1
|
Duan Y, Gao Y, Yang H, Shui T, Huang P, Qu J, He R, Xi J. Localization of G3A1b Destroyed by Heat Treatment and Identification of Allergenic Amino Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9827-9834. [PMID: 40214278 DOI: 10.1021/acs.jafc.4c11125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The G3 subunit is a key allergenic component of glycinin, a major soybean protein. This study utilized molecular cloning and recombinant phage construction to investigate antigenic sites in the G3 subunit that are denatured during heat treatment. Using indirect ELISA, the G3A1b-3-B-II fragment was identified as the denatured antigenic site, further localized to the sequence 236RQIVRKLQGENEEEEKGAIVTVKGGLSV263 through three rounds of screening. Alanine-scanning mutagenesis revealed that residues V255, T256, V257, G259, and L261 are critical for the binding of synthetic peptide P3 (251KGAIVTVKGGLSV263) to IgG and IgE. These findings provide a refined understanding of the amino acid residues that influence glycinin allergenicity. This research lays the groundwork for reducing or eliminating soybean allergenicity through targeted amino acid substitutions, advanced biological breeding techniques, and other interventions. This method overcomes the defect that heat treatment cannot completely eliminate the allergenicity of glycinin.
Collapse
Affiliation(s)
- Yuying Duan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yida Gao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Huanhuan Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Tianjiao Shui
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Pengbo Huang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Jinglong Qu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Runrun He
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Jun Xi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
2
|
Yang Y, He XR, He SY, Lin JJ, Li FJ, Chen JL, Gu SN, Jin T, Chen GX, Liu GM. Screening and Interaction Analysis of Shark-Derived Nanobodies against Crayfish Major Allergen Pro c 2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40256922 DOI: 10.1021/acs.jafc.5c01559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Pro c 2 (arginine kinase) is a major allergen in crayfish (Procambarus clarkii). Shark-derived variable domains of new antigen receptors (VNARs) have advantages in developing allergen detection and immunotherapy. This study constructed a VNAR domain library from Chiloscyllium plagiosum immunized with Pro c 2. Three VNARs (VNAR-11, VNAR-20, and VNAR-29) against Pro c 2 obtained by screening the library were expressed in the HEK293F cells, fusing with the immunoglobulin (Ig) G1 Fc fragment (VNAR-Fc-11, VNAR-Fc-29, and VNAR-Fc-20). The VNAR-Fc fusions bound to Pro c 2 with an affinity KD ranging from 0.2131 ∼ 465.3 μM, with the ability to inhibit patients' IgE binding to Pro c 2. VNAR-20 and VNAR-29 displayed more stable binding with Pro c 2 during molecular dynamics simulation. The binding sites of the VNARs are distributed in the conserved IgE epitopes of arginine kinase. These achievements indicate the application potential of VNARs in allergen detection and allergy therapeutics.
Collapse
Affiliation(s)
- Yang Yang
- College of Environment and Public Health, Xiamen Huaxia University, 288 Tianma Road, Xiamen 361024, Fujian, China
| | - Xin-Rong He
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China
| | - Si-Yang He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China
| | - Fa-Jie Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China
| | - Jin-Li Chen
- College of Environment and Public Health, Xiamen Huaxia University, 288 Tianma Road, Xiamen 361024, Fujian, China
| | - Shi-Nong Gu
- College of Environment and Public Health, Xiamen Huaxia University, 288 Tianma Road, Xiamen 361024, Fujian, China
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei 230027, Anhui, China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen 361000, Fujian, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China
- College of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Food Nutrition Safety and Advanced Processing, Xiamen 361102, Fujian, China
| |
Collapse
|
3
|
Huan F, Gao S, Gu Y, Ni L, Wu M, Li Y, Liu M, Yang Y, Xiao A, Liu G. Molecular Allergology: Epitope Discovery and Its Application for Allergen-Specific Immunotherapy of Food Allergy. Clin Rev Allergy Immunol 2025; 68:37. [PMID: 40198416 DOI: 10.1007/s12016-025-09052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 04/10/2025]
Abstract
The prevalence of food allergy continues to rise, posing a significant burden on health and quality of life. Research on antigenic epitope identification and hypoallergenic agent design is advancing allergen-specific immunotherapy (AIT). This review focuses on food allergens from the perspective of molecular allergology, provides an overview of integration of bioinformatics and experimental validation for epitope identification, highlights hypoallergenic agents designed based on epitope information, and offers a valuable guidance to the application of hypoallergenic agents in AIT. With the development of molecular allergology, the characterization of the amino acid sequence and structure of the allergen at the molecular level facilitates T-/B-cell epitope identification. Alignment of the identified epitopes in food allergens revealed that the amino acid sequence of T-/B-cell epitopes barely overlapped, providing crucial data to design allergen molecules as a promising form for treating (FA) food allergy. Manipulating antigenic epitopes can reduce the allergenicity of allergens to obtain hypoallergenic agents, thereby minimizing the severe side effects associated with AIT. Currently, hypoallergenic agents are mainly developed through synthetic epitope peptides, genetic engineering, or food processing methods based on the identified epitope. New strategies such as DNA vaccines, signaling molecules coupling, and nanoparticles are emerging to improve efficiency. Although significant progress has been made in designing hypoallergenic agents for AIT, the challenge in clinical translation is to determine the appropriate dose and duration of treatment to induce long-term immune tolerance.
Collapse
Affiliation(s)
- Fei Huan
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Shuai Gao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Yi Gu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Lingna Ni
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Mingxuan Wu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Yongpeng Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Food Nutrition Safety and Advanced Processing, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, 361100, Fujian, China
| | - Yang Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
- College of Environment and Public Health, Xiamen Huaxia University, 288 Tianma Road, Xiamen, 361024, Fujian, China
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China.
- School of Marine Biology, Xiamen Ocean Vocational College, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Food Nutrition Safety and Advanced Processing, Applied Technology Engineering Center of Fujian Provincial Higher Education for Marine Resource Protection and Ecological Governance, Xiamen Key Laboratory of Intelligent Fishery, Xiamen, 361100, Fujian, China.
| |
Collapse
|
4
|
Günal-Köroğlu D, Karabulut G, Ozkan G, Yılmaz H, Gültekin-Subaşı B, Capanoglu E. Allergenicity of Alternative Proteins: Reduction Mechanisms and Processing Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7522-7546. [PMID: 40105205 PMCID: PMC11969658 DOI: 10.1021/acs.jafc.5c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
The increasing popularity of alternative proteins has raised concerns about allergenic potential, especially for plant-, insect-, fungal-, and algae-based proteins. Allergies arise when the immune system misidentifies proteins as harmful, triggering IgE-mediated reactions that range from mild to severe. Main factors influencing allergenicity include protein structure, cross-reactivity, processing methods, and gut microbiota. Disruptions in gut health or microbiota balance heighten risks. Common allergens in legumes, cereals, nuts, oilseeds, single-cell proteins, and insect-based proteins are particularly challenging, as they often remain stable and resistant to heat and digestion despite various processing techniques. Processing methods, such as roasting, enzymatic hydrolysis, and fermentation, show promise in reducing allergenicity by altering protein structures and breaking down epitopes that trigger immune responses. Future research should focus on optimizing these methods to ensure that they effectively reduce allergenic risks while maintaining the nutritional quality and safety of alternative protein products.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Gulsah Karabulut
- Department
of Food Engineering, Faculty of Engineering, Sakarya University, 54050 Sakarya, Türkiye
| | - Gulay Ozkan
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Hilal Yılmaz
- Department
of Biotechnology, Faculty of Science, Bartın
University, 74100 Kutlubey Campus, Bartın, Türkiye
| | - Büşra Gültekin-Subaşı
- Center
for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| |
Collapse
|
5
|
Wang Y, Wang M, Liu G, Rui X, Wang P, Xie C, Yang R. Modulation of soymilk immunoglobulin E-binding through germination: Emphasis on the specific degradation of major allergens and their epitopes. Food Chem 2025; 481:143930. [PMID: 40138841 DOI: 10.1016/j.foodchem.2025.143930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/11/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
This study explores the influence of seed germination on the immunoreactivity of soymilk produced from three soybean cultivars. The degradation patterns of allergens and their epitopes were investigated. Antigenicity and IgE-binding capacity assays indicated that soymilk derived from the NN cultivar on the third day of germination (NN-SSM-3) demonstrated the greatest reduction in immunoreactivity (9.2 %-12.6 %) compared with regular soymilk (ungerminated seeds-derived soymilk). Protein profile analysis further revealed that NN-SSM-3 showed a significant degradation (42.1 %-61.7 %) in the α/α' subunits of Gly m 5 and the acidic subunit of Gly m 6. These findings were supported by peptidomics analyses, which showed that NN-SSM-3 particularly promoted the extensive disruption of epitopes buried in the interior β-sheet structures of Gly m 5.01, Gly m 6.05, Gly m Bd 30 K, and Gly m TI. Therefore, controlled germination represents a promising approach for managing the degradation of allergens and their epitopes.
Collapse
Affiliation(s)
- Yaqiong Wang
- Sanya Institute of Nanjing Agricultural University, Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mian Wang
- Sanya Institute of Nanjing Agricultural University, Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guannan Liu
- Sanya Institute of Nanjing Agricultural University, Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xin Rui
- Sanya Institute of Nanjing Agricultural University, Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Pei Wang
- Sanya Institute of Nanjing Agricultural University, Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chong Xie
- Sanya Institute of Nanjing Agricultural University, Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Runqiang Yang
- Sanya Institute of Nanjing Agricultural University, Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
6
|
Lv L, Wei F, Liu L, Song F, Hou X, Yang Q. Study on the Allergenicity of Tropomyosin from Different Aquatic Products Based on Conformational and Linear Epitopes Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4936-4946. [PMID: 39948035 DOI: 10.1021/acs.jafc.4c11853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Tropomyosin (TM) is a major allergen in aquatic products. The aim of this study was to analyze the allergenicity of TM from different aquatic products based on conformational and linear epitopes. Structural and allergenicity analyses of TM were conducted using intrinsic fluorescence, UV absorption spectra, circular dichroism, and animal experiments. Epitope mapping was performed through bioinformatics software and a one-bead, one-compound (OBOC) peptide library screening approach. The results showed that the structures of TMs from different aquatic products are similar. Cross-reactivity was observed among TMs from different aquatic products, with fish-TM showing lower cross-reactivity compared with other TMs. Additionally, 13, 14, 11, 13, and 12 linear epitopes, along with 2, 2, 1, 2, and 3 conformational epitopes, were identified for shrimp-TM, crab-TM, fish-TM, oyster-TM, and clam-TM, respectively. Overall, these findings provide a basis for elucidating the epitope localization and allergenicity relationship of TMs from different aquatic products.
Collapse
Affiliation(s)
- Liangtao Lv
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Fangling Wei
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Lu Liu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Futeng Song
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiudan Hou
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingli Yang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
7
|
Sun P, Wu X, Sun Q, Zhao Q, Mu G, Kong F. Optimizing β-Lactoglobulin antigenicity through single enzyme hydrolysis: Exploring structural changes and effects on linear epitopes. Food Chem 2025; 464:141770. [PMID: 39476587 DOI: 10.1016/j.foodchem.2024.141770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
β-lactoglobulin (β-LG) is the major allergen in dairy products, but research on the optimal conditions for antigen reduction in β-LG using different enzymes remains limited. Therefore, this study aims to investigate the antigenicity, structural characteristics, and peptide distribution of advantageous protease hydrolysates capable of eliminating the allergenic epitopes of β-LG selected via bioinformatics tools. The results showed that under optimal enzymatic hydrolysis conditions, the antigen reduction rates for the four advantageous proteases acting on β-LG were 47.37 % (pepsin), 33.54 % (chymotrypsin A), 38.71 % (papain), and 45.91 % (stem bromelain), respectively. The four proteases effectively degraded β-LG, causing shorter peptide chain formation, reduced content of highly ordered α-helix, decreased fluorescence intensity, and lower surface hydrophobicity. Furthermore, they cleaved the linear epitopes of β-LG into peptides of varying sizes, leading to different antigen reduction rates among the hydrolysates. These findings provide a theoretical basis for developing targeted enzymatic hydrolysis technologies and low-allergenicity dairy-based materials.
Collapse
Affiliation(s)
- Peng Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116000, Liaoning, China
| | - Xiaomeng Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116000, Liaoning, China
| | - Qi Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116000, Liaoning, China
| | - Qing Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116000, Liaoning, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116000, Liaoning, China
| | - Fanhua Kong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116000, Liaoning, China.
| |
Collapse
|
8
|
Pang L, Li R, Chen C, Huang Z, Zhang W, Man C, Yang X, Jiang Y. Combined processing technologies: Promising approaches for reducing Allergenicity of food allergens. Food Chem 2025; 463:141559. [PMID: 39393111 DOI: 10.1016/j.foodchem.2024.141559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Food allergy is a severe threat to human health. Although processing technologies are widely used to reduce allergenicity, hypoallergenic foods produced by a single processing technology cannot satisfy consumer demands. Combined processing technology (CPT) is a promising strategy for efficiently producing high-quality hypoallergenic foods. This paper reviews the effects of CPT on the allergenicity of food allergens from three aspects: physical-biochemical CPT, biochemical-biochemical CPT, and physical-physical CPT. The synergistic mechanisms, strengths, and limitations of these technologies were discussed. It was found that CPT is generally more effective than single-processing technologies. Physical-biochemical CPT is the most widely studied and well-established because physical and biochemical processing technologies complement each other and effectively disrupt conformational and linear epitopes. Biochemical-biochemical CPT primarily disrupts linear epitopes, but most methods are time-consuming. Physical-physical CPT is the least studied; they mainly disrupt conformational epitopes and only rarely affect linear epitopes.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Runze Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chen Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhen Huang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
9
|
Keen MM, Keith AD, Ortlund EA. Epitope mapping via in vitro deep mutational scanning methods and its applications. J Biol Chem 2025; 301:108072. [PMID: 39674321 PMCID: PMC11783119 DOI: 10.1016/j.jbc.2024.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024] Open
Abstract
Epitope mapping is a technique employed to define the region of an antigen that elicits an immune response, providing crucial insight into the structural architecture of the antigen as well as epitope-paratope interactions. With this breadth of knowledge, immunotherapies, diagnostics, and vaccines are being developed with a rational and data-supported design. Traditional epitope mapping methods are laborious, time-intensive, and often lack the ability to screen proteins in a high-throughput manner or provide high resolution. Deep mutational scanning (DMS), however, is revolutionizing the field as it can screen all possible single amino acid mutations and provide an efficient and high-throughput way to infer the structures of both linear and three-dimensional epitopes with high resolution. Currently, more than 50 publications take this approach to efficiently identify enhancing or escaping mutations, with many then employing this information to rapidly develop broadly neutralizing antibodies, T-cell immunotherapies, vaccine platforms, or diagnostics. We provide a comprehensive review of the approaches to accomplish epitope mapping while also providing a summation of the development of DMS technology and its impactful applications.
Collapse
Affiliation(s)
- Meredith M Keen
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Alasdair D Keith
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
10
|
Pang L, Chen C, Liu M, Huang Z, Zhang W, Shi J, Yang X, Jiang Y. A comprehensive review of effects of ultrasound pretreatment on processing technologies for food allergens: Allergenicity, nutritional value, and technofunctional properties and safety assessment. Compr Rev Food Sci Food Saf 2025; 24:e70100. [PMID: 39746865 DOI: 10.1111/1541-4337.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025]
Abstract
Many proteins are essential food components but also major allergens. Reducing protein allergenicity while preserving its nutritional value and technofunctional properties has always been the goal of the food industry. Ultrasound (US) is a green processing method for modifying proteins. In addition, US pretreatment combined with other processing techniques (USPCT) has been increasingly used in the food industry. Therefore, this review presents an overview of recent advances in the impact of US and USPCT (US-combined enzymatic hydrolysis [USCE], US-combined glycation [USCG], and US-combined polyphenol conjugation [USCP]) on the allergenicity, nutritional value, and technofunctional properties of food allergens. We discuss the potential mechanisms, advantages, and limitations of these technologies for improving the properties of proteins and analyze their safety, challenges, and corresponding solutions. It was found that USPCT can improve the efficiency and effectiveness of different methods, which in turn can be more effective in reducing protein allergenicity and improving the nutritional value and functional properties of processed products. Future research should start with new processing methods, optimization of process conditions, industrial production, and the use of new research techniques to promote technical progress. This paper is expected to provide reference for the development of high-quality hypoallergenic protein raw materials.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chen Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Ming Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhen Huang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Jia Shi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- Food Laboratory of Zhongyuan, Luohe, China
| |
Collapse
|
11
|
Gao K, He S, Shi J, Xue SJ, Li X, Sun H. Impact of pH-Shifting and Autoclaving on the Allergenic Potential of Red Kidney Bean ( Phaseolus vulgaris L.) Lectins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28109-28121. [PMID: 39611564 DOI: 10.1021/acs.jafc.4c07528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The ingestion of red kidney bean products is hindered by the persistent allergenicity of lectins, even after autoclaving. This study examined the modification of lectin allergenicity in red kidney beans by pH-shifting and autoclaving treatments, utilizing BALB/c mouse sensitization, in situ recirculating perfusion, and a bone marrow-derived dendritic cell (BMDC) model for allergenicity evaluation. Compared to autoclaving alone, combined pH-shifting and autoclaving reduced allergic symptoms in BALB/c mice, as evidenced by lower serum IgE, mMCPT-1, GM-CSF, HIS, IL-2, IL-4, IL-9, IL-13, and IL-17 levels and higher IgG1, IgG2a, IL-10, IFN-γ, and IFN-α cytokine release. Moreover, lectin continued to affect intestinal permeability and damaged the barrier despite undergoing pH-shifting and autoclaving treatments. Additionally, the uptake of lectin by BMDCs through mannose receptor-mediated endocytosis was diminished, with an increased susceptibility to endolysosomal degradation. The T-cell polarization was consistent with the mouse experiments, where the balance of Th1 and Th2 cells remained in lectin with pH-shifting and autoclaving treatments though the decreased abundance ratios of peptide YKYDSNAHT and increased abundance ratios of peptide ITKGNVETN in endolysosomal degradation. Therefore, the immunogenicity of lectins could be decreased by pH-shifting and autoclaving treatments, offering insights into the development of hypoallergenic legume products.
Collapse
Affiliation(s)
- Kuan Gao
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| | - John Shi
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Sophia Jun Xue
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Xingjiang Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| |
Collapse
|
12
|
Kang W, Zhang J, Yu N, Wei L, Chen Y. Screening of IgE-Binding Epitopes of Peach Allergenic Protein Pru p 7 Based on an Immune Microarray Assay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23991-24002. [PMID: 39422561 DOI: 10.1021/acs.jafc.4c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Pru p 7 (also named Peamaclein) is a member of the gibberellin-regulated protein family, which is the latest foodborne allergenic protein identified in peach. In this paper, the prokaryotic expression and identification of Pru p 7 were performed, and the protein properties, structure, and homology were analyzed. In addition, a preliminary screening of B-cell linear epitopes of Pru p 7 was performed by the bioinformatics software prediction method, and three epitopes were identified using slot-blot immune microarray assay combined with an immune score matrix (P-1, AA16-21, AGYQER; P-2, AA40-46, TYGNKDE; P-3, AA52-59, DLKNSKGN). Moreover, the electrostatic potential of these epitopes was analyzed, and the stability after ultrahigh pressure treatment was also verified. Finally, the amino acids that play key immune roles in the epitopes were obtained by amino acid mutations. These results may contribute to the further understanding of Pru p 7 and the prevention of peach allergy.
Collapse
Affiliation(s)
- Wenhan Kang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Liyang Wei
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| |
Collapse
|
13
|
Li D, He X, Li F, Yang Y, Liu M, Liu Q, Luo L, Chen G, Liu G. Effect of transglutaminase-catalyzed glycosylation on the allergenicity of tropomyosin in the Perna viridis food matrix. Food Funct 2024; 15:9136-9148. [PMID: 39157921 DOI: 10.1039/d4fo02305f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Food allergy is one of the hot issues in the field of food safety, and there have been a lot of concerns on how to reduce the allergenicity of food allergens. Food processing can change the allergenicity of allergens in the food matrix. In this study, ten IgE linear epitopes of the major allergen tropomyosin (TM) in Perna viridis were identified by bioinformatics prediction and serological experiments. The transglutaminase-catalyzed glycosylation modification sites glutamine, lysine and arginine were highly represented in the IgE linear epitopes of TM. The Perna viridis food matrix was treated with transglutaminase-catalyzed glycosylation. This reaction changed the secondary structure of protein in the food matrix, increased the content of β-sheets and decreased the content of β-turns. The intensity of intrinsic fluorescence and surface hydrophobicity were reduced. The IgE-binding activity of TM in the food matrix was reduced by modifying seven amino acid residues on six IgE linear epitopes. Transglutaminase-catalyzed glycosylation products decreased allergic symptoms in allergic mice, reduced the proportion of CD4+IL-4+ Th2 cells, and increased the proportion of CD4+IFN-γ+ Th1 cells and Treg cells. Mouse serum levels of IgE and IgG1 antibodies in the food matrix and TM were reduced. Therefore, this study provided a theoretical basis for the development of hypoallergenic Perna viridis products.
Collapse
Affiliation(s)
- Dongxiao Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Xinrong He
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Fajie Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Yang Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361000, China
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China
| | - Qingmei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
| | - Lianzhong Luo
- Engineering Research Center of Marine Biopharmaceutical Resource, Fujian Province University, Xiamen Medical College, Xiamen, Fujian 361023, China
| | - Guixia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China.
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China
| |
Collapse
|
14
|
Álvarez P, Aguado R, Molina J, Trujillo-Aguilera A, Villalba M, Díaz-Perales A, Oeo-Santos C, Chicano E, Blanco N, Navas A, Ruiz-León B, Jurado A. Pollen-Food Allergy Syndrome: From Food Avoidance to Deciphering the Potential Cross-Reactivity between Pru p 3 and Ole e 7. Nutrients 2024; 16:2869. [PMID: 39275185 PMCID: PMC11396898 DOI: 10.3390/nu16172869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Cross-reactivity between nonspecific lipid transfer proteins could cause anaphylaxis, further influencing food avoidance and nutrient deficiencies. The one affecting olive pollen (Ole e 7) and peach (Pru p 3) may underlie a variety of pollen-food syndromes, though a deep molecular analysis is necessary. METHODS Three Ole e 7-monosensitised patients (MON_OLE), three Pru p 3-monosensitised patients (MON_PRU) and three bisensitised patients (BI) were selected. For epitope mapping, both digested proteins were incubated with patient sera, and the captured IgE-bound peptides were characterised by LC-MS. RESULTS The analysis revealed two Ole e 7 epitopes and the three Pru p 3 epitopes previously described. Interestingly, the "KSALALVGNKV" Ole e 7 peptide was recognised by MON_OLE, BI and MON_PRU patients. Conversely, all patients recognised the "ISASTNCATVK" Pru p 3 peptide. Although complete sequence alignment between both proteins revealed 32.6% identity, local alignment considering seven residue fragments showed 50 and 57% identity when comparing "ISASTNCATVK" with Ole e 7 and "KSALALVGNKV" with Pru p 3. CONCLUSIONS This study mapped sIgE-Ole e 7-binding epitopes, paving the way for more precise diagnostic tools. Assuming non-significant sequence similarity, structural homology and shared key residues may underlie the potential cross-reactivity between Ole e 7 and Pru p 3 nsLTPs.
Collapse
Affiliation(s)
- Paula Álvarez
- Department of Immunology and Allergy, Reina Sofía University Hospital, 14004 Córdoba, Spain; (P.Á.); (R.A.); (A.T.-A.); (N.B.); (B.R.-L.); (A.J.)
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain;
| | - Rocío Aguado
- Department of Immunology and Allergy, Reina Sofía University Hospital, 14004 Córdoba, Spain; (P.Á.); (R.A.); (A.T.-A.); (N.B.); (B.R.-L.); (A.J.)
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain;
| | - Juan Molina
- Department of Immunology and Allergy, Reina Sofía University Hospital, 14004 Córdoba, Spain; (P.Á.); (R.A.); (A.T.-A.); (N.B.); (B.R.-L.); (A.J.)
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain;
- Allergy Network ARADyAL, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (A.D.-P.)
| | - Antonio Trujillo-Aguilera
- Department of Immunology and Allergy, Reina Sofía University Hospital, 14004 Córdoba, Spain; (P.Á.); (R.A.); (A.T.-A.); (N.B.); (B.R.-L.); (A.J.)
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain;
| | - Mayte Villalba
- Allergy Network ARADyAL, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (A.D.-P.)
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Araceli Díaz-Perales
- Allergy Network ARADyAL, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (A.D.-P.)
- Centre for Plant Biotechnology and Genomics (CBGP, UPM-INIA), Polytechnic University of Madrid, 28223 Madrid, Spain
| | - Carmen Oeo-Santos
- Department of Physiology, Biochemistry and Human Genetics, Faculty of Health Science, Rey Juan Carlos University, 28922 Madrid, Spain;
| | - Eduardo Chicano
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain;
- IMIBIC Mass Spectrometry and Molecular Imaging Unit (IMSMI), 14004 Córdoba, Spain
| | - Nadine Blanco
- Department of Immunology and Allergy, Reina Sofía University Hospital, 14004 Córdoba, Spain; (P.Á.); (R.A.); (A.T.-A.); (N.B.); (B.R.-L.); (A.J.)
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain;
| | - Ana Navas
- Department of Immunology and Allergy, Reina Sofía University Hospital, 14004 Córdoba, Spain; (P.Á.); (R.A.); (A.T.-A.); (N.B.); (B.R.-L.); (A.J.)
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain;
- Allergy Network ARADyAL, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (A.D.-P.)
| | - Berta Ruiz-León
- Department of Immunology and Allergy, Reina Sofía University Hospital, 14004 Córdoba, Spain; (P.Á.); (R.A.); (A.T.-A.); (N.B.); (B.R.-L.); (A.J.)
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain;
- Allergy Network ARADyAL, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (A.D.-P.)
| | - Aurora Jurado
- Department of Immunology and Allergy, Reina Sofía University Hospital, 14004 Córdoba, Spain; (P.Á.); (R.A.); (A.T.-A.); (N.B.); (B.R.-L.); (A.J.)
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain;
- Allergy Network ARADyAL, Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (A.D.-P.)
| |
Collapse
|
15
|
Zhang Y, Ren EF, Wen T, Lyu S, Gai L, Chen S, Li K, Han Z, Niu F, Niu D. Investigation into potential allergenicity of DBD plasma-treated casein digestion products based on immunoglobulin E linear epitopes and the sensitized-cell model. Food Chem 2024; 447:138940. [PMID: 38484545 DOI: 10.1016/j.foodchem.2024.138940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/25/2024] [Accepted: 03/02/2024] [Indexed: 04/10/2024]
Abstract
The study aimed to investigate the allergenicity change in casein treated with dielectric barrier discharge (DBD) plasma during in vitro simulated digestion, focusing on the immunoglobulin E (IgE) linear epitopes and utilizing a sensitized-cell model. Results indicated that prior treatment with DBD plasma treatment (4 min) before simulated digestion led to a 10.5% reduction in the IgE-binding capacity of casein digestion products. Moreover, the release of biologically active substances induced from KU812 cells, including β-HEX release rate, human histamine, IL-4, IL-6, and TNF-α, decreased by 2.1, 28.1, 20.6, 11.6, and 17.3%, respectively. Through a combined analysis of LC-MS/MS and immunoinformatics tools, it was revealed that DBD plasma treatment promoted the degradation of the IgE linear epitopes of casein during digestion, particularly those located in the α-helix region of αs1-CN and αs2-CN. These findings suggest that DBD plasma treatment prior to digestion may alleviate casein allergic reactions.
Collapse
Affiliation(s)
- Yongniu Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Er-Fang Ren
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China
| | - Tao Wen
- Guangxi Zhuang Autonomous Region Testing Institute of Product Quality, Nanning 530200, China
| | - Shijun Lyu
- Guangxi Zhuang Autonomous Region Testing Institute of Product Quality, Nanning 530200, China
| | - Lili Gai
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Siyu Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
16
|
Yang Y, He X, Li F, He S, Liu M, Li M, Xia F, Su W, Liu G. Animal-derived food allergen: A review on the available crystal structure and new insights into structural epitope. Compr Rev Food Sci Food Saf 2024; 23:e13340. [PMID: 38778570 DOI: 10.1111/1541-4337.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/19/2024] [Indexed: 05/25/2024]
Abstract
Immunoglobulin E (IgE)-mediated food allergy is a rapidly growing public health problem. The interaction between allergens and IgE is at the core of the allergic response. One of the best ways to understand this interaction is through structural characterization. This review focuses on animal-derived food allergens, overviews allergen structures determined by X-ray crystallography, presents an update on IgE conformational epitopes, and explores the structural features of these epitopes. The structural determinants of allergenicity and cross-reactivity are also discussed. Animal-derived food allergens are classified into limited protein families according to structural features, with the calcium-binding protein and actin-binding protein families dominating. Progress in epitope characterization has provided useful information on the structural properties of the IgE recognition region. The data reveals that epitopes are located in relatively protruding areas with negative surface electrostatic potential. Ligand binding and disulfide bonds are two intrinsic characteristics that influence protein structure and impact allergenicity. Shared structures, local motifs, and shared epitopes are factors that lead to cross-reactivity. The structural properties of epitope regions and structural determinants of allergenicity and cross-reactivity may provide directions for the prevention, diagnosis, and treatment of food allergies. Experimentally determined structure, especially that of antigen-antibody complexes, remains limited, and the identification of epitopes continues to be a bottleneck in the study of animal-derived food allergens. A combination of traditional immunological techniques and emerging bioinformatics technology will revolutionize how protein interactions are characterized.
Collapse
Affiliation(s)
- Yang Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, China
| | - Xinrong He
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Fajie Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Shaogui He
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian, China
| | - Mengsi Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
- School of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou, Fujian, China
| | - Fei Xia
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Wenjin Su
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| |
Collapse
|
17
|
Gao K, He S, Chen H, Wang J, Li X, Sun H, Zhang Y. Insight of pH-shifting as an effective pretreatment to reduce the antigenicity of lectin from red kidney bean (Phaseolus vulgaris L.) combining with autoclaving treatments: The structure investigation. Food Chem 2024; 434:137429. [PMID: 37716149 DOI: 10.1016/j.foodchem.2023.137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/19/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Combined effects of pH-shifting and an autoclaving cycle (121 °C, 15 min) on red kidney bean lectin (RKBL) were investigated using intrinsic and extrinsic fluorescence, UV, FTIR, DSC, SEC, dot-blot analysis and in vitro digestibility. Spectroscopic studies suggested that the protein refolding was stable after 3 h incubation with the hydrophobic exposure after pH-shifting, and hydrophobicity was significantly increased with the formation of more looser structure, which would influence the structural stability of known epitopes. In details, the increase of β-turn and reduction of random coil was related with the lower denaturation enthalpy, while the protein aggregation was also observed in acidic treated samples after autoclaving. Lower antigenicity and good digestibility suggested the exposure of enzyme cutting sites, and confirmed the effectivity of pH-shifting prior to the autoclaving. Then the results would be beneficial to the development of hypoallergenic kidney bean foods.
Collapse
Affiliation(s)
- Kuan Gao
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China.
| | - Haoshuang Chen
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Junhui Wang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Xingjiang Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Yi Zhang
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
18
|
Terada Y, Akimoto M, Sakoda H, Yamamoto S, Kubota M, Motoyama T, Imanaka Y, Nakano S, Ito S, Kato S, Ito K. Comprehensive Epitope Analysis of Monoclonal Antibodies Binding to Hen Egg Ovalbumin Using a Peptide Array. Foods 2024; 13:407. [PMID: 38338542 PMCID: PMC10855139 DOI: 10.3390/foods13030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/06/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Food allergies are a significant health issue worldwide. In many countries, labeling of primary allergens in food products has been made mandatory to ensure consumer safety. In food manufacturing settings, the lateral flow immunoassay (LFI)-based on antigen-antibody reactions-is a rapid and accurate method for allergen testing and is widely used. Peptide arrays are tools that enable the synthesis of peptides of any sequence on a substrate and high-throughput analysis of their interactions with chemicals. This study aimed to investigate a new application of peptide arrays in the field of food technology, particularly in the development of antibodies for food allergen testing. First, monoclonal antibodies against hen egg ovalbumin, a major food allergen, were produced. Then, using a peptide array, the epitope and specificity of the antibodies were comprehensively and precisely analyzed. Finally, an LFI kit incorporating the antibodies demonstrated both high specificity and detection sensitivity for food allergen testing. These findings indicate that peptide arrays are valuable tools in the development of antibodies for food allergen testing, ensuring reliability and accuracy at the molecular level.
Collapse
Affiliation(s)
- Yuko Terada
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi 422-8526, Shizuoka, Japan; (Y.T.); (M.K.); (T.M.); (Y.I.); (S.N.); (S.I.)
| | - Masanobu Akimoto
- Research and Development Department, Prima Meat Packers, Ltd., 635 Nakamukaihara, Tsuchiura-shi 300-0841, Ibaraki, Japan; (M.A.); (H.S.); (S.Y.); (S.K.)
| | - Hirofumi Sakoda
- Research and Development Department, Prima Meat Packers, Ltd., 635 Nakamukaihara, Tsuchiura-shi 300-0841, Ibaraki, Japan; (M.A.); (H.S.); (S.Y.); (S.K.)
| | - Shunsuke Yamamoto
- Research and Development Department, Prima Meat Packers, Ltd., 635 Nakamukaihara, Tsuchiura-shi 300-0841, Ibaraki, Japan; (M.A.); (H.S.); (S.Y.); (S.K.)
| | - Mayuka Kubota
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi 422-8526, Shizuoka, Japan; (Y.T.); (M.K.); (T.M.); (Y.I.); (S.N.); (S.I.)
| | - Tomoharu Motoyama
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi 422-8526, Shizuoka, Japan; (Y.T.); (M.K.); (T.M.); (Y.I.); (S.N.); (S.I.)
| | - Yo Imanaka
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi 422-8526, Shizuoka, Japan; (Y.T.); (M.K.); (T.M.); (Y.I.); (S.N.); (S.I.)
| | - Shogo Nakano
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi 422-8526, Shizuoka, Japan; (Y.T.); (M.K.); (T.M.); (Y.I.); (S.N.); (S.I.)
| | - Sohei Ito
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi 422-8526, Shizuoka, Japan; (Y.T.); (M.K.); (T.M.); (Y.I.); (S.N.); (S.I.)
| | - Shigeki Kato
- Research and Development Department, Prima Meat Packers, Ltd., 635 Nakamukaihara, Tsuchiura-shi 300-0841, Ibaraki, Japan; (M.A.); (H.S.); (S.Y.); (S.K.)
| | - Keisuke Ito
- Department of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi 422-8526, Shizuoka, Japan; (Y.T.); (M.K.); (T.M.); (Y.I.); (S.N.); (S.I.)
| |
Collapse
|
19
|
He S. Study on Physicochemical Properties of Food Protein. Molecules 2023; 28:8145. [PMID: 38138633 PMCID: PMC10745840 DOI: 10.3390/molecules28248145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
As the global population continues to grow, the demand for sustainable and nutritious food sources has never been higher [...].
Collapse
Affiliation(s)
- Shudong He
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
20
|
Wang S, Lin S, Liu K, Liu Y, Liu Q, Sun N. Digestion-Resistant Linear Epitopes as Dominant Contributors to Strong Allergenicity of Tropomyosin in Antarctic Krill ( Euphausia superba). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16739-16751. [PMID: 37897700 DOI: 10.1021/acs.jafc.3c04999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Although tropomyosin has been identified as a major allergen in Antarctic krill, the digestive fate of Antarctic krill tropomyosin and its relationship with allergenicity are unknown. In this study, Antarctic krill tropomyosin was administered to BALB/c mice via both gavage and intraperitoneal injection to explore its sensitizing and eliciting capacity, and its digestion products were analyzed for structural changes and digestion-resistant linear epitopes. Mice gavaged with tropomyosin exhibited lower levels of specific IgE and IgG1, mast cell degranulation, vascular permeability, and anaphylaxis symptoms than those in the intraperitoneal injection group. This may be due to the destruction of macromolecular aggregates, loose expansion of the tertiary structure, complete disappearance of α-helix, and significant changes in molecular force upon the digestion of tropomyosin. Nevertheless, the intragastric administration of Antarctic krill tropomyosin still triggered strong allergic reactions, which was attributed to the existence of seven digestion-resistant linear epitopes (Glu26-His44, Thr111-Arg125, Glu157-Glu164, Glu177-Gly186, Val209-Ile225, Arg244-Arg255, and Val261-Ile270).
Collapse
Affiliation(s)
- Shan Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Kexin Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Yao Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Qiaozhen Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Liaoning Engineering Research Center of Special Dietary Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
21
|
Liu M, Huang J, Ma S, Yu G, Liao A, Pan L, Hou Y. Allergenicity of wheat protein in diet: Mechanisms, modifications and challenges. Food Res Int 2023; 169:112913. [PMID: 37254349 DOI: 10.1016/j.foodres.2023.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Wheat is widely available in people's daily diets. However, some people are currently experiencing IgE-mediated allergic reactions to wheat-based foods, which seriously impact their quality of life. Thus, it is imperative to provide comprehensive knowledge and effective methods to reduce the risk of wheat allergy (WA) in food. In the present review, recent advances in WA symptoms, the major allergens, detection methods, opportunities and challenges in establishing animal models of WA are summarized and discussed. Furthermore, an updated overview of the different modification methods that are currently being applied to wheat-based foods is provided. This study concludes that future approaches to food allergen detection will focus on combining multiple tools to rapidly and accurately quantify individual allergens in complex food matrices. Besides, biological modification has many advantages over physical or chemical modification methods in the development of hypoallergenic wheat products, such as enzymatic hydrolysis and fermentation. It is worth noting that using biotechnology to edit wheat allergen genes to produce allergen-free food may be a promising method in the future which could improve the safety of wheat foods and the health of allergy sufferers.
Collapse
Affiliation(s)
- Ming Liu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jihong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, PR China; School of Food and Pharmacy, Xuchang University, Xuchang 461000, PR China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Guanghai Yu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Aimei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, PR China
| |
Collapse
|
22
|
Chen YX, He XR, Yang SQ, Huan F, Li DX, Yang Y, Chen GX, Liu GM. IgE Epitope Analysis and Hypo-Immunoreactivity Derivative of Arginine Kinase in Mantis Shrimp ( Oratosquilla oratoria). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37289596 DOI: 10.1021/acs.jafc.3c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As the main allergenic food, shrimp can trigger allergic reactions in various degrees. In this study, arginine kinase (AK) was identified as an allergen in Oratosquilla oratoria by LC-MS/MS. The open reading frame of AK was obtained, which included 356 amino acids, and recombinant AK (rAK) was expressed in Escherichia coli. The results of immunological analysis and circular dichroism showed that rAK displayed similar IgG-/IgE-binding activity and structure as native AK. Besides, five IgE linear epitopes of AK were verified by serological analysis, on the basis of which an epitope-deleted derivative was obtained and named as mAK-L. It has been shown that mAK-L displayed hypo-immunoreactivity compared to rAK, and the contents of secondary structures were different. In conclusion, these discoveries enrich the overall understanding of crustacean allergens and epitopes and set the foundations for food allergy diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Ye-Xin Chen
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Xin-Rong He
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Shi-Qiang Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Fei Huan
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Dong-Xiao Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Yang Yang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
- College of Environment and Public Health, Xiamen Huaxia University, 288 Tianma Road, Xiamen, Fujian 361024, China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361000, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| |
Collapse
|
23
|
López-Pedrouso M, Lorenzo JM, Alché JDD, Moreira R, Franco D. Advanced Proteomic and Bioinformatic Tools for Predictive Analysis of Allergens in Novel Foods. BIOLOGY 2023; 12:biology12050714. [PMID: 37237526 DOI: 10.3390/biology12050714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
In recent years, novel food is becoming an emerging trend increasingly more demanding in developed countries. Food proteins from vegetables (pulses, legumes, cereals), fungi, bacteria and insects are being researched to introduce them in meat alternatives, beverages, baked products and others. One of the most complex challenges for introducing novel foods on the market is to ensure food safety. New alimentary scenarios drive the detection of novel allergens that need to be identified and quantified with the aim of appropriate labelling. Allergenic reactions are mostly caused by proteins of great abundance in foods, most frequently of small molecular mass, glycosylated, water-soluble and with high stability to proteolysis. The most relevant plant and animal food allergens, such as lipid transfer proteins, profilins, seed storage proteins, lactoglobulins, caseins, tropomyosins and parvalbumins from fruits, vegetables, nuts, milk, eggs, shellfish and fish, have been investigated. New methods for massive screening in search of potential allergens must be developed, particularly concerning protein databases and other online tools. Moreover, several bioinformatic tools based on sequence alignment, motif identification or 3-D structure predictions should be implemented as well. Finally, targeted proteomics will become a powerful technology for the quantification of these hazardous proteins. The ultimate objective is to build an effective and resilient surveillance network with this cutting-edge technology.
Collapse
Affiliation(s)
- María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, 15872 A Coruña, Spain
| | - José M Lorenzo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Ramón Moreira
- Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Daniel Franco
- Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
24
|
Geng Q, Zhang Y, Song M, Zhou X, Tang Y, Wu Z, Chen H. Allergenicity of peanut allergens and its dependence on the structure. Compr Rev Food Sci Food Saf 2023; 22:1058-1081. [PMID: 36624611 DOI: 10.1111/1541-4337.13101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 01/11/2023]
Abstract
Food allergies are a global food safety problem. Peanut allergies are common due, in part, to their popular utilization in the food industry. Peanut allergy is typically an immunoglobulin E-mediated reaction, and peanuts contain 17 allergens belonging to different families in peanut. In this review, we first introduce the mechanisms and management of peanut allergy, followed by the basic structures of associated allergens. Subsequently, we summarize methods of epitope localization for peanut allergens. These methods can be instrumental in speeding up the discovery of allergenicity-dependent structures. Many attempts have been made to decrease the allergenicity of peanuts. The structures of hypoallergens, which are manufactured during processing, were analyzed to strengthen the desensitization process and allergen immunotherapy. The identification of conformational epitopes is the bottleneck in both peanut and food allergies. Further, the identification and modification of such epitopes will lead to improved strategies for managing and preventing peanut allergy. Combining traditional wet chemistry research with structure simulation studies will help in the epitopes' localization.
Collapse
Affiliation(s)
- Qin Geng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ying Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Min Song
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaoya Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yu Tang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- College of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
25
|
Secrets behind Protein Sequences: Unveiling the Potential Reasons for Varying Allergenicity Caused by Caseins from Cows, Goats, Camels, and Mares Based on Bioinformatics Analyses. Int J Mol Sci 2023; 24:ijms24032481. [PMID: 36768806 PMCID: PMC9916876 DOI: 10.3390/ijms24032481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
This study systematically investigated the differences in allergenicity of casein in cow milk (CM), goat milk (GM), camel milk (CAM), and mare milk (MM) from protein structures using bioinformatics. Primary structure sequence analysis reveals high sequence similarity between the α-casein of CM and GM, while all allergenic subtypes are likely to have good hydrophilicity and thermal stability. By analyzing linear B-cell epitope, T-cell epitope, and allergenic peptides, the strongest casein allergenicity is observed for CM, followed by GM, and the casein of MM has the weakest allergenicity. Meanwhile, 7, 9, and 16 similar or identical amino acid fragments in linear B-cell epitopes, T-cell epitopes, and allergenic peptides, respectively, were observed in different milks. Among these, the same T-cell epitope FLGAEVQNQ was shared by κ-CN in all four different species' milk. Epitope results may provide targets of allergenic fragments for reducing milk allergenicity through physical or/and chemical methods. This study explained the underlying secrets for the high allergenicity of CM to some extent from the perspective of casein and provided new insights for the dairy industry to reduce milk allergy. Furthermore, it provides a new idea and method for comparing the allergenicity of homologous proteins from different species.
Collapse
|
26
|
Zhang X, Fan L, Su Z, Xu Q, Xi L, Li L, Wu Y, Li G. Artificial clickase-triggered fluorescence "turn on" based on a click bio-conjugation strategy for the immunoassay of food allergenic protein. Food Chem 2023; 398:133882. [PMID: 35986996 DOI: 10.1016/j.foodchem.2022.133882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 12/30/2022]
Abstract
Herein, based on an artificial clickase-catalyzed bio-conjugation strategy, we established a sensitive fluorescent clickase-linked immunosorbent assay (FCLISA) platform using an oligonucleotide-molecular beacon (Oligo-MB) hairpin structure as a fluorescence switch for detection of food allergenic protein. Firstly, a highly stable Cu(I)-containing nanocube was prepared for usage as an artificial clickase, which could catalyze the bio-conjugation of two short oligonucleotides (i.e., Oligo-A and Oligo-B labeled by a 5'-alkyne and a 3'-azide group, respectively) through clickase-catalyzed azide/alkyne cycloaddition reaction. Subsequently, the formed long-chain oligonucleotide (Oligo-A-B) could hybridize with Oligo-MB hairpin to open hairpin structure, leading to its fluorescence turn on. By using clickase as an alternative enzymatic label in conventional ELISAs, the established FCLISA showed high sensitivity and accuracy in detection of casein, achieving a limit of detection as low as 1.5 × 10-8 g/mL. Additionally, FCLISA has been challenged by detecting the casein in real samples, indicating a great potential in food safety assay.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lihua Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhuoqun Su
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lingyi Xi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lin Li
- Animal-derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
27
|
Characteristics of cold plasma treatment and enzymatic hydrolysis on IgG/IgE-binding ability of β-lactoglobulin. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Yang J, Kuang H, Xiong X, Li N, Song J. Alteration of the allergenicity of cow's milk proteins using different food processing modifications. Crit Rev Food Sci Nutr 2022; 64:4622-4642. [PMID: 36377678 DOI: 10.1080/10408398.2022.2144792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Milk is an essential source of protein for infants and young children. At the same time, cow's milk is also one of the most common allergenic foods causing food allergies in children. Recently, cow's milk allergy (CMA) has become a common public health issue worldwide. Modern food processing technologies have been developed to reduce the allergenicity of milk proteins and improve the quality of life of patients with CMA. In this review, we summarize the main allergens in cow's milk, and introduce the recent findings on CMA responses. Moreover, the reduced effects and underlying mechanisms of different food processing techniques (such as heating, high pressure, γ-ray irradiation, ultrasound irradiation, hydrolysis, glycosylation, etc.) on the allergenicity of cow's milk proteins, and the application of processed cow's milk in clinical studies, are discussed. In addition, we describe the changes of nutritional value in cow's milk treated by different food processing technologies. This review provides an in-depth understanding of the allergenicity reduction of cow's milk proteins by various food processing techniques.
Collapse
Affiliation(s)
- Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
- College of Modern Industry for Nutrition & Health, Chongqing Technology and Business University, Chongqing, China
| | - Hong Kuang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Xiaoli Xiong
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Ning Li
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
29
|
Yu XX, Liu MQ, Li XY, Zhang YH, Tao BJ. Qualitative and Quantitative Prediction of Food Allergen Epitopes Based on Machine Learning Combined with In Vitro Experimental Validation. Food Chem 2022; 405:134796. [DOI: 10.1016/j.foodchem.2022.134796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022]
|
30
|
Li MS, Xia F, Liu Q, Chen Y, Yun X, Liu M, Chen GX, Wang L, Cao MJ, Liu GM. IgE Epitope Analysis for Scy p 1 and Scy p 3, the Heat-Stable Myofibrillar Allergens in Mud Crab. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12189-12202. [PMID: 36110087 DOI: 10.1021/acs.jafc.2c04849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tropomyosin (Scy p 1) and myosin light chain (Scy p 3) are investigated to be important heat-stable allergens in Scylla paramamosain. However, the epitopes of Scy p 1 and Scy p 3 are limited. In this study, recombinant Scy p 1 and Scy p 3 had similar IgE-binding capacity to natural proteins. Mimotopes of Scy p 1 and Scy p 3 were analyzed by bioinformatics, phage display, and one-bead-one-compound technology. Ten linear epitopes of Scy p 1 and seven linear epitopes of Scy p 3 were identified by synthetic peptides and inhibition dot blot. Meanwhile, three conformational epitopes of Scy p 1 and seven conformational epitopes of Scy p 3 were verified by site-directed mutagenesis and the serological test. Furthermore, strong IgE-binding epitopes of Scy p 1 and Scy p 3 were conserved in multiple crustaceans. Overall, these epitopes could enhance our understanding of crab allergens, which lay the foundation for a cross-reaction.
Collapse
Affiliation(s)
- Meng-Si Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Fei Xia
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Qingmei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Yiyu Chen
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Xiao Yun
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Meng Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Li Wang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| | - Guang-Ming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China
| |
Collapse
|
31
|
Comprehensive Analysis of the Structure and Allergenicity Changes of Seafood Allergens Induced by Non-Thermal Processing: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185857. [PMID: 36144594 PMCID: PMC9505237 DOI: 10.3390/molecules27185857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
Seafood allergy, mainly induced by fish, shrimp, crab, and shellfish, is a food safety problem worldwide. The non-thermal processing technology provides a new method in reducing seafood allergenicity. Based on the structural and antigenic properties of allergenic proteins, this review introduces current methods for a comprehensive analysis of the allergenicity changes of seafood allergens induced by non-thermal processing. The IgE-binding capacities/immunoreactivity of seafood allergens are reduced by the loss of conformation during non-thermal processing. Concretely, the destruction of native structure includes degradation, aggregation, uncoiling, unfolding, folding, and exposure, leading to masking of the epitopes. Moreover, most studies rely on IgE-mediated assays to evaluate the allergenic potential of seafood protein. This is not convincing enough to assess the effect of novel food processing techniques. Thus, further studies must be conducted with functional assays, in vivo assays, animal trials, simulated digestion, and intestinal microflora to strengthen the evidence. It also enables us to better identify the effects of non-thermal processing treatment, which would help further analyze its mechanism.
Collapse
|
32
|
Wu Y, Lu Y, Huang Y, Wang J, Li S, Xu M, Lin H, Li Z. Comparative Analysis of Glycosylation Affecting Sensitization by Regulating the Cross-Reactivity of Parvalbumins in Turbot ( Scophthalmus maximus), Conger Eel ( Conger myriaster) and Sea Bass ( Micropterus salmoides). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10611-10619. [PMID: 35952368 DOI: 10.1021/acs.jafc.2c04423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Parvalbumin (PV) is the most common allergen in fish. Some patients with fish allergy are allergic to only one species of fish but are tolerant to others; however, the underlying mechanism has not been identified. This study showed that three types of glycated fishes' PV showed a similar decrease in immunoglobulin E (IgE) binding. Glycosylation could improve the simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) digestion resistance of fishes' PV. We also discovered that the cross-reactivity between eel and turbot was weaker than that of bass; glycosylation can reduce cross-reactivity between eel/bass and turbot by downregulating Th2 cytokines and upregulating Th1 cytokines as well as downregulating the expression of G-T PV, G-E PV, G-B PV of IL-4 (94.31 ± 3.16, 73.26 ± 0.91, 94.95 ± 3.03 ng/mL), and IL-13 (38.84 ± 0.75, 33.77 ± 0.71, 36.51 ± 0.50 ng/mL) and upregulating the expression of IFN-γ (318.01 ± 3.46, 387.15 ± 3.30, 318.01 ± 4.21 ng/mL) compared with T PV, respectively. This study showed that glycosylation affected sensitization by regulating the cross-reactivity of parvalbumins.
Collapse
Affiliation(s)
- Yeting Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Youyou Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yuhao Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Junyu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Siyue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Mengyao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266000, China
| |
Collapse
|
33
|
Quantitative In Silico Evaluation of Allergenic Proteins from Anacardium occidentale, Carya illinoinensis, Juglans regia and Pistacia vera and Their Epitopes as Precursors of Bioactive Peptides. Curr Issues Mol Biol 2022; 44:3100-3117. [PMID: 35877438 PMCID: PMC9317212 DOI: 10.3390/cimb44070214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the study presented here was to determine if there is a correlation between the presence of specific protein domains within tree nut allergens or tree nut allergen epitopes and the frequency of bioactive fragments and the predicted susceptibility to enzymatic digestion in allergenic proteins from tree nuts of cashew (Anacardium occidentale), pecan (Carya illinoinensis), English walnut (Juglans regia) and pistachio (Pistacia vera) plants. These bioactive peptides are distributed along the length of the protein and are not enriched in IgE epitope sequences. Classification of proteins as bioactive peptide precursors based on the presence of specific protein domains may be a promising approach. Proteins possessing a vicilin, N-terminal family domain, or napin domain contain a relatively low occurrence of bioactive fragments. In contrast, proteins possessing the cupin 1 domain without the vicilin N-terminal family domain contain a relatively high total frequency of bioactive fragments and predicted release of bioactive fragments by the joint action of pepsin, trypsin, and chymotrypsin. This approach could be utilized in food science to simplify the selection of protein domains enriched for bioactive peptides.
Collapse
|
34
|
Kang W, Zhang J, Li H, Yu N, Tang R, Sun X, He L, Sun J, Chen Y. Identification of Major B-Cell Linear Epitopes of Peach Allergen Pru p 3 Using Immune Slot-Blot Microarray Assay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8134-8144. [PMID: 35749217 DOI: 10.1021/acs.jafc.2c01448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pru p 3, one of the most representative proteins of the lipid transfer proteins (LTPs), is responsible for clinical allergic reactions to food of peach origin. The identification of Pru p 3 epitopes is not comprehensive due to different methods and principles of epitope screening. In addition, evaluation of the stability of the epitopes and the validation of the immunological key amino acids still need further research. Therefore, in the present study, an immune slot-blot microarray assay was performed to screen the epitopes from Pru p 3 overlapping peptide library, and a new epitope (P-1, AA1-16, ITCGQVSSALAPCIPY) was identified and two identified epitopes were deeply investigated (P-2, AA12-27, PCIPYVRGGGAVPPAC; P-3, AA23-38, VPPACCNGIRNVNNLA). The stability of these epitopes was then verified by thermal processing treatment and digestion experiments. Moreover, the key amino acids of the three identified epitopes were obtained by epitope amino acid mutation combined with slot-blot experiments. These findings may contribute to the further understanding of Pru p 3 and the prevention of peach allergy.
Collapse
Affiliation(s)
- Wenhan Kang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, People's Republic of China
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Hong Li
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Rui Tang
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Lei He
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Jinlyu Sun
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Foods, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, People's Republic of China
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| |
Collapse
|
35
|
Bianco M, Ventura G, Calvano CD, Losito I, Cataldi TRI. A new paradigm to search for allergenic proteins in novel foods by integrating proteomics analysis and in silico sequence homology prediction: Focus on spirulina and chlorella microalgae. Talanta 2022; 240:123188. [PMID: 34990986 DOI: 10.1016/j.talanta.2021.123188] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
Since novel nutrient sources with high protein content, such as yeast, fungi, bacteria, algae, and insects, are increasingly introduced in the consumer market, safety evaluation studies on their potentially allergenic proteins are required. A pipeline for in silico establishing the sequence-based homology between proteins of spirulina (Arthrospira platensis) and chlorella (Chlorella vulgaris) micro-algae and those included in the AllergenOnline (AO) database (AllergenOnline.org) is described. The extracted proteins were first identified through tryptic peptides analysis by reversed-phase liquid chromatography and high resolution/accuracy Fourier-transform tandem mass spectrometry (RPLC-ESI-FTMS/MS), followed by a quest on the UniProt database. The AO database was subsequently interrogated to assess sequence similarity between identified microalgal proteins and known allergens, based on criteria established by the World Health Organization (WHO) and Food and Agriculture Organization (FAO). A direct search for microalgal proteins already included in allergen databases was also performed using the Allergome database. Six proteins exhibiting a significant homology with food allergens were identified in spirulina extracts. Five of them, i.e., two thioredoxins (D4ZSU6, K1VP15), a superoxide dismutase (C3V3P3), a glyceraldehyde-3-phosphate dehydrogenase (K1W168), and a triosephosphate isomerase (D5A635), resulted from the search on AO. The sixth protein, C-phycocyanin beta subunit (P72508), was directly obtained after examining the Allergome database. Two proteins exhibiting significant sequence homology with food allergens were retrieved in chlorella extracts, viz. calmodulin (A0A2P6TFR8), which is related to troponin c (D7F1Q2), and fructose-bisphosphate aldolase (A0A2P6TDD0). Specific serum screenings based on immunochemical tests should be undertaken to confirm or rule out the allergenicity of the identified proteins.
Collapse
Affiliation(s)
- Mariachiara Bianco
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy
| | - Giovanni Ventura
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy.
| | - Cosima Damiana Calvano
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy
| | - Ilario Losito
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy
| | - Tommaso R I Cataldi
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy.
| |
Collapse
|
36
|
Zhou F, He S, Zhang Y, Wang Y, Sun H, Liu Q. Prediction and characterization of the T cell epitopes for the major soybean protein allergens using bioinformatics approaches. Proteins 2022; 90:418-434. [PMID: 34486167 DOI: 10.1002/prot.26233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/14/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Protein allergens is a health risk for consumption of soybeans. To understand allerginicity mechanism, T cell epitopes of 7 soybean allergens were predicted and screened by abilities to induce cytokine interleukin (IL) 4. The relationships among amino acid composition, properties, allergenicity, and pepsin hydrolysis sites were analyzed. Among the 138 T cell epitopes identified, YIKDVFRVIPSEVLS, KDVFRVIPSEVLSNS, DVFRVIPSEVLSNSY of Gly m 6.0501 (P04347), and AKADALFKAIEAYLL, ADALFKAIEAYLLAH of Gly m 4.0101 (P26987) were the most possible epitope candidates. In T cell epitopes pattern, the frequencies of amino acids Q, D, E, P, and G decreased, while F, I, N, V, K, H, A, L, and S increased. Hydrophobic residues at positions p1 and p2 and positively charged residues in positions p13 might contribute to allergenicity. Most of epitopes could be hydrolyzed by pepsin into small polypeptides within 12 residues length, and the anti-digestive epitope regions contained I, V, S, N, and Q residues. T cell epitopes EEQRQQEGVIVELSK from Gly m 5.03 (P25974) showed resistance to pepsin hydrolysis and would cause a higher Th2 cell response. This research provides basis for the development of hypoallergenic soybean products in the soybean industry as well as for the immunotherapy design for protein allergy.
Collapse
Affiliation(s)
- Fanlin Zhou
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Shudong He
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yi Zhang
- IPREM, E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, Pau, France
| | - Yongfei Wang
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Hanju Sun
- Engineering Research Center of Bio-process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
37
|
BARATI M, JABBARI M, FATHOLLAHI M, FATHOLLAHI A, KHAKI V, JAVANMARDI F, JAZAYERI SMHM, SHABANI M, DAVOODI SH, HUSEYN E, HADIAN Z, LORENZO JM, KHANEGHAH AM. Evaluation of different types of milk proteins-derived epitopes using in-silico tools: a primarily study to propose a new definition for bioactive peptides. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.102821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Meisam BARATI
- Shahid Beheshti University of Medical Sciences, Iran
| | | | | | | | - Vahid KHAKI
- Shahid Beheshti University of Medical Sciences, Iran
| | | | | | - Mehdi SHABANI
- Shahid Beheshti University of Medical Sciences, Iran
| | - Sayed Hossein DAVOODI
- Shahid Beheshti University of Medical Sciences, Iran; Shahid Beheshti University of Medical Sciences, Iran
| | - Elcin HUSEYN
- Azerbaijan State Oil and Industry University, Azerbaijan
| | - Zahra HADIAN
- Shahid Beheshti University of Medical Sciences, Iran
| | | | | |
Collapse
|
38
|
Quoc QL, Bich TCT, Jang JH, Park HS. Recent update on the management of anaphylaxis. Clin Exp Emerg Med 2021; 8:160-172. [PMID: 34649404 PMCID: PMC8517462 DOI: 10.15441/ceem.21.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Anaphylaxis is a life-threatening systemic allergic reaction presenting various clinical manifestations. Its prevalence has increased in almost all age groups and both sexes. Food, venom, and drugs are major causes in both children and adults; a higher prevalence of food-induced anaphylaxis is noted in children, while a higher prevalence of drug-induced anaphylaxis is noted in adults. The pathogenic mechanism is mediated by immunologic and nonimmunologic mechanisms, where mast cells and basophils are key cells that release mediators. A diagnosis of anaphylaxis is mainly based on clinical symptoms and physical findings; however, an increased serum tryptase level is a useful biomarker. Epinephrine is the first-line drug to treat acute symptoms, and an epinephrine auto-injector should be prescribed for each patient. Antihistamines and systemic corticosteroids are used to relieve symptoms. This review updates current issues in the management of anaphylaxis as well as the new guidelines for proper diagnosis and treatment.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Tra Cao Thi Bich
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Jae-Hyuk Jang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
39
|
Vogel C, Paglia EB, Moroni LS, Demiate IM, Prestes RC, Kempka AP. Swine plasma peptides obtained using pepsin: In silico and in vitro properties and biological activities. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1981880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Cristine Vogel
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University–UDESC, Pinhalzinho, Brazil
| | - Eduarda Baggio Paglia
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University–UDESC, Pinhalzinho, Brazil
| | - Liziane Schittler Moroni
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University–UDESC, Pinhalzinho, Brazil
| | - Ivo Mottin Demiate
- Department of Food Engineering, Ponta Grossa State University–UEPG, Ponta Grossa, Brazil
| | - Rosa Cristina Prestes
- Department of Technology and Food Science, Federal University of Santa Maria–UFSM, Santa Maria, Brazil
| | - Aniela Pinto Kempka
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University–UDESC, Pinhalzinho, Brazil
| |
Collapse
|
40
|
Costa R, Costa J, Sagastizábal I, Brandão ATSC, Moreira P, Mafra I, Silva AF, Pereira CM. Electrochemical and optical biosensing platforms for the immunorecognition of hazelnut Cor a 14 allergen. Food Chem 2021; 361:130122. [PMID: 34082386 DOI: 10.1016/j.foodchem.2021.130122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Two immunosensors were advanced to target hazelnut Cor a 14 based on electrochemical and optical transduction. Both approaches were developed with two types of custom-made antibodies, namely anti-Cor a 14 IgG (rabbit) and anti-Cor a 14 IgY (hen's egg) targeting the Cor a 14 allergen. Antibody immobilisation was performed via EDC/NHS onto disposable screen-printed electrodes. The detection limit (LOD) of the electrochemical immunoassay for Cor a 14 was 5-times lower than the optical, being down to 0.05 fg mL-1 with a dynamic range of 0.1 fg mL-1 to 0.01 ng mL-1. Antibody selectivity was verified against non-target 2S albumins (potential cross-reactive plant species). Anti-Cor a 14 IgY exhibited the best specificity, presenting minor cross-reactivity with peanut/walnut. Preliminary results of the application of anti-Cor a 14 IgY electrochemical immunosensor to incurred foods established a LOD of 1 mg kg-1 of hazelnut in wheat (0.16 mg kg-1 hazelnut protein).
Collapse
Affiliation(s)
- Renata Costa
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Dep. Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Inês Sagastizábal
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Dep. Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Ana T S C Brandão
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Dep. Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Patrícia Moreira
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Dep. Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - A Fernando Silva
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Dep. Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Carlos M Pereira
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Dep. Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|