1
|
Akiyama H, Niwa M, Kurisaka C, Hamada Y, Fukutomi Y, Teshima R. IgE-Crosslinking-Induced Luciferase Expression Test as a Sensitive Indicator of Anisakis Allergy. Antibodies (Basel) 2025; 14:19. [PMID: 40136468 PMCID: PMC11939268 DOI: 10.3390/antib14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Background:Anisakis allergy has been increasing, and the diagnosis of it is based on specific serum IgE detection. Recently, the IgE-crosslinking-induced luciferase expression (EXiLE) test has been proposed as convenient tool for detecting functionally specific IgE antibodies. Here, we investigated if the EXiLE test is a useful tool in the diagnosis of Anisakis allergy. Methods: HuRa-40 cells were sensitized using six serum types from three patients with Anisakis allergy at the time of the initial test and after 6-12 months. Thereafter, various concentrations of Anisakis worm protein (AWP) were reacted to measure the degree of EXiLE. The degree of EXiLE was compared with Anisakis-specific IgE antibody levels measured by the CAP-FEIA method, and the IgE-antibody-binding protein profile was examined using IgE immunoblotting. Results: The results showed a good correlation between the CAP-FEIA values and EXiLE obtained with 5 μg/mL of AWP (R = 0.91, p < 0.01), a strong response on IgE immunoblotting in the region containing proteins weighing ≥40,000 Da. In addition, after the onset of Anisakis allergy, the degree of serum EXiLE decreased in two patients whose Anisakis-specific IgE antibody levels decreased over time but increased in one patient whose specific IgE antibodies increased after repeated antigen sensitization. Conclusions: Based on these data, the AWP-induced EXiLE test seemed to be useful and convenient for the diagnosis of Anisakis allergy, supplementing specific IgE determinants. After allergy onset, the use of this method to observe changes in specific IgE levels over time may be important for predicting the risk of recurrence.
Collapse
Affiliation(s)
- Haruyo Akiyama
- Division of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo 164-8530, Japan; (H.A.); (C.K.)
| | - Masashi Niwa
- Faculty of Veterinary Medicine, Okayama University of Sciences, Imabari 794-8555, Japan;
| | - Chisato Kurisaka
- Division of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano-ku, Tokyo 164-8530, Japan; (H.A.); (C.K.)
| | - Yuto Hamada
- Clinical Research Center for Allergy and Rheumatology, NHO Sagamihara National Hospital, Sagamihara 252-0392, Japan (Y.F.)
| | - Yuma Fukutomi
- Clinical Research Center for Allergy and Rheumatology, NHO Sagamihara National Hospital, Sagamihara 252-0392, Japan (Y.F.)
| | - Reiko Teshima
- Faculty of Veterinary Medicine, Okayama University of Sciences, Imabari 794-8555, Japan;
| |
Collapse
|
2
|
Gutiérrez MP, Irigoitia MM, Braicovich PE, Lanfranchi AL, Canel D, Palomba M, Mattiucci S, Timi JT. Genetic identification of zoonotic parasite Anisakis pegreffii (Nematoda: Anisakidae) parasitizing the shortfin squid Illex argentinus under commercial exploitation in the Southwestern Atlantic Ocean. Int J Food Microbiol 2025; 430:111054. [PMID: 39787754 DOI: 10.1016/j.ijfoodmicro.2024.111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/03/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Despite the shortfin squid, Illex argentinus, is one of the most important commercial species for the Argentine fisheries, being the third frozen product exported to Europe, the occurrence and distribution of zoonotic anisakid nematodes is scarcely reported. A total of 712 I. argentinus distributed in 17 samples, corresponding to its three main commercial stocks, caught along its distribution range in Argentine waters were examined for anisakid parasites. In total, 360 nematodes were detected in the viscera, however no infestations in the mantle were observed. According to their morphology, all the larvae (L3) were assigned to the genus Anisakis. Genetic identification was performed by sequence analysis of the mitochondrial (mtDNA cox2) gene loci resulting in the record of only Anisakis pegreffii. Distance-based multiple linear regressions (DistLM) evidenced that dorsal mantle length (ML) and date of capture (as surrogate of cohort) were the most important predictors of parasite abundance across infrapopulations in I. argentinus. At component population, DistLM analysis showed that ML and latitude (indirectly representing a gradient in water temperature) were the most important variables determining the prevalence of parasites, however, its mean abundance was only influenced by ML. Parasite burdens were temporally inestable, due to variability in recruitment to host populations, being associated with changing hydrographic conditions and the opportunistic feeding behaviour and annual life cycle of the hosts. The genetic identification of A. pegreffii is relevant for both human health and the fishery industry, given its importance as an etiological agent of human anisakiosis. Due to the restriction of larvae to internal organs, the risk of anisakiosis by the consumption of edible parts of I. argentinus is low.
Collapse
Affiliation(s)
- María Paz Gutiérrez
- Laboratorio de Ictioparasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Manuel M Irigoitia
- Laboratorio de Ictioparasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola E Braicovich
- Laboratorio de Ictioparasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Ana L Lanfranchi
- Laboratorio de Ictioparasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Delfina Canel
- Laboratorio de Ictioparasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marialetizia Palomba
- Department of Ecological and Biological Sciences, Tuscia University, Viterbo, Italy
| | - Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza, University of Rome, Italy
| | - Juan T Timi
- Laboratorio de Ictioparasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Stryiński R, Fiedorowicz E, Mateos J, Andronowska A, Łopieńska-Biernat E, Carrera M. Exploring the exoproteome of the parasitic nematode Anisakis simplex (s. s.) and its impact on the human host - an in vitro cross-talk proteomic approach. Front Immunol 2025; 16:1509984. [PMID: 39963139 PMCID: PMC11830668 DOI: 10.3389/fimmu.2025.1509984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Anisakis simplex sensu stricto (s. s.) is one of the most widespread parasitic nematodes of marine organisms, with humans as accidental hosts. While many studies have explored nematode biology and host interactions, the role of extracellular vesicles (EVs) as signaling molecules in parasitic nematodes is less understood. Materials and methods Therefore, the proteins present in the EVs of A. simplex (s. s.) (Anis-EVs) were identified. In addition, a cross-talk proteomic approach was used to identify differentially regulated proteins (DRPs) in the proteome of the human intestinal epithelial cell line (Caco-2) co-cultured with L3 larvae of A. simplex (s. s.) or directly exposed to two concentrations (low or high) of Anis-EVs. In addition, DRPs were identified in the proteome of A. simplex (s. s.) larvae affected by co-culture with Caco-2. To achieve this goal, the shotgun proteomics method based on isobaric mass labeling (via tandem mass tags; TMT) was used with a combination of nano high-performance liquid chromatography (nLC) coupled with an LTQ-Orbitrap Elite mass spectrometer. In addition, ELISA assays were used to demonstrate if Caco-2 respond to A. simplex (s. s.) larvae and Anis-EVs with significant changes in selected cytokines secretion. Results The results of this study indicate the anti-inflammatory character of Anis-EVs in relation to Caco-2. At the same time, direct treatment with Anis-EVs resulted in more significant changes in the Caco-2 proteome than co-culture with L3 larvae. Discussion The results obtained should lead to a better understanding of the molecular mechanisms underlying the development of A. simplex (s. s.) infection in humans and will complement the existing knowledge on the role of EVs in host-parasite communication.
Collapse
Affiliation(s)
- Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Department of Food Technology, Institute of Marine Research, Spanish National Research Council, Vigo, Spain
| | - Ewa Fiedorowicz
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jesús Mateos
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
| | - Aneta Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Mónica Carrera
- Department of Food Technology, Institute of Marine Research, Spanish National Research Council, Vigo, Spain
| |
Collapse
|
4
|
Kumas K, Al-Jubury A, Kania PW, Abusharkh T, Buchmann K. Location and elimination of Anisakis simplex third stage larvae in Atlantic herring Clupea harengus L. Int J Parasitol Parasites Wildl 2024; 24:100937. [PMID: 38655447 PMCID: PMC11035366 DOI: 10.1016/j.ijppaw.2024.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
We here describe the location of anisakid third stage larvae in Atlantic herring Clupea harengus L. caught in the North Sea in August 2023. We further demonstrate how industrial processing (mechanical gutting, removal of entrails, head, tail, hypaxial anterior musculature and vertebral column) reduces the overall infection and worm load in the musculature. The isolated anisakid larvae were identified as Anisakis simplex sensu stricto by a combination of morphometrics and molecular methods (PCR of rDNA and mtDNA, sequencing, BLAST analysis). As a baseline we examined a total of 75 specimens of freshly caught and ungutted herring and showed a positive correlation between host size (fish length and weight) and infection level. The overall prevalence of infection was 84 %, the mean intensity 11.3 (range 1-38 parasites per fish) and the abundance 9.52. The main part of the overall worm population was associated with stomach and pyloric caeca in the body cavity (77 %) and only 5 % was found in the musculature. Larvae occurred in the hypaxial part of the musculature (21), the epaxial part (7 worms) and the caudal part (5 worms). The prevalence of muscle infection was 28 % and the mean intensity 1.6 (range 1-5) parasites per fish and abundance 0.44 parasites per fish. In order to assess the effect of industrial processing on worm occurrence in the fish we examined a total of 67 specimens of herring, from exactly the same batch, but following processing. This included removal of organs in the body cavity, cutting the lower part of the hypaxial segment but leaving the right and left musculature connected by dorsal connective tissue. Five out of these fish carried one larva (prevalence 7.5%, mean intensity 1, abundance 0.07 larvae per fish), and these worms were located in the ventral part of the anterior musculature (2), in the central part of the anterior musculature (2) and one larva in the central part of the caudal musculature. The industrial processing reduced the overall occurrence (abundance) of worms in the fish from 9.52 to 0.07 (136 times reduction) and the occurrence in the musculature from 0.44 to 0.07 (6.28 times reduction). The overall prevalence was reduced from 84 % to 7.5 % (11.2 times reduction). Muscle infection prevalence fell from 28 % to 7.5 % (3.7 times reduction). We then followed another batch of herring following a marinating process (11% NaCl for 24 h and subsequent incubation in acetic acid and vinegar) by artificially digesting the flaps during week 1-8. Although a total of 31 larvae were recovered from 144 fish examined no live nematode larvae were isolated. The importance of fish handling, processing and marination for consumer safety is discussed.
Collapse
Affiliation(s)
- Kaan Kumas
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Azmi Al-Jubury
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Per W. Kania
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Taghrid Abusharkh
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kurt Buchmann
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
5
|
Attir B, Mammeri A, Kechroud N, Mazouz K, Chabira D, Chenchouni H. A survey of nematodes in the European hake ( Merluccius merluccius) intended for human consumption. J Parasit Dis 2024; 48:347-357. [PMID: 38840878 PMCID: PMC11147965 DOI: 10.1007/s12639-024-01674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 06/07/2024] Open
Abstract
Ensuring the safety of fish for human consumption is paramount in safeguarding public health, particularly in relation to parasitic infections. The European hake (Merluccius merluccius Linnaeus, 1758) may harbor various parasitic nematodes, some of which have zoonotic potential. This cross-sectional survey analyzed a random sample of European hake collected from two fish shops in Batna city (NE Algeria). After 24 h in cold storage, the samples were transported to the laboratory for further examination. Fish autopsies revealed a staggering 70% parasitization rate. Microscopic examination of isolated nematodes, treated with glycerine, identified two genera within the Anisakidae family: Anisakis sp. (62%) and Pseudoterranova sp. (31.25%). Unidentified nematodes accounted for 6.75%. The detection of Anisakidae family nematodes in fish intended for human consumption underscores the urgency of rigorous veterinary control. This imperative measure aims to preserve public health, mitigate economic losses, and curtail the environmental consequences associated with the proliferation of such parasites.
Collapse
Affiliation(s)
- Badreddine Attir
- Department of Nature and Life Sciences, University of Biskra, 07000 El Hadjeb, Biskra Algeria
- Laboratory of Genetics, Biotechnology, and Valorization of Bioresources (LGBVB), University of Biskra, 07000 Biskra, Algeria
| | - Adel Mammeri
- Laboratory of Genetics, Biotechnology, and Valorization of Bioresources (LGBVB), University of Biskra, 07000 Biskra, Algeria
- Department of Agronomic Sciences, Faculty of Sciences, University of M’Sila, 28000 M’Sila, Algeria
| | - Nassima Kechroud
- Department of Nature and Life Sciences, University of Biskra, 07000 El Hadjeb, Biskra Algeria
| | - Khawla Mazouz
- Department of Nature and Life Sciences, University of Biskra, 07000 El Hadjeb, Biskra Algeria
| | - Djouhaina Chabira
- Department of Nature and Life Sciences, University of Biskra, 07000 El Hadjeb, Biskra Algeria
- Laboratory of Genetics, Biotechnology, and Valorization of Bioresources (LGBVB), University of Biskra, 07000 Biskra, Algeria
| | - Haroun Chenchouni
- Laboratory of Algerian Forests and Climate Change (LAFCC), Higher National School of Forests, 40000 Khenchela, Algeria
- Laboratory of Natural Resources and Management of Sensitive Environments (RNAMS), University of Oum-El-Bouaghi, 04000 Oum-El-Bouaghi, Algeria
| |
Collapse
|
6
|
Mostafa NA, Abdel-Ghaffar F, Fayed HO, Hassan AA. Morphological and molecular identification of third-stage larvae of Anisakis typica (Nematoda: Anisakidae) from Red Sea coral trout, Plectropomus areolatus. Parasitol Res 2023; 122:705-715. [PMID: 36650313 PMCID: PMC9988787 DOI: 10.1007/s00436-022-07776-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
Anisakidosis is a foodborne zoonotic infection induced by members of the family Anisakidae via the consumption of raw or undercooked fish such as sushi and sashimi. Identifying anisakid larval species is critical for the epidemiology and diagnosis of diseases caused by them. This study aimed at identifying Anisakis larvae collected from marine fish in Egyptian waters based on morphological characteristics and molecular analysis. Thirty marine fish coral trout, Plectropomus areolatus, were collected from Hurghada, Red Sea, Egypt, to investigate larval nematodes of the genus Anisakis. The larvae were detected encapsulated in the peritoneal cavity and muscle of the fish host. This examination revealed that anisakid larvae naturally infected 19 fish specimens with a prevalence of 63.33% and a mean intensity of 4.1 ± 0.40. Most of them (68 larvae: 71.57%) were found in the musculature. Morphological and morphometric analyses using light and scanning electron microscopy revealed a head region with a prominent boring tooth, inconspicuous lips, and a characteristic protruded cylindrical mucron. All larvae in this study possessed the same morphology as Anisakis Larval type I. Molecular analysis based on ITS region using maximum likelihood and Bayesian phylogenetic methods confirmed them as Anisakis typica. This is the first study to identify A. typica larvae from the commercial fish coral trout P. areolatus in Egyptian waters using morphological and molecular methods.
Collapse
Affiliation(s)
| | | | - Hamed Omar Fayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ayat Adel Hassan
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
7
|
Hajipour N, Valizadeh H, Ketzis J. A review on fish-borne zoonotic parasites in Iran. Vet Med Sci 2023; 9:748-777. [PMID: 36271486 PMCID: PMC10029912 DOI: 10.1002/vms3.981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
BACKGROUND Fish is a great nutritious food and provides quality protein and a variety of vitamins and minerals. This contributes significantly to the economy and food security in Iran. However, there are safety concerns related to the presence of zoonotic parasites. OBJECTIVES The objective of this study is, therefore, to review fish-borne zoonotic parasites in Iran. METHODS Keywords such as fish-borne, parasites, zoonotic, Iran, and some names of fish-borne zoonotic parasites were searched in databases including PubMed, Science Direct, Elsevier, SID, Magiran, Irandoc, Google Scholar and the World Health Organization. RESULTS The most common fish-borne parasites with zoonotic potential identified in reports in the literature were the protozoa Balantidium spp., Myxobolus spp. and Sarcosystis sp.; the trematodes Heterophyes heterophyes and Clinostomum complanatum; the cestodes Ligula intestinalis and Diphyllobothrium latum; the nematodes Pseudoterranova sp., Anisakis spp., Contracaecum spp., Raphidascaris spp., Eustrongylides spp. and Capillaria sp.; and the acanthocephal Corynosoma spp. CONCLUSIONS The potential risk factors for the transmission of fish-borne zoonotic parasites to humans are consumption of raw or undercooked infected fish, contact with contaminated water and contact with infected fish. There is a need for epidemiological surveillance of fish for parasites with zoonotic potential and of occurrence of infections in humans to better understand the public health significance and design prevention programs.
Collapse
Affiliation(s)
- Nasser Hajipour
- Faculty of Veterinary Medicine, Department of Pathobiology, University of Tabriz, Tabriz, Iran
- Faculty of Veterinary Medicine, Department of Food Hygiene and Aquatic, University of Tabriz, Tabriz, Iran
| | - Hadi Valizadeh
- Faculty of Veterinary Medicine, Department of Food Hygiene and Aquatic, University of Tabriz, Tabriz, Iran
| | - Jennifer Ketzis
- Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, St Kitts, West Indies
| |
Collapse
|
8
|
Saelens G, Planckaert S, Devreese B, Gabriël S. Transmissibility of anisakid allergenic peptides from animal feed to chicken meat: Proof of concept. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Foodborne Parasites and Their Complex Life Cycles Challenging Food Safety in Different Food Chains. Foods 2022; 12:foods12010142. [PMID: 36613359 PMCID: PMC9818752 DOI: 10.3390/foods12010142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Zoonotic foodborne parasites often represent complex, multi host life cycles with parasite stages in the hosts, but also in the environment. This manuscript aims to provide an overview of important zoonotic foodborne parasites, with a focus on the different food chains in which parasite stages may occur. We have chosen some examples of meat-borne parasites occurring in livestock (Taenia spp., Trichinella spp. and Toxoplasma gondii), as well as Fasciola spp., an example of a zoonotic parasite of livestock, but transmitted to humans via contaminated vegetables or water, covering the 'farm to fork' food chain; and meat-borne parasites occurring in wildlife (Trichinella spp., Toxoplasma gondii), covering the 'forest to fork' food chain. Moreover, fish-borne parasites (Clonorchis spp., Opisthorchis spp. and Anisakidae) covering the 'pond/ocean/freshwater to fork' food chain are reviewed. The increased popularity of consumption of raw and ready-to-eat meat, fish and vegetables may pose a risk for consumers, since most post-harvest processing measures do not always guarantee the complete removal of parasite stages or their effective inactivation. We also highlight the impact of increasing contact between wildlife, livestock and humans on food safety. Risk based approaches, and diagnostics and control/prevention tackled from an integrated, multipathogen and multidisciplinary point of view should be considered as well.
Collapse
|
10
|
Raw fish consumption in Portugal: Commonly consumed fish species and associated risk factors for anisakiosis. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Golden O, Caldeira AJ, Santos MJ. Raw fish consumption in Portugal: A survey on trends in consumption and consumer characteristics. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Targeted proteomics and specific immunoassays reveal the presence of shared allergens between the zoonotic nematodes Anisakis simplex and Pseudoterranova decipiens. Sci Rep 2022; 12:4127. [PMID: 35260766 PMCID: PMC8904469 DOI: 10.1038/s41598-022-08113-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/02/2022] [Indexed: 11/08/2022] Open
Abstract
The family Anisakidae, mainly represented by Anisakis simplex s.l. and Pseudoterranova decipiens, encompasses zoonotic nematodes infecting many marine fish. Both are responsible for gastrointestinal disease in humans after ingestion of a live larva by consumption of undercooked fish, and, in the case of A. simplex, an allergic reaction may occur after consuming or even handling infected fish. Due to its phylogenetic relatedness with A. simplex, few studies investigated the allergenic potential of P. decipiens, yet none of them focused on its excretory/secretory (E/S) proteins that easily get missed when working solely on extracts from crushed nematodes. Moreover, these E/S allergens remain behind even when the larva has been removed during fish quality processing. Therefore, the aim was to investigate if Anisakis-like allergens could also be detected in both crushed and E/S P. decipiens protein extract using targeted mass spectrometry analysis and immunological methods. The results confirmed that at least five A. simplex allergens have homologous proteins in P. decipiens; a result that emphasizes the importance of also including E/S protein extracts in proteomic studies. Not only A. simplex, but also P. decipiens should therefore be considered a potential source of allergens that could lead to hypersensitivity reactions in humans.
Collapse
|
13
|
Rahmati AR, Kiani B, Afshari A, Moghaddas E, Williams M, Shamsi S. World-wide prevalence of Anisakis larvae in fish and its relationship to human allergic anisakiasis: a systematic review. Parasitol Res 2020; 119:3585-3594. [PMID: 33025215 DOI: 10.1007/s00436-020-06892-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/16/2020] [Indexed: 01/21/2023]
Abstract
The infective stage of Anisakidae nematodes responsible for allergic reactions in humans is found in a variety of edible fish and cephalopods. The identification of geographical regions that are high risk for infected seafood may help prevent allergic reactions in humans. Despite an abundance of published literature which has identified anisakid larvae in an array of edible seafood as well as scattered reports of human allergic anisakiasis, the relationship between the two has not been fully explored. Therefore, a systematic spatio-temporal study was conducted to determine the prevalence of Anisakis spp. in fish from January 2000 to August 2020 firstly to explore the relationship between fish infection and cases of allergic anisakiasis and secondly to use fish infection data to map potential allergic anisakiasis 'hot spots'. A systematic literature search for original English text articles was conducted through search engines, Web of Science, Scopus, PubMed, Science Direct and Google Scholar. Out of 3228 articles which describe anisakid infection in fish, 264 were used for data extraction. Of 904 articles describing allergic anisakiasis, 37 were used for data extraction. A qualitative summary of the extracted data was performed using equal interval method (ArcMap software) in order to compare the global distribution of Anisakis-infected fish. Of the 152-identified fish hosts, five families were most commonly infected with Anisakis spp. These included Lophiidae (86.9%), Trichiuridae (77.05%), Zeidae (70.9%), Merlucciidae (67.8%) and Gadidae (56.8%). The hot spot areas for allergic anisakiasis were North and northeast of Atlantic Ocean, southwest of USA, west of Mexico, south of Chile, east of Argentina, Norway, UK and west of Iceland (confidence 99%). The highest rate of allergic anisakiasis was in Portugal and Norway with the prevalence rate of 18.45-22.50%. Allergologists should consider allergic anisakiasis as a public health issue particularly in high-risk countries where high prevalences in fish have been demonstrated.
Collapse
Affiliation(s)
- Amene Raouf Rahmati
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Kiani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Afshari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Moghaddas
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Michelle Williams
- School of Animal and Veterinary Sciences, Graham Centre for Agricultural Innovations, Charles Sturt University, Wagga Wagga, Australia
| | - Shokoofeh Shamsi
- School of Animal and Veterinary Sciences, Graham Centre for Agricultural Innovations, Charles Sturt University, Wagga Wagga, Australia.
| |
Collapse
|
14
|
Polak I, Łopieńska-Biernat E, Stryiński R, Mateos J, Carrera M. Comparative Proteomics Analysis of Anisakis simplex s.s.-Evaluation of the Response of Invasive Larvae to Ivermectin. Genes (Basel) 2020; 11:genes11060710. [PMID: 32604878 PMCID: PMC7349835 DOI: 10.3390/genes11060710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 01/14/2023] Open
Abstract
Ivermectin (IVM), an antiparasitic drug, has a positive effect against Anisakis simplex s.s. infection and has been used for the treatment and prevention of anisakiasis in humans. However, the molecular mechanism of action of IVM on A. simplex s.s. remains unknown. Herein, tandem mass tag (TMT) labeling and extensive liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis were used to identify the effect of IVM on the proteome of A. simplex s.s. in vitro. During the study, 3433 proteins, of which 1247 had at least two protein unique peptides, were identified. Comparative proteomics analysis revealed that 59 proteins were differentially regulated (DRPs) in IVM-treated larvae, of which 14 proteins were upregulated and 38 were downregulated after 12 h of culture, but after 24 h, 12 proteins were upregulated and 22 were downregulated. The transcription level of five randomly selected DRPs was determined by real-time PCR as a supplement to the proteomic data. The functional enrichment analysis showed that most of the DRPs were involved in oxidoreductase activity, immunogenicity, protein degradation, and other biological processes. This study has, for the first time, provided comprehensive proteomics data on A. simplex s.s. response to IVM and might deliver new insight into the molecular mechanism by which IVM acts on invasive larvae of A. simplex s.s.
Collapse
Affiliation(s)
- Iwona Polak
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (I.P.); (R.S.)
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (I.P.); (R.S.)
- Correspondence: (E.Ł.-B.); (M.C.)
| | - Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (I.P.); (R.S.)
| | - Jesús Mateos
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36-208 Vigo, Spain;
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36-208 Vigo, Spain;
- Correspondence: (E.Ł.-B.); (M.C.)
| |
Collapse
|
15
|
Gomes TL, Quiazon KMA, Kotake M, Itoh N, Yoshinaga T. Anisakis spp. in fishery products from Japanese waters: Updated insights on host prevalence and human infection risk factors. Parasitol Int 2020; 78:102137. [PMID: 32439483 DOI: 10.1016/j.parint.2020.102137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 11/16/2022]
Abstract
The nematodes of the genus Anisakis are among the most relevant parasitic hazards in fishery products since they are responsible for human infection and allergy cases. In a food safety and epidemiological perspective, several marine hosts from different locations around Japan were examined to characterize the parasitism of Anisakis larvae. Chum salmon (Oncorhynchus keta) and Alaska pollock (Gadus chalcogrammus) showed the highest overall prevalence (100%), followed by blue mackerel (Scomber australasicus) (97.5%), Pacific cod (Gadus macrocephalus) (80%), chub mackerel (Scomber japonicus) (60.1%), Japanese flying squid (Todarodes pacificus) (17%) and Japanese pilchard (Sardinops sagax melanostictus) (2%). In Pacific krill (Euphausia pacifica), apart from one Hysterothylacium aduncum larva, no Anisakis specimens were detected. Anisakis simplex sensu stricto was molecularly identified (PCR-RFLP) for the first time in Japanese flying squid and Japanese pilchard distributed in the Northwestern Pacific ocean. That was the most frequent parasitic species detected followed by A. pegreffii, mostly in the western areas of Japan, hybrid genotypes between the two sibling species as well as A. typica and A. berlandi. Surprisingly, A. simplex s.s. was the most abundant species in one batch of chub mackerel from the East China Sea and A. pegreffii was the main species found in one batch from the Pacific coast of Aomori, which seems to indicate that the ranges of these two sibling species might be more variable than previously thought.
Collapse
Affiliation(s)
- Tiago Leandro Gomes
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Karl Marx A Quiazon
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Freshwater Aquaculture Center and College of Fisheries, Central Luzon State University, Science City of Muñoz, Nueva Ecija 3120, Philippines
| | - Maho Kotake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Naoki Itoh
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomoyoshi Yoshinaga
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
16
|
Recent increase of ulcerative lesions caused by Anisakis spp. in cetaceans from the north-east Atlantic. J Helminthol 2020; 94:e127. [PMID: 32100663 DOI: 10.1017/s0022149x20000115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Species of Anisakis typically infect the stomach of cetaceans worldwide, often causing ulcerative lesions that may compromise the host's health. These nematodes also cause anisakiasis or allergic reactions in humans. To assess the risks of this emerging zoonosis, data on long-term changes in Anisakis infections in cetaceans are necessary. Here, we compare the prevalence and severity of ulcerative lesions caused by Anisakis spp. in five cetacean species stranded along the north-west Spanish coast in 2017-2018 with published data from 1991-1996. Open ulcers were found in 32/43 short-beaked common dolphins, Delphinus delphis; 3/5 striped dolphins, Stenella coeruleoalba; 1/7 bottlenose dolphins, Tursiops truncatus; and 1/3 harbour porpoises, Phocoena phocoena meridionalis; a single individual of long-finned pilot whale, Globicephala melas, was found uninfected. In common dolphins, the mean abundance of open ulcers per host was 1.1 (95% confidence interval: 0.8-1.3), with a maximum diameter (mean ± standard deviation) of 25.4 ± 16.9 mm. Stomachs with scars or extensive fibrosis putatively associated with Anisakis were detected in 14 and five animals, respectively. A molecular analysis based on the mitochondrial cytochrome c oxidase II gene using 18 worms from three cetacean species revealed single or mixed infections of Anisakis simplex sensu stricto and Anisakis pegreffii. Compared with the period 1991-1996, we found a strong increase of prevalence, abundance and extension of ulcerative lesions in most cetacean species. Anisakis populations could have increased in the study area over the last decades, although we cannot rule out that a higher environmental stress has also boosted the pathological effects of these parasites.
Collapse
|
17
|
Tunya R, Wongsawad C, Wongsawad P, Chai JY. Morphological and Molecular Characteristics of Anisakis typica Larvae in Two Species of Threadfin Bream, Nemipterus hexodon and N. japonicus, from the Gulf of Thailand. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:15-25. [PMID: 32145723 PMCID: PMC7066448 DOI: 10.3347/kjp.2020.58.1.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
The third stage larvae (L3) of Anisakis typica were detected in 2 species of threadfin bream, Nemipterus hexodon and N. japonicus, from the Gulf of Thailand, and were morphologically and molecularly characterized. Total 100 threadfin breams, 50 Nemipterus hexodon and 50 N. japonicus, were examined with naked eyes after the opening of abdominal cavity with scissors. Almost all infected larvae remained alive and active even the fish were transported for 1-2 days. Anisakid larvae were exclusively distributed in the body cavity and rarely in the liver. The prevalence of A. typica L3 were 68.0% and 60.0% in N. hexodon and N. japonicus and their infection intensities were 3.5 and 4.2 per fish infected each. Morphological and morphometric analysis were performed by viewing specimens under both a light microscope and a scanning electron microscope. Interestingly, the protruded mucron of Anisakis typica under SEM showed a distinct cylindrical shape that differed from the cone shape of A. simplex. The protruded mucron could be used to identify A. typica L3 larvae in the future. A comparison of the ITS1-5.8S-ITS2 rDNA nucleotide sequences of these species revealed high blast scores with A. typica. Conclusively, it was confirmed that A. typica L3 are prevalent in threadfin breams from the Gulf of Thailand, and their morphological and molecular characters are something different from those of other anisakid larvae, including A. simplex and A. pegreffii.
Collapse
Affiliation(s)
- Rattanachai Tunya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50202,
Thailand
| | - Chalobol Wongsawad
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50202,
Thailand
- Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50202,
Thailand
| | - Pheravut Wongsawad
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50202,
Thailand
- Economic Plant Genome Service Center, Faculty of Science, Chiang Mai University, Chiang Mai 50202,
Thailand
| | - Jong-Yil Chai
- Institute of Parasitic Diseases, Korea Association of Health Promotion (KAHP), Seoul 07649,
Korea
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul 03080,
Korea
| |
Collapse
|
18
|
Haryadi L, Suprayitno E, Aulanni’am A, Hariati AM. Immune response evaluation in Balb/c mice after crude extract of Anisakis typica sensitization. Vet World 2019; 12:1529-1534. [PMID: 31849412 PMCID: PMC6868255 DOI: 10.14202/vetworld.2019.1529-1534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIM Anisakis is a global challenge for a fish product which may lead to a decrease in economic value and consumers' preference. Skipjack (Katsuwonus pelamis) in Kupang, Nusa Tenggara Timur, Indonesia, have important economic value for local fisheries. Anisakis typica is one of the Anisakis species which potent to induce an allergic reaction. However, the study about A. typica involved in the dendritic cells (DCs), T helper 1 (Th1), T helper 2 (Th2), and regulatory T cells (Tregs) is still limited. This study aimed to analyze the dynamic changed of the immune system including DCs, CD4+ T cells, and Tregs after 1 week of A. typica sensitization. MATERIALS AND METHODS Twenty-four male Balb/C mice were randomly divided into four groups (n=6), mice treated with crude A. typica extract (CAE) 50, 75, and 100 mg/kg BW, respectively. CAE was given orally per day for a week. At the end of the experiment, the animals were sacrificed and the spleen was collected. DCs were labeled as CD11c+ interleukin-6+ (IL-6+); CD4+ T cells were distinguished as Th1 (CD4+ interferon-γ+ [IFN-γ+]) and Th2 (CD4+ IL-4+ and CD4+ IL-5+); Tregs were labeled as CD4+CD25+CD62L+. The expression of each cell was determined by flow cytometry. RESULTS Our result described that CAE elicits CD11c+ IL-6+, CD4+ IFN-γ+, CD4+ IL-4+, and CD4+ IL-5+ and reduces CD4+CD25+CD62L+ significantly (p<0.05) in dose-dependent manner in mice after A. typica infection. CONCLUSION The Th1/Th2 ratio after A. typica crude extract treatment exhibits a mixed pattern rather than the classical model allergy to food antigens. Our study is expected as a basic understanding of the changes in immune response after A. typic a infection.
Collapse
Affiliation(s)
- Linda Haryadi
- Doctoral Program, Faculty of Fisheries and Marine Sciences, Brawijaya University, Jalan Veteran, Malang 65145, East Java, Indonesia
- Fish Quarantine and Inspection Agency of Kupang, Jalan Ade Irma No 6 Walikota, Kupang 85228, East Nusa Tenggara, Indonesia
| | - Eddy Suprayitno
- Department of Food Processing Technology, Faculty of Fisheries and Marine Sciences, Brawijaya University, Jalan Veteran, Malang 65145, East Java, Indonesia
| | - Aulanni’am Aulanni’am
- Department of Biochemistry, Faculty of Sciences, Brawijaya University, Jalan Veteran, Malang 65145, East Java, Indonesia
| | - Anik Martinah Hariati
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, Brawijaya University, Jalan Veteran, Malang 65145, East Java, Indonesia
| |
Collapse
|
19
|
Łopieńska-Biernat E, Paukszto Ł, Jastrzębski JP, Myszczyński K, Polak I, Stryiński R. Genome-wide analysis of Anisakis simplex sensu lato: the role of carbohydrate metabolism genes in the parasite's development. Int J Parasitol 2019; 49:933-943. [PMID: 31560928 DOI: 10.1016/j.ijpara.2019.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023]
Abstract
Anisakis simplex sensu lato is a parasitic nematode which can cause gastric symptoms and/or allergic reactions in humans who consume raw and undercooked fish. Anisakiasis poses a growing health problem around the globe because it causes non-specific symptoms and is difficult to diagnose. This genome-wide study was undertaken to expand our knowledge of A. simplex s.l. at the molecular level and provide novel data for biological and biotechnological research into the analyzed species and related nematodes. A draft genome assembly of the L3 stage of A. simplex s.l. was analyzed in detail, and changes in the expression of carbohydrate metabolism genes during the parasite's life cycle were determined. To our knowledge, this is the first genome to be described for a parasitic nematode of the family Anisakidae to date. We identified genes involved in parasite-specific pathways, including carbohydrates metabolism, apoptosis and chemo signaling. A total of 7607 coding genes were predicted. The genome of A. simplex s.l. is highly similar to genomes of other parasitic nematodes. In particular, we described a valuable repository of genes encoding proteins of trehalose and glycogen metabolism, and we developed the most comprehensive data set relating to the conversion of both saccharides which play important roles during the parasite's life cycle in a host environment. We also confirmed that trehalose is synthesized at the expense of glycogen. Trehalose anabolism and glycogen catabolism were the predominant processes in stages L4 and L5, which could confirm our and other authors' previous reports that trehalose is synthesized at the expense of glycogen. The A. simplex s.l. genome provides essential data for post-genomic research into the biology of gastrointestinal and allergic anisakiasis in humans and the biology of other important parasitic helminths.
Collapse
Affiliation(s)
- Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Kamil Myszczyński
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Iwona Polak
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| |
Collapse
|
20
|
Aibinu IE, Smooker PM, Lopata AL. Anisakis Nematodes in Fish and Shellfish- from infection to allergies. Int J Parasitol Parasites Wildl 2019; 9:384-393. [PMID: 31338296 PMCID: PMC6626974 DOI: 10.1016/j.ijppaw.2019.04.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 12/15/2022]
Abstract
Anisakidosis is a zoonotic parasitosis induced by members of the family Anisakidae. The anisakid genera includes Anisakis, Pseudoterranova, Hysterothylacium and Contracaecum. The final definitive hosts of these nematodes are marine mammals with a complex life cycle. These nematode parasites use different crustaceans and fish species as intermediate or paratenic hosts and humans are accidental hosts. Human anisakiasis, the infections caused by members of the genus Anisakis, occurs, when seafoods, particularly fish, contaminated with the infective stage (third stage larvae [L3]) of this parasite, are consumed. Pseudoterranovosis, on the other hand is induced by members of the genus Pseudoterranova. These two genera of anisakids have been implicated in human disease globally. There is a rise in reports of gastro-intestinal infections accompanied by allergic reactions caused by Anisakis simplex and Anisakis pegreffii. This review provides an update on current knowledge on Anisakis as a food-borne parasite with special focus on the increasingly reported diversity of fish and crustacean hosts, allergens and immunological cross-reactivity with invertebrate proteins rendering this parasite a significant public health issue.
Collapse
Affiliation(s)
- Ibukun E. Aibinu
- School of Science, Discipline of Biosciences and Food Technology, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, Victoria, Australia
| | - Peter M. Smooker
- School of Science, Discipline of Biosciences and Food Technology, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, Victoria, Australia
| | - Andreas L. Lopata
- Molecular Allergy Research Laboratory, Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
21
|
Stryiński R, Mateos J, Pascual S, González ÁF, Gallardo JM, Łopieńska-Biernat E, Medina I, Carrera M. Proteome profiling of L3 and L4 Anisakis simplex development stages by TMT-based quantitative proteomics. J Proteomics 2019; 201:1-11. [PMID: 30978463 DOI: 10.1016/j.jprot.2019.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/25/2019] [Accepted: 04/07/2019] [Indexed: 11/24/2022]
Abstract
Anisakis simplex is a parasitic nematode that can cause anisakiosis and/or allergic reactions in humans. The presence of invasive third-stage larvae (L3) in many different consumed fish species and the fourth-stage larvae (L4) in marine mammals, where L3 can accidentally affect to humans and develop as far as stage L4. World Health Organization and food safety authorities aim to control and prevent this emerging health problem. In the present work, using Tandem Mass Tag (TMT)-based quantitative proteomics we analyzed for the first time the global proteome of two A. simplex development stages, L3 and L4. The strategy was divided into four steps: (a) protein extraction of L3 and L4 development stages, (b) high intensity focused ultrasound (HIFU)-assisted trypsin digestion, (c) TMT-isobaric mass tag labeling following by high-pH reversed-phase fractionation, and (d) LC-MS/MS analysis in a LTQ-Orbitrap Elite mass spectrometer. A total of 2443 different proteins of A. simplex were identified. Analysis of the modulated proteins provided the specific proteomic signature of L3 (i.e. pseudocoelomic globin, endochitinase 1, paramyosin) and L4 (i.e. neprilysin-2, glutamate dehydrogenase, aminopeptidase N). To our knowledge, this is the most comprehensive dataset of proteins of A. simplex for two development stages (L3 and L4) identified to date. SIGNIFICANCE: A. simplex is a fish-borne parasite responsible for the human anisakiosis and allergic reactions around the world. The work describes for the first-time the comparison of the proteome of two A. simplex stages (L3 and L4). The strategy is based on four steps: (i) protein extraction, (ii) ultra-fast trypsin digestion under High-Intensity Focused Ultrasound (HIFU), (iii) TMT-isobaric mass tag labeling followed by high-pH reversed-phase fractionation and (iv) peptide analysis using a LTQ-Orbitrap Elite mass spectrometer. The workflow allows to select the most modulated proteins as proteomic signature of those specific development stages (L3 and L4) of A. simplex. Obtained stage-specific proteins, could be used as targets to control/eliminate this parasite and in future eradicate the anisakiosis disease.
Collapse
Affiliation(s)
- Robert Stryiński
- University of Warmia and Mazury, Faculty of Biology and Biotechnology, Department of Biochemistry, Olsztyn, Poland.
| | - Jesús Mateos
- Spanish National Research Council (CSIC), Marine Research Institute (IIM), Department of Food Technology, Vigo, Pontevedra, Spain
| | - Santiago Pascual
- Spanish National Research Council (CSIC), Marine Research Institute (IIM), Department of Food Technology, Vigo, Pontevedra, Spain
| | - Ángel F González
- Spanish National Research Council (CSIC), Marine Research Institute (IIM), Department of Food Technology, Vigo, Pontevedra, Spain
| | - José M Gallardo
- Spanish National Research Council (CSIC), Marine Research Institute (IIM), Department of Food Technology, Vigo, Pontevedra, Spain
| | - Elżbieta Łopieńska-Biernat
- University of Warmia and Mazury, Faculty of Biology and Biotechnology, Department of Biochemistry, Olsztyn, Poland
| | - Isabel Medina
- Spanish National Research Council (CSIC), Marine Research Institute (IIM), Department of Food Technology, Vigo, Pontevedra, Spain
| | - Mónica Carrera
- Spanish National Research Council (CSIC), Marine Research Institute (IIM), Department of Food Technology, Vigo, Pontevedra, Spain.
| |
Collapse
|
22
|
Bao M, Pierce GJ, Strachan NJ, Pascual S, González-Muñoz M, Levsen A. Human health, legislative and socioeconomic issues caused by the fish-borne zoonotic parasite Anisakis: Challenges in risk assessment. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Irigoitia MM, Braicovich PE, Lanfranchi AL, Farber MD, Timi JT. Distribution of anisakid nematodes parasitizing rajiform skates under commercial exploitation in the Southwestern Atlantic. Int J Food Microbiol 2018; 267:20-28. [DOI: 10.1016/j.ijfoodmicro.2017.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/04/2017] [Accepted: 12/10/2017] [Indexed: 02/06/2023]
|