1
|
Hassani SA, Tiesinga P, Womelsdorf T. Noradrenergic alpha-2a receptor stimulation enhances prediction error signaling and updating of attention sets in anterior cingulate cortex and striatum. Nat Commun 2024; 15:9905. [PMID: 39548091 PMCID: PMC11568163 DOI: 10.1038/s41467-024-54395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/09/2024] [Indexed: 11/17/2024] Open
Abstract
The noradrenergic system is believed to support behavioral flexibility. A possible source mediating improved flexibility are α2A adrenoceptors (α2AR) in prefrontal cortex (PFC) or the anterior cingulate cortex (ACC). We tested this hypothesis by stimulating α2ARs using Guanfacine during attentional set shifting in male nonhuman primates. We found that α2AR stimulation improved learning from errors and updating attention sets. Neural recordings in the ACC, dorsolateral PFC, and the striatum showed that α2AR stimulation selectively enhanced neural signaling of prediction errors in neurons of the ACC and the striatum, but not in dlPFC. This modulation was accompanied by enhanced encoding of attended target features and particularly apparent in putative fast-spiking interneurons, pointing to an interneuron mediated mechanism of α2AR action. These results reveal that α2A receptors are part of the causal chain of flexibly updating attention sets through an enhancement of outcomes and prediction error signaling in ACC and striatum.
Collapse
Affiliation(s)
- Seyed A Hassani
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Nashville, TN, USA
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Paul Tiesinga
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Brain Institute, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Skog TD, Johnson SB, Hinz DC, Lingg RT, Schulz EN, Luna JT, Beltz TG, Romig-Martin SA, Gantz SC, Xue B, Johnson AK, Radley JJ. A Prefrontal→Periaqueductal Gray Pathway Differentially Engages Autonomic, Hormonal, and Behavioral Features of the Stress-Coping Response. J Neurosci 2024; 44:e0844242024. [PMID: 39313320 PMCID: PMC11561873 DOI: 10.1523/jneurosci.0844-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/27/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
The activation of autonomic and hypothalamo-pituitary-adrenal (HPA) systems occurs interdependently with behavioral adjustments under varying environmental demands. Nevertheless, laboratory rodent studies examining the neural bases of stress responses have generally attributed increments in these systems to be monolithic, regardless of whether an active or passive coping strategy is employed. Using the shock probe defensive burying test (SPDB) to measure stress-coping features naturalistically in male and female rats, we identify a neural pathway whereby activity changes may promote distinctive response patterns of hemodynamic and HPA indices typifying active and passive coping phenotypes. Optogenetic excitation of the rostral medial prefrontal cortex (mPFC) input to the ventrolateral periaqueductal gray (vlPAG) decreased passive behavior (immobility), attenuated the glucocorticoid hormone response, but did not prevent arterial pressure and heart rate increases associated with rats' active behavioral (defensive burying) engagement during the SPDB. In contrast, inhibition of the same pathway increased behavioral immobility and attenuated hemodynamic output but did not affect glucocorticoid increases. Further analyses confirmed that hemodynamic increments occurred preferentially during active behaviors and decrements during immobility epochs, whereas pathway manipulations, regardless of the directionality of effect, weakened these correlational relationships. Finally, neuroanatomical evidence indicated that the influence of the rostral mPFC→vlPAG pathway on coping response patterns is mediated predominantly through GABAergic neurons within vlPAG. These data highlight the importance of this prefrontal→midbrain connection in organizing stress-coping responses and in coordinating bodily systems with behavioral output for adaptation to aversive experiences.
Collapse
Affiliation(s)
- Timothy D Skog
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, Iowa 52242
| | - Shane B Johnson
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, Iowa 52242
| | - Dalton C Hinz
- Departments of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Ryan T Lingg
- Departments of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Emily N Schulz
- Departments of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Jordan T Luna
- Departments of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Terry G Beltz
- Departments of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Sara A Romig-Martin
- Departments of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Stephanie C Gantz
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Baojian Xue
- Departments of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Alan K Johnson
- Departments of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
- François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Jason J Radley
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, Iowa 52242
- Departments of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
3
|
Lingg RT, Johnson SB, Hinz DC, Skog TD, Lizarazu M, Romig-Martin SA, LaLumiere RT, Narayanan NS, Radley JJ. Prefrontal projections to the bed nuclei of the stria terminalis modulate the specificity of aversive memories. RESEARCH SQUARE 2024:rs.3.rs-4241372. [PMID: 39569181 PMCID: PMC11577250 DOI: 10.21203/rs.3.rs-4241372/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Generalizing aversive memories helps organisms avoid danger, whereas discriminating between dissimilar situations promotes opportunistic behaviors. We identified a novel pathway that controls the contextual specificity of memory consolidation of inhibitory avoidance learning. Optogenetic inhibition of the rostral medial prefrontal cortex (mPFC)-to-anteroventral bed nuclei of the stria terminalis (avBST) pathway after a single footshock exacerbated stress hormonal output, and 2 d later promoted generalization to a novel context. Rostral mPFC-avBST influences were directly mnemonic rather than associated with stress hormone increases, as adrenalectomy did not prevent such influences on generalization. We next observed that fear discrimination between novel and aversive contexts engaged activity along the rostral mPFC and avBST pathway. Finally, post-footshock optogenetic pathway excitation enhanced 2-d discrimination. These findings highlight a prefrontal pathway in which activity immediately after aversive experiences promotes mnemonic discrimination between threatening and non-threatening contexts and may be importance for understanding trauma generalization in psychiatric illnesses.
Collapse
Affiliation(s)
- Ryan T. Lingg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Shane B. Johnson
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, USA
| | - Dalton C. Hinz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Timothy D. Skog
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, USA
| | - Manuela Lizarazu
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Sara A. Romig-Martin
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Ryan T. LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Nandakumar S. Narayanan
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, USA
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Jason J. Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
4
|
Magrou L, Joyce MKP, Froudist-Walsh S, Datta D, Wang XJ, Martinez-Trujillo J, Arnsten AFT. The meso-connectomes of mouse, marmoset, and macaque: network organization and the emergence of higher cognition. Cereb Cortex 2024; 34:bhae174. [PMID: 38771244 PMCID: PMC11107384 DOI: 10.1093/cercor/bhae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.
Collapse
Affiliation(s)
- Loïc Magrou
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Sean Froudist-Walsh
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, BS8 1QU, United Kingdom
| | - Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Xiao-Jing Wang
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Julio Martinez-Trujillo
- Departments of Physiology and Pharmacology, and Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
5
|
Arnsten AFT, Wang M, D’Esposito M. Dynamic Network Connectivity: from monkeys to humans. Front Hum Neurosci 2024; 18:1353043. [PMID: 38384333 PMCID: PMC10879414 DOI: 10.3389/fnhum.2024.1353043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Human brain imaging research using functional MRI (fMRI) has uncovered flexible variations in the functional connectivity between brain regions. While some of this variability likely arises from the pattern of information flow through circuits, it may also be influenced by rapid changes in effective synaptic strength at the molecular level, a phenomenon called Dynamic Network Connectivity (DNC) discovered in non-human primate circuits. These neuromodulatory molecular mechanisms are found in layer III of the macaque dorsolateral prefrontal cortex (dlPFC), the site of the microcircuits shown by Goldman-Rakic to be critical for working memory. This research has shown that the neuromodulators acetylcholine, norepinephrine, and dopamine can rapidly change the strength of synaptic connections in layer III dlPFC by (1) modifying the depolarization state of the post-synaptic density needed for NMDA receptor neurotransmission and (2) altering the open state of nearby potassium channels to rapidly weaken or strengthen synaptic efficacy and the strength of persistent neuronal firing. Many of these actions involve increased cAMP-calcium signaling in dendritic spines, where varying levels can coordinate the arousal state with the cognitive state. The current review examines the hypothesis that some of the dynamic changes in correlative strength between cortical regions observed in human fMRI studies may arise from these molecular underpinnings, as has been seen when pharmacological agents or genetic alterations alter the functional connectivity of the dlPFC consistent with the macaque physiology. These DNC mechanisms provide essential flexibility but may also confer vulnerability to malfunction when dysregulated in cognitive disorders.
Collapse
Affiliation(s)
- Amy F. T. Arnsten
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Min Wang
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Mark D’Esposito
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
6
|
Dubois MA, Pelletier CA, Mérette C, Jomphe V, Turgeon R, Bélanger RE, Grondin S, Hébert M. Evaluation of electroretinography (ERG) parameters as a biomarker for ADHD. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110807. [PMID: 37290571 DOI: 10.1016/j.pnpbp.2023.110807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND The retina is recognized as an accessible part of the brain due to their common embryonic origin. The electroretinogram (ERG) has proven to be a valuable tool for detecting schizophrenia and bipolarity. We therefore investigated its ability to detect ADHD. METHODS The cone and rod luminance response functions of the ERG were recorded in 26 ADHD subjects (17 women and 9 men) and 25 controls (16 women and 9 men). RESULTS No significant differences were found between the mixed groups, but sexual dysmorphia was observed in the significant results. In males, a significant prolonged cone a-wave latency was observed in the ADHD group. In females, we observed a significant decrease in the cone a- and b-wave amplitudes and a trend for a prolonged cone b-wave latency as well as a higher scotopic mixed rod-cone a-wave in the ADHD group. CONCLUSION The data obtained in this study show the potential of the ERG to detect ADHD, warranting further large-scale studies.
Collapse
Affiliation(s)
- Marc-André Dubois
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec, QC, Canada; School of Psychology, Faculty of Social Sciences, Université Laval, Quebec, QC, Canada
| | - Charles-Antoine Pelletier
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec, QC, Canada
| | - Chantal Mérette
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec, QC, Canada; Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Valérie Jomphe
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec, QC, Canada
| | - Rose Turgeon
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec, QC, Canada
| | - Richard E Bélanger
- CHU de Québec Research Centre, Quebec, QC, Canada; Department of Pediatrics, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Simon Grondin
- School of Psychology, Faculty of Social Sciences, Université Laval, Quebec, QC, Canada
| | - Marc Hébert
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec, QC, Canada; Department of Ophthalmology and Otorhinolaryngology - Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
7
|
Hassani SA, Womelsdorf T. Noradrenergic alpha-2a Receptor Stimulation Enhances Prediction Error Signaling in Anterior Cingulate Cortex and Striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564052. [PMID: 37961384 PMCID: PMC10634832 DOI: 10.1101/2023.10.25.564052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The noradrenergic system is implicated to support behavioral flexibility by increasing exploration during periods of uncertainty and by enhancing working memory for goal-relevant stimuli. Possible sources mediating these pro-cognitive effects are α2A adrenoceptors (α2AR) in prefrontal cortex or the anterior cingulate cortex facilitating fronto-striatal learning processes. We tested this hypothesis by selectively stimulating α2ARs using Guanfacine during feature-based attentional set shifting in nonhuman primates. We found that α2A stimulation improved learning from errors and facilitates updating the target feature of an attentional set. Neural recordings in the anterior cingulate cortex (ACC), the dorsolateral prefrontal cortex (dlPFC), and the striatum showed that α2A stimulation selectively enhanced the neural representation of negative reward prediction errors in neurons of the ACC and of positive prediction errors in the striatum, but not in dlPFC. This modulation was accompanied by enhanced encoding of the feature and location of the attended target across the fronto-striatal network. Enhanced learning was paralleled by enhanced encoding of outcomes in putative fast-spiking interneurons in the ACC, dlPFC, and striatum but not in broad spiking cells, pointing to an interneuron mediated mechanism of α2AR action. These results illustrate that α2A receptors causally support the noradrenergic enhancement of updating attention sets through an enhancement of prediction error signaling in the ACC and the striatum.
Collapse
Affiliation(s)
- Seyed A. Hassani
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
- Vanderbilt Brain Institute, Nashville, TN 37240
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20824
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
- Vanderbilt Brain Institute, Nashville, TN 37240
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
8
|
Wang Z, Juhasz Z. GPU Implementation of the Improved CEEMDAN Algorithm for Fast and Efficient EEG Time-Frequency Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:8654. [PMID: 37896747 PMCID: PMC10611056 DOI: 10.3390/s23208654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Time-frequency analysis of EEG data is a key step in exploring the internal activities of the human brain. Studying oscillations is an important part of the analysis, as they are thought to provide the underlying mechanism for communication between neural assemblies. Traditional methods of analysis, such as Short-Time FFT and Wavelet Transforms, are not ideal for this task due to the time-frequency uncertainty principle and their reliance on predefined basis functions. Empirical Mode Decomposition and its variants are more suited to this task as they are able to extract the instantaneous frequency and phase information but are too time consuming for practical use. Our aim was to design and develop a massively parallel and performance-optimized GPU implementation of the Improved Complete Ensemble EMD with the Adaptive Noise (CEEMDAN) algorithm that significantly reduces the computational time (from hours to seconds) of such analysis. The resulting GPU program, which is publicly available, was validated against a MATLAB reference implementation and reached over a 260× speedup for actual EEG measurement data, and provided predicted speedups in the range of 3000-8300× for longer measurements when sufficient memory was available. The significance of our research is that this implementation can enable researchers to perform EMD-based EEG analysis routinely, even for high-density EEG measurements. The program is suitable for execution on desktop, cloud, and supercomputer systems and can be the starting point for future large-scale multi-GPU implementations.
Collapse
Affiliation(s)
| | - Zoltan Juhasz
- Department of Electrical Engineering and Information Systems, University of Pannonia, 8200 Veszprem, Hungary;
| |
Collapse
|
9
|
Li S, Rosen MC, Chang S, David S, Freedman DJ. Alterations of neural activity in the prefrontal cortex associated with deficits in working memory performance. Front Behav Neurosci 2023; 17:1213435. [PMID: 37915531 PMCID: PMC10616307 DOI: 10.3389/fnbeh.2023.1213435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/31/2023] [Indexed: 11/03/2023] Open
Abstract
Working memory (WM), a core cognitive function, enables the temporary holding and manipulation of information in mind to support ongoing behavior. Neurophysiological recordings conducted in nonhuman primates have revealed neural correlates of this process in a network of higher-order cortical regions, particularly the prefrontal cortex (PFC). Here, we review the circuit mechanisms and functional importance of WM-related activity in these areas. Recent neurophysiological data indicates that the absence of these neural correlates at different stages of WM is accompanied by distinct behavioral deficits, which are characteristic of various disease states/normal aging and which we review here. Finally, we discuss emerging evidence of electrical stimulation ameliorating these WM deficits in both humans and non-human primates. These results are important for a basic understanding of the neural mechanisms supporting WM, as well as for translational efforts to developing therapies capable of enhancing healthy WM ability or restoring WM from dysfunction.
Collapse
Affiliation(s)
- Sihai Li
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Matthew C. Rosen
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Suha Chang
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Samuel David
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - David J. Freedman
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
- Neuroscience Institute, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Wang C, Kang Y, Liu P, Liu W, Chen W, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Combined use of dasatinib and quercetin alleviates overtraining-induced deficits in learning and memory through eliminating senescent cells and reducing apoptotic cells in rat hippocampus. Behav Brain Res 2023; 440:114260. [PMID: 36535433 DOI: 10.1016/j.bbr.2022.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Excessive physical exercise (overtraining, OT) charactered by long-term and excessive training results in the damage of multiple vital tissues including hippocampus which plays a critical role in learning and memory. A combination of dasatinib (D) plus quercetin (Q) (D+Q) belongs to senolytic drugs which selectively kill senescent cells in vitro and vivo. In this study, the rats that suffered a five-week excessive swimming training were subjected to the oral administration of D+Q. D+Q alleviated the decline in exercise performance of OT rats during the swimming training, and prevented learning and memory deficits in Morris water maze, Y-maze and novel object recognition tests after excessive swimming training. Analytical results by SA-β-gal staining and western blotting showed that D+Q significantly reduced senescent cells with repressed expression of senescence-related proteins, p53 and p21, in hippocampus. Nissl and immunohistochemical staining showed that D+Q significantly attenuated neuronal loss caused by apoptosis. Interestingly, we observed elevated level of cleaved caspase 3, an apoptosis executor protein, in p21 positive hippocampus cells by D+Q treatment in immunofluorescent staining, suggesting that senescent cells were induced to apoptosis in D+Q-treated rats. The positive control drug, silibinin, showed similar protective effect against OT, but did not induce the apoptosis of senescent cells, suggesting a difference in the protective mechanisms. These results indicated that D+Q alleviates overtraining-induced deficits in learning and memory through elimination of senescent cells and reduction of apoptotic cell number.
Collapse
Affiliation(s)
- Chenkang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yu Kang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Panwen Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Wenhui Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, Nakanomachi, Hachioji, Tokyo 192-0015, Japan; Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, China.
| |
Collapse
|
11
|
Song I, Lee TH. Considering dynamic nature of the brain: the clinical importance of connectivity variability in machine learning classification and prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525765. [PMID: 36747828 PMCID: PMC9901018 DOI: 10.1101/2023.01.26.525765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The brain connectivity of resting-state fMRI (rs-fMRI) represents an intrinsic state of brain architecture, and it has been used as a useful neural marker for detecting psychiatric conditions as well as for predicting psychosocial characteristics. However, most studies using brain connectivity have focused more on the strength of functional connectivity over time (static-FC) but less attention to temporal characteristics of connectivity changes (FC-variability). The primary goal of the current study was to investigate the effectiveness of using the FC-variability in classifying an individual's pathological characteristics from others and predicting psychosocial characteristics. In addition, the current study aimed to prove that benefits of the FC-variability are reliable across various analysis procedures. To this end, three open public large resting-state fMRI datasets including individuals with Autism Spectrum Disorder (ABIDE; N = 1249), Schizophrenia disorder (COBRE; N = 145), and typical development (NKI; N = 672) were utilized for the machine learning (ML) classification and prediction based on their static-FC and the FC-variability metrics. To confirm the robustness of FC-variability utility, we benchmarked the ML classification and prediction with various brain parcellations and sliding window parameters. As a result, we found that the ML performances were significantly improved when the ML included FC-variability features in classifying pathological populations from controls (e.g., individuals with autism spectrum disorder vs. typical development) and predicting psychiatric severity (e.g., score of autism diagnostic observation schedule), regardless of parcellation selection and sliding window size. Additionally, the ML performance deterioration was significantly prevented with FC-variability features when excessive features were inputted into the ML models, yielding more reliable results. In conclusion, the current finding proved the usefulness of the FC-variability and its reliability.
Collapse
Affiliation(s)
- Inuk Song
- Department of Psychology, Virginia Tech
| | - Tae-Ho Lee
- Department of Psychology, Virginia Tech
- School of Neuroscience, Virginia Tech
| |
Collapse
|
12
|
Hassani SA, Lendor S, Neumann A, Sinha Roy K, Banaie Boroujeni K, Hoffman KL, Pawliszyn J, Womelsdorf T. Dose-Dependent Dissociation of Pro-cognitive Effects of Donepezil on Attention and Cognitive Flexibility in Rhesus Monkeys. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:68-77. [PMID: 36712561 PMCID: PMC9874073 DOI: 10.1016/j.bpsgos.2021.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 02/01/2023] Open
Abstract
Background Donepezil exerts pro-cognitive effects by nonselectively enhancing acetylcholine (ACh) across multiple brain systems. Two brain systems that mediate pro-cognitive effects of attentional control and cognitive flexibility are the prefrontal cortex and the anterior striatum, which have different pharmacokinetic sensitivities to ACh modulation. We speculated that these area-specific ACh profiles lead to distinct optimal dose ranges for donepezil to enhance the cognitive domains of attention and flexible learning. Methods To test for dose-specific effects of donepezil on different cognitive domains, we devised a multitask paradigm for nonhuman primates that assessed attention and cognitive flexibility. The nonhuman primates received either vehicle or variable doses of donepezil before task performance. We measured intracerebral donepezil and its strength in preventing the breakdown of ACh within the prefrontal cortex and anterior striatum using solid phase microextraction neurochemistry. Results The highest administered donepezil dose improved attention and made the subjects more robust against distractor interference, but it did not improve flexible learning. In contrast, only a lower dose range of donepezil improved flexible learning and reduced perseveration, but without distractor-dependent attentional improvement. Neurochemical measurements confirmed a dose-dependent increase of extracellular donepezil and decreases in choline within the prefrontal cortex and the striatum. Conclusions The donepezil dose for maximally improving attention differed from the dose range that enhanced cognitive flexibility despite the availability of the drug in two major brain systems supporting these functions. These results suggest that in our cohort of adult monkeys, donepezil traded improvements in attention for improvements in cognitive flexibility at a given dose range.
Collapse
Affiliation(s)
- Seyed A. Hassani
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Sofia Lendor
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Adam Neumann
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Kanchan Sinha Roy
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Kari L. Hoffman
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
13
|
Johnson SB, Lingg RT, Skog TD, Hinz DC, Romig-Martin SA, Viau V, Narayanan NS, Radley JJ. Activity in a prefrontal-periaqueductal gray circuit overcomes behavioral and endocrine features of the passive coping stress response. Proc Natl Acad Sci U S A 2022; 119:e2210783119. [PMID: 36306326 PMCID: PMC9636920 DOI: 10.1073/pnas.2210783119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
The question of how the brain links behavioral and biological features of defensive responses has remained elusive. The importance of this problem is underscored by the observation that behavioral passivity in stress coping is associated with elevations in glucocorticoid hormones, and each may carry risks for susceptibility to a host of stress-related diseases. Past work implicates the medial prefrontal cortex (mPFC) in the top-down regulation of stress-related behaviors; however, it is unknown whether such changes have the capacity to buffer against the longer-lasting biological consequences associated with aversive experiences. Using the shock probe defensive burying test in rats to naturalistically measure behavioral and endocrine features of coping, we observed that the active behavioral component of stress coping is associated with increases in activity along a circuit involving the caudal mPFC and midbrain dorsolateral periaqueductal gray (PAG). Optogenetic manipulations of the caudal mPFC-to-dorsolateral PAG pathway bidirectionally modulated active (escape and defensive burying) behaviors, distinct from a rostral mPFC-ventrolateral PAG circuit that instead limited passive (immobility) behavior. Strikingly, under conditions that biased rats toward a passive coping response set, including exaggerated stress hormonal output and increased immobility, excitation of the caudal mPFC-dorsolateral PAG projection significantly attenuated each of these features. These results lend insight into how the brain coordinates response features to overcome passive coping and may be of importance for understanding how activated neural systems promote stress resilience.
Collapse
Affiliation(s)
- Shane B. Johnson
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
| | - Ryan T. Lingg
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
| | - Timothy D. Skog
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
| | - Dalton C. Hinz
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
| | - Sara A. Romig-Martin
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
| | - Victor Viau
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Nandakumar S. Narayanan
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
- Department of Neurology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242
| | - Jason J. Radley
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| |
Collapse
|
14
|
Park JH. Potential Inflammatory Biomarker in Patients with Attention Deficit Hyperactivity Disorder. Int J Mol Sci 2022; 23:13054. [PMID: 36361835 PMCID: PMC9658646 DOI: 10.3390/ijms232113054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder that can diminish the quality of life of both children and adults in academic, occupational, and social contexts. The kynurenine pathway (KP) contains a set of enzymatic reactions involved in tryptophan (TRP) degradation. It is known to be associated with the risk of developing ADHD. This review will address the KP and underlying mechanism of inflammation in ADHD. Potential inflammatory biomarkers reported in the most recent studies are summarized. Although a strong neuroimmunological basis has been established due to the advances of recent neurobiological research, the pathophysiology of ADHD remains unclear.
Collapse
Affiliation(s)
- Ji Hyun Park
- College of Pharmacy, Duksung Women's University, Seoul 01369, Korea
| |
Collapse
|
15
|
Audiffren M, André N, Baumeister RF. Training Willpower: Reducing Costs and Valuing Effort. Front Neurosci 2022; 16:699817. [PMID: 35573284 PMCID: PMC9095966 DOI: 10.3389/fnins.2022.699817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The integrative model of effortful control presented in a previous article aimed to specify the neurophysiological bases of mental effort. This model assumes that effort reflects three different inter-related aspects of the same adaptive function. First, a mechanism anchored in the salience network that makes decisions about the effort that should be engaged in the current task in view of costs and benefits associated with the achievement of the task goal. Second, a top-down control signal generated by the mechanism of effort that modulates neuronal activity in brain regions involved in the current task to filter pertinent information. Third, a feeling that emerges in awareness during effortful tasks and reflects the costs associated with goal-directed behavior. The aim of the present article is to complete this model by proposing that the capacity to exert effortful control can be improved through training programs. Two main questions relative to this possible strengthening of willpower are addressed in this paper. The first question concerns the existence of empirical evidence that supports gains in effortful control capacity through training. We conducted a review of 63 meta-analyses that shows training programs are effective in improving performance in effortful tasks tapping executive functions and/or self-control with a small to large effect size. Moreover, physical and mindfulness exercises could be two promising training methods that would deserve to be included in training programs aiming to strengthen willpower. The second question concerns the neural mechanisms that could explain these gains in effortful control capacity. Two plausible brain mechanisms are proposed: (1) a decrease in effort costs combined with a greater efficiency of brain regions involved in the task and (2) an increase in the value of effort through operant conditioning in the context of high effort and high reward. The first mechanism supports the hypothesis of a strengthening of the capacity to exert effortful control whereas the second mechanism supports the hypothesis of an increase in the motivation to exert this control. In the last part of the article, we made several recommendations to improve the effectiveness of interventional studies aiming to train this adaptive function."Keep the faculty of effort alive in you by a little gratuitous exercise every day."James (1918, p. 127).
Collapse
Affiliation(s)
- Michel Audiffren
- Research Centre on Cognition and Learning, Centre National de la Recherche Scientifique, University of Poitiers, Poitiers, France
| | - Nathalie André
- Research Centre on Cognition and Learning, Centre National de la Recherche Scientifique, University of Poitiers, Poitiers, France
| | - Roy F. Baumeister
- School of Psychology, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
16
|
Dopamine-related polymorphisms and Affective Working Memory in aging. Neurobiol Learn Mem 2022; 191:107623. [DOI: 10.1016/j.nlm.2022.107623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/17/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
|
17
|
Cools R, Arnsten AFT. Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology 2022; 47:309-328. [PMID: 34312496 PMCID: PMC8617291 DOI: 10.1038/s41386-021-01100-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
The primate prefrontal cortex (PFC) subserves our highest order cognitive operations, and yet is tremendously dependent on a precise neurochemical environment for proper functioning. Depletion of noradrenaline and dopamine, or of acetylcholine from the dorsolateral PFC (dlPFC), is as devastating as removing the cortex itself, and serotonergic influences are also critical to proper functioning of the orbital and medial PFC. Most neuromodulators have a narrow inverted U dose response, which coordinates arousal state with cognitive state, and contributes to cognitive deficits with fatigue or uncontrollable stress. Studies in monkeys have revealed the molecular signaling mechanisms that govern the generation and modulation of mental representations by the dlPFC, allowing dynamic regulation of network strength, a process that requires tight regulation to prevent toxic actions, e.g., as occurs with advanced age. Brain imaging studies in humans have observed drug and genotype influences on a range of cognitive tasks and on PFC circuit functional connectivity, e.g., showing that catecholamines stabilize representations in a baseline-dependent manner. Research in monkeys has already led to new treatments for cognitive disorders in humans, encouraging future research in this important field.
Collapse
Affiliation(s)
- Roshan Cools
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
18
|
Prasad K, Rubin J, Mitra A, Lewis M, Theis N, Muldoon B, Iyengar S, Cape J. Structural covariance networks in schizophrenia: A systematic review Part II. Schizophr Res 2022; 239:176-191. [PMID: 34902650 PMCID: PMC8785680 DOI: 10.1016/j.schres.2021.11.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/02/2021] [Accepted: 11/23/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Examination of structural covariance network (SCN) is gaining prominence among the strategies to delineate dysconnectivity that case-control morphometric comparisons cannot address. Part II of this review extends on the part I of the review that included SCN studies using statistical approaches by examining SCN studies applying graph theoretic approaches to elucidate network properties in schizophrenia. This review also includes SCN studies using graph theoretic or statistical approaches on persons at-risk for schizophrenia. METHODS A systematic literature search was conducted for peer-reviewed publications using different keywords and keyword combinations for schizophrenia and risk for schizophrenia. Thirteen studies on schizophrenia and five on persons at risk for schizophrenia met the criteria. RESULTS A variety of findings from over the last 1½ decades showing qualitative and quantitative differences in the global and local structural connectome in schizophrenia are described. These observations include altered hub patterns, disrupted network topology and hierarchical organization of the brain, and impaired connections that may be localized to default mode, executive control, and dorsal attention networks. Some of these connectomic alterations were observed in persons at-risk for schizophrenia before the onset of the illness. CONCLUSIONS Observed disruptions may reduce network efficiency and capacity to integrate information. Further, global connectomic changes were not schizophrenia-specific but local network changes were. Existing studies have used different atlases for brain parcellation, examined different morphometric features, and patients at different stages of illness making it difficult to conduct meta-analysis. Future studies should harmonize such methodological differences to facilitate meta-analysis and also elucidate causal underpinnings of dysconnectivity.
Collapse
Affiliation(s)
- Konasale Prasad
- University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara St, Pittsburgh, PA 15213, United States of America; University of Pittsburgh Swanson School of Engineering, 3700 O'Hara St, Pittsburgh, PA 15213, United States of America; VA Pittsburgh Healthcare System, University Dr C, Pittsburgh, PA 15240, United States of America.
| | - Jonathan Rubin
- Department of Mathematics, University of Pittsburgh, 917 Cathedral of Learning, Pittsburgh, PA 15260, United States of America
| | - Anirban Mitra
- Department of Statistics, University of Pittsburgh, 230 South Bouquet Street, Pittsburgh, PA 15260, United States of America
| | - Madison Lewis
- University of Pittsburgh Swanson School of Engineering, 3700 O'Hara St, Pittsburgh, PA 15213, United States of America
| | - Nicholas Theis
- University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara St, Pittsburgh, PA 15213, United States of America
| | - Brendan Muldoon
- University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara St, Pittsburgh, PA 15213, United States of America
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, 230 South Bouquet Street, Pittsburgh, PA 15260, United States of America
| | - Joshua Cape
- Department of Statistics, University of Pittsburgh, 230 South Bouquet Street, Pittsburgh, PA 15260, United States of America
| |
Collapse
|
19
|
Regev TI, Markusfeld G, Deouell LY, Nelken I. Context Sensitivity across Multiple Time scales with a Flexible Frequency Bandwidth. Cereb Cortex 2021; 32:158-175. [PMID: 34289019 DOI: 10.1093/cercor/bhab200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/29/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
Everyday auditory streams are complex, including spectro-temporal content that varies at multiple timescales. Using EEG, we investigated the sensitivity of human auditory cortex to the content of past stimulation in unattended sequences of equiprobable tones. In 3 experiments including 82 participants overall, we found that neural responses measured at different latencies after stimulus onset were sensitive to frequency intervals computed over distinct timescales. Importantly, early responses were sensitive to a longer history of stimulation than later responses. To account for these results, we tested a model consisting of neural populations with frequency-specific but broad tuning that undergo adaptation with exponential recovery. We found that the coexistence of neural populations with distinct recovery rates can explain our results. Furthermore, the adaptation bandwidth of these populations depended on spectral context-it was wider when the stimulation sequence had a wider frequency range. Our results provide electrophysiological evidence as well as a possible mechanistic explanation for dynamic and multiscale context-dependent auditory processing in the human cortex.
Collapse
Affiliation(s)
- Tamar I Regev
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,MIT Department of Brain and Cognitive Sciences, Cambridge, MA 02139, USA
| | - Geffen Markusfeld
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Leon Y Deouell
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Israel Nelken
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,Department of Neurobiology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
20
|
Wang XJ. 50 years of mnemonic persistent activity: quo vadis? Trends Neurosci 2021; 44:888-902. [PMID: 34654556 PMCID: PMC9087306 DOI: 10.1016/j.tins.2021.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Half a century ago persistent spiking activity in the neocortex was discovered to be a neural substrate of working memory. Since then scientists have sought to understand this core cognitive function across biological and computational levels. Studies are reviewed here that cumulatively lend support to a synaptic theory of recurrent circuits for mnemonic persistent activity that depends on various cellular and network substrates and is mathematically described by a multiple-attractor network model. Crucially, a mnemonic attractor state of the brain is consistent with temporal variations and heterogeneity across neurons in a subspace of population activity. Persistent activity should be broadly understood as a contrast to decaying transients. Mechanisms in the absence of neural firing ('activity-silent state') are suitable for passive short-term memory but not for working memory - which is characterized by executive control for filtering out distractors, limited capacity, and internal manipulation of information.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 20003, USA.
| |
Collapse
|
21
|
Aswendt M, Green C, Sadler R, Llovera G, Dzikowski L, Heindl S, Gomez de Agüero M, Diedenhofen M, Vogel S, Wieters F, Wiedermann D, Liesz A, Hoehn M. The gut microbiota modulates brain network connectivity under physiological conditions and after acute brain ischemia. iScience 2021; 24:103095. [PMID: 34622150 PMCID: PMC8479691 DOI: 10.1016/j.isci.2021.103095] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/14/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The gut microbiome has been implicated as a key regulator of brain function in health and disease. But the impact of gut microbiota on functional brain connectivity is unknown. We used resting-state functional magnetic resonance imaging in germ-free and normally colonized mice under naive conditions and after ischemic stroke. We observed a strong, brain-wide increase of functional connectivity in germ-free animals. Graph theoretical analysis revealed significant higher values in germ-free animals, indicating a stronger and denser global network but with less structural organization. Breakdown of network function after stroke equally affected germ-free and colonized mice. Results from histological analyses showed changes in dendritic spine densities, as well as an immature microglial phenotype, indicating impaired microglia-neuron interaction in germ-free mice as potential cause of this phenomenon. These results demonstrate the substantial impact of bacterial colonization on brain-wide function and extend our so far mainly (sub) cellular understanding of the gut-brain axis.
Collapse
Affiliation(s)
- Markus Aswendt
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital, 50923 Cologne, Germany
| | - Claudia Green
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany
| | - Rebecca Sadler
- Institute for Stroke and Dementia Research (ISD), LMU Munich, Feodor-Lynen Strasse 17, 81377 Munich, Germany
| | - Gemma Llovera
- Institute for Stroke and Dementia Research (ISD), LMU Munich, Feodor-Lynen Strasse 17, 81377 Munich, Germany
| | - Lauren Dzikowski
- Institute for Stroke and Dementia Research (ISD), LMU Munich, Feodor-Lynen Strasse 17, 81377 Munich, Germany
| | - Steffanie Heindl
- Institute for Stroke and Dementia Research (ISD), LMU Munich, Feodor-Lynen Strasse 17, 81377 Munich, Germany
| | - Mercedes Gomez de Agüero
- Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
- Institute of Systems Immunology, Julius-Maximilians University of Würzburg, 97070 Würzburg, Germany
| | - Michael Diedenhofen
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany
| | - Stefanie Vogel
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany
| | - Frederique Wieters
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital, 50923 Cologne, Germany
| | - Dirk Wiedermann
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), LMU Munich, Feodor-Lynen Strasse 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 80807 Munich, Germany
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany
| |
Collapse
|
22
|
Jung M, Ryu S, Kang M, Javadi AH, Loprinzi PD. Evaluation of the transient hypofrontality theory in the context of exercise: A systematic review with meta-analysis. Q J Exp Psychol (Hove) 2021; 75:1193-1214. [PMID: 34523365 DOI: 10.1177/17470218211048807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Accumulating research suggests that, as a result of reduced neural activity in the prefrontal cortex (PFC), higher-order cognitive function may be compromised while engaging in high-intensity acute exercise, with this phenomenon referred to as the transient hypofrontality effect. However, findings in this field remain unclear and lack a thorough synthesis of the evidence. Therefore, the purpose of this meta-analysis was to evaluate the effects of in-task acute exercise on cognitive function, and further, to examine whether this effect is moderated by the specific type of cognition (i.e., PFC-dependent vs. non-PFC-dependent). Studies were identified by electronic databases in accordance with the PRISMA guidelines. In total, 22 studies met our inclusion criteria and intercept only meta-regression models with robust variance estimation were used to calculate the weighted average effect sizes across studies. Acute exercise at all intensities did not influence cognitive function (β = -0.16, 95% CI = [-0.58, 0.27], p = .45) when exercise occurred during the cognitive task, and no significant moderation effects emerged. However, there was evidence that cognitive task type (PFC-dependent vs. non-PFC-dependent) moderated the effect of high-intensity acute exercise on a concomitant cognitive performance (β = -0.81, 95% CI = [-1.60, -0.02], p = .04). Specifically, our findings suggest that PFC-dependent cognition is impaired while engaging in an acute bout of high-intensity exercise, providing support for the transient hypofrontality theory. We discuss these findings in the context of reticular-activating and cognitive-energetic perspectives.
Collapse
Affiliation(s)
- Myungjin Jung
- Health and Sport Analytics Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA.,Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| | - Seungho Ryu
- Health and Sport Analytics Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| | - Minsoo Kang
- Health and Sport Analytics Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| | - Amir-Homayoun Javadi
- School of Psychology, University of Kent, Canterbury, UK.,Department of Experimental Psychology, Institute of Neuroscience, University College London, London, UK.,School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Paul D Loprinzi
- Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi, University, MS, USA
| |
Collapse
|
23
|
Tardiff N, Medaglia JD, Bassett DS, Thompson-Schill SL. The modulation of brain network integration and arousal during exploration. Neuroimage 2021; 240:118369. [PMID: 34242784 PMCID: PMC8507424 DOI: 10.1016/j.neuroimage.2021.118369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022] Open
Abstract
There is growing interest in how neuromodulators shape brain networks. Recent neuroimaging studies provide evidence that brainstem arousal systems, such as the locus coeruleus-norepinephrine system (LC-NE), influence functional connectivity and brain network topology, suggesting they have a role in flexibly reconfiguring brain networks in order to adapt behavior and cognition to environmental demands. To date, however, the relationship between brainstem arousal systems and functional connectivity has not been assessed within the context of a task with an established relationship between arousal and behavior, with most prior studies relying on incidental variations in arousal or pharmacological manipulation and static brain networks constructed over long periods of time. These factors have likely contributed to a heterogeneity of effects across studies. To address these issues, we took advantage of the association between LC-NE-linked arousal and exploration to probe the relationships between exploratory choice, arousal—as measured indirectly via pupil diameter—and brain network dynamics. Exploration in a bandit task was associated with a shift toward fewer, more weakly connected modules that were more segregated in terms of connectivity and topology but more integrated with respect to the diversity of cognitive systems represented in each module. Functional connectivity strength decreased, and changes in connectivity were correlated with changes in pupil diameter, in line with the hypothesis that brainstem arousal systems influence the dynamic reorganization of brain networks. More broadly, we argue that carefully aligning dynamic network analyses with task designs can increase the temporal resolution at which behaviorally- and cognitively-relevant modulations can be identified, and offer these results as a proof of concept of this approach.
Collapse
Affiliation(s)
- Nathan Tardiff
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States.
| | - John D Medaglia
- Department of Psychology, Drexel University, Philadelphia, PA, United States; Department of Neurology, Drexel University, Philadelphia, PA, United States; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Danielle S Bassett
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States; Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, United States; Santa Fe Institute, Santa Fe, NM, United States
| | | |
Collapse
|
24
|
Pfeffer T, Ponce-Alvarez A, Tsetsos K, Meindertsma T, Gahnström CJ, van den Brink RL, Nolte G, Engel AK, Deco G, Donner TH. Circuit mechanisms for the chemical modulation of cortex-wide network interactions and behavioral variability. SCIENCE ADVANCES 2021; 7:eabf5620. [PMID: 34272245 PMCID: PMC8284895 DOI: 10.1126/sciadv.abf5620] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/03/2021] [Indexed: 05/07/2023]
Abstract
Influential theories postulate distinct roles of catecholamines and acetylcholine in cognition and behavior. However, previous physiological work reported similar effects of these neuromodulators on the response properties (specifically, the gain) of individual cortical neurons. Here, we show a double dissociation between the effects of catecholamines and acetylcholine at the level of large-scale interactions between cortical areas in humans. A pharmacological boost of catecholamine levels increased cortex-wide interactions during a visual task, but not rest. An acetylcholine boost decreased interactions during rest, but not task. Cortical circuit modeling explained this dissociation by differential changes in two circuit properties: the local excitation-inhibition balance (more strongly increased by catecholamines) and intracortical transmission (more strongly reduced by acetylcholine). The inferred catecholaminergic mechanism also predicted noisier decision-making, which we confirmed for both perceptual and value-based choice behavior. Our work highlights specific circuit mechanisms for shaping cortical network interactions and behavioral variability by key neuromodulatory systems.
Collapse
Affiliation(s)
- Thomas Pfeffer
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adrian Ponce-Alvarez
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Konstantinos Tsetsos
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Meindertsma
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| | - Christoffer Julius Gahnström
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ruud Lucas van den Brink
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Karl Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Tobias Hinrich Donner
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
25
|
Riquelme D, Peralta FA, Navarro FD, Moreno C, Leiva-Salcedo E. I CAN (TRPM4) Contributes to the Intrinsic Excitability of Prefrontal Cortex Layer 2/3 Pyramidal Neurons. Int J Mol Sci 2021; 22:ijms22105268. [PMID: 34067824 PMCID: PMC8157065 DOI: 10.3390/ijms22105268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 01/17/2023] Open
Abstract
Pyramidal neurons in the medial prefrontal cortical layer 2/3 are an essential contributor to the cellular basis of working memory; thus, changes in their intrinsic excitability critically affect medial prefrontal cortex (mPFC) functional properties. Transient Receptor Potential Melastatin 4 (TRPM4), a calcium-activated nonselective cation channel (CAN), regulates the membrane potential in a calcium-dependent manner. In this study, we uncovered the role of TRPM4 in regulating the intrinsic excitability plasticity of pyramidal neurons in the mouse mPFC layer of 2/3 using a combination of conventional and nystatin perforated whole-cell recordings. Interestingly, we found that TRPM4 is open at resting membrane potential, and its inhibition increases input resistance and hyperpolarizes membrane potential. After high-frequency stimulation, pyramidal neurons increase a calcium-activated non-selective cation current, increase the action potential firing, and the amplitude of the afterdepolarization, these effects depend on intracellular calcium. Furthermore, pharmacological inhibition or genetic silencing of TRPM4 reduces the firing rate and the afterdepolarization after high frequency stimulation. Together, these results show that TRPM4 plays a significant role in the excitability of mPFC layer 2/3 pyramidal neurons by modulating neuronal excitability in a calcium-dependent manner.
Collapse
|
26
|
The Role of Acupuncture Improving Cognitive Deficits due to Alzheimer's Disease or Vascular Diseases through Regulating Neuroplasticity. Neural Plast 2021; 2021:8868447. [PMID: 33505460 PMCID: PMC7815402 DOI: 10.1155/2021/8868447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Dementia affects millions of elderly worldwide causing remarkable costs to society, but effective treatment is still lacking. Acupuncture is one of the complementary therapies that has been applied to cognitive deficits such as Alzheimer's disease (AD) and vascular cognitive impairment (VCI), while the underlying mechanisms of its therapeutic efficiency remain elusive. Neuroplasticity is defined as the ability of the nervous system to adapt to internal and external environmental changes, which may support some data to clarify mechanisms how acupuncture improves cognitive impairments. This review summarizes the up-to-date and comprehensive information on the effectiveness of acupuncture treatment on neurogenesis and gliogenesis, synaptic plasticity, related regulatory factors, and signaling pathways, as well as brain network connectivity, to lay ground for fully elucidating the potential mechanism of acupuncture on the regulation of neuroplasticity and promoting its clinical application as a complementary therapy for AD and VCI.
Collapse
|
27
|
Sinha N, Berg CN, Yassa MA, Gluck MA. Increased dynamic flexibility in the medial temporal lobe network following an exercise intervention mediates generalization of prior learning. Neurobiol Learn Mem 2021; 177:107340. [PMID: 33186745 PMCID: PMC7861122 DOI: 10.1016/j.nlm.2020.107340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/29/2020] [Accepted: 11/01/2020] [Indexed: 11/28/2022]
Abstract
Recent work has conceptualized the brain as a network comprised of groups of sub-networks or modules. "Flexibility" of brain network(s) indexes the dynamic reconfiguration of comprising modules. Using novel techniques from dynamic network neuroscience applied to high-resolution resting-state functional magnetic resonance imaging (fMRI), the present study investigated the effects of an aerobic exercise intervention on the dynamic rearrangement of modular community structure-a measure of neural flexibility-within the medial temporal lobe (MTL) network. The MTL is one of the earliest brain regions impacted by Alzheimer's disease. It is also a major site of neuroplasticity that is sensitive to the effects of exercise. In a two-group non-randomized, repeated measures and matched control design with 34 healthy older adults, we observed an exercise-related increase in flexibility within the MTL network. Furthermore, MTL network flexibility mediated the beneficial effect aerobic exercise had on mnemonic flexibility, as measured by the ability to generalize past learning to novel task demands. Our results suggest that exercise exerts a rehabilitative and protective effect on MTL function, resulting in dynamically evolving networks of regions that interact in complex communication patterns. These reconfigurations may underlie exercise-induced improvements on cognitive measures of generalization, which are sensitive to subtle changes in the MTL.
Collapse
Affiliation(s)
- Neha Sinha
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, NJ, USA.
| | - Chelsie N Berg
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, NJ, USA.
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| | - Mark A Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, NJ, USA.
| |
Collapse
|
28
|
Eeles E, Ward S, Teodorczuk A, Dissanayaka N, Burianová H. Consciousness and the rabbit holes of delirium. Med Hypotheses 2020; 144:110260. [PMID: 33254566 DOI: 10.1016/j.mehy.2020.110260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 11/24/2022]
Abstract
Delirium is a common disorder in hospitalized older adults and the defining characteristic is a disturbance of consciousness. Unfortunately, there are currently no testable measures of consciousness as pertains to its disruption in delirium. Not surprisingly rates of recognition of delirium suffer. Arguably, a greater understanding of the quantum of consciousness may improve delirium diagnosis through better diagnostic tools. Candidate dimensions of consciousness derived from fields of psychology, psychiatry, and philosophy are discussed and relevance to delirium explored. Based upon existing literature in the field of consciousness we identify the pre-reflective state, experiential awareness, and functional networks as candidate sites that may be affected in delirium. Opportunities for clinical instrument development and how these tools can be tested are discussed. We conclude that consciousness content may not hold to a unitary measurement, but facets of its integrity that are impacted in delirium are open to further exploration. Disorders in pre-reflective status, experiential awareness, and functional networks may represent the measurable "rabbit holes" of consciousness disturbance.
Collapse
Affiliation(s)
- Eamonn Eeles
- Internal Medicine Service, The Prince Charles Hospital, Brisbane, QLD, Australia; School of Medicine, Northside Clinical School, The University of Queensland, The Prince Charles Hospital, QLD, Australia; UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, QLD.
| | - S Ward
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, QLD; Redcliffe Hospital, Redcliffe, QLD, Australia
| | - A Teodorczuk
- School of Medicine, Griffith University, Gold Coast, Australia; Metro North Mental Health, The Prince Charles Hospital, Brisbane, Australia
| | - N Dissanayaka
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, QLD; Department of Neurology, Royal Brisbane & Women's Hospital, Herston, Brisbane, QLD, Australia; School of Psychology, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - H Burianová
- Department of Psychology, Bournemouth University, Fern Barrow, Poole, Dorset UK
| |
Collapse
|
29
|
Wang J, Yu W, Gao Q, Ju C, Wang K. Prefrontal inhibition of neuronal K v 7 channels enhances prepulse inhibition of acoustic startle reflex and resistance to hypofrontality. Br J Pharmacol 2020; 177:4720-4733. [PMID: 32839968 PMCID: PMC7520443 DOI: 10.1111/bph.15236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose Dysfunction of the prefrontal cortex (PFC) is involved in the cognitive deficits in neuropsychiatric diseases, such as schizophrenia, characterized by deficient neurotransmission known as NMDA receptor hypofrontality. Thus, enhancing prefrontal activity may alleviate hypofrontality‐induced cognitive deficits. To test this hypothesis, we investigated the effect of forebrain‐specific suppression or pharmacological inhibition of native Kv7/KCNQ/M‐current on glutamatergic hypofrontality induced by the NMDA receptor antagonist MK‐801. Experimental Approach The forebrain‐specific inhibition of native M‐current was generated by transgenic expression, in mice, of a dominant‐negative pore mutant G279S of Kv7.2/KCNQ2 channels that suppresses channel function. A mouse model of cognitive impairment was established by single i.p. injection of 0.1 mg·kg−1 MK‐801. Mouse models of prepulse inhibition (PPI) of acoustic startle reflex and Y‐maze spontaneous alternation test were used for evaluation of cognitive behaviour. Hippocampal brain slice recordings of LTP were used to assess synaptic plasticity. Hippocampus and cortex were dissected for detecting protein expression using western blot analysis. Key Results Genetic suppression of Kv7 channel function in the forebrain or pharmacological inhibition of Kv7 channels by the specific blocker XE991 enhanced PPI and also alleviated MK‐801 induced cognitive decline. XE991 also attenuated MK‐801‐induced LTP deficits and increased basal synaptic transmissions. Western blot analysis revealed that inhibiting Kv7 channels resulted in elevation of pAkt1 and pGSK‐3β expressions in both hippocampus and cortex. Conclusions and Implications Both genetic and pharmacological inhibition of Kv7 channels alleviated PPI and cognitive deficits. Mechanistically, inhibition of Kv7 channels promotes synaptic transmission and activates Akt1/GSK‐3β signalling.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Wenwen Yu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China.,Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Qin Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Chuanxia Ju
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Institute of Innovative Drugs, Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Noel JP, Bertoni T, Terrebonne E, Pellencin E, Herbelin B, Cascio C, Blanke O, Magosso E, Wallace MT, Serino A. Rapid Recalibration of Peri-Personal Space: Psychophysical, Electrophysiological, and Neural Network Modeling Evidence. Cereb Cortex 2020; 30:5088-5106. [PMID: 32377673 PMCID: PMC7391419 DOI: 10.1093/cercor/bhaa103] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Interactions between individuals and the environment occur within the peri-personal space (PPS). The encoding of this space plastically adapts to bodily constraints and stimuli features. However, these remapping effects have not been demonstrated on an adaptive time-scale, trial-to-trial. Here, we test this idea first via a visuo-tactile reaction time (RT) paradigm in augmented reality where participants are asked to respond as fast as possible to touch, as visual objects approach them. Results demonstrate that RTs to touch are facilitated as a function of visual proximity, and the sigmoidal function describing this facilitation shifts closer to the body if the immediately precedent trial had indexed a smaller visuo-tactile disparity. Next, we derive the electroencephalographic correlates of PPS and demonstrate that this multisensory measure is equally shaped by recent sensory history. Finally, we demonstrate that a validated neural network model of PPS is able to account for the present results via a simple Hebbian plasticity rule. The present findings suggest that PPS encoding remaps on a very rapid time-scale and, more generally, that it is sensitive to sensory history, a key feature for any process contextualizing subsequent incoming sensory information (e.g., a Bayesian prior).
Collapse
Affiliation(s)
- Jean-Paul Noel
- Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
- Center for Neural Science, New York University, New York City, NY 10003, USA
| | - Tommaso Bertoni
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne CH-1011, Switzerland
| | - Emily Terrebonne
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
| | - Elisa Pellencin
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Trento 38068, Italy
| | - Bruno Herbelin
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland
- Center for Neuroprosthetics, Campus BioTech, Geneva CH-1202, Switzerland
| | - Carissa Cascio
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medial Center, Nashville, TN 37235, USA
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland
- Center for Neuroprosthetics, Campus BioTech, Geneva CH-1202, Switzerland
| | - Elisa Magosso
- Department of Electrical, Electronic, and Information Engineering ``Guglielmo Marconi'', University of Bologna, Cesena 40126, Italy
| | - Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37235, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medial Center, Nashville, TN 37235, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Department of Psychology, Vanderbilt University, Nashville, TN 37235, USA
| | - Andrea Serino
- MySpace Lab, Department of Clinical Neurosciences, University Hospital of Lausanne, University of Lausanne, Lausanne CH-1011, Switzerland
| |
Collapse
|
31
|
Anderson RM, Johnson SB, Lingg RT, Hinz DC, Romig-Martin SA, Radley JJ. Evidence for Similar Prefrontal Structural and Functional Alterations in Male and Female Rats Following Chronic Stress or Glucocorticoid Exposure. Cereb Cortex 2020; 30:353-370. [PMID: 31184364 PMCID: PMC7029687 DOI: 10.1093/cercor/bhz092] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022] Open
Abstract
Previous work of ours and others has documented regressive changes in neuronal architecture and function in the medial prefrontal cortex (mPFC) of male rats following chronic stress. As recent focus has shifted toward understanding whether chronic stress effects on mPFC are sexually dimorphic, here we undertake a comprehensive analysis to address this issue. First, we show that chronic variable stress (14-day daily exposure to different challenges) resulted in a comparable degree of adrenocortical hyperactivity, working memory impairment, and dendritic spine loss in mPFC pyramidal neurons in both sexes. Next, exposure of female rats to 21-day regimen of corticosterone resulted in a similar pattern of mPFC dendritic spine attrition and increase in spine volume. Finally, we examined the effects of another widely used regimen, chronic restraint stress (CRS, 21-day of daily 6-h restraint), on dendritic spine changes in mPFC in both sexes. CRS resulted in response decrements in adrenocortical output (habituation), and induced a pattern of consistent, but less widespread, dendritic spine loss similar to the foregoing challenges. Our data suggest that chronic stress or glucocorticoid exposure induces a relatively undifferentiated pattern of structural and functional alterations in mPFC in both males and females.
Collapse
Affiliation(s)
- Rachel M Anderson
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Shane B Johnson
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Ryan T Lingg
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Dalton C Hinz
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Sara A Romig-Martin
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Jason J Radley
- Department of Psychological and Brain Sciences, Program in Neuroscience, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
32
|
André N, Audiffren M, Baumeister RF. An Integrative Model of Effortful Control. Front Syst Neurosci 2019; 13:79. [PMID: 31920573 PMCID: PMC6933500 DOI: 10.3389/fnsys.2019.00079] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/06/2019] [Indexed: 11/21/2022] Open
Abstract
This article presents an integrative model of effortful control, a resource-limited top-down control mechanism involved in mental tasks and physical exercises. Based on recent findings in the fields of neuroscience, social psychology and cognitive psychology, this model posits the intrinsic costs related to a weakening of the connectivity of neural networks underpinning effortful control as the main cause of mental fatigue in long and high-demanding tasks. In this framework, effort reflects three different inter-related aspects of the same construct. First, effort is a mechanism comprising a limited number of interconnected processing units that integrate information regarding the task constraints and subject’s state. Second, effort is the main output of this mechanism, namely, the effort signal that modulates neuronal activity in brain regions involved in the current task to select pertinent information. Third, effort is a feeling that emerges in awareness during effortful tasks and reflects the costs associated with goal-directed behavior. Finally, the model opens new avenues for research investigating effortful control at the behavioral and neurophysiological levels.
Collapse
Affiliation(s)
- Nathalie André
- Research Centre on Cognition and Learning, UMR CNRS 7295, University of Poitiers, Poitiers, France
| | - Michel Audiffren
- Research Centre on Cognition and Learning, UMR CNRS 7295, University of Poitiers, Poitiers, France
| | - Roy F Baumeister
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
33
|
Hassani SA, Lendor S, Boyaci E, Pawliszyn J, Womelsdorf T. Multineuromodulator measurements across fronto-striatal network areas of the behaving macaque using solid-phase microextraction. J Neurophysiol 2019; 122:1649-1660. [PMID: 31433731 DOI: 10.1152/jn.00321.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Different neuromodulators rarely act independent from each other to modify neural processes but are instead coreleased, gated, or modulated. To understand this interdependence of neuromodulators and their collective influence on local circuits during different brain states, it is necessary to reliably extract local concentrations of multiple neuromodulators in vivo. Here we describe results using solid-phase microextraction (SPME), a method providing sensitive, multineuromodulator measurements. SPME is a sampling method that is coupled with mass spectrometry to quantify collected analytes. Reliable measurements of glutamate, dopamine, acetylcholine, and choline were made simultaneously within frontal cortex and striatum of two macaque monkeys (Macaca mulatta) during goal-directed behavior. We find glutamate concentrations several orders of magnitude higher than acetylcholine and dopamine in all brain regions. Dopamine was reliably detected in the striatum at tenfold higher concentrations than acetylcholine. Acetylcholine and choline concentrations were detected with high consistency across brain areas within monkeys and between monkeys. These findings illustrate that SPME microprobes provide a versatile novel tool to characterize multiple neuromodulators across different brain areas in vivo to understand the interdependence and covariation of neuromodulators during goal-directed behavior. Such data would be important to better distinguish between different behavioral states and characterize dysfunctional brain states that may be evident in psychiatric disorders.NEW & NOTEWORTHY Our paper reports a reliable and sensitive novel method for measuring the absolute concentrations of glutamate, acetylcholine, choline, dopamine, and serotonin in brain circuits in vivo. We show that this method reliably samples multiple neurochemicals in three brain areas simultaneously while nonhuman primates are engaged in goal-directed behavior. We further describe how the methodology we describe here may be used by electrophysiologists as a low-barrier-to-entry tool for measuring multiple neurochemicals.
Collapse
Affiliation(s)
- Seyed-Alireza Hassani
- Department of Psychology, Vanderbilt University, Nashville, Tennessee.,Department of Biology, Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Sofia Lendor
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Ezel Boyaci
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Thilo Womelsdorf
- Department of Psychology, Vanderbilt University, Nashville, Tennessee.,Department of Biology, Centre for Vision Research, York University, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Günther A, Luczak V, Gruteser N, Abel T, Baumann A. HCN4 knockdown in dorsal hippocampus promotes anxiety-like behavior in mice. GENES BRAIN AND BEHAVIOR 2019; 18:e12550. [PMID: 30585408 PMCID: PMC6850037 DOI: 10.1111/gbb.12550] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/03/2018] [Accepted: 12/22/2018] [Indexed: 12/29/2022]
Abstract
Hyperpolarization‐activated and cyclic nucleotide‐gated (HCN) channels mediate the Ih current in the murine hippocampus. Disruption of the Ih current by knockout of HCN1, HCN2 or tetratricopeptide repeat‐containing Rab8b‐interacting protein has been shown to affect physiological processes such as synaptic integration and maintenance of resting membrane potentials as well as several behaviors in mice, including depressive‐like and anxiety‐like behaviors. However, the potential involvement of the HCN4 isoform in these processes is unknown. Here, we assessed the contribution of the HCN4 isoform to neuronal processing and hippocampus‐based behaviors in mice. We show that HCN4 is expressed in various regions of the hippocampus, with distinct expression patterns that partially overlapped with other HCN isoforms. For behavioral analysis, we specifically modulated HCN4 expression by injecting recombinant adeno‐associated viral (rAAV) vectors mediating expression of short hairpin RNA against hcn4 (shHcn4) into the dorsal hippocampus of mice. HCN4 knockdown produced no effect on contextual fear conditioning or spatial memory. However, a pronounced anxiogenic effect was evident in mice treated with shHcn4 compared to control littermates. Our findings suggest that HCN4 specifically contributes to anxiety‐like behaviors in mice.
Collapse
Affiliation(s)
- Anne Günther
- Laboratory for Synaptic Molecules of Memory Persistence, Center for Brain Science, RIKEN, Saitama, Japan.,Institute of Complex Systems, Cellular Biophysics (ICS-4),Research Center Jülich, Jülich, Germany
| | - Vincent Luczak
- Division of Biological Sciences and Center for Neural Circuits and Behavior, Neurobiology Section, Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, California, USA
| | - Nadine Gruteser
- Institute of Complex Systems, Cellular Biophysics (ICS-4),Research Center Jülich, Jülich, Germany
| | - Ted Abel
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Arnd Baumann
- Institute of Complex Systems, Cellular Biophysics (ICS-4),Research Center Jülich, Jülich, Germany
| |
Collapse
|
35
|
Klaus K, Pennington K. Dopamine and Working Memory: Genetic Variation, Stress and Implications for Mental Health. Curr Top Behav Neurosci 2019; 41:369-391. [PMID: 31502081 DOI: 10.1007/7854_2019_113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
At the molecular level, the neurotransmitter dopamine (DA) is a key regulatory component of executive function in the prefrontal cortex (PFC) and dysfunction in dopaminergic (DAergic) circuitry has been shown to result in impaired working memory (WM). Research has identified multiple common genetic variants suggested to impact on the DA system functionally and also behaviourally to alter WM task performance. In addition, environmental stressors impact on DAergic tone, and this may be one mechanism by which stressors confer vulnerability to the development of neuropsychiatric conditions. This chapter aims to evaluate the impact of key DAergic gene variants suggested to impact on both synaptic DA levels (COMT, DAT1, DBH, MAOA) and DA receptor function (ANKK1, DRD2, DRD4) in terms of their influence on visuospatial WM. The role of stressors and interaction with the genetic background is discussed in addition to discussion around some of the implications for precision psychiatry. This and future work in this area aim to disentangle the neural mechanisms underlying susceptibility to stress and their impact and relationship with cognitive processes known to influence mental health vulnerability.
Collapse
Affiliation(s)
- Kristel Klaus
- MRC Brain and Cognition Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
36
|
Wang S, Hu L, Cao J, Huang W, Sun C, Zheng D, Wang Z, Gan S, Niu X, Gu C, Bai G, Ye L, Zhang D, Zhang N, Yin B, Zhang M, Bai L. Sex Differences in Abnormal Intrinsic Functional Connectivity After Acute Mild Traumatic Brain Injury. Front Neural Circuits 2018; 12:107. [PMID: 30555304 PMCID: PMC6282647 DOI: 10.3389/fncir.2018.00107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/13/2018] [Indexed: 01/12/2023] Open
Abstract
Mild traumatic brain injury (TBI) is considered to induce abnormal intrinsic functional connectivity within resting-state networks (RSNs). The objective of this study was to estimate the role of sex in intrinsic functional connectivity after acute mild TBI. We recruited a cohort of 54 patients (27 males and 27 females with mild TBI within 7 days post-injury) from the emergency department (ED) and 34 age-, education-matched healthy controls (HCs; 17 males and 17 females). On the clinical scales, there were no statistically significant differences between males and females in either control group or mild TBI group. To detect whether there was abnormal sex difference on functional connectivity in RSNs, we performed independent component analysis (ICA) and a dual regression approach to investigate the between-subject voxel-wise comparisons of functional connectivity within seven selected RSNs. Compared to female patients, male patients showed increased intrinsic functional connectivity in motor network, ventral stream network, executive function network, cerebellum network and decreased connectivity in visual network. Further analysis demonstrated a positive correlation between the functional connectivity in executive function network and insomnia severity index (ISI) scores in male patients (r = 0.515, P = 0.006). The abnormality of the functional connectivity of RSNs in acute mild TBI showed the possibility of brain recombination after trauma, mainly concerning male-specific.
Collapse
Affiliation(s)
- Shan Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Liuxun Hu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jieli Cao
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wenmin Huang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chuanzhu Sun
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Dongdong Zheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuonan Wang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuoqiu Gan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuan Niu
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chenghui Gu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanghui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Limei Ye
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danbin Zhang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Nu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
37
|
Bélanger SA, Andrews D, Gray C, Korczak D. Le TDAH chez les enfants et les adolescents, partie 1 : l’étiologie, le diagnostic et la comorbidité. Paediatr Child Health 2018; 23:454-461. [PMCID: PMC6199646 DOI: 10.1093/pch/pxy110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Le trouble de déficit de l’attention/hyperactivité (TDAH) est un trouble neurodéveloppemental chronique. La Société canadienne de pédiatrie a préparé trois documents de principes après avoir effectué des analyses bibliographiques systématiques. Leurs objectifs s’établissent comme suit : 1) Résumer les données probantes cliniques à jour sur le TDAH. 2) Établir une norme pour les soins du TDAH. 3) Aider les cliniciens canadiens à prendre des décisions éclairées et fondées sur des données probantes pour rehausser la qualité des soins aux enfants et aux adolescents qui présentent cette affection. Les thèmes abordés dans la partie 1, qui est axée sur le diagnostic, incluent la prévalence, la génétique, la physiopathologie, le diagnostic différentiel, ainsi que les troubles psychiatriques et les troubles du développement comorbides. En plus des recherches dans les bases de données, les auteurs ont analysé les directives les plus récentes de l’American Academy of Pediatrics , de l’American Academy of Child and Adolescent Psychiatry , du National Institute for Health and Clinical Excellence , du Scottish Intercollegiate Guidelines Network et de l’Eunethydis European ADHD Guidelines Group . Puisque le TDAH est un trouble hétérogène, son évaluation médicale complète devrait toujours inclure une anamnèse fouillée, un examen physique et une évaluation approfondie du diagnostic différentiel et des comorbidités connexes. Les auteurs proposent des recommandations précises sur la récolte d’information, les tests à effectuer et les orientations vers divers services.
Collapse
Affiliation(s)
- Stacey A Bélanger
- Société canadienne de pédiatrie, comité de la santé mentale et des troubles du développement, Ottawa (Ontario)
| | - Debbi Andrews
- Société canadienne de pédiatrie, comité de la santé mentale et des troubles du développement, Ottawa (Ontario)
| | - Clare Gray
- Société canadienne de pédiatrie, comité de la santé mentale et des troubles du développement, Ottawa (Ontario)
| | - Daphne Korczak
- Société canadienne de pédiatrie, comité de la santé mentale et des troubles du développement, Ottawa (Ontario)
| |
Collapse
|
38
|
Ackermann S, Halfon O, Fornari E, Urben S, Bader M. Cognitive Working Memory Training (CWMT) in adolescents suffering from Attention-Deficit/Hyperactivity Disorder (ADHD): A controlled trial taking into account concomitant medication effects. Psychiatry Res 2018; 269:79-85. [PMID: 30145306 DOI: 10.1016/j.psychres.2018.07.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/26/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022]
Abstract
Although, cognitive working memory training (CWMT) has been reported to enhance working memory functioning in youths with attention-deficit/ hyperactivity disorder (ADHD), few studies take into account the concomitant effects of medication. Sixty adolescents aged from 11 to 15 years were randomly assigned to CWMT treatment, whereas medication was either continued or not introduced (no randomization performed). Results revealed beneficial effects of CWMT on the different components of working memory (WM), namely the phonological loop, the visuospatial sketchpad and the central executive. In particular, CWMT allowed participants to obtain a level of performance similar to the typically-developing adolescents for the phonological loop (i.e., forward digit span) as well as for the visuospatial sketchpad (i.e., board span). For the central executive (i.e., backward digit span) the concomitant effects of CWMT and medication allows participants to obtain the performance level of the typically-developing adolescents. Although, no transfers were observed with respect to other cognitive functions, in medicated patients with ADHD, CWMT reduced hyperactivity / impulsivity symptoms at 2-month follow-up. The present study gives evidence of the efficacy of CWMT to enhance WM performance, as well as, to reduce symptoms. The overall results highlight the usefulness of multimodal interventions.
Collapse
Affiliation(s)
- Sandie Ackermann
- University Service of Child and Adolescent Psychiatry, University Hospital of Lausanne, Switzerland
| | - Olivier Halfon
- University Service of Child and Adolescent Psychiatry, University Hospital of Lausanne, Switzerland
| | - Eleonora Fornari
- Biomedical Imaging Center (CIBM), Department of Radiology, University Hospital of Lausanne, Switzerland
| | - Sébastien Urben
- University Service of Child and Adolescent Psychiatry, University Hospital of Lausanne, Switzerland
| | - Michel Bader
- University Service of Child and Adolescent Psychiatry, University Hospital of Lausanne, Switzerland.
| |
Collapse
|
39
|
Bélanger SA, Andrews D, Gray C, Korczak D. ADHD in children and youth: Part 1-Etiology, diagnosis, and comorbidity. Paediatr Child Health 2018; 23:447-453. [PMID: 30681669 PMCID: PMC6199644 DOI: 10.1093/pch/pxy109] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a chronic neurodevelopmental disorder. Three position statements have been developed by the Canadian Paediatric Society, following systematic literature reviews. Statement objectives are to: 1) Summarize the current clinical evidence regarding ADHD,2) Establish a standard for ADHD care, and3) Assist Canadian clinicians in making well-informed, evidence-based decisions to enhance care of children and youth with this condition. Specific topics reviewed in Part 1, which focuses on diagnosis, include: prevalence, genetics, pathophysiology, differential diagnosis and comorbid psychiatric disorders and developmental disorders. In addition to database searches, the most recent guidelines of the American Academy of Pediatrics, the American Academy of Child and Adolescent Psychiatry, the National Institute for Health and Clinical Excellence, the Scottish Intercollegiate Guidelines Network, and the Eunethydis European ADHD Guidelines Group, were reviewed. Because ADHD is a heterogeneous disorder, comprehensive medical assessment for ADHD should always include a complete history, a physical examination, and a thorough consideration of differential diagnosis and related comorbidities. Specific recommendations for information gathering, testing, and referral are offered.
Collapse
Affiliation(s)
- Stacey A Bélanger
- Canadian Paediatric Society, Mental Health and Developmental Disabilities Committee, Ottawa, Ontario
| | - Debbi Andrews
- Canadian Paediatric Society, Mental Health and Developmental Disabilities Committee, Ottawa, Ontario
| | - Clare Gray
- Canadian Paediatric Society, Mental Health and Developmental Disabilities Committee, Ottawa, Ontario
| | - Daphne Korczak
- Canadian Paediatric Society, Mental Health and Developmental Disabilities Committee, Ottawa, Ontario
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Working memory (WM) is a key process that is integral to many complex cognitive tasks, and it declines significantly with advancing age. This review will survey recent evidence supporting the idea that the functioning of the WM system in women is modulated by circulating estrogens. RECENT FINDINGS In postmenopausal women, increased estrogen concentrations may be associated with improved WM function, which is evident on WM tasks that have a high cognitive load or significant manipulation demands. Experimental studies in rhesus monkeys and human neuroimaging studies support a prefrontal locus for these effects. Defining the basic neurochemical or cellular mechanisms that underlie the ability of estrogens to regulate WM is a topic of current research in both human and animal investigations. An emerging body of work suggests that frontal executive elements of the WM system are influenced by the circulating estrogen concentrations currently available to the CNS and that the effects are region-specific within the frontal cortex. These findings have implications for women's brain health and cognitive aging.
Collapse
Affiliation(s)
- Elizabeth Hampson
- Department of Psychology, Social Sciences Center, and Department of Psychiatry, University of Western Ontario, London, ON, N6A 5C2, Canada.
| |
Collapse
|
41
|
Datta D, Arnsten AF. Unique Molecular Regulation of Higher-Order Prefrontal Cortical Circuits: Insights into the Neurobiology of Schizophrenia. ACS Chem Neurosci 2018; 9:2127-2145. [PMID: 29470055 DOI: 10.1021/acschemneuro.7b00505] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is associated with core deficits in cognitive abilities and impaired functioning of the newly evolved prefrontal association cortex (PFC). In particular, neuropathological studies of schizophrenia have found selective atrophy of the pyramidal cell microcircuits in deep layer III of the dorsolateral PFC (dlPFC) and compensatory weakening of related GABAergic interneurons. Studies in monkeys have shown that recurrent excitation in these layer III microcircuits generates the precisely patterned, persistent firing needed for working memory and abstract thought. Importantly, excitatory synapses on layer III spines are uniquely regulated at the molecular level in ways that may render them particularly vulnerable to genetic and/or environmental insults. Glutamate actions are remarkably dependent on cholinergic stimulation, and there are inherent mechanisms to rapidly weaken connectivity, e.g. during stress. In particular, feedforward cyclic adenosine monophosphate (cAMP)-calcium signaling rapidly weakens network connectivity and neuronal firing by opening nearby potassium channels. Many mechanisms that regulate this process are altered in schizophrenia and/or associated with genetic insults. Current data suggest that there are "dual hits" to layer III dlPFC circuits: initial insults to connectivity during the perinatal period due to genetic errors and/or inflammatory insults that predispose the cortex to atrophy, followed by a second wave of cortical loss during adolescence, e.g. driven by stress, at the descent into illness. The unique molecular regulation of layer III circuits may provide a nexus where inflammation disinhibits the neuronal response to stress. Understanding these mechanisms may help to illuminate dlPFC susceptibility in schizophrenia and provide insights for novel therapeutic targets.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Amy F.T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| |
Collapse
|
42
|
Mohan A, De Ridder D, Idiculla R, DSouza C, Vanneste S. Distress‐dependent temporal variability of regions encoding domain‐specific and domain‐general behavioral manifestations of phantom percepts. Eur J Neurosci 2018; 48:1743-1764. [DOI: 10.1111/ejn.13988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Anusha Mohan
- Lab for Clinical & Integrative NeuroscienceSchool of Behavioral and Brain SciencesThe University of Texas at Dallas Richardson Texas
| | - Dirk De Ridder
- Department of Surgical SciencesSection of NeurosurgeryDunedin School of MedicineUniversity of Otago Dunedin New Zealand
| | - Rajith Idiculla
- Lab for Clinical & Integrative NeuroscienceSchool of Behavioral and Brain SciencesThe University of Texas at Dallas Richardson Texas
| | - Clisha DSouza
- Lab for Clinical & Integrative NeuroscienceSchool of Behavioral and Brain SciencesThe University of Texas at Dallas Richardson Texas
| | - Sven Vanneste
- Lab for Clinical & Integrative NeuroscienceSchool of Behavioral and Brain SciencesThe University of Texas at Dallas Richardson Texas
| |
Collapse
|
43
|
Comrie AE, Gray DT, Smith AC, Barnes CA. Different macaque models of cognitive aging exhibit task-dependent behavioral disparities. Behav Brain Res 2018; 344:110-119. [PMID: 29432794 PMCID: PMC5890935 DOI: 10.1016/j.bbr.2018.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 11/17/2022]
Abstract
Deficits in cognitive functions that rely on the integrity of the frontal and temporal lobes are characteristic of normative human aging. Due to similar aging phenotypes and homologous cortical organization between nonhuman primates and humans, several species of macaque monkeys are used as models to explore brain senescence. These macaque species are typically regarded as equivalent models of cognitive aging, yet no direct comparisons have been made to support this assumption. Here we used adult and aged rhesus and bonnet macaques (Macaca mulatta and Macaca radiata) to characterize the effect of age on acquisition and retention of information across delays in a battery of behavioral tasks that rely on prefrontal cortex and medial temporal lobe networks. The cognitive functions that were tested include visuospatial short-term memory, object recognition memory, and object-reward association memory. In general, bonnet macaques at all ages outperformed rhesus macaques on tasks thought to rely primarily on the prefrontal cortex, and were more resilient to age-related deficits in these behaviors. On the other hand, both species were comparably impaired by age on tasks thought to preferentially engage the medial temporal lobe. Together, these results suggest that rhesus and bonnet macaques are not equivalent models of cognitive aging and highlight the value of cross-species comparisons. These observations should enable improved design and interpretation of future experiments aimed at understanding changes in cognition across the lifespan.
Collapse
Affiliation(s)
- Alison E Comrie
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, 85724, USA; Division of Neural Systems, Memory & Aging, University of Arizona, Tucson, AZ, 85724, USA
| | - Daniel T Gray
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, 85724, USA; Division of Neural Systems, Memory & Aging, University of Arizona, Tucson, AZ, 85724, USA
| | - Anne C Smith
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, 85724, USA
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, 85724, USA; Division of Neural Systems, Memory & Aging, University of Arizona, Tucson, AZ, 85724, USA; Department of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
44
|
Abstract
Rewiring is a plasticity mechanism that alters connectivity between neurons. Evidence for rewiring has been difficult to obtain. New evidence indicates that local circuitry is rewired during learning. Harnessing rewiring offers new ways to treat psychiatric and neurological diseases.
Neuronal connections form the physical basis for communication in the brain. Recently, there has been much interest in mapping the “connectome” to understand how brain structure gives rise to brain function, and ultimately, to behaviour. These attempts to map the connectome have largely assumed that connections are stable once formed. Recent studies, however, indicate that connections in mammalian brains may undergo rewiring during learning and experience-dependent plasticity. This suggests that the connectome is more dynamic than previously thought. To what extent can neural circuitry be rewired in the healthy adult brain? The connectome has been subdivided into multiple levels of scale, from synapses and microcircuits through to long-range tracts. Here, we examine the evidence for rewiring at each level. We then consider the role played by rewiring during learning. We conclude that harnessing rewiring offers new avenues to treat brain diseases.
Collapse
Affiliation(s)
- Sophie H Bennett
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Alastair J Kirby
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Gerald T Finnerty
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.
| |
Collapse
|
45
|
Anteroventral bed nuclei of the stria terminalis neurocircuitry: Towards an integration of HPA axis modulation with coping behaviors - Curt Richter Award Paper 2017. Psychoneuroendocrinology 2018; 89:239-249. [PMID: 29395488 PMCID: PMC5878723 DOI: 10.1016/j.psyneuen.2017.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/19/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
A network of interconnected cell groups in the limbic forebrain regulates hypothalamic-pituitary-adrenal (HPA) axis activation and behavioral responses to emotionally stressful experiences, and chronic disruption of these systems chronically is implicated in the pathogenesis of psychiatric illnesses. A significant challenge has been to unravel the circuitry and mechanisms providing for regulation of HPA activity, as these limbic forebrain regions do not provide any direct innervation of HPA effector cell groups in the paraventricular hypothalamus (PVH). Moreover, information regarding how endocrine and behavioral responses are integrated has remained obscure. Here we summarize work from our laboratory showing that anteroventral (av) bed nuclei of the stria terminalis (BST) acts as a point of convergence between the limbic forebrain and PVH, receiving and coordinating upstream influences, and restraining HPA axis output in response to inescapable stressors. Recent studies highlight a more expansive modulatory role for avBST as one that coordinates HPA-inhibitory influences while concurrently suppressing passive behavioral responses via divergent pathways. avBST is uniquely positioned to convey endocrine and behavioral alterations resulting from chronic stress exposure, such as HPA axis hyperactivity and increased passive coping strategies, that may result from synaptic reorganization in upstream limbic cortical regions. We discuss how these studies give new insights into understanding the systems-level organization of stress response circuitry, the neurobiology of coping styles, and BST circuit dysfunction in stress-related psychiatric disorders.
Collapse
|
46
|
Hansen RT, Zhang HT. The Past, Present, and Future of Phosphodiesterase-4 Modulation for Age-Induced Memory Loss. ADVANCES IN NEUROBIOLOGY 2018; 17:169-199. [PMID: 28956333 DOI: 10.1007/978-3-319-58811-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The purpose of this chapter is to highlight the state of progress for phosphodiesterase-4 (PDE4) modulation as a potential therapeutic for psychiatric illness, and to draw attention to particular hurdles and obstacles that must be overcome in future studies to develop PDE4-mediated therapeutics. Pathological and non-pathological related memory loss will be the focus of the chapter; however, we will at times also touch upon other psychiatric illnesses like anxiety and depression. First, we will provide a brief background of PDE4, and the rationale for its extensive study in cognition. Second, we will explore fundamental differences in individual PDE4 subtypes, and then begin to address differences between pathological and non-pathological aging. Alterations of cAMP/PDE4 signaling that occur within normal vs. pathological aging, and the potential for PDE4 modulation to combat these alterations within each context will be described. Finally, we will finish the chapter with obstacles that have hindered the field, and future studies and alternative viewpoints that need to be addressed. Overall, we hope this chapter will demonstrate the incredible complexity of PDE4 signaling in the brain, and will be useful in forming a strategy to develop future PDE4-mediated therapeutics for psychiatric illnesses.
Collapse
Affiliation(s)
- Rolf T Hansen
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506-9137, USA
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA. .,Institute of Pharmacology, Taishan Medical University, Taian, 271016, China.
| |
Collapse
|
47
|
Dauvermann MR, Moorhead TW, Watson AR, Duff B, Romaniuk L, Hall J, Roberts N, Lee GL, Hughes ZA, Brandon NJ, Whitcher B, Blackwood DH, McIntosh AM, Lawrie SM. Verbal working memory and functional large-scale networks in schizophrenia. Psychiatry Res Neuroimaging 2017; 270:86-96. [PMID: 29111478 DOI: 10.1016/j.pscychresns.2017.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 09/16/2017] [Accepted: 10/20/2017] [Indexed: 12/17/2022]
Abstract
The aim of this study was to test whether bilinear and nonlinear effective connectivity (EC) measures of working memory fMRI data can differentiate between patients with schizophrenia (SZ) and healthy controls (HC). We applied bilinear and nonlinear Dynamic Causal Modeling (DCM) for the analysis of verbal working memory in 16 SZ and 21 HC. The connection strengths with nonlinear modulation between the dorsolateral prefrontal cortex (DLPFC) and the ventral tegmental area/substantia nigra (VTA/SN) were evaluated. We used Bayesian Model Selection at the group and family levels to compare the optimal bilinear and nonlinear models. Bayesian Model Averaging was used to assess the connection strengths with nonlinear modulation. The DCM analyses revealed that SZ and HC used different bilinear networks despite comparable behavioral performance. In addition, the connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area showed differences between SZ and HC. The adoption of different functional networks in SZ and HC indicated neurobiological alterations underlying working memory performance, including different connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area. These novel findings may increase our understanding of connectivity in working memory in schizophrenia.
Collapse
Affiliation(s)
- Maria R Dauvermann
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK; School of Psychology, National University of Ireland Galway, University Road, Galway, Ireland; McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA.
| | - Thomas Wj Moorhead
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Andrew R Watson
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Barbara Duff
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Liana Romaniuk
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Jeremy Hall
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK; Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Neil Roberts
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK; British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Graham L Lee
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar Street, Cambridge, MA 02139, USA
| | - Zoë A Hughes
- Neuroscience Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Nicholas J Brandon
- Neuroscience Research Unit, Pfizer Inc., Cambridge, MA, USA; IMED Neuroscience Unit, AstraZeneca, Waltham, MA, USA
| | - Brandon Whitcher
- Clinical and Translational Imaging, Pfizer Inc., Cambridge, MA, USA
| | - Douglas Hr Blackwood
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Andrew M McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Royal Edinburgh Hospital, Morningside Park, University of Edinburgh, Edinburgh EH10 5HF, UK
| |
Collapse
|
48
|
Vijayraghavan S, Major AJ, Everling S. Neuromodulation of Prefrontal Cortex in Non-Human Primates by Dopaminergic Receptors during Rule-Guided Flexible Behavior and Cognitive Control. Front Neural Circuits 2017; 11:91. [PMID: 29259545 PMCID: PMC5723345 DOI: 10.3389/fncir.2017.00091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/08/2017] [Indexed: 11/13/2022] Open
Abstract
The prefrontal cortex (PFC) is indispensable for several higher-order cognitive and executive capacities of primates, including representation of salient stimuli in working memory (WM), maintenance of cognitive task set, inhibition of inappropriate responses and rule-guided flexible behavior. PFC networks are subject to robust neuromodulation from ascending catecholaminergic systems. Disruption of these systems in PFC has been implicated in cognitive deficits associated with several neuropsychiatric disorders. Over the past four decades, a considerable body of work has examined the influence of dopamine on macaque PFC activity representing spatial WM. There has also been burgeoning interest in neuromodulation of PFC circuits involved in other cognitive functions of PFC, including representation of rules to guide flexible behavior. Here, we review recent neuropharmacological investigations conducted in our laboratory and others of the role of PFC dopamine receptors in regulating rule-guided behavior in non-human primates. Employing iontophoresis, we examined the effects of local manipulation of dopaminergic subtypes on neuronal activity during performance of rule-guided pro- and antisaccades, an experimental paradigm sensitive to PFC integrity, wherein deficits in performance are reliably observed in many neuropsychiatric disorders. We found dissociable effects of dopamine receptors on neuronal activity for rule representation and oculomotor responses and discuss these findings in the context of prior studies that have examined the role of dopamine in spatial delayed response tasks, attention, target selection, abstract rules, visuomotor learning and reward. The findings we describe here highlight the common features, as well as heterogeneity and context dependence of dopaminergic neuromodulation in regulating the efficacy of cognitive functions of PFC in health and disease.
Collapse
Affiliation(s)
- Susheel Vijayraghavan
- Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Alex J Major
- Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| |
Collapse
|
49
|
Froudist-Walsh S, López-Barroso D, José Torres-Prioris M, Croxson PL, Berthier ML. Plasticity in the Working Memory System: Life Span Changes and Response to Injury. Neuroscientist 2017; 24:261-276. [PMID: 28691573 DOI: 10.1177/1073858417717210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Working memory acts as a key bridge between perception, long-term memory, and action. The brain regions, connections, and neurotransmitters that underlie working memory undergo dramatic plastic changes during the life span, and in response to injury. Early life reliance on deep gray matter structures fades during adolescence as increasing reliance on prefrontal and parietal cortex accompanies the development of executive aspects of working memory. The rise and fall of working memory capacity and executive functions parallels the development and loss of neurotransmitter function in frontal cortical areas. Of the affected neurotransmitters, dopamine and acetylcholine modulate excitatory-inhibitory circuits that underlie working memory, are important for plasticity in the system, and are affected following preterm birth and adult brain injury. Pharmacological interventions to promote recovery of working memory abilities have had limited success, but hold promise if used in combination with behavioral training and brain stimulation. The intense study of working memory in a range of species, ages and following injuries has led to better understanding of the intrinsic plasticity mechanisms in the working memory system. The challenge now is to guide these mechanisms to better improve or restore working memory function.
Collapse
Affiliation(s)
- Sean Froudist-Walsh
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana López-Barroso
- 2 Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias (CIMES) and Instituto de Investigación Biomédica de Malaga, University of Malaga, Malaga, Spain.,3 Area of Psychobiology, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- 2 Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias (CIMES) and Instituto de Investigación Biomédica de Malaga, University of Malaga, Malaga, Spain.,3 Area of Psychobiology, Faculty of Psychology, University of Malaga, Malaga, Spain
| | - Paula L Croxson
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,4 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcelo L Berthier
- 2 Cognitive Neurology and Aphasia Unit and Cathedra ARPA of Aphasia, Centro de Investigaciones Médico-Sanitarias (CIMES) and Instituto de Investigación Biomédica de Malaga, University of Malaga, Malaga, Spain
| |
Collapse
|
50
|
Could LC-NE-Dependent Adjustment of Neural Gain Drive Functional Brain Network Reorganization? Neural Plast 2017; 2017:4328015. [PMID: 28607776 PMCID: PMC5457760 DOI: 10.1155/2017/4328015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/01/2017] [Indexed: 01/21/2023] Open
Abstract
The locus coeruleus-norepinephrine (LC-NE) system is thought to act at synaptic, cellular, microcircuit, and network levels to facilitate cognitive functions through at least two different processes, not mutually exclusive. Accordingly, as a reset signal, the LC-NE system could trigger brain network reorganizations in response to salient information in the environment and/or adjust the neural gain within its target regions to optimize behavioral responses. Here, we provide evidence of the co-occurrence of these two mechanisms at the whole-brain level, in resting-state conditions following a pharmacological stimulation of the LC-NE system. We propose that these two mechanisms are interdependent such that the LC-NE-dependent adjustment of the neural gain inferred from the clustering coefficient could drive functional brain network reorganizations through coherence in the gamma rhythm. Via the temporal dynamic of gamma-range band-limited power, the release of NE could adjust the neural gain, promoting interactions only within the neuronal populations whose amplitude envelopes are correlated, thus making it possible to reorganize neuronal ensembles, functional networks, and ultimately, behavioral responses. Thus, our proposal offers a unified framework integrating the putative influence of the LC-NE system on both local- and long-range adjustments of brain dynamics underlying behavioral flexibility.
Collapse
|