among individuals with MDD who received SSRIs. A search for fMRI studies examining amygdala correlates of SSRI response via fMRI was conducted through OVID (MEDLINE, PsycINFO, and Embase). The end date was April 4th, 2023. In total, 623 records were screened, and 16 studies were included in this review. While the search pertained to SSRIs broadly, the included studies were escitalopram-, citalopram-, fluoxetine-, sertraline-, and paroxetine-specific. Decreases in event-related amygdala activity were found following 6-to-12-week SSRI treatment, particularly in response to negative stimuli. Eight-week courses of SSRI pharmacotherapy were associated with increased event-related amygdala FC (i.e., with the prefrontal [PFC] and anterior cingulate cortices, insula, thalamus, caudate nucleus, and putamen) and decreased resting-state effective connectivity (i.e., amygdala-PFC). Preliminary evidence suggests that SSRIs may alter amygdala activity and FC in MDD. Additional studies are needed to corroborate findings. Future research should employ long-term follow-ups to determine whether effects persist after treatment termination.
Collapse
Affiliation(s)
- Vanessa K Tassone
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario M5B 1M8, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - Fatemeh Gholamali Nezhad
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario M5B 1M8, Canada
| | - Ilya Demchenko
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario M5B 1M8, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - Alice Rueda
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario M5B 1M8, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario M5B 1M8, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada; Neuroscience Research Program, St. Michael's Hospital, 193 Yonge Street 6-013, Toronto, Ontario M5B 1M8, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
12
|
Huang C, van Wijnen AJ, Im HJ. Serotonin Transporter (5-Hydroxytryptamine Transporter, SERT, SLC6A4) and Sodium-dependent Reuptake Inhibitors as Modulators of Pain Behaviors and Analgesic Responses. THE JOURNAL OF PAIN 2024; 25:618-631. [PMID: 37852405 PMCID: PMC11781314 DOI: 10.1016/j.jpain.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
The serotonin transporter (5-hydroxytryptamine transporter [5-HTT], Serotonin Transporter (SERT), SLC6A4) modulates the activity of serotonin via sodium-dependent reuptake. Given the established importance of serotonin in the control of pain, 5-HTT has received much interest in studies of pain states and as a pharmacological target for serotonin reuptake inhibitors (SRIs). Animal models expressing varying levels of 5-HTT activity show marked differences in pain behaviors and analgesic responses, as well as many serotonin-related physiological effects. In humans, functional nucleotide variations in the SLC6A4 gene, which encodes the serotonin transporter 5-HTT, are associated with certain pathologic pain conditions and differences in responses to pharmacological therapy. These findings collectively reflect the importance of 5-HTT in the intricate physiology and management of pain, as well as the scientific and clinical challenges that need to be considered for the optimization of 5-HTT-related analgesic therapies. PERSPECTIVE: The serotonin transporter 5-HTT/SCL6A4 is sensitive to pharmacological SRIs. Experimental studies on the physiological functions of serotonin, as well as genetic mouse models and clinical phenotype/genotype correlations of nucleotide variation in the human 5-HTT/SCL6A4 gene, provide new insights for the use of SRIs in chronic pain management.
Collapse
Affiliation(s)
- Cary Huang
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois; Department of Anesthesiology, NewYork-Presbyterian/Weill Cornell Medical Center, New York, New York.
| | - Andre J van Wijnen
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois; Department of Biochemistry, University of Vermont, Burlington, Vermont.
| | - Hee-Jeong Im
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, Illinois.
| |
Collapse
|
13
|
Arruda Sanchez T, Ramos LR, Araujo F, Schenberg EE, Yonamine M, Lobo I, de Araujo DB, Luna LE. Emotion regulation effects of Ayahuasca in experienced subjects during implicit aversive stimulation: An fMRI study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117430. [PMID: 37979818 DOI: 10.1016/j.jep.2023.117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 08/15/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayahuasca is a beverage used in Amazonian traditional medicine and it has been part of the human experience for millennia as well as other different psychoactive plants. Although Ayahuasca has been proposed as potentially therapeutic as an anxiolytic and antidepressant, whilst no studies have been carried out so far investigating their direct effect on brain emotional processing. AIM OF THE STUDY This study aimed to measure the emotional acute effect of Ayahuasca on brain response to implicit aversive stimulation using a face recognition task in functional magnetic resonance imaging (fMRI). MATERIALS AND METHODS Nineteen male experienced Ayahuasca users participated in this study in two fMRI sessions before and after 50 min of the Ayahuasca ingestion. Subjects were presented with pictures of neutral (A) and aversive (B) (fearful or disgusted) faces from the Pictures of Facial Affect Series. Subjects were instructed to identify the gender of the faces (gender discrimination task) while the emotional content was implicit. Subjective mood states were also evaluated before Ayahuasca intake and after the second fMRI session, using a visual analogue mood scale (VAMS). RESULTS During the aversive stimuli, the activity in the bilateral amygdala was attenuated by Ayahuasca (qFDR<0.05). Furthermore, in an exploratory analysis of the effects after intake, Ayahuasca enhances the activation in the insular cortex bilaterally, as well as in the right dorsolateral prefrontal cortex (qFDR<0.05). In the psychometric VAMS scale, subjects reported attenuation of both anxiety and mental sedation (p < 0.01) during acute effects. CONCLUSIONS Together, all reported results including neuroimaging, behavioral data and psychometric self-report suggest that Ayahuasca can promote an emotion regulation mechanism in response to aversive stimuli with corresponding improved cognition including reduced anxiety and mental sedation.
Collapse
Affiliation(s)
- Tiago Arruda Sanchez
- Laboratory of Neuroimaging and Psychophysiology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Lucas Rego Ramos
- Laboratory of Neuroimaging and Psychophysiology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Felipe Araujo
- Laboratory of Neuroimaging and Psychophysiology, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Mauricio Yonamine
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Isabela Lobo
- Instituto de Biodiversidade e Sustentabilidade (NUPEM), UFRJ, Macaé, RJ, Brazil
| | - Draulio Barros de Araujo
- Brain Institute / Hospital Universitário Onofre Lopes, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Luis Eduardo Luna
- Research Centre for the study of psychointegrator plants, Visionary Art and Consciousness - Wasiwaska, Florianópolis, SC, Brazil
| |
Collapse
|
14
|
Sharma R, Kumarasamy M, Parihar VK, Ravichandiran V, Kumar N. Monoamine Oxidase: A Potential Link in Papez Circuit to Generalized Anxiety Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:638-655. [PMID: 37055898 DOI: 10.2174/1871527322666230412105711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 04/15/2023]
Abstract
Anxiety is a common mental illness that affects a large number of people around the world, and its treatment is often based on the use of pharmacological substances such as benzodiazepines, serotonin, and 5-hydroxytyrosine (MAO) neurotransmitters. MAO neurotransmitters levels are deciding factors in the biological effects. This review summarizes the current understanding of the MAO system and its role in the modulation of anxiety-related brain circuits and behavior. The MAO-A polymorphisms have been implicated in the susceptibility to generalized anxiety disorder (GAD) in several investigations. The 5-HT system is involved in a wide range of physiological and behavioral processes, involving anxiety, aggressiveness, stress reactions, and other elements of emotional intensity. Among these, 5-HT, NA, and DA are the traditional 5-HT neurons that govern a range of biological activities, including sleep, alertness, eating, thermoregulation, pains, emotion, and memory, as anticipated considering their broad projection distribution in distinct brain locations. The DNMTs (DNA methyltransferase) protein family, which increasingly leads a prominent role in epigenetics, is connected with lower transcriptional activity and activates DNA methylation. In this paper, we provide an overview of the current state of the art in the elucidation of the brain's complex functions in the regulation of anxiety.
Collapse
Affiliation(s)
- Ravikant Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Murali Kumarasamy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Vipan Kumar Parihar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| |
Collapse
|
15
|
Bahi A, Dreyer JL. Anxiety and ethanol consumption in socially defeated mice; effect of hippocampal serotonin transporter knockdown. Behav Brain Res 2023; 451:114508. [PMID: 37244437 DOI: 10.1016/j.bbr.2023.114508] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
The comorbidity of generalized anxiety disorders (GAD) with alcohol use disorders (AUD) is common and there is an association between the serotonin transporter (SERT) genetic variation and the comorbid conditions of GAD and AUD. However, few mechanistic studies have systematically explored the role of direct SERT manipulation in stress-elicited mood disorders. Therefore, the aim of this study was to determine whether reductions in SERT expression in the hippocampus were sufficient to ameliorate anxiety- and ethanol-related behaviors in socially defeated mice. Following stress exposure, and using stereotaxic surgery, SERT was knocked down using specific shRNA-expressing lentiviral vectors and anxiety-like behavior was evaluated by open-field, elevated plus maze, and marbles burying test. The two-bottle choice (TBC) drinking paradigm was used to assess stress-induced voluntary ethanol intake and preference. Results showed that hippocampal SERT loss-of-function prevented stress-elicited anxiogenic-like effects with no differences in spontaneous locomotor activity. Moreover, in the TBC paradigm, SERT shRNA-injected mice consistently showed a significantly decreased consumption and preference for ethanol when compared to Mock-injected controls. In contrast to ethanol, SERT shRNA-injected mice exhibited similar consumption and preference for saccharin and quinine. Interestingly, we confirmed that SERT hippocampal mRNA expression correlated with measures of anxiety- and ethanol-related behaviors by Pearson correlation analysis. Our findings show that social defeat recruits hippocampal serotoninergic system and that these neuroadaptations mediate the heightened anxiety-like behavior and voluntary alcohol intake observed following stress exposure, suggesting that this system represents a major brain stress element responsible for the negative reinforcement associated with the "dark side" of alcohol addiction.
Collapse
Affiliation(s)
- Amine Bahi
- College of Medicine, Ajman University, Ajman, UAE; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, UAE; Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, UAE.
| | - Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
16
|
Su P, Yan S, Yang J, Tong J, Samsom J, You F, Li Y, Chen Q, Jiang A, Zhai D, Chen J, Sun Z, Zhou J, Liu M, Lee FJS, Xu ZQD, Wang X, Vasdev N, Wong AHC, Liu F. Serum amyloid P component (SAP) modulates antidepressant effects through promoting membrane insertion of the serotonin transporter. Neuropsychopharmacology 2023; 48:508-517. [PMID: 36076020 PMCID: PMC9852251 DOI: 10.1038/s41386-022-01449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 02/02/2023]
Abstract
Serum amyloid P component (SAP) is a universal constituent of human amyloid deposits including those in Alzheimer's disease. SAP has been observed to be elevated in patients with depression, and higher SAP levels are associated with better response to the antidepressant escitalopram. The mechanisms underlying these clinical observations remain unclear. We examined the effect of SAP on serotonin transporter (SERT) expression and localization using Western blot, confocal microscopy, and positron emission tomography with the radioligand [11C]DASB. We also investigated the effect of SAP on treatment response to escitalopram in mice with the forced swim test (FST), a classical behaviour paradigm to assess antidepressant effects. SAP reduced [11C]DASB binding as an index of SERT levels, consistent with Western blots showing decreased total SAP protein because of increased protein degradation. In conjunction with the global decrease in SERT levels, SAP also promotes VAMP-2 mediated SERT membrane insertion. SAP levels are correlated with behavioural despair and SSRI treatment response in mice with FST. In MDD patients, the SAP and membrane SERT levels are correlated with response to SSRI treatment. SAP has complex effects on SERT levels and localization, thereby modulating the effect of SSRIs, which could partially explain clinical variability in antidepressant treatment response. These results add to our understanding of the mechanism for antidepressant drug action, and with further work could be of clinical utility.
Collapse
Affiliation(s)
- Ping Su
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Shuxin Yan
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jian Yang
- Beijing AnDing Hospital, Capital Medical University, Beijing, China, Beijing, China
| | - Junchao Tong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - James Samsom
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Fan You
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China
| | - Yun Li
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China
| | - Qiuyue Chen
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China
| | - Anlong Jiang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Dongxu Zhai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jiahao Chen
- Departments of Neurobiology and Pathology, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Zuoli Sun
- Beijing AnDing Hospital, Capital Medical University, Beijing, China, Beijing, China
| | - Jingjing Zhou
- Beijing AnDing Hospital, Capital Medical University, Beijing, China, Beijing, China
| | - Min Liu
- Beijing AnDing Hospital, Capital Medical University, Beijing, China, Beijing, China
| | - Frank J S Lee
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Zhi-Qing David Xu
- Departments of Neurobiology and Pathology, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Neil Vasdev
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Departments of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Albert H C Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Departments of Psychiatry, University of Toronto, Toronto, ON, Canada
- Departments of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Fang Liu
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, Beijing, China.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Departments of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Departments of Physiology, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Gong WJ, Fong DYT, Wang MP, Lam TH, Chung TWH, Ho SY. Skipping Breakfast and Eating Breakfast Away From Home Were Prospectively Associated With Emotional and Behavioral Problems in 115,217 Chinese Adolescents. J Epidemiol 2022; 32:551-558. [PMID: 34148915 PMCID: PMC9643789 DOI: 10.2188/jea.je20210081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Breakfast is deemed the most important meal of the day. We examined the prospective associations of breakfast habits with emotional/behavioral problems in adolescents and potential effect modification. METHODS 115,217 Primary 6 students (United States Grade 6; mean age, 11.9; standard deviation [SD], 0.59 years) who attended the Student Health Service of Department of Health in Hong Kong in 2004/05, 2006/07, 2008/09 were followed till Secondary 6 (United States Grade 12). Emotional/behavioral problems were biennially examined using Youth Self-Report since Secondary 2 (United States Grade 8). Lifestyles were biennially examined using standardized questionnaires since Primary 6. Prospective associations of breakfast habit with emotional/behavioral problems and potential effect modification were examined using generalized estimating equations. RESULTS Compared with eating breakfast at home, eating breakfast away from home was significantly associated with total emotional/behavioral problems and seven syndromes, including withdrawal, somatic complaints, anxiety/depression, thought problems, attention problems, delinquent behaviors, and aggressive behaviors (adjusted odds ratios [AORs] 1.22-2.04), while skipping breakfast showed stronger associations with the above problems and social problems (AORs 1.34-2.29). Stronger associations were observed in younger students for total and attention problems (P < 0.03) and in those with lower weight status for delinquent behaviors (P = 0.005). CONCLUSION Eating breakfast away from home and especially skipping breakfast were prospectively associated with adolescent emotional/behavioral problems. The associations weakened with increasing age for total emotional/behavioral and attention problems, and weakened with higher weight status for delinquent behaviors, highlighting the vulnerability of younger and underweight children. If the associations are causal, increasing home breakfast may reduce adolescent emotional/behavioral problems and benefit psychosocial health.
Collapse
Affiliation(s)
- Wei-Jie Gong
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China,School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Daniel Yee-Tak Fong
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man-Ping Wang
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tai-Hing Lam
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - Sai-Yin Ho
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Cornell J, Conchas A, Wang XQ, Fink JC, Chen H, Kane MA, Pilli N, Ait-Daoud N, Gorelick DA, Li MD, Johnson BA, Seneviratne C. Validation of serotonin transporter mRNA as a quantitative biomarker of heavy drinking and its comparison to ethyl glucuronide/ethyl sulfate: A randomized, double-blind, crossover trial. Alcohol Clin Exp Res 2022; 46:1888-1899. [PMID: 36031718 PMCID: PMC9588643 DOI: 10.1111/acer.14931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND The serotonin transporter (SERT) mRNA was previously reported to be a quantitative and pathophysiology-based biomarker of heavy drinking in 5HTTLPR:LL genotype-carriers treated with ondansetron. Here, we validated the potential use of SERT mRNA for quantitative prediction of recent alcohol consumption (in the absence of treatment) and compared it with the known biomarkers ethyl glucuronide (EtG) and ethyl sulfate (EtS). METHODS Binge drinking men and women of European ancestry aged 21 to 65 years were enrolled in a 12-day, in-patient, randomized, double-blind, crossover study, where they were administered three beverage doses (placebo, 0.5 g/kg [0.4 g/kg] ethanol, and 1 g/kg [0.9 g/kg] ethanol for men [women]) individually in three 4-day periods (experiments), separated by minimum 7-day washout period. Diet, sleep, and physical activity were controlled throughout the inpatient experiments. Twenty-nine participants were randomized to receive beverage doses counterbalancing the sequence of treatment and gender within subgroups stratified by SERT genotypes 5HTTLPR:LL+rs25531:AA (LA LA ) versus 5HTTLPR:LS/SS. Peripheral venous blood was collected daily for (1) quantification of SERT mRNA (the primary outcome measure) using qRT-PCR and (2) plasma EtG and EtS levels using tandem mass-spectrometry. RESULTS The association between administered beverage dose and SERT mRNA from completers of at least one 4-day experiment (N = 18) assessed by a linear mixed model was not statistically significant. Significant positive associations were found with beverage dose and plasma EtG, EtS and EtG/EtS ratio (β = 5.8, SE = 1.2, p < 0.0001; β = 1.3, SE = 0.6, p = 0.023; and β = 3.0, SE = 0.7, p < 0.0001, respectively; the C-statistics for discriminating outcomes were 0.97, 0.8, and 0.92, respectively). Additionally, we observed a sequence effect with a greater placebo effect on SERT mRNA when it was administered during the first experiment (p = 0.0009), but not on EtG/EtS measures. CONCLUSION The findings do not validate the use of SERT as a biomarker of heavy drinking. Larger and more innovative studies addressing the effects of placebo, race, gender, and response to treatment with serotonergic agents are needed to fully assess the utility of SERT as a biomarker of heavy and binge drinking.
Collapse
Affiliation(s)
- Jessica Cornell
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Andrew Conchas
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD (former affiliation)
| | - Xin-Qun Wang
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Jeffrey C. Fink
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Hegang Chen
- Department of Epidemiology, University of Maryland School of Medicine, Baltimore, MD
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD
| | - Nageswara Pilli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD
| | - Nassima Ait-Daoud
- Department of Psychiatry, University of Virginia, Charlottesville, VA
| | - David A. Gorelick
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | | | - Bankole A. Johnson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD (former affiliation)
| | - Chamindi Seneviratne
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
19
|
Yu M, Huang L, Mao J, Dna G, Luo S. Childhood Maltreatment, Automatic Negative Thoughts, and Resilience: The Protective Roles of Culture and Genes. JOURNAL OF INTERPERSONAL VIOLENCE 2022; 37:349-370. [PMID: 32189557 DOI: 10.1177/0886260520912582] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Resilience, a psychological trait conceptualized as the ability to recover from setbacks, can be weakened by childhood maltreatment, which comprises childhood abuse and childhood neglect. The current study aimed to investigate whether childhood maltreatment could increase automatic negative thoughts (ANT), thus weakening resilience. Furthermore, as psychological characteristics are commonly subject to the moderating effects of cultural context and biology, the study also explored whether and how cultural and genetic factors separately interact with childhood maltreatment to predict resilience. In study 1, the participants comprised 237 American and 347 Chinese individuals; study 2 included 428 genotyped Chinese individuals. We combined regression, mediation, moderation, and machine learning methods to test the mediating effect of ANT on the link between childhood maltreatment and resilience as well as the moderating roles of culture and genetics. Study 1 found that both childhood abuse and childhood neglect increased ANT and thus weakened resilience. In addition, the ANT-mediating effects of childhood neglect were stronger in American than Chinese participants. In Study 2, using the leave-one-out approach, we constructed two separate prediction models based on 22 and 16 important single nucleotide polymorphisms (SNPs), and we found that the interaction between childhood abuse/neglect and polygenic scores based on important SNPs could predict ANT. The mediating effects of ANT on the relationship between childhood abuse/neglect and resilience were significant for participants with low polygenic scores but not for those with high polygenic scores. In conclusion, both the cultural environment and individual genetic makeup moderated the mediating effects of ANT on the association between childhood maltreatment and resilience. These findings indicated the roles of culture and genetics in protecting against the adverse effects of childhood maltreatment on resilience.
Collapse
Affiliation(s)
- Meihua Yu
- Department of Psychology, Guangdong Key Laboratory of Social Cognitive Neuroscience and Mental Health, Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China
| | - Lingling Huang
- Department of Psychology, Guangdong Key Laboratory of Social Cognitive Neuroscience and Mental Health, Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Mao
- Department of Psychology, Guangdong Key Laboratory of Social Cognitive Neuroscience and Mental Health, Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China
| | - Gese Dna
- Beijing Gese Technology Co., Ltd., China
| | - Siyang Luo
- Department of Psychology, Guangdong Key Laboratory of Social Cognitive Neuroscience and Mental Health, Guangdong Provincial Key Laboratory of Brain Function and Disease, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Woodward EM, Coutellier L. Age- and sex-specific effects of stress on parvalbumin interneurons in preclinical models: Relevance to sex differences in clinical neuropsychiatric and neurodevelopmental disorders. Neurosci Biobehav Rev 2021; 131:1228-1242. [PMID: 34718048 PMCID: PMC8642301 DOI: 10.1016/j.neubiorev.2021.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 01/06/2023]
Abstract
Stress is a major risk factor for neurodevelopmental and neuropsychiatric disorders, with the capacity to impact susceptibility to disease as well as long-term neurobiological and behavioral outcomes. Parvalbumin (PV) interneurons, the most prominent subtype of GABAergic interneurons in the cortex, are uniquely responsive to stress due to their protracted development throughout the highly plastic neonatal period and into puberty and adolescence. Additionally, PV + interneurons appear to respond to stress in a sex-specific manner. This review aims to discuss existing preclinical studies that support our overall hypothesis that the sex-and age-specific impacts of stress on PV + interneurons contribute to differences in individual vulnerability to stress across the lifespan, particularly in regard to sex differences in the diagnostic rate of neurodevelopmental and neuropsychiatric diseases in clinical populations. We also emphasize the importance of studying sex as a biological variable to fully understand the mechanistic and behavioral differences between males and females in models of neuropsychiatric disease.
Collapse
Affiliation(s)
- Emma M Woodward
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, United States
| | - Laurence Coutellier
- Department of Neuroscience, Ohio State University, 255 Institute for Behavioral Medicine Research Building, 460 Medical Center Drive, Columbus, OH, 43210, United States; Department of Psychology, Ohio State University, 53 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, United States.
| |
Collapse
|
21
|
Abstract
Following the spectacular success of molecular genetics in deciphering the genetic code in the 1960s, several of its leading practitioners felt sufficiently emboldened to use their newly acquired skills to move on and study that most enigmatic of biological organs - the brain. Sydney Brenner's approach was to focus on Caenorhabditis elegans, a nematode that is genetically tractable, has a nervous system that generates a rich repertoire of behaviours yet is small enough to allow anatomical reconstructions with ultrastructural precision. Through force of personality and some inspired pioneering studies, Brenner managed to ignite a bonfire of enthusiasm for this organism, which has resulted in its nervous system becoming the best understood of that in any organism. Initially, many were skeptical that this rather strange structure with just a few hundred neurons would yield insights that were relevant to vertebrate nervous systems. However, fifty years on we know that the basic repertoire of molecular components of worm and human nervous systems are remarkably similar. Furthermore, worms have a similar diversity of these components rather than a primitive sub-set. It appears that the fundamental difference in a vertebrate nervous system is a huge expansion of the neural units that comprise a basic brain such as that exemplified in C. elegans.
Collapse
Affiliation(s)
- John White
- Laboratory of Cell and Molecular Biology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
22
|
Tomasi J, Zai CC, Zai G, Kennedy JL, Tiwari AK. Genetics of human startle reactivity: A systematic review to acquire targets for an anxiety endophenotype. World J Biol Psychiatry 2021; 22:399-427. [PMID: 33040669 DOI: 10.1080/15622975.2020.1834619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Startle response is an objective physiological measure integral to the human defense system and a promising target for endophenotype investigations of anxiety. Given the alterations in startle reactivity observed among anxiety and related disorders, we searched for genetic variants associated with startle reactivity as they may be further involved in pathological anxiety risk. METHODS A systematic literature review was performed to identify genetic variants associated with startle reactivity in humans, specifically baseline and fear- or anxiety-potentiated startle. RESULTS The polymorphisms Val66Met (rs6265) from brain-derived neurotrophic factor (BDNF), Val158Met (rs4680) from catechol-O-methyltransferase (COMT), and the serotonin transporter-linked polymorphic region (5-HTTLPR) from the serotonin transporter gene (SLC6A4) were most commonly studied in human startle. In addition, several other genetic variants have also been identified as potential candidates that warrant further research, especially given their novelty in in the context of anxiety. CONCLUSIONS Similar to psychiatric genetic studies, the studies on startle reactivity primarily focus on candidate genes and are plagued by non-replication. Startle reactivity is a promising endophenotype that requires concerted efforts to collect uniformly assessed, large, well-powered samples and hypothesis-free genome-wide strategies. To further support startle as an endophenotype for anxiety, this review suggests advanced genetic strategies for startle research.
Collapse
Affiliation(s)
- Julia Tomasi
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Clement C Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Gwyneth Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada.,General Adult Psychiatry and Health Systems Division, CAMH, Toronto, Canada
| | - James L Kennedy
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Arun K Tiwari
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
The neurobiology of human aggressive behavior: Neuroimaging, genetic, and neurochemical aspects. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110059. [PMID: 32822763 DOI: 10.1016/j.pnpbp.2020.110059] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/12/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
Abstract
In modern societies, there is a strive to improve the quality of life related to risk of crimes which inevitably requires a better understanding of brain determinants and mediators of aggression. Neurobiology provides powerful tools to achieve this end. Pre-clinical and clinical studies show that changes in regional volumes, metabolism-function and connectivity within specific neural networks are related to aggression. Subregions of prefrontal cortex, insula, amygdala, basal ganglia and hippocampus play a major role within these circuits and have been consistently implicated in biology of aggression. Genetic variations in proteins regulating the synthesis, degradation, and transport of serotonin and dopamine as well as their signal transduction have been found to mediate behavioral variability observed in aggression. Gene-gene and gene-environment interactions represent additional important risk factors for aggressiveness. Considering the social burden of pathological forms of aggression, more basic and translational studies should be conducted to accelerate applications to clinical practice, justice courts, and policy making.
Collapse
|
24
|
Girme YU, Jones RE, Fleck C, Simpson JA, Overall NC. Infants' attachment insecurity predicts attachment-relevant emotion regulation strategies in adulthood. Emotion 2021; 21:260-272. [PMID: 31916790 PMCID: PMC7343591 DOI: 10.1037/emo0000721] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Infant attachment is theorized to lay the foundation of emotion regulation across the life span. However, testing this proposition requires prospective designs examining whether attachment assessed in infancy predicts emotion regulation strategies observed in adult relationships. Using unique data from the Minnesota Longitudinal Study of Risk and Adaptation, we examined whether infant attachment assessed at 12 and 18 months in the Strange Situation were associated with attachment-relevant emotion regulation strategies coded from video-recorded conflict discussions with romantic partners at ages 20, 23, 26, and/or 35. The current research first integrated the developmental and emotion regulation literatures to identify three specific attachment-relevant emotion regulation strategies. Balanced-regulation involves being open, approach-orientated, and engaging in collaborative problem-solving. Hypo-regulation involves suppressing emotions, disengaging from close others, and engaging in superficial problem-solving. Hyper-regulation involves exaggerating emotional expressions, ruminating, and being self-focused in processing issues. Compared to stable secure infants (secure at 12 and 18 months), stable insecure infants (insecure at 12 and 18 months) displayed worse balanced-regulation and greater hypo-regulation strategies, and unstable insecure infants (insecure at 12 or 18 months) displayed greater hyper-regulation strategies, in relationship-threatening situations 20-35 years later. Conceptually replicating these results, greater friendship insecurity at age 16 predicted worse balanced-regulation and greater hypo- and hyper-regulation strategies during relationship-threatening situations in adulthood. These findings highlight that infant attachment insecurity is associated with distinct emotion regulation strategies in adulthood 20-35 years later. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
| | | | - Cory Fleck
- Department of Psychology, University of Minnesota
| | | | | |
Collapse
|
25
|
Kolter JF, Hildenbrand MF, Popp S, Nauroth S, Bankmann J, Rother L, Waider J, Deckert J, Asan E, Jakob PM, Lesch KP, Schmitt-Böhrer A. Serotonin transporter genotype modulates resting state and predator stress-induced amygdala perfusion in mice in a sex-dependent manner. PLoS One 2021; 16:e0247311. [PMID: 33606835 PMCID: PMC7895400 DOI: 10.1371/journal.pone.0247311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/04/2021] [Indexed: 12/16/2022] Open
Abstract
The serotonin transporter (5-HTT) is a key molecule of serotoninergic neurotransmission and target of many anxiolytics and antidepressants. In humans, 5-HTT gene variants resulting in lower expression levels are associated with behavioral traits of anxiety. Furthermore, functional magnetic resonance imaging (fMRI) studies reported increased cerebral blood flow (CBF) during resting state (RS) and amygdala hyperreactivity. 5-HTT deficient mice as an established animal model for anxiety disorders seem to be well suited for investigating amygdala (re-)activity in an fMRI study. We investigated wildtype (5-HTT+/+), heterozygous (5-HTT+/-), and homozygous 5-HTT-knockout mice (5-HTT-/-) of both sexes in an ultra-high-field 17.6 Tesla magnetic resonance scanner. CBF was measured with continuous arterial spin labeling during RS, stimulation state (SS; with odor of rats as aversive stimulus), and post-stimulation state (PS). Subsequently, post mortem c-Fos immunohistochemistry elucidated neural activation on cellular level. The results showed that in reaction to the aversive odor CBF in total brain and amygdala of all mice significantly increased. In male 5-HTT+/+ mice amygdala RS CBF levels were found to be significantly lower than in 5-HTT+/- mice. From RS to SS 5-HTT+/+ amygdala perfusion significantly increased compared to both 5-HTT+/- and 5-HTT-/- mice. Perfusion level changes of male mice correlated with the density of c-Fos-immunoreactive cells in the amygdaloid nuclei. In female mice the perfusion was not modulated by the 5-Htt-genotype, but by estrous cycle stages. We conclude that amygdala reactivity is modulated by the 5-Htt genotype in males. In females, gonadal hormones have an impact which might have obscured genotype effects. Furthermore, our results demonstrate experimental support for the tonic model of 5-HTTLPR function.
Collapse
Affiliation(s)
- Jann F. Kolter
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Markus F. Hildenbrand
- Department of Magnetic Resonance and X-Ray Imaging, Fraunhofer Development Center X-Ray Technology, Wuerzburg, Germany
| | - Sandy Popp
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Stephan Nauroth
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Julian Bankmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Lisa Rother
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Jonas Waider
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Esther Asan
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Peter M. Jakob
- Department of Experimental Physics 5, University of Wuerzburg, Wuerzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
| | - Angelika Schmitt-Böhrer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
26
|
Caplan B, Blacher J, Eisenhower A, Baker BL, Lee SS. Gene x responsive parenting interactions in social development: Characterizing heterogeneity in autism spectrum disorder. Dev Psychobiol 2021; 63:1082-1097. [PMID: 33511631 DOI: 10.1002/dev.22095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/05/2022]
Abstract
Emerging research suggests that caregiving environments and genetic variants independently contribute to social functioning in children with typical development or autism spectrum disorder (ASD). However, biologically plausible interactive models and complimentary assessment of mechanisms are needed to: (a) explain considerable social heterogeneity, (b) resolve inconsistencies in the literature, and (c) develop and select optimal treatments based on individual differences. This study examined the role of child genotypes and responsive parenting in the social development of 104 children with ASD (ages 4-7 years). We utilized a longitudinal, multi-informant design and structural equation models to evaluate: (a) the additive and interactive effects of biologically plausible candidate genes (5-HTTLPR, OXTR, DRD4) and responsive parenting in predicting prospective social development in ASD across three time points spanning 1.5 years, and (b) whether child emotion regulation mediated observed gene x environment interactions (GxEs). Responsive parenting positively predicted prospective change in child social skills; these associations were moderated by 5-HTTLPR and DRD4 in teacher-report models, and DRD4 in parent-report models. No GxE effects were found for OXTR. Emotion regulation did not significantly mediate the GxEs involving 5-HTTLPR and DRD4. Acknowledging the complexities of GxE research, implications for future research, and targeted intervention efforts are discussed.
Collapse
Affiliation(s)
- Barbara Caplan
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jan Blacher
- Department of Education, University of California, Riverside, Riverside, CA, USA
| | - Abbey Eisenhower
- Department of Psychology, University of Massachusetts, Boston, Boston, MA, USA
| | - Bruce L Baker
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Steve S Lee
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
27
|
Smillie LD. What is reinforcement sensitivity? Neuroscience paradigms for approach‐avoidance process theories of personality. EUROPEAN JOURNAL OF PERSONALITY 2020. [DOI: 10.1002/per.674] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Reinforcement sensitivity is a concept proposed by Gray (1973) to describe the biological antecedents of personality, and has become the common mechanism among a family of personality theories concerning approach and avoidance processes. These theories suggest that 2–3 biobehavioural systems mediate the effects of reward and punishment on emotion and motivation, and that individual differences in the functioning of these systems manifest as personality. Identifying paradigms for operationalising reinforcement sensitivity is therefore critical for testing and developing these theories, and evaluating their footprint in personality space. In this paper I suggest that, while traditional self‐report paradigms in personality psychology may be less‐than‐ideal for this purpose, neuroscience paradigms may offer operations of reinforcement sensitivity at multiple levels of approach and avoidance processes. After brief reflection on the use of such methods in animal models—which first spawned the concept of reinforcement sensitivity—recent developments in four domains of neuroscience are reviewed. These are psychogenomics, psychopharmacology, neuroimaging and category‐learning. By exploring these paradigms as potential operations of reinforcement sensitivity we may enrich our understanding of the putative biobehavioural bases of personality. Copyright © 2008 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Luke D. Smillie
- Department of Psychology, Goldsmiths, University of London, London, UK
| |
Collapse
|
28
|
Van den Bergh O, Brosschot J, Critchley H, Thayer JF, Ottaviani C. Better Safe Than Sorry: A Common Signature of General Vulnerability for Psychopathology. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2020; 16:225-246. [DOI: 10.1177/1745691620950690] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several labels, such as neuroticism, negative emotionality, and dispositional negativity, indicate a broad dimension of psychopathology. However, largely separate, often disorder-specific research lines have developed that focus on different cognitive and affective characteristics that are associated with this dimension, such as perseverative cognition (worry, rumination), reduced autobiographical memory specificity, compromised fear learning, and enhanced somatic-symptom reporting. In this article, we present a theoretical perspective within a predictive-processing framework in which we trace these phenotypically different characteristics back to a common underlying “better-safe-than-sorry” processing strategy. This implies information processing that tends to be low in sensory-perceptual detail, which allows threat-related categorical priors to dominate conscious experience and for chronic uncertainty/surprise because of a stagnated error-reduction process. This common information-processing strategy has beneficial effects in the short term but important costs in the long term. From this perspective, we suggest that the phenomenally distinct cognitive and affective psychopathological characteristics mentioned above represent the same basic processing heuristic of the brain and are only different in relation to the particular type of information involved (e.g., in working memory, in autobiographical memory, in the external and internal world). Clinical implications of this view are discussed.
Collapse
Affiliation(s)
| | - Jos Brosschot
- Health, Medical and Neuropsychology Unit, Institute of Psychology, Leiden University
| | - Hugo Critchley
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex
| | - Julian F. Thayer
- Department of Psychological Science, University of California, Irvine
| | - Cristina Ottaviani
- Department of Psychology, Sapienza University of Rome
- Laboratorio di Neuroimmagini Funzionali, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
29
|
Hirst RB, Jordan JT, Rose SMSF, Schneider L, Kawai M, Gould C, Anker L, Chick CF, Beaudreau S, Hallmayer J, O’Hara R. The 5-HTTLPR long allele predicts two-year longitudinal increases in cortisol and declines in verbal memory in older adults. Int J Geriatr Psychiatry 2020; 35:982-988. [PMID: 32400901 PMCID: PMC7755300 DOI: 10.1002/gps.5319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVES The short form or s-allele variant of the serotonin transporter polymorphism (5-HTTLPR), as compared with the long-form or l-allele variant, has been associated with the presence of cognitive dysfunction, and particularly memory impairment in older adults. This body of cross-sectional work has culminated in the hypothesis that presence of the s-allele predicts greater memory decline in older adults. Yet, to date, there are no longitudinal studies that have investigated this issue. METHODS/DESIGN Here, we examine 109 community-dwelling older adults (mean and SD of age = 70.7 ± 8.7 years) who underwent blood draw for genotyping, cognitive, and psychological testing at baseline, 12-, and 24-monthfollow-ups. RESULTS Multilevel modeling found that s-allele carriers (ss or ls) performed worse than ll homozygotes at baseline on delayed verbal recall. Yet, s-allele carriers' memory performance was stable over the two-yearfollow-up period, while l-allele homozygotes experienced significant memory decline. l-allele homozygote status was associated with both increased cortisol and decreased memory over time, resulting in attenuated verbal memory performance differences compared to s-allele carriers with age. CONCLUSIONS Overall, our findings do not support the hypothesis that presence of the 5-HTTLPRs-allele is a marker for memory decline in older adults. J Am Geriatr Soc 68:-, 2020.
Collapse
Affiliation(s)
- Rayna B. Hirst
- Palo Alto University,Corresponding author: Rayna B. Hirst, PhD, Palo Alto University, 1791 Arastradero Road, Palo Alto, California 94304, Ph. 650-417-2025,
| | - Joshua T. Jordan
- Department of Psychiatry and Behavioral Sciences, Stanford University,Department of Psychiatry, University of California, San Francisco
| | | | - Logan Schneider
- Department of Psychiatry and Behavioral Sciences, Stanford University,Stanford/VA State of California, Alzheimer Disease Center, VA Palo Alto Health Care System,Stanford University Sleep Center,Sierra Pacific, Mental Illness Research, Education, and Clinical Center (MIRECC): VISN 21: Sierra Pacific Network, Department of Veterans Affairs
| | - Makoto Kawai
- Department of Psychiatry and Behavioral Sciences, Stanford University,Stanford/VA State of California, Alzheimer Disease Center, VA Palo Alto Health Care System,Stanford University Sleep Center,Sierra Pacific, Mental Illness Research, Education, and Clinical Center (MIRECC): VISN 21: Sierra Pacific Network, Department of Veterans Affairs
| | - Christine Gould
- Department of Psychiatry and Behavioral Sciences, Stanford University,Geriatric Research, Education and Clinical Center (GRECC), VA Palo Alto Health Care System, Palo Alto, CA
| | - Lauren Anker
- Department of Psychiatry and Behavioral Sciences, Stanford University,Sierra Pacific, Mental Illness Research, Education, and Clinical Center (MIRECC): VISN 21: Sierra Pacific Network, Department of Veterans Affairs
| | - Christina F. Chick
- Department of Psychiatry and Behavioral Sciences, Stanford University,Sierra Pacific, Mental Illness Research, Education, and Clinical Center (MIRECC): VISN 21: Sierra Pacific Network, Department of Veterans Affairs
| | - Sherry Beaudreau
- Department of Psychiatry and Behavioral Sciences, Stanford University,Sierra Pacific, Mental Illness Research, Education, and Clinical Center (MIRECC): VISN 21: Sierra Pacific Network, Department of Veterans Affairs
| | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University,Sierra Pacific, Mental Illness Research, Education, and Clinical Center (MIRECC): VISN 21: Sierra Pacific Network, Department of Veterans Affairs
| | - Ruth O’Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University,Stanford/VA State of California, Alzheimer Disease Center, VA Palo Alto Health Care System,Sierra Pacific, Mental Illness Research, Education, and Clinical Center (MIRECC): VISN 21: Sierra Pacific Network, Department of Veterans Affairs
| |
Collapse
|
30
|
Ikegame T, Bundo M, Okada N, Murata Y, Koike S, Sugawara H, Saito T, Ikeda M, Owada K, Fukunaga M, Yamashita F, Koshiyama D, Natsubori T, Iwashiro N, Asai T, Yoshikawa A, Nishimura F, Kawamura Y, Ishigooka J, Kakiuchi C, Sasaki T, Abe O, Hashimoto R, Iwata N, Yamasue H, Kato T, Kasai K, Iwamoto K. Promoter Activity-Based Case-Control Association Study on SLC6A4 Highlighting Hypermethylation and Altered Amygdala Volume in Male Patients With Schizophrenia. Schizophr Bull 2020; 46:1577-1586. [PMID: 32556264 PMCID: PMC7846196 DOI: 10.1093/schbul/sbaa075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Associations between altered DNA methylation of the serotonin transporter (5-HTT)-encoding gene SLC6A4 and early life adversity, mood and anxiety disorders, and amygdala reactivity have been reported. However, few studies have examined epigenetic alterations of SLC6A4 in schizophrenia (SZ). We examined CpG sites of SLC6A4, whose DNA methylation levels have been reported to be altered in bipolar disorder, using 3 independent cohorts of patients with SZ and age-matched controls. We found significant hypermethylation of a CpG site in SLC6A4 in male patients with SZ in all 3 cohorts. We showed that chronic administration of risperidone did not affect the DNA methylation status at this CpG site using common marmosets, and that in vitro DNA methylation at this CpG site diminished the promoter activity of SLC6A4. We then genotyped the 5-HTT-linked polymorphic region (5-HTTLPR) and investigated the relationship among 5-HTTLPR, DNA methylation, and amygdala volume using brain imaging data. We found that patients harboring low-activity 5-HTTLPR alleles showed hypermethylation and they showed a negative correlation between DNA methylation levels and left amygdala volumes. These results suggest that hypermethylation of the CpG site in SLC6A4 is involved in the pathophysiology of SZ, especially in male patients harboring low-activity 5-HTTLPR alleles.
Collapse
Affiliation(s)
- Tempei Ikegame
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan,PRESTO, Japan Science and Technology Agency, Tokyo, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Yui Murata
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,UTokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Tokyo, Japan
| | - Hiroko Sugawara
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Keiho Owada
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Aichi, Japan
| | - Fumio Yamashita
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsunobu Natsubori
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norichika Iwashiro
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuro Asai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akane Yoshikawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Schizophrenia Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Fumichika Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Chihiro Kakiuchi
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Sasaki
- Laboratory of Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan,Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| | - Hidenori Yamasue
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan,Department of Psychiatry, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN CBS, Saitama, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan,To whom correspondence should be addressed; Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; tel: +81-96-373-5062, fax: +81-96-373-5062, e-mail:
| |
Collapse
|
31
|
Kneer K, Reinhard J, Ziegler C, Slyschak A, Schiele M, Vietz M, Peters K, Meisenzahl EM, Pauli P, Reif A, Deckert J, Romanos M, Domschke K, Neufang S. Serotonergic influence on depressive symptoms and trait anxiety is mediated by negative life events and frontal activation in children and adolescents. Eur Child Adolesc Psychiatry 2020; 29:691-706. [PMID: 31422473 DOI: 10.1007/s00787-019-01389-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
Depression and anxiety are common in childhood and adolescence. Even though cardinal symptoms differ, there is a considerable overlap regarding the pathogenic influence of serotonergic innervation, negative life experience, disturbed emotion perception/affect regulation, and impaired neural functioning in the fronto-limbic circuit. In this study, we examined the effect of the 5-HTTLPR/rs25531 genotype on depressive symptoms and trait anxiety under the consideration of the amount of negative life events in healthy children and adolescents (N = 389). In a subsample of 49 subjects, we performed fMRI to add fronto-limbic brain activation as a second interacting factor. Across all subjects, negative life events moderated the influence of the 5-HTTLPR/rs25531 genotype on both depressive symptoms and trait anxiety. In the fMRI subsample, 5-HTTLPR/rs25531 S + S/LG + S/LA + LGLA + LGLG genotype-associated left middle frontal gyrus (MFG) activation mediated the influence of 5-HTTLPR/rs25531 genotype on depressive symptoms, however, only in combination with negative life events. Genetic influence on trait anxiety was predominantly mediated by negative life events; only LALA genotype-specific activation in the right MFG worked as a mediator in combination with negative life events. The present findings hint towards distinct mechanisms mediating the influence of 5-HTTLPR/rs25531 genotype on depressive symptoms and anxiety, with negative life events playing a crucial role in both phenotypes. With regard to depressive symptoms, however, this influence was only visible in combination with MFG activation, whereas, in anxiety, it was independent of brain activation.
Collapse
Affiliation(s)
- Katharina Kneer
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Julia Reinhard
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Christiane Ziegler
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Slyschak
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Miriam Schiele
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Vietz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Katharina Peters
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Eva M Meisenzahl
- Department of Psychiatry and Psychotherapy, Medical Faculty Heinrich-Heine University, Bergische Landstraße 2, 40629, Düsseldorf, Germany
| | - Paul Pauli
- Department of Psychology, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Neufang
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.
- Department of Psychiatry and Psychotherapy, Medical Faculty Heinrich-Heine University, Bergische Landstraße 2, 40629, Düsseldorf, Germany.
| |
Collapse
|
32
|
Reese M, Bryant D, Ethridge L. Biomarkers for moral cognition: Current status and future prospects for neurotransmitters and neuropeptides. Neurosci Biobehav Rev 2020; 113:88-97. [PMID: 32171842 DOI: 10.1016/j.neubiorev.2020.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 01/24/2020] [Accepted: 03/08/2020] [Indexed: 10/24/2022]
Abstract
The translational neuroscience of moral cognitions draws together developments throughout the fields of neuroscience pertaining to moral cognitions in order to better the human condition. That condition, seen through this lens, is one in which much of the violence and suffering we endure and inflict upon one another is based on moral cognitions-attitudes, beliefs, judgments-that are thought to result from correct or incorrect perceptions of moral properties. The biology tells a different story; namely, that moral cognitions, like other cognitions and mental states, are predicted and determined by biological mechanisms modulated by genotype, neurotransmitter availability and receptor density, neurophysiology, and individual differences among these as well as biology-environment interactions including nutrition, experience, and microbiome. A wealth of research has demonstrated that moral reasoning and judgments are easily alterable with the application of pharmaceuticals including SSRIs, and simpler treatments and conditions like the amount of time since one's last meal. Public health experts have pushed for analysis of violence and development of interventions treating violence as a public health pandemic. We see this research as a response to that call. Work in this field demonstrates that we are unaware of both the sources and nature of the cognitions on which we base much of our violent behaviors, societally and individually. Animal studies bolster the human subjects research, demonstrating the evolutionary roots of the causal mechanisms beneath our social structures and group formations.
Collapse
Affiliation(s)
- Melody Reese
- Dept of Psychology, University of Oklahoma, United States
| | - Douglas Bryant
- Dept of Psychology, University of Oklahoma, United States
| | - Lauren Ethridge
- Dept of Psychology, University of Oklahoma, United States; Dept of Pediatrics, University of Oklahoma Health Sciences Center, United States.
| |
Collapse
|
33
|
Vai B, Serretti A, Poletti S, Mascia M, Lorenzi C, Colombo C, Benedetti F. Cortico-limbic functional connectivity mediates the effect of early life stress on suicidality in bipolar depressed 5-HTTLPR*s carriers. J Affect Disord 2020; 263:420-427. [PMID: 31969273 DOI: 10.1016/j.jad.2019.11.142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/05/2019] [Accepted: 11/29/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND In bipolar disorder (BD) the risk of suicide in adult life can be influenced by the interaction of adverse childhood experiences with the serotonin transporter polymorphism (5-HTTLPR). The cortico-limbic connectivity is a candidate endophenotype for the disorder, also related to suicidality and affected by the 5-HT system. METHODS In 64 (*s carriers = 41; l/l = 23) depressed BD patients, we explored the effect of 5-HTTLPR on corticolimbic functional connectivity (FC) during emotional processing, and the role of FC in moderating/mediating the effect of early stressful events on suicidality among 5-HTTLPR groups, by implementing Generalized Structural Equation Model. RESULTS 5-HTTLPR affects FC between amygdala (Amy) and anterior cingulate cortex (ACC), temporal pole, putamen/thalamus, and precuneus. The short allele was associated to a more inefficient corticolimbic connectivity. In 5-HTTLPR*s carriers, but not in l/l, the Amy-ACC functional coupling mediated the relationship between stress load and current suicidality. LIMITATIONS Patients were not drug-naive, and the recruitment took place in a single center, thus raising the possibility of population stratifications. The sample size is relatively small, but our findings can provide the background for replication study in independent and larger datasets. CONCLUSIONS Our results confirm the link between the 5-HTT promoter polymorphism and susceptibility to stress in BD, and suggest that cortico-limbic functional connectivity mediates these effects. This pattern could identify a vulnerability factor for the exacerbation of mood episodes after stressful life events particularly relevant in *s carriers.
Collapse
Affiliation(s)
- Benedetta Vai
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy; Fondazione Centro San Raffaele, Milano, Italy.
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Poletti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Mattia Mascia
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Cristina Lorenzi
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Cristina Colombo
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
34
|
Sato DX, Ishii Y, Nagai T, Ohashi K, Kawata M. Human-specific mutations in VMAT1 confer functional changes and multi-directional evolution in the regulation of monoamine circuits. BMC Evol Biol 2019; 19:220. [PMID: 31791232 PMCID: PMC6889191 DOI: 10.1186/s12862-019-1543-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/15/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Neurochemicals like serotonin and dopamine play crucial roles in human cognitive and emotional functions. Vesicular monoamine transporter 1 (VMAT1) transports monoamine neurotransmitters, and its variant (136Thr) is associated with various psychopathological symptoms and reduced monoamine uptake relative to 136Ile. We previously showed that two human-specific amino acid substitutions (Glu130Gly and Asn136Thr/Ile) of VMAT1 were subject to positive natural selection. However, the potential functional alterations caused by these substitutions (Glu130Gly and Asn136Thr) remain unclear. To assess functional changes in VMAT1 from an evolutionary perspective, we reconstructed ancestral residues and examined the role of these substitutions in monoamine uptake in vitro using fluorescent false neurotransmitters (FFN), which are newly developed substances used to quantitatively assay VMATs. RESULTS Immunoblotting confirmed that all the transfected YFP-VMAT1 variants are properly expressed in HEK293T cells at comparable levels, and no significant difference was seen in the density and the size of vesicles among them. Our fluorescent assays revealed a significant difference in FFN206 uptake among VMAT1 variants: 130Glu/136Asn, 130Glu/136Thr, and 130Gly/136Ile showed significantly higher levels of FFN206 uptake than 130Gly/136Asn and 130Gly/136Thr, indicating that both 130Glu and 136Ile led to increased neurotransmitter uptake, for which 136Thr and 136Asn were comparable by contrast. CONCLUSIONS These findings suggest that monoamine uptake by VMAT1 initially declined (from 130Glu/136Asn to 130Gly/136Thr) in human evolution, possibly resulting in higher susceptibility to the external environment of our ancestors.
Collapse
Affiliation(s)
- Daiki X Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Yuu Ishii
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Tomoaki Nagai
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kazumasa Ohashi
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
35
|
Piszczek L, Memoli S, Raggioli A, Viosca J, Rientjes J, Hublitz P, Czaban W, Wyrzykowska A, Gross C. Mouse model of the human serotonin transporter-linked polymorphic region. Mamm Genome 2019; 30:319-328. [PMID: 31667540 PMCID: PMC6884432 DOI: 10.1007/s00335-019-09815-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/21/2019] [Indexed: 11/27/2022]
Abstract
Genetic factors play a significant role in risk for mood and anxiety disorders. Polymorphisms in genes that regulate the brain monoamine systems, such as catabolic enzymes and transporters, are attractive candidates for being risk factors for emotional disorders given the weight of evidence implicating monoamines involvement in these conditions. Several common genetic variants have been identified in the human serotonin transporter (5-HTT) gene, including a repetitive sequence located in the promoter region of the locus called the serotonin transporter-linked polymorphic region (5-HTT-LPR). This polymorphism has been associated with a number of mental traits in both humans and primates, including depression, neuroticism, and harm avoidance. Some, but not all, studies found a link between the polymorphism and 5-HTT levels, leaving open the question of whether the polymorphism affects risk for mental traits via changes in 5-HTT expression. To investigate the impact of the polymorphism on gene expression, serotonin homeostasis, and behavioral traits, we set out to develop a mouse model of the human 5-HTT-LPR. Here we describe the creation and characterization of a set of mouse lines with single-copy human transgenes carrying the short and long 5-HTT-LPR variants. Although we were not able to detect differences in expression between the short and long variants, we encountered several technical issues concerning the design of our humanized mice that are likely to have influenced our findings. Our study serves as a cautionary note for future studies aimed at studying human transgene regulation in the context of the living mouse.
Collapse
Affiliation(s)
- Lukasz Piszczek
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy.
- Research Institute of Molecular Pathology, Vienna, Austria.
| | - Simone Memoli
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Angelo Raggioli
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - José Viosca
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
- Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Jeanette Rientjes
- Monash Genome Modification Platform (MGMP), Monash University, Clayton, Australia
| | - Philip Hublitz
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Weronika Czaban
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Anna Wyrzykowska
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Cornelius Gross
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy.
| |
Collapse
|
36
|
Edes AE, McKie S, Szabo E, Kokonyei G, Pap D, Zsombok T, Hullam G, Gonda X, Kozak LR, McFarquhar M, Anderson IM, Deakin JFW, Bagdy G, Juhasz G. Spatiotemporal brain activation pattern following acute citalopram challenge is dose dependent and associated with neuroticism: A human phMRI study. Neuropharmacology 2019; 170:107807. [PMID: 31593709 DOI: 10.1016/j.neuropharm.2019.107807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND The initial effects of selective serotonin reuptake inhibitors (SSRIs) in the human living brain are poorly understood. We carried out a 3T resting state fMRI study with pharmacological challenge to determine the brain activation changes over time following different dosages of citalopram. METHODS During the study, 7.5 mg i.v. citalopram was administered to 32 healthy subjects. In addition, 11.25 mg citalopram was administered to a subset of 9 subjects to investigate the dose-response. Associations with neuroticism (assessed by the NEO PI-R) of the emerging brain activation to citalopram was also investigated. RESULTS Citalopram challenge evoked significant activation in brain regions that are part of the default mode network, the visual network and the sensorimotor network, extending to the thalamus, and midbrain. Most effects appeared to be dose-dependent and this was statistically significant in the middle cingulate gyrus. Individual citalopram-induced brain responses were positively correlated with neuroticism scores and its subscales in specific brain areas; anxiety subscale scores in thalamus and midbrain and self-consciousness scores in middle cingulate gyrus. There were no sex differences. LIMITATIONS We investigated only healthy subjects and we used a relatively low sample size in the 11.25 mg citalopram analysis. DISCUSSION Our results suggest that SSRIs acutely induce an increased arousal-like state of distributed cortical and subcortical systems that is mediated by enhanced serotonin neurotransmission according to levels of neuroticism and underpins trait sensitivity to environmental stimuli and stressors. Studies in depression are needed to determine how therapeutic effects eventually emerge. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Andrea Edit Edes
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Shane McKie
- Faculty of Biological, Medical and Human Sciences Platform Sciences, Enabling Technologies & Infrastructure, Faculty of Biological, Medical and Human Sciences Research and Innovation, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Edina Szabo
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; Doctoral School of Psychology, ELTE Eotvos Loránd University, Budapest, Hungary; Institute of Psychology, ELTE Eotvos Loránd University, Budapest, Hungary
| | - Gyongyi Kokonyei
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; Institute of Psychology, ELTE Eotvos Loránd University, Budapest, Hungary
| | - Dorottya Pap
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Terezia Zsombok
- Department of Neurology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gabor Hullam
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics, Budapest, Hungary
| | - Xenia Gonda
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Lajos R Kozak
- MR Research Center, Semmelweis University, Budapest, Hungary
| | - Martyn McFarquhar
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Ian M Anderson
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - J F William Deakin
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom.
| |
Collapse
|
37
|
Cha J, Guffanti G, Gingrich J, Talati A, Wickramaratne P, Weissman M, Posner J. Effects of Serotonin Transporter Gene Variation on Impulsivity Mediated by Default Mode Network: A Family Study of Depression. Cereb Cortex 2019; 28:1911-1921. [PMID: 28444137 DOI: 10.1093/cercor/bhx097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022] Open
Abstract
Serotonergic neurotransmission, potentially through effects on the brain's default mode network (DMN), may regulate aspects of attention including impulse control. Indeed, genetic variants of the serotonin transporter (5-HTT) have been implicated in impulsivity and related psychopathology. Yet it remains unclear the mechanism by which the 5-HTT genetic variants contribute to individual variability in impulse control. Here, we tested whether DMN connectivity mediates an association between the 5-HTT genetic variants and impulsivity. Participants (N = 92) were from a family cohort study of depression in which we have previously shown a broad distribution of 5-HTT variants. We genotyped for 5-HTTLPR and rs25531 (stratified by transcriptional efficiency: 8 low/low, 53 low/high, and 31 high/high), estimated DMN structural connectivity using diffusion probabilistic tractography, and assessed behavioral measures of impulsivity (from 12 low/low, 48 low/high, and 31 high/high) using the Continuous Performance Task. We found that low transcriptional efficiency genotypes were associated with decreased connection strength between the posterior DMN and the superior frontal gyrus (SFG). Path modeling demonstrated that decreased DMN-SFG connectivity mediated the association between low-efficiency genotypes and increased impulsivity. Taken together, this study suggests a gene-brain-behavior pathway that perhaps underlies the role of the serotonergic neuromodulation in impulse control.
Collapse
Affiliation(s)
- Jiook Cha
- Department of Psychiatry, Columbia University Medical Center, The New York State Psychiatric Institute, New York, NY 10032, USA
| | - Guia Guffanti
- Harvard Medical School, Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Jay Gingrich
- Department of Psychiatry, Columbia University Medical Center, The New York State Psychiatric Institute, New York, NY 10032, USA
| | - Ardesheer Talati
- Department of Psychiatry, Columbia University Medical Center, The New York State Psychiatric Institute, New York, NY 10032, USA
| | - Priya Wickramaratne
- Department of Psychiatry, Columbia University Medical Center, The New York State Psychiatric Institute, New York, NY 10032, USA
| | - Myrna Weissman
- Department of Psychiatry, Columbia University Medical Center, The New York State Psychiatric Institute, New York, NY 10032, USA
| | - Jonathan Posner
- Department of Psychiatry, Columbia University Medical Center, The New York State Psychiatric Institute, New York, NY 10032, USA
| |
Collapse
|
38
|
Weinberg-Wolf H, Chang SWC. Differences in how macaques monitor others: Does serotonin play a central role? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2019; 10:e1494. [PMID: 30775852 PMCID: PMC6570566 DOI: 10.1002/wcs.1494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 01/22/2023]
Abstract
Primates must balance the need to monitor other conspecifics to gain social information while not losing other resource opportunities. We consolidate evidence across the fields of primatology, psychology, and neuroscience to examine individual, population, and species differences in how primates, particularly macaques, monitor conspecifics. We particularly consider the role of serotonin in mediating social competency via social attention, aggression, and dominance behaviors. Finally, we consider how the evolution of variation in social tolerance, aggression, and social monitoring might be explained by differences in serotonergic function in macaques. This article is categorized under: Economics > Interactive Decision-Making Psychology > Comparative Psychology Neuroscience > Behavior Cognitive Biology > Evolutionary Roots of Cognition.
Collapse
Affiliation(s)
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, Connecticut
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
- Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
39
|
Yasuno F, Ando D, Yamamoto A, Koshino K, Yokota C. Dendrite complexity of the posterior cingulate cortex as a substrate for recovery from post-stroke depression: A pilot study. Psychiatry Res Neuroimaging 2019; 287:49-55. [PMID: 30978475 DOI: 10.1016/j.pscychresns.2019.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/04/2019] [Accepted: 01/21/2019] [Indexed: 01/22/2023]
Abstract
The neural basis of recovery from a depressive state remains poorly understood. The main purpose of this study was to determine the neural basis of vulnerability/resilience to depression in stroke patients in terms of changes in regional microstructure. The study included 20 individuals with acute ischaemic stroke. Symptoms of depression were assessed, and the intraneurite volume fraction and neurite orientation-dispersion index (ODI) were evaluated by a multi-shell diffusion imaging and neurite-orientation dispersion and density imaging model. Patients underwent follow-up examinations after 2 months and were classified into depression improvement and depression deterioration groups. A significant interaction effect of group × time on the ODI was shown by voxel-based analysis in the posterior cingulate cortex (PCC). The ODI change in the PCC was negatively correlated with the change in the depression scale scores at the 2-month time point. The increase in ODI in the PCC that occurred during the 2-month interval was thought to be associated with decreased depressive symptom scores. As the ODI represents the pattern of sprawling dendrite progression, our findings indicate that the dendritic complexity of the PCC is a substrate for recovery in individuals who experienced post-stroke psychosocial and biological stress.
Collapse
Affiliation(s)
- Fumihiko Yasuno
- Department of Psychiatry, National Center for Geriatrics and Gerontology, Obu, Japan; Department of Investigative Radiology, National Cerebral and Cardiovascular Center, Suita, Japan.
| | - Daisuke Ando
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akihide Yamamoto
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kazuhiro Koshino
- Department of Investigative Radiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Chiaki Yokota
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
40
|
Puura K, Leppänen J, Salmelin R, Mäntymaa M, Luoma I, Latva R, Peltola M, Lehtimäki T, Tamminen T. Maternal and infant characteristics connected to shared pleasure in dyadic interaction. Infant Ment Health J 2019; 40:459-478. [PMID: 31083770 DOI: 10.1002/imhj.21786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the study was to analyze which maternal factors (depressive symptoms, effect of life events, maternal sensitivity and structuring) and infant characteristics (temperament, social withdrawal symptoms, interactive behavior, genotype, gender) contribute to shared pleasure (SP) in parent-infant interaction. Participants were 113 mother-infant dyads. The mothers filled in the Edinburgh Postnatal Depression Scale, the Infant Behavior Questionnaire, and the Life Events Questionnaire. The dyads were videotaped in a free-play situation, and the videos were analyzed using the Alarm Distress Baby Scale and the Emotional Availability Scales. The infants were genotyped for four genes involved in emotion regulation. The occurrence and duration of SP (SP-MD) in mother-infant interactions were analyzed from the videotapes. Higher maternal sensitivity and depressive symptoms, better infant responsiveness, and the infant having the GG variant of the gene tryptophan hydroxylase isoform 2 (TPH2) -307 were associated with the occurrence of SP. Lower level depressive symptoms, better maternal structuring, and greater infant involvement were associated with the longer duration of SP. Those dyads where the mother and infant were best able to read each other's positive cues and to respond to them were more likely to experience mutual positive affect, as seen in SP.
Collapse
Affiliation(s)
- Kaija Puura
- Department of Child Psychiatry, Tampere University Hospital, and Centre for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jukka Leppänen
- Centre for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Raili Salmelin
- Faculty of Social Sciences, Health Sciences, Tampere University, and Department of Child Psychiatry, Tampere University Hospital, Tampere, Finland
| | - Mirjami Mäntymaa
- Department of Child Psychiatry, Tampere University Hospital, and Centre for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Child Psychiatry, South Ostrobotnia Central Hospital, Seinäjoki, Finland
| | - Ilona Luoma
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, and Department of Child Psychiatry, Centre of Peadiatric and Adolescent Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Reija Latva
- Department of Child Psychiatry, Tampere University Hospital, and Centre for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mikko Peltola
- Human Information Processing Laboratory, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Cardiovascular Research Centre, Tampere, and Faculty of Medicine and Life Sciences, Tampere University, Tampere, Finland
| | - Tuula Tamminen
- Department of Child Psychiatry, Tampere University, Tampere, Finland
| |
Collapse
|
41
|
Muench C, Luo A, Charlet K, Lee J, Rosoff DB, Sun H, Fede SJ, Jung J, Momenan R, Lohoff FW. Lack of Association Between Serotonin Transporter Gene (SLC6A4) Promoter Methylation and Amygdala Response During Negative Emotion Processing in Individuals With Alcohol Dependence. Alcohol Alcohol 2019; 54:209-215. [PMID: 31008507 DOI: 10.1093/alcalc/agz032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 11/12/2022] Open
Abstract
AIMS Differences in DNA methylation of the serotonin transporter gene (SLC6A4) have been shown to alter SLC6A4 expression and predict brain functions in healthy individuals. This study investigated the association between SLC6A4 promoter methylation and threat-related amygdala activation in individuals with alcohol dependence (AD). METHODS Methylation of the SLC6A4 promoter region was assessed using peripheral blood DNA from 45 individuals with AD and 45 healthy controls (HCs). All participants completed an emotional face matching task in a 3-T magnetic resonance imaging (MRI) scanner. RESULTS Results did not reveal any association between SLC6A4 promoter methylation variation and threat-related amygdala activation in HCs or individuals with AD. Furthermore, methylation in the promoter region of SLC6A4 did not significantly differ between the groups. CONCLUSIONS Our results do not replicate a previous finding that increased methylation in the promoter region of SLC6A4 is associated with threat-related amygdala activation in healthy individuals and further show that there is no such association in individuals with AD. Given that the number of imaging epigenetics studies on SLC6A4 is very limited to date, these inconsistent results indicate that future research is needed to clarify its association with amygdala reactivity in both healthy and clinical populations.
Collapse
Affiliation(s)
- Christine Muench
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA
| | - Audrey Luo
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA
| | - Katrin Charlet
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA.,Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Jisoo Lee
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA
| | - Daniel B Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA
| | - Hui Sun
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA
| | - Samantha J Fede
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA
| |
Collapse
|
42
|
The serotonin transporter gene could play a role in anti-predator behaviour in a forest passerine. J ETHOL 2019. [DOI: 10.1007/s10164-019-00593-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Serotonin transporter gene linked polymorphism (5-HTTLPR) determines progredience of alcohol dependence in Belarusian young males. Adv Med Sci 2019; 64:169-173. [PMID: 30708239 DOI: 10.1016/j.advms.2018.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 08/02/2018] [Accepted: 08/31/2018] [Indexed: 11/21/2022]
Abstract
PURPOSE Allelic duality and functional impact of degenerate repeat at 5'- flanking promoter region in SLC6A4 gene of the serotonin transporter (5-HTTLPR), have been in the focus of investigations over the years. Various outcomes regarding an association of its polymorphism with risks of alcohol dependence syndrome (ADS) were presented. Such studies have not been conducted in the Eastern European population e.g. Belarus. We therefore checked: the association of 5-HTTLPR polymorphism with ADS, and functional impact of the polymorphism on progredience of ADS in Belarusian population. MATERIAL AND METHODS The study involved 499 Belarusian males: 377 subjects with ADS (AG), and a control group (CG) with 122 subjects without alcohol-related problems. The ADS group was further divided into two groups of individuals with rapid (AG (R)) and delayed (AG (D)) progression of ADS. Clinical diagnosis was carried-out using ICD-10 criteria, Belarusian Addiction Severity Index, "B-ASI" and Alcohol-Use-Disorders-Identification-Test (AUDIT). PCR-RFLP analysis was performed. RESULTS There were no significant differences in the distribution of frequencies of either the 5-HTTLPR genotype or the short and long allele among AG and CG. However, the ADS 5-HTTLPR genotype and allele distribution frequencies differ significantly by the variation in progression of ADS. CONCLUSIONS There is no significant association between polymorphism of serotonin transporter gene and risk of ADS. However, the polymorphism significantly determines progredience of ASD in subjects with pathological patterns of alcohol consumption. Findings from this study carry preliminary significance as a facility to effective alcohol addiction treatment, rehabilitation and preventive services in the Eastern Europe.
Collapse
|
44
|
Schepers R, Keulers EH, Markus CR. Effects of 5-HTTLPR genotype and cognitive rumination on long-term cortisol reactivity measured in human hair. Stress 2019; 22:221-227. [PMID: 30628517 DOI: 10.1080/10253890.2018.1553945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Ample experimental and associative studies have shown that carrying two short (S) alleles of the serotonin transporter gene (5-HTTLPR) contributes to an increased vulnerability for stress and related affective disorders. Recent findings indicate that this relationship might become even more profound when also possessing a negative ruminative (stress-related) thinking style. However, previous studies on the relationship among 5-HTTLPR, stress, and stress-responsiveness almost exclusively measured salivary cortisol concentrations during exposure to a single acute (laboratory) stressor. Measuring cortisol concentrations over longer periods of time might better reflect (chronic) Gene by biological (HPA) stress responsiveness associations. In recent years, the strategy to assess hair cortisol concentration (HCC) has been established as a more reliable marker for chronic HPA activations. The current study explored associations between 3-months accumulated HCC and the tendency to ruminate about negative events in 27 S/S and 27 L/L 5-HTTLPR-carriers (screened from a large n = 827 DNA database). Hierarchical regression (including moderation) analyses revealed clear significant interactions between Genotype and Rumination (p < 0.01, f2=0.26); indicating greatest accumulation of HCC in high ruminating S/S-allele carriers. These findings implicate that the combined possession of a genetic (S-allele 5-HTTLPR) and cognitive (Rumination) stress-vulnerability might meaningfully increases long-term stress responsiveness; most likely due to increased daily (chronic) stress experiences. Lay summary The current study investigated whether the combined possession of a biological (genetic) and cognitive (negative thinking pattern) stress vulnerability may lead to a greater vulnerability to experience daily stress. This hypothesis was confirmed as a higher accumulation of the cortisol stress hormone was found over the past 3 months in scalp hair of participants that carried both vulnerability factors in combination.
Collapse
Affiliation(s)
- Robbie Schepers
- a Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience , University Maastricht , Maastricht , The Netherlands
| | - Esther H Keulers
- a Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience , University Maastricht , Maastricht , The Netherlands
| | - C Rob Markus
- a Department of Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience , University Maastricht , Maastricht , The Netherlands
| |
Collapse
|
45
|
Coifman KG, Summers CB. Understanding Emotion Inflexibility in Risk for Affective Disease: Integrating Current Research and Finding a Path Forward. Front Psychol 2019; 10:392. [PMID: 30873087 PMCID: PMC6402431 DOI: 10.3389/fpsyg.2019.00392] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/08/2019] [Indexed: 01/04/2023] Open
Abstract
Emotion-related disorders (e.g., depression, anxiety, stress, eating, substance and some personality disorders) include some of the most common, burdensome, and costly diseases worldwide. Central to many, if not all of these disorders, may be patterns of rigid or inflexible emotion responses. Indeed, theorists point to emotion in-flexibility as a potential cause or maintaining factor in emotion-related diseases. Despite the increasing prominence of emotion inflexibility in theories of affective disease, a comprehensive review of the developing empirical literature has not yet been conducted. Accordingly, this review will examine the three dominant lines of inquiry assessing emotion flexibility. These include: (1) the capacity to use and vary deliberate emotion regulation strategies, (2) the context sensitivity of spontaneous emotional responses, and (3) flexibility in the appraisal of emotional events and experiences. Moreover, current evidence suggests that each of these three lines of research may converge to suggest the interplay of two key biological dimensions in emotion inflexibility, threat sensitivity, and cognitive control, known to be impaired in patients with affective disorders. In short, this developing body of work suggests a path by which future research could explicate and even exploit the ties between emotion inflexibility and affective disease, contributing to the development of improved models of risk, assessment, and intervention, with broad implications for psychological health.
Collapse
|
46
|
PET imaging of the mouse brain reveals a dynamic regulation of SERT density in a chronic stress model. Transl Psychiatry 2019; 9:80. [PMID: 30745564 PMCID: PMC6370816 DOI: 10.1038/s41398-019-0416-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/08/2018] [Accepted: 01/17/2019] [Indexed: 01/15/2023] Open
Abstract
The serotonin transporter (SERT, Slc6a4) plays an important role in the regulation of serotonergic neurotransmission and its aberrant expression has been linked to several psychiatric conditions. While SERT density has been proven to be amenable to in vivo quantitative evaluation by positron emission tomography (PET) in humans, this approach is in its infancy for rodents. Here we set out to evaluate the feasibility of using small-animal PET employing [11C]DASB ([11C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile) as a radiotracer to measure SERT density in designated areas of the mouse brain. Using Slc6a4+/+, Slc6a4+/-, and Slc6a4-/- mice as a genetic model of different SERT expression levels, we showed the feasibility of SERT imaging in the mouse brain with [11C]DASB-PET. The PET analysis was complemented by an evaluation of SERT protein expression using western blot, which revealed a highly significant correlation between in vivo and ex vivo measurements. [11C]DASB-PET was then applied to the examination of dynamic changes of SERT levels in different brain areas in the chronic corticosterone mouse model of chronic stress. The observed significant reduction in SERT density in corticosterone-treated mice was independently validated by and correlated with western blot analysis. This is the first demonstration of a quantitative in vivo evaluation of SERT density in subregions of the mouse brain using [11C]DASB-PET. The evidenced decrease in SERT density in response to chronic corticosterone treatment adds a new dimension to the complex involvement of SERT in the pathophysiology of stress-induced mental illnesses.
Collapse
|
47
|
Reisinger SN, Kong E, Molz B, Humberg T, Sideromenos S, Cicvaric A, Steinkellner T, Yang J, Cabatic M, Monje FJ, Sitte HH, Nichols BJ, Pollak DD. Flotillin-1 interacts with the serotonin transporter and modulates chronic corticosterone response. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12482. [PMID: 29667320 PMCID: PMC6392109 DOI: 10.1111/gbb.12482] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 01/08/2023]
Abstract
Aberrant serotonergic neurotransmission in the brain is considered at the core of the pathophysiological mechanisms involved in neuropsychiatric disorders. Gene by environment interactions contribute to the development of depression and involve modulation of the availability and functional activity of the serotonin transporter (SERT). Using behavioral and in vivo electrophysiological approaches together with biochemical, molecular-biological and molecular imaging tools we establish Flotillin-1 (Flot1) as a novel protein interacting with SERT and demonstrate its involvement in the response to chronic corticosterone (CORT) treatment. We show that genetic Flot1 depletion augments chronic CORT-induced behavioral despair and describe concomitant alterations in the expression of SERT, activity of serotonergic neurons and alterations of the glucocorticoid receptor transport machinery. Hence, we propose a role for Flot1 as modulatory factor for the depressogenic consequences of chronic CORT exposure and suggest Flotillin-1-dependent regulation of SERT expression and activity of serotonergic neurotransmission at the core of the molecular mechanisms involved.
Collapse
Affiliation(s)
- S. N. Reisinger
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - E. Kong
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - B. Molz
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - T. Humberg
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - S. Sideromenos
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - A. Cicvaric
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - T. Steinkellner
- Department of PharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - J.‐W. Yang
- Department of PharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - M. Cabatic
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - F. J. Monje
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | - H. H. Sitte
- Department of PharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| | | | - D. D. Pollak
- Department of Neurophysiology and NeuropharmacologyCenter for Physiology and Pharmacology, Medical University of ViennaViennaAustria
| |
Collapse
|
48
|
Deutsch SI, Raffaele CT. Understanding facial expressivity in autism spectrum disorder: An inside out review of the biological basis and clinical implications. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:401-417. [PMID: 29777730 DOI: 10.1016/j.pnpbp.2018.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/28/2022]
Abstract
Deficits in decoding and understanding facially expressed emotions occur commonly in persons with autism spectrum disorder (ASD), which contribute to the impairment of social communication that serves as one of its core diagnostic criteria. Research suggests that abnormalities of visual scanning of the face, activation of key nodes within the "social brain" by facially expressed emotions, functional connectivity within and between nodes of the "social brain", and transduction of specific neurotransmitter/neuromodulatory signals contribute to the pathogenesis of these deficits in at least some persons with ASD. Importantly, the etiologies of these deficits are heterogeneous and include genetic, immunologic, and inflammatory mechanisms, as well as in utero exposures to drugs and toxins. The manifestation and severity of these deficits can also be influenced by developmental age, IQ and genetic background. Consistent with the goals of the Special Issue, the current Review is intended to familiarize the readership with several of the leading neurobiological mechanisms proposed to underlie these deficits in decoding facially expressed emotions and stimulate interest in translational preclinical and clinical investigations, whose ultimate purpose is to attenuate their severity and, thereby, improve functional outcomes of persons with ASD.
Collapse
Affiliation(s)
- Stephen I Deutsch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, United States.
| | - C Teal Raffaele
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
49
|
Zemdegs J, Rainer Q, Grossmann CP, Rousseau-Ralliard D, Grynberg A, Ribeiro E, Guiard BP. Anxiolytic- and Antidepressant-Like Effects of Fish Oil-Enriched Diet in Brain-Derived Neurotrophic Factor Deficient Mice. Front Neurosci 2018; 12:974. [PMID: 30622454 PMCID: PMC6308198 DOI: 10.3389/fnins.2018.00974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022] Open
Abstract
Despite significant advances in the understanding of the therapeutic activity of antidepressant drugs, treatment-resistant depression is a public health issue prompting research to identify new therapeutic strategies. Evidence strongly suggests that nutrition might exert a significant impact on the onset, the duration and the severity of major depression. Accordingly, preclinical and clinical investigations demonstrated the beneficial effects of omega-3 fatty acids in anxiety and mood disorders. Although the neurobiological substrates of its action remain poorly documented, basic research has shown that omega-3 increases brain-derived neurotrophic factor (BDNF) levels in brain regions associated with depression, as antidepressant drugs do. In contrast, low BDNF levels and hippocampal atrophy were observed in animal models of depression. In this context, the present study compared the effects of long-lasting fish oil-enriched diet, an important source of omega-3 fatty acids, between heterozygous BDNF+/- mice and their wild-type littermates. Our results demonstrated lower activation of Erk in BDNF+/- mice whereas this deficit was rescued by fish oil-enriched diet. In parallel, BDNF+/- mice displayed elevated hippocampal extracellular 5-HT levels in relation with a local decreased serotonin transporter protein level. Fish oil-enriched diet restored normal serotonergic tone by increasing the protein levels of serotonin transporter. At the cellular level, fish oil-enriched diet increased the pool of immature neurons in the dentate gyrus of BDNF+/- mice and the latter observations coincide with its ability to promote anxiolytic- and antidepressant-like response in these mutants. Collectively, our results demonstrate that the beneficial effects of long-term exposure to fish oil-enriched diet in behavioral paradigms known to recapitulate diverse abnormalities related to the depressive state specifically in mice with a partial loss of BDNF. These findings contrast with the mechanism of action of currently available antidepressant drugs for which the full manifestation of their therapeutic activity depends on the enhancement of serotoninergic and BDNF signaling. Further studies are warranted to determine whether fish oil supplementation could be used as an add-on strategy to conventional pharmacological interventions in treatment-resistant patients and relevant animal models.
Collapse
Affiliation(s)
- Juliane Zemdegs
- Department of Physiology, Discipline of Nutrition Physiology, Universidade Federal de São Paulo, São Paulo, Brazil.,Faculté de Pharmacie, Université Paris Sud, Université Paris-Saclay, Chatenay-Malabry, France.,Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Quentin Rainer
- Faculté de Pharmacie, Université Paris Sud, Université Paris-Saclay, Chatenay-Malabry, France
| | - Cindy P Grossmann
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Delphine Rousseau-Ralliard
- INRA, Unité Mixte de Recherche BDR, ENVA, Université Paris Saclay, Jouy-en-Josas, France.,INRA, Unité Mixte de Recherche 1154, Laboratoire Lipides Membranaires et Régulations Fonctionnelles du Coeur et des Vaisseaux, Jouy-en-Josas, France
| | - Alain Grynberg
- INRA, Unité Mixte de Recherche 1154, Laboratoire Lipides Membranaires et Régulations Fonctionnelles du Coeur et des Vaisseaux, Jouy-en-Josas, France
| | - Eliane Ribeiro
- Department of Physiology, Discipline of Nutrition Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bruno P Guiard
- Faculté de Pharmacie, Université Paris Sud, Université Paris-Saclay, Chatenay-Malabry, France.,Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| |
Collapse
|
50
|
Stanley B, Perez-Rodriguez MM, Labouliere C, Roose S. A Neuroscience-Oriented Research Approach to Borderline Personality Disorder. J Pers Disord 2018; 32:784-822. [PMID: 29469663 DOI: 10.1521/pedi_2017_31_326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Traditionally, the study of personality disorders had been based on psychoanalytic or behavioral models. Over the past two decades, there has been an emerging neuroscience model of borderline personality disorder (BPD) grounded in the concept of BPD as a condition in which dysfunctional neural circuits underlie its pathological dimensions, some of which include emotion dysregulation (broadly encompassing affective instability, negative affectivity, and hyperarousal), abnormal interpersonal functioning, and impulsive aggression. This article, initiated at a joint Columbia University- Cornell University Think Tank on BPD with representation from the Icahn School of Medicine at Mount Sinai, suggests how to advance research in BPD by studying the dimensions that underlie BPD in addition to studying the disorder as a unitary diagnostic entity. We suggest that linking the underlying neurobiological abnormalities to behavioral symptoms of the disorder can inform a research agenda to better understand BPD with its multiple presentations.
Collapse
Affiliation(s)
- Barbara Stanley
- Department of Psychiatry, Columbia University, New York City
| | | | | | - Steven Roose
- Department of Psychiatry, Columbia University, New York City.,New York State Psychiatric Institute, New York City
| |
Collapse
|