1
|
Dai J, Ahmed I, Yin H, Xu G, Zhang Z, Lv L. Identification and efficacy of anti-allergic peptides from phycocyanin hydrolysate. Food Funct 2025; 16:1781-1791. [PMID: 39927855 DOI: 10.1039/d4fo05802j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Phycocyanin (PC) is a protein that possesses a multitude of bioactive components with nutritional and pharmaceutical properties. This study used continuous chromatographic techniques such as ultrafiltration centrifugation, Superdex™ increase 10/300 GL gel filtration chromatography, liquid chromatography-tandem mass spectrometry (LC/MS/MS), and reverse-phase high-performance liquid chromatography (RP-HPLC). The antiallergic peptides from PC were obtained by alcalase hydrolysis and were then screened and identified. F3-III showed strong anti-allergic activity (77.25%) among the components (F3-I-F3-V) obtained by RP-HPLC. Subsequently, a novel peptide comprising six amino acids, designated FPYTTQ, was identified and demonstrated potent anti-allergic properties by inhibiting the release of β-hexosaminic (β-HEX) acid and histamine during IgE-mediated RBL-2H3 cell threshing. Therefore, it can be concluded that the polypeptide FPYTTQ, derived from PC, can be employed as an effective anti-allergic agent and that PC represents a promising source of novel ingredients for the development of anti-allergic foods and pharmaceuticals.
Collapse
Affiliation(s)
- Jing Dai
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ishfaq Ahmed
- Haide College, Ocean university of China, Qingdao, 266003, China
| | - Hailing Yin
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Guojing Xu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zongyu Zhang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Liangtao Lv
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Jacuinde-Ruíz JC, González-Hernández JC. Exploring the biotechnological applications of Spirulina maxima: a comprehensive review. BRAZ J BIOL 2025; 84:e287134. [PMID: 39936795 DOI: 10.1590/1519-6984.287134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/27/2024] [Indexed: 02/13/2025] Open
Abstract
The Spirulina maxima algae is a phototrophic, multicellular, filamentous cyanobacteria of greenish blue tones, without ramifications and is characterized mainly by its helical form, thickness of approximately 3 to 12 µm and length of 500 µm; its development depends on factors such as temperature, light intensity, pH, aeration speed, carbon dioxide concentration, carbon source, nitrogen source which determine its chemical composition, which is composed of proteins, carbohydrates, lipids, minerals, and vitamins; due to this, it is widely used in industries such as food, pharmaceutical, cosmetics, and energy to obtain different products of great value. This S. maxima review addresses morphological characteristics, growth factors, growth methods, and metabolites of biotechnological interest and biotechnological applications for the S. maxima microalgae. A brief review of the enzyme production capacity of S. maxima and other microalgae is also presented, in addition to mentioning some areas of opportunity to study these and the economic viability of implementing a biorefinery with an integrated approach for the production of biomass and metabolites of biotechnological relevance based on the control of growth variables and the productive and economic efficiency of the process is discussed.
Collapse
Affiliation(s)
- J C Jacuinde-Ruíz
- Tecnológico Nacional de México, Instituto Tecnológico de Morelia, Morelia, Michoacán, México
- Consejo Nacional de Humanidades Ciencias y Tecnologías - CONAHCYT, Ciudad de México, México
| | - J C González-Hernández
- Tecnológico Nacional de México, Instituto Tecnológico de Morelia, Morelia, Michoacán, México
| |
Collapse
|
3
|
Li X, Feng J, Lv J, Liu Q, Liu X, Liu Y, Xie S, Nan F. Optimization of the preparation process of Spirulina blended liquor and Spirulina fermented wine, analysis of volatile components and in vitro antioxidant study. J Food Sci 2024; 89:7228-7243. [PMID: 39366772 DOI: 10.1111/1750-3841.17385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 10/06/2024]
Abstract
The optimal conditions were explored for the preparation of Spirulina blended liquor (SBL) and Spirulina fermented wine (SFW), respectively. The parameters obtaining highest alga polysaccharide were calculated by response surface methodology. The optimal conditions for SBL preparation were base liquor of 42% vol, ultrasonication time of 37-min and ultrasonic power of 80 W with polysaccharide content (PC) and alcohol content (AC) of 0.2181 g/L and 39.7% vol, respectively. In the case of SFW, optimum fermentation occurred at 22°C, with a 4% inoculum and 6-day period with PC and AC of 8.533 g/L and 11.2% vol, respectively. Headspace solid-phase microextraction-gas chromatography-mass spectrometry was used to quantitatively analyze the volatile components of SBL and SFW. There were 32 and 40 main aroma compounds in SBL and SFW, respectively. Volatile organic compounds, including α-ionone and β-ionone, produced by Spirulina were detected in both SBL and SFW. Comparative evaluation of scavenging activity and total reducing power revealed the antioxidant capacity of SFW significantly outperformed that of SBL.
Collapse
Affiliation(s)
- Xinyi Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jia Feng
- School of Life Science, Shanxi University, Taiyuan, China
| | - Junping Lv
- School of Life Science, Shanxi University, Taiyuan, China
| | - Qi Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Xudong Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yang Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Shulian Xie
- School of Life Science, Shanxi University, Taiyuan, China
| | - Fangru Nan
- School of Life Science, Shanxi University, Taiyuan, China
- Xinghuacun College of Shanxi University (Shanxi Institute of Brewing Technology and Industry), Taiyuan, China
| |
Collapse
|
4
|
Luo G, Liu H, Yang S, Sun Z, Sun L, Wang L. Manufacturing processes, additional nutritional value and versatile food applications of fresh microalgae Spirulina. Front Nutr 2024; 11:1455553. [PMID: 39296509 PMCID: PMC11409848 DOI: 10.3389/fnut.2024.1455553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Spirulina is capable of using light energy and fixing carbon dioxide to synthesize a spectrum of organic substances, including proteins, polysaccharides, and unsaturated fatty acids, making it one of the most coveted food resources for humanity. Conventionally, Spirulina products are formulated into algal powder tablets or capsules. However, the processing and preparation of these products, involving screw pump feeding, extrusion, high-speed automation, and high-temperature dewatering, often result in the rupture of cell filaments, cell fragmentation, and the unfortunate loss of vital nutrients. In contrast, fresh Spirulina, cultivated within a closed photobioreactor and transformed into an edible delight through harvesting, washing, filtering, and sterilizing, presents a refreshing taste and odor. It is gradually earning acceptance as a novel health food among the general public. This review delves into the manufacturing processes of fresh Spirulina, analyzes its nutritional advantages over conventional algal powder, and ultimately prospects the avenues for fresh Spirulina's application in modern food processing. The aim is to provide valuable references for the research and development of new microalgal products and to propel the food applications of microalgae forward.
Collapse
Affiliation(s)
- Guanghong Luo
- Gansu Engineering Technology Research Center for Microalgae, Hexi University, Zhangye, China
| | - Haiyan Liu
- Gansu Engineering Technology Research Center for Microalgae, Hexi University, Zhangye, China
| | - Shenghui Yang
- Gansu Engineering Technology Research Center for Microalgae, Hexi University, Zhangye, China
| | - Zhongliang Sun
- College of Life Sciences, Yantai University, Yantai, China
| | - Liqin Sun
- College of Life Sciences, Yantai University, Yantai, China
| | - Lijuan Wang
- Gansu Engineering Technology Research Center for Microalgae, Hexi University, Zhangye, China
| |
Collapse
|
5
|
Xu Y, Tong X, Lu Y, Lu Y, Wang X, Han J, Liu Z, Ding J, Diao C, Mumby W, Peng Y, Sun Q. Microalgal proteins: Unveiling sustainable alternatives to address the protein challenge. Int J Biol Macromol 2024; 276:133747. [PMID: 38986987 DOI: 10.1016/j.ijbiomac.2024.133747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Recent breakthroughs emphasized the considerable potential of microalgae as a sustainable protein source. Microalgae are regarded as a substitute for protein-rich foods because of their high protein and amino acid content. However, despite their nutritional value, microalgae cannot be easily digested by humans due to the presence of cell walls. In the subsequent sections, protein extraction technology, the overview of the inherent challenges of the process, and the summary of the factors affecting protein extraction and utilization have been deliberated. Moreover, the review inspected the formation of proteolytic products, highlighting their diverse bioactivities, including antioxidant, antihypertensive, and immunomodulatory activities. Finally, the discussion extended to the emerging microalgal protein sourced foods, such as baked goods and nutritional supplements, as well as the sensory and marketing challenges encountered in the production of microalgal protein foods. The lack of consumer awareness about the health benefits of microalgae complicates its acceptance in the market. Long-standing challenges, such as high production costs, persist. Currently, multi-product utilization strategies are being developed to improve the economic viability of microalgae. By integrating economic, environmental, and social factors, microalgae protein can be sustainably developed to provide a reliable source of raw materials for the future food industry.
Collapse
Affiliation(s)
- Yuqing Xu
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Xinyang Tong
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Yuting Lu
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Yongtong Lu
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Xiangyi Wang
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Jiaheng Han
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Ziyu Liu
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Juntong Ding
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Can Diao
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - William Mumby
- Department of Health, Nutrition, and Food Sciences, Florida State University, USA
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macao.
| | - Quancai Sun
- Department of Health, Nutrition, and Food Sciences, Florida State University, USA.
| |
Collapse
|
6
|
Pham T, Nguyen TT, Nguyen NH, Hayles A, Li W, Pham DQ, Nguyen CK, Nguyen T, Vongsvivut J, Ninan N, Sabri Y, Zhang W, Vasilev K, Truong VK. Transforming Spirulina maxima Biomass into Ultrathin Bioactive Coatings Using an Atmospheric Plasma Jet: A New Approach to Healing of Infected Wounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305469. [PMID: 37715087 DOI: 10.1002/smll.202305469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Indexed: 09/17/2023]
Abstract
The challenge of wound healing, particularly in patients with comorbidities such as diabetes, is intensified by wound infection and the accelerating problem of bacterial resistance to current remedies such as antibiotics and silver. One promising approach harnesses the bioactive and antibacterial compound C-phycocyanin from the microalga Spirulina maxima. However, the current processes of extracting this compound and developing coatings are unsustainable and difficult to achieve. To circumvent these obstacles, a novel, sustainable argon atmospheric plasma jet (Ar-APJ) technology that transforms S. maxima biomass into bioactive coatings is presented. This Ar-APJ can selectively disrupt the cell walls of S. maxima, converting them into bioactive ultrathin coatings, which are found to be durable under aqueous conditions. The findings demonstrate that Ar-APJ-transformed bioactive coatings show better antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, these coatings exhibit compatibility with macrophages, induce an anti-inflammatory response by reducing interleukin 6 production, and promote cell migration in keratinocytes. This study offers an innovative, single-step, sustainable technology for transforming microalgae into bioactive coatings. The approach reported here has immense potential for the generation of bioactive coatings for combating wound infections and may offer a significant advance in wound care research and application.
Collapse
Affiliation(s)
- Tuyet Pham
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Tien Thanh Nguyen
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
- College of Medicine and Pharmacy, Tra Vinh University, Tra Vinh, 87000, Vietnam
| | - Ngoc Huu Nguyen
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
- School of Biomedical Engineering, University of Sydney, Darlington, NSW, 2006, Australia
| | - Andrew Hayles
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Wenshao Li
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Duy Quang Pham
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
- School of Engineering, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Chung Kim Nguyen
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Trung Nguyen
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy Beamline, ANSTO Australian Synchrotron, Clayton, Victoria, 3168, Australia
| | - Neethu Ninan
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Ylias Sabri
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
- Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Wei Zhang
- Advanced Marine Biomanufacturing Laboratory, Centre for Marine Bioproduct Development, College of Medicine and Public Health, Flinders University, Adelaide, 5042, Australia
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia
| |
Collapse
|
7
|
Podgórska-Kryszczuk I. Effect of Arthrospira platensis (Spirulina) Fortification on Physicochemical, Nutritional, Bioactive, Textural, and Sensory Properties of Vegan Basil Pesto. Nutrients 2024; 16:2825. [PMID: 39275143 PMCID: PMC11396954 DOI: 10.3390/nu16172825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The high protein content of several microalgae species makes them an excellent addition to various food products, increasing their nutritional value. In this study, vegan basil pesto was designed and enriched with 1% and 2% Arthrospira platensis (spirulina). The pesto obtained was characterized by increased protein content (up to 40% more) and had a rich mineral composition, including up to three times more iron and 25% more calcium, among others. The increase of spirulina addition in the pesto also increased the content of polyphenols (up to 50% more) and flavonoids (up to 39% more). The fortified products had higher antioxidant activity against ABTS (up to 484.56 ± 2.16 μM Trolox/g) and DPPH (up to 392.41 ± 13.58 μM Trolox/g). The addition of spirulina will affect the hardness of the sauce, while in the other texture parameters (adhesiveness, springiness, and cohesion), there were no significant differences between the control and spirulina-fortified pesto. Although the pesto with spirulina was significantly darker in color (ΔE 8.83 and 12.05), consumers still rated it highly. All quality parameters of pesto with a 1% spirulina addition were rated the highest, contributing to the highest overall rating of the product (4.56). An increase in spirulina addition to 2% resulted in a decrease in the overall pesto rating (4.01), but still remains a good result compared to the control (4.22).
Collapse
Affiliation(s)
- Izabela Podgórska-Kryszczuk
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
8
|
González-Portela RE, Romero-Villegas GI, Kapoore RV, Alammari ZM, Malibari RA, Shaikhi AA, Al Hafedh Y, Aljahdali AH, Banjar RE, Mhedhbi E, Filimban A, Padri M, Fuentes-Grünewald C. Cultivation of Limnospira maxima under extreme environmental conditions in Saudi Arabia: Salinity adaptation and scaling-up from laboratory culture to large-scale production. BIORESOURCE TECHNOLOGY 2024; 406:131089. [PMID: 38986884 DOI: 10.1016/j.biortech.2024.131089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Limnospira maxima has been adapted to grow in high salinity and in an economically alternative medium using industrial-grade fertilizers under harsh environmental conditions in Saudi Arabia. A sequence of scaling-up processes, from the laboratory to large-scale open raceways, was conducted along with gradual adaptation to environmental stress (salinity, light, temperature, pH). High biomass concentration at harvest point and areal productivity were achieved during the harsh summer season (1.122 g L-1 and 60.35 g m-2 day-1, respectively). The average protein content was found to be above 40 % of dry weight. Changes in the color and morphological appearance of the L. maxima culture were observed after direct exposure to sunlight in the outdoor raceways. These results demonstrate a successful and robust adaptation method for algal cultivation at outdoor large-scale in harsh environment (desert conditions) and also prove the feasibility of using hypersaline seawater (42 g kg-1) as an algal growth medium.
Collapse
Affiliation(s)
- Ricardo E González-Portela
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia.
| | - Gabriel I Romero-Villegas
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Rahul V Kapoore
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Zain M Alammari
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Raghdah A Malibari
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Ali Al Shaikhi
- Ministry of Environment, Water and Agriculture (MEWA), King Abdulaziz Rd., Riyadh 11195, Kingdom of Saudi Arabia
| | - Yousef Al Hafedh
- Ministry of Environment, Water and Agriculture (MEWA), King Abdulaziz Rd., Riyadh 11195, Kingdom of Saudi Arabia
| | - Abdulaziz H Aljahdali
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Rana E Banjar
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Emna Mhedhbi
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Akram Filimban
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Mohamad Padri
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Claudio Fuentes-Grünewald
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
9
|
Yu Z, Zhao W, Sun H, Mou H, Liu J, Yu H, Dai L, Kong Q, Yang S. Phycocyanin from microalgae: A comprehensive review covering microalgal culture, phycocyanin sources and stability. Food Res Int 2024; 186:114362. [PMID: 38729724 DOI: 10.1016/j.foodres.2024.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
As food safety continues to gain prominence, phycocyanin (PC) is increasingly favored by consumers as a natural blue pigment, which is extracted from microalgae and serves the dual function of promoting health and providing coloration. Spirulina-derived PC demonstrates exceptional stability within temperature ranges below 45 °C and under pH conditions between 5.5 and 6.0. However, its application is limited in scenarios involving high-temperature processing due to its sensitivity to heat and light. This comprehensive review provides insights into the efficient production of PC from microalgae, covers the metabolic engineering of microalgae to increase PC yields and discusses various strategies for enhancing its stability in food applications. In addition to the most widely used Spirulina, some red algae and Thermosynechococcus can serve as good source of PC. The genetic and metabolic manipulation of microalgae strains has shown promise in increasing PC yield and improving its quality. Delivery systems including nanoparticles, hydrogels, emulsions, and microcapsules offer a promising solution to protect and extend the shelf life of PC in food products, ensuring its vibrant color and health-promoting properties are preserved. This review highlights the importance of metabolic engineering, multi-omics applications, and innovative delivery systems in unlocking the full potential of this natural blue pigment in the realm of food applications, provides a complete overview of the entire process from production to commercialization of PC, including the extraction and purification.
Collapse
Affiliation(s)
- Zengyu Yu
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China
| | - Weiyang Zhao
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Hui Yu
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, NO.1299 sansha road, Qingdao 266404, China.
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
10
|
Terzioğlu ME, Edebali E, Bakirci İ. Investigation of the Elemental Contents, Functional and Nutraceutical Properties of Kefirs Enriched with Spirulina platensis, an Eco-friendly and Alternative Protein Source. Biol Trace Elem Res 2024; 202:2878-2890. [PMID: 37697135 DOI: 10.1007/s12011-023-03844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
In this study, the effect of the use of S. platensis, which is presented as an eco-friendly and alternative protein source, in the production of kefir, a probiotic dairy product, on various physicochemical properties as well as FAA, ACE inhibitory activity, proteolysis, TPC, DPPH, ABTS+, and mineral values was investigated. It was observed that the addition of S. platensis at different ratios to the kefir samples had a statistically very significant (p < 0.01) effect on all physicochemical analyses; L. mesenteroides count; all amino acids except isoleucine, aspartic acid, and glutamic acid; ACE inhibitory activity, TN, TCAN, TCAN/TN, mM Gly, TPC, DPPH, ABTS+, Na, Mg, K, and Fe. In plain kefir samples, mineral contents were determined by order of K > P > Na > Ca > Mg > Zn >> Fe > Cr > Cr > Mn. Furthermore, a general increase was observed in FAA, ACE inhibitory activity, TPC, DPPH, ABTS+, and mineral values, as well as in the counts of Lactococcus spp. and L. mesenteroides in the samples, depending on the proportion of S. platensis added, compared to plain kefir samples. In this context, it was concluded that the addition of S. platensis to kefir at different rates could meet various components required by the body on a daily basis and result in a nutraceutical product.
Collapse
Affiliation(s)
- Murat Emre Terzioğlu
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Türkiye.
| | - Ezgi Edebali
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Türkiye
| | - İhsan Bakirci
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, 25240, Erzurum, Türkiye
| |
Collapse
|
11
|
Yu Z, Lv H, Zhou M, Fu P, Zhao W. Identification and molecular docking of tyrosinase inhibitory peptides from allophycocyanin in Spirulina platensis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3648-3653. [PMID: 38224494 DOI: 10.1002/jsfa.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/22/2023] [Accepted: 01/15/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Tyrosinase, a copper-containing metalloenzyme with catalytic activity, is widely found in mammals. It is the key rate-limiting enzyme that catalyzes melanin synthesis. For humans, tyrosinase is beneficial to the darkening of eyes and hair. However, excessive deposition of melanin in the skin can lead to dull skin color and lead to pigmentation. Therefore, many skin-whitening compounds have been developed to decrease tyrosinase activity. This study aimed to identify a new tyrosinase inhibitory peptide through enzymatic hydrolysis, in vitro activity verification, molecular docking, and molecular dynamics (MD) simulation. RESULTS A tripeptide Asp-Glu-Arg (DER) was identified, with a '-CDOCKER_Energy' value of 121.26 Kcal mol-1 . DER has effective tyrosinase inhibitory activity. Research shows that its half maximal inhibitory concentration value is 1.04 ± 0.01 mmol L-1 . In addition, DER binds to tyrosinase residues His85, His244, His259, and Asn260, which are key residues that drive the interaction between the peptide and tyrosinase. Finally, through MD simulation, the conformational changes and structural stability of the complexes were further explored to verify and supplement the results of molecular docking. CONCLUSION This experiment shows that DER can effectively inhibit tyrosinase activity. His244, His259, His260, and Asn260 are the critical residues that drive the interaction between the peptide and tyrosinase, and hydrogen bonding is an important force. DER from Spirulina has the potential to develop functional products with tyrosinase inhibition. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou, P. R. China
| | - Hong Lv
- School of Food Science and Engineering, Hainan University, Haikou, P. R. China
| | - Mingjie Zhou
- School of Food Science and Engineering, Bohai University, Jinzhou, P. R. China
| | - Pengcheng Fu
- School of Food Science and Engineering, Hainan University, Haikou, P. R. China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou, P. R. China
| |
Collapse
|
12
|
Banić M, Butorac K, Čuljak N, Butorac A, Novak J, Pavunc AL, Rušanac A, Stanečić Ž, Lovrić M, Šušković J, Kos B. An Integrated Comprehensive Peptidomics and In Silico Analysis of Bioactive Peptide-Rich Milk Fermented by Three Autochthonous Cocci Strains. Int J Mol Sci 2024; 25:2431. [PMID: 38397111 PMCID: PMC10888711 DOI: 10.3390/ijms25042431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Bioactive peptides (BPs) are molecules of paramount importance with great potential for the development of functional foods, nutraceuticals or therapeutics for the prevention or treatment of various diseases. A functional BP-rich dairy product was produced by lyophilisation of bovine milk fermented by the autochthonous strains Lactococcus lactis subsp. lactis ZGBP5-51, Enterococcus faecium ZGBP5-52 and Enterococcus faecalis ZGBP5-53 isolated from the same artisanal fresh cheese. The efficiency of the proteolytic system of the implemented strains in the production of BPs was confirmed by a combined high-throughput mass spectrometry (MS)-based peptidome profiling and an in silico approach. First, peptides released by microbial fermentation were identified via a non-targeted peptide analysis (NTA) comprising reversed-phase nano-liquid chromatography (RP nano-LC) coupled with matrix-assisted laser desorption/ionisation-time-of-flight/time-of-flight (MALDI-TOF/TOF) MS, and then quantified by targeted peptide analysis (TA) involving RP ultrahigh-performance LC (RP-UHPLC) coupled with triple-quadrupole MS (QQQ-MS). A combined database and literature search revealed that 10 of the 25 peptides identified in this work have bioactive properties described in the literature. Finally, by combining the output of MS-based peptidome profiling with in silico bioactivity prediction tools, three peptides (75QFLPYPYYAKPA86, 40VAPFPEVFGK49, 117ARHPHPHLSF126), whose bioactive properties have not been previously reported in the literature, were identified as potential BP candidates.
Collapse
Affiliation(s)
- Martina Banić
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Katarina Butorac
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Nina Čuljak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Ana Butorac
- BICRO Biocentre Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (A.B.); (Ž.S.); (M.L.)
| | - Jasna Novak
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Andreja Leboš Pavunc
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Anamarija Rušanac
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Željka Stanečić
- BICRO Biocentre Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (A.B.); (Ž.S.); (M.L.)
| | - Marija Lovrić
- BICRO Biocentre Ltd., Borongajska cesta 83H, 10000 Zagreb, Croatia; (A.B.); (Ž.S.); (M.L.)
| | - Jagoda Šušković
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| | - Blaženka Kos
- Laboratory for Antibiotic, Enzyme, Probiotic and Starter Culture Technologies, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (K.B.); (N.Č.); (J.N.); (A.L.P.); (A.R.); (J.Š.)
| |
Collapse
|
13
|
Santos I, Silva M, Grácio M, Pedroso L, Lima A. Milk Antiviral Proteins and Derived Peptides against Zoonoses. Int J Mol Sci 2024; 25:1842. [PMID: 38339120 PMCID: PMC10855762 DOI: 10.3390/ijms25031842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Milk is renowned for its nutritional richness but also serves as a remarkable reservoir of bioactive compounds, particularly milk proteins and their derived peptides. Recent studies have showcased several robust antiviral activities of these proteins, evidencing promising potential within zoonotic viral diseases. While several publications focus on milk's bioactivities, antiviral peptides remain largely neglected in reviews. This knowledge is critical for identifying novel research directions and analyzing potential nutraceuticals within the One Health context. Our review aims to gather the existing scientific information on milk-derived antiviral proteins and peptides against several zoonotic viral diseases, and their possible mechanisms. Overall, in-depth research has increasingly revealed them as a promising and novel strategy against viruses, principally for those constituting a plausible pandemic threat. The underlying mechanisms of the bioactivity of milk's proteins include inhibiting viral entry and attachment to the host cells, blocking replication, or even viral inactivation via peptide-membrane interactions. Their marked versatility and effectiveness stand out compared to other antiviral peptides and can support future research and development in the post-COVID-19 era. Overall, our review helps to emphasize the importance of potentially effective milk-derived peptides, and their significance for veterinary and human medicines, along with the pharmaceutical, nutraceutical, and dairy industry.
Collapse
Affiliation(s)
- Isabel Santos
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Mariana Silva
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
| | - Madalena Grácio
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal;
| | - Laurentina Pedroso
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Ana Lima
- Faculty of Veterinary Medicine, Lusófona University, 376 Campo Grande, 1749-024 Lisbon, Portugal; (M.S.); (L.P.)
- CECAV—Centro de Ciência Animal e Veterinária, Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| |
Collapse
|
14
|
Barboza-Rodríguez R, Rodríguez-Jasso RM, Rosero-Chasoy G, Rosales Aguado ML, Ruiz HA. Photobioreactor configurations in cultivating microalgae biomass for biorefinery. BIORESOURCE TECHNOLOGY 2024; 394:130208. [PMID: 38113947 DOI: 10.1016/j.biortech.2023.130208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Microalgae, highly prized for their protein, lipid, carbohydrate, phycocyanin, and carotenoid-rich biomass, have garnered significant industrial attention in the context of third-generation (3G) biorefineries, seeking sustainable alternatives to non-renewable resources. Two primarily cultivation methods, open ponds and closed photobioreactors systems, have emerged. Open ponds, favored for their cost-effectiveness in large-scale industrial production, although lacking precise environmental control, contrast with closed photobioreactors, offering controlled conditions and enhanced biomass production at the laboratory scale. However, their high operational costs challenge large-scale deployment. This review comprehensively examines the strength, weakness, and typical designs of both outdoor and indoor microalgae cultivation systems, with an emphasis on their application in terms of biorefinery concept. Additionally, it incorporates techno-economic analyses, providing insights into the financial aspects of microalgae biomass production. These multifaceted insights, encompassing both technological and economic dimensions, are important as the global interest in harnessing microalgae's valuable resources continue to grow.
Collapse
Affiliation(s)
- Regina Barboza-Rodríguez
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico.
| | - Gilver Rosero-Chasoy
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Miriam L Rosales Aguado
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Héctor A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico.
| |
Collapse
|
15
|
Villaró S, García-Vaquero M, Morán L, Álvarez C, Cabral EM, Lafarga T. Effect of seawater on the biomass composition of Spirulina produced at a pilot-scale. N Biotechnol 2023; 78:173-179. [PMID: 37967766 DOI: 10.1016/j.nbt.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/31/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
The microalga Arthrospira platensis BEA 005B was produced in 11.4 m3 raceway photobioreactors and a culture medium based on commercial fertilisers and either freshwater or seawater. The biomass productivity of the reactors operated at a fixed dilution rate of 0.3 day-1 decreased from 22.9 g·m-2·day-1 when operated using freshwater to 16.3 g·m-2·day-1 when the biomass was produced using seawater. The protein content of the biomass produced in seawater was lower; however, the content of essential amino acids including valine, leucine and isoleucine was higher. Seawater also triggered the production of carotenoids and altered the synthesis and accumulation of fatty acids. For example, the biomass produced using seawater showed a 319% and 210% higher content of oleic and eicosenoic acid, respectively. The results demonstrate that it is possible to produce the selected microalga using seawater after an adaptation period and that the composition of the produced biomass is suitable for food applications.
Collapse
Affiliation(s)
- Silvia Villaró
- Department of Chemical Engineering, University of Almería, Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, Almería, Spain
| | - Marco García-Vaquero
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Lara Morán
- Lactiker Research Group, Department of Pharmacy and Food Sciences, University of the Basque Country, Vitoria-Gasteiz, Spain
| | - Carlos Álvarez
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin, Ireland
| | - Eduarda Melo Cabral
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre Ashtown, Dublin, Ireland
| | - Tomas Lafarga
- Department of Chemical Engineering, University of Almería, Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, Almería, Spain.
| |
Collapse
|
16
|
Zhang L, Yao L, Zhao F, Yu A, Zhou Y, Wen Q, Wang J, Zheng T, Chen P. Protein and Peptide-Based Nanotechnology for Enhancing Stability, Bioactivity, and Delivery of Anthocyanins. Adv Healthc Mater 2023; 12:e2300473. [PMID: 37537383 PMCID: PMC11468125 DOI: 10.1002/adhm.202300473] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/18/2023] [Indexed: 08/05/2023]
Abstract
Anthocyanin, a unique natural polyphenol, is abundant in plants and widely utilized in biomedicine, cosmetics, and the food industry due to its excellent antioxidant, anticancer, antiaging, antimicrobial, and anti-inflammatory properties. However, the degradation of anthocyanin in an extreme environment, such as alkali pH, high temperatures, and metal ions, limits its physiochemical stabilities and bioavailabilities. Encapsulation and combining anthocyanin with biomaterials could efficiently stabilize anthocyanin for protection. Promisingly, natural or artificially designed proteins and peptides with favorable stabilities, excellent biocapacity, and wide sources are potential candidates to stabilize anthocyanin. This review focuses on recent progress, strategies, and perspectives on protein and peptide for anthocyanin functionalization and delivery, i.e., formulation technologies, physicochemical stability enhancement, cellular uptake, bioavailabilities, and biological activities development. Interestingly, due to the simplicity and diversity of peptide structure, the interaction mechanisms between peptide and anthocyanin could be illustrated. This work sheds light on the mechanism of protein/peptide-anthocyanin nanoparticle construction and expands on potential applications of anthocyanin in nutrition and biomedicine.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Liang Yao
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Feng Zhao
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Alice Yu
- Schulich School of Medicine and Dentistry, Western University, Ontario, N6A 3K7, Canada
| | - Yueru Zhou
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Qingmei Wen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jun Wang
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Tao Zheng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|
17
|
Hussin AA, Hidayah Ahmad NA, Mohd Asri NF, Nik Malek NAN, Mohd Amin MF, Kamaroddin MF. Cultivation of Arthrospira platensis and harvesting using edible fungi isolated from mould soybean cake. BIORESOURCE TECHNOLOGY 2023; 373:128743. [PMID: 36791974 DOI: 10.1016/j.biortech.2023.128743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
In this study, the cultivation and harvesting of Arthrospira platensis biomass were proposed via simple, safe, and efficient techniques for direct consumption. Cultivation of microalgae in a covered macrobubble column under outdoor conditions resulted in significant differences (p < 0.05) with a maximum dry cell weight (Xm) of 0.959 ± 0.046 g/L. Notably, outdoor cultures resulted in approximately twofold biomass compared to indoor cultures. This outcome shows that the developed outdoor setup integrated with solar panels while utilising Malaysia's weather and atmospheric air as carbon sources is viable. Meanwhile, for harvesting, the screening showed that the fungus isolated from mould soybean cake (tempeh) starter indicated the highest harvesting efficiency, which was then further identified as Rhizopus microsporus, microscopically and molecularly. Overall, the economical and portable setup of outdoor cultivation coupled with safe harvesting via locally isolated fungus from tempeh as a bioflocculant would provide sustainability to produce A. platensis biomass.
Collapse
Affiliation(s)
- Aimi Alina Hussin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Nur Amira Hidayah Ahmad
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Nur Fakhira Mohd Asri
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Nik Ahmad Nizam Nik Malek
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | | | - M Farizal Kamaroddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| |
Collapse
|
18
|
Ayswaria R, Vijayan J, Nathan VK. Antimicrobial peptides derived from microalgae for combating antibiotic resistance: Current status and prospects. Cell Biochem Funct 2023; 41:142-151. [PMID: 36738178 DOI: 10.1002/cbf.3779] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023]
Abstract
Microalgae are photosynthetic cell factories that produce a spectrum of bioactive compounds extensively used for various applications. Owing to the increase in antibiotic resistance among microbial pathogens, there is a significant thrust for identifying new treatment strategies, and antimicrobial peptides (AMPs) generation is one such method. These AMPs have multiple roles and are active against bacteria, fungi, and viruses. Such peptides synthesized in microalgae have a significant role in medical application, managing aquaculture-associated diseases, and the food industry. To increase their effectiveness and novel peptides, genetically modified microalgae are used as cell factories. With the advancement of new technologies like the CRISPR-Cas system, new avenues are opened for developing novel AMPs using microalgae. This review gives us insight into the various AMPs produced by microalgae and multiple technologies involved in creating such therapeutically essential molecules.
Collapse
Affiliation(s)
- Reshma Ayswaria
- Department of Biotechnology, Mercy College, Palakkad, Kerala, India
| | - Jasna Vijayan
- Department of Marine Biology, School of Marine Sciences, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, Kerala, India
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Tirumalaisamudram Thanjavur, Tamilnadu, India
| |
Collapse
|
19
|
Khan S, Das P, Abdulquadir M, Thaher M, Al-Ghasal G, Hafez Mohammed Kashem A, Faisal M, Sayadi S, Al-Jabri H. Pilot-scale crossflow ultrafiltration of four different cell-sized marine microalgae to assess the ultrafiltration performance and energy requirements. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
20
|
Two-stage cultivation of Spirulina sp. LEB 18: a strategy to increase biomass productivity and synthesis of macromolecules. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1007/s43153-022-00279-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
21
|
Yaji ELA, Wahab SA, Len KYT, Sabri MZ, Razali N, Dos Mohamed AM, Wong FWF, Talib NA, Hashim NH, Pa’ee KF. Alternative biomanufacturing of bioactive peptides derived from halal food sources. INNOVATION OF FOOD PRODUCTS IN HALAL SUPPLY CHAIN WORLDWIDE 2023:99-113. [DOI: 10.1016/b978-0-323-91662-2.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
22
|
Villaró S, Jiménez-Márquez S, Musari E, Bermejo R, Lafarga T. Production of enzymatic hydrolysates with in vitro antioxidant, antihypertensive, and antidiabetic properties from proteins derived from Arthrospira platensis. Food Res Int 2023; 163:112270. [PMID: 36596181 DOI: 10.1016/j.foodres.2022.112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/20/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
The microalga Arthrospira platensis BEA 005B was produced using 80 m2 (9 m3) raceway photobioreactors achieving a biomass productivity of 28.2 g·m-2·day-1 when operating the reactors in semi-continuous mode (0.33 day-1). The produced biomass was rich in proteins (58.1 g·100 g-1) and carbohydrates (25.6 g·100 g-1); the content of phycocyanins and allophycocyanins was 115.4 and 36.9 mg·g-1, respectively. Ultrasounds and high-pressure homogenisation allowed recovering approximately 90% of the initial protein content of the biomass; however, the energetic requirements of the former (∼100 kJ·kg-1) were significantly lower than those of high-pressure homogenisation (∼200 kJ·kg-1). An in silico analysis revealed that papain and ficin would allow releasing a large number of bioactive peptides with antioxidant, antihypertensive (ACE-I and renin), and antidiabetic (DPP-IV, α-amylase, and α-glucosidase) properties. Both were assessed in vitro together with Alcalase and pepsin leading to the generation of enzymatic hydrolysates with in vitro bioactivity.
Collapse
Affiliation(s)
- Silvia Villaró
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almeria-CIEMAT, 04120 Almeria, Spain
| | | | - Evan Musari
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, 60121 Ancona, Italy
| | - Ruperto Bermejo
- Department of Physical and Analytical Chemistry, University of Jaen, 23700 Linares, Spain
| | - Tomás Lafarga
- Department of Chemical Engineering, University of Almeria, 04120 Almeria, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almeria-CIEMAT, 04120 Almeria, Spain.
| |
Collapse
|
23
|
Ferreira de Oliveira AP, Bragotto APA. Microalgae-based products: Food and public health. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
24
|
Bortolini DG, Maciel GM, Fernandes IDAA, Pedro AC, Rubio FTV, Branco IG, Haminiuk CWI. Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 5:100134. [PMID: 36177108 PMCID: PMC9513730 DOI: 10.1016/j.fochms.2022.100134] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/19/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022]
Abstract
Functional foods that contain bioactive compounds (BC) and provide health benefits; Spirulina is a cyanobacterium considered blue microalgae rich in BC; BC from Spirulina have interesting health effects; Chlorophyll, carotenoids, and phycocyanin are natural corants from Spirulina; Spirulina has potential as an ingredient for application in functional foods.
Functional foods show non-toxic bioactive compounds that offer health benefits beyond their nutritional value and beneficially modulate one or more target functions in the body. In recent decades, there has been an increase in the trend toward consuming foods rich in bioactive compounds, less industrialized, and with functional properties. Spirulina, a cyanobacterium considered blue microalgae, widely found in South America, stands out for its rich composition of bioactive compounds, as well as unsaturated fatty acids and essential amino acids, which contribute to basic human nutrition and can be used as a protein source for diets free from animal products. In addition, they have colored compounds, such as chlorophylls, carotenoids, phycocyanins, and phenolic compounds which can be used as corants and natural antioxidants. In this context, this review article presents the main biological activities of spirulina as an anticancer, neuroprotective, probiotic, anti-inflammatory, and immune system stimulating effect. Furthermore, an overview of the composition of spirulina, its potential for different applications in functional foods, and its emerging technologies are covered in this review.
Collapse
Affiliation(s)
- Débora Gonçalves Bortolini
- Universidade Federal do Paraná (UFPR), Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Curitiba, Paraná CEP (81531-980), Brazil
| | - Giselle Maria Maciel
- Universidade Tecnológica Federal do Paraná (UTFPR), Departamento Acadêmico de Química e Biologia (DAQBi), Laboratório de Biotecnologia, Curitiba, Paraná CEP (81280-340), Brazil
| | - Isabela de Andrade Arruda Fernandes
- Universidade Federal do Paraná (UFPR), Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Curitiba, Paraná CEP (81531-980), Brazil
| | - Alessandra Cristina Pedro
- Universidade Federal do Paraná (UFPR), Programa de Pós-Graduação em Engenharia de Alimentos (PPGEAL), Curitiba, Paraná CEP (81531-980), Brazil
| | - Fernanda Thaís Vieira Rubio
- Universidade de São Paulo, Escola Politécnica, Department of Chemical Engineering, Main Campus, São Paulo, São Paulo 05508-080, Brazil
| | - Ivanise Guiherme Branco
- Universidade Estadual Paulista (UNESP), Departamento de Ciências Biológicas, Assis, São Paulo, São Paulo 19806-900, Brazil
| | - Charles Windson Isidoro Haminiuk
- Universidade Tecnológica Federal do Paraná (UTFPR), Departamento Acadêmico de Química e Biologia (DAQBi), Laboratório de Biotecnologia, Curitiba, Paraná CEP (81280-340), Brazil
- Corresponding author.
| |
Collapse
|
25
|
Nanoliposomal peptides derived from Spirulina platensis protein accelerate full-thickness wound healing. Int J Pharm 2022; 630:122457. [PMID: 36455754 DOI: 10.1016/j.ijpharm.2022.122457] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Spirulina platensis is a type of blue-green algae that contains large amounts of protein with therapeutic effects. The present study was performed to investigate the effects of encapsulated Spirulina protein hydrolysates (SPH) with nanoliposomes (NLPs) in reducing wound healing period. SPH-loaded NLPs showed the size and zeta potential of 158 nm and -48 mV, respectively; as well as a uniform non-aggregated morphology. In-vitro MTT toxicity studies on the Human Foreskin Fibroblast (HFFF-2) cell line exhibited that the hydrolyzed peptides had no toxic effect and increased cell growth. The scratch test confirmed the MTT results. For in-vivo study, 162 mice were divided into nine groups, including the mice groups treated with blank gel, blank NLPs, and those treated with 2.5, 5, and 10 % SPH and SPH-loaded NLPs. The histopathological assessment was done to investigate rate of fibroblast proliferation and epithelialization. Immunofluorescence staining for bFGF, CD31, COL1A was conducted. The results showed that the mice group treated with SPH-NLPs showed higher wound contraction, epithelization, fibroblast proliferation, and higher expressions for bFGF, CD31, COL1A compared with blanks and other groups. In conclusion, the derived and encapsulated peptides showed significant effects in accelerating wound healing via angiogenesis and collagen production.
Collapse
|
26
|
Food Protein-Derived Antioxidant Peptides: Molecular Mechanism, Stability and Bioavailability. Biomolecules 2022; 12:biom12111622. [PMID: 36358972 PMCID: PMC9687809 DOI: 10.3390/biom12111622] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The antioxidant activity of protein-derived peptides was one of the first to be revealed among the more than 50 known peptide bioactivities to date. The exploitation value associated with food-derived antioxidant peptides is mainly attributed to their natural properties and effectiveness as food preservatives and in disease prevention, management, and treatment. An increasing number of antioxidant active peptides have been identified from a variety of renewable sources, including terrestrial and aquatic organisms and their processing by-products. This has important implications for alleviating population pressure, avoiding environmental problems, and promoting a sustainable shift in consumption. To identify such opportunities, we conducted a systematic literature review of recent research advances in food-derived antioxidant peptides, with particular reference to their biological effects, mechanisms, digestive stability, and bioaccessibility. In this review, 515 potentially relevant papers were identified from a preliminary search of the academic databases PubMed, Google Scholar, and Scopus. After removing non-thematic articles, articles without full text, and other quality-related factors, 52 review articles and 122 full research papers remained for analysis and reference. The findings highlighted chemical and biological evidence for a wide range of edible species as a source of precursor proteins for antioxidant-active peptides. Food-derived antioxidant peptides reduce the production of reactive oxygen species, besides activating endogenous antioxidant defense systems in cellular and animal models. The intestinal absorption and metabolism of such peptides were elucidated by using cellular models. Protein hydrolysates (peptides) are promising ingredients with enhanced nutritional, functional, and organoleptic properties of foods, not only as a natural alternative to synthetic antioxidants.
Collapse
|
27
|
Blanco-Vieites M, Suárez-Montes D, Hernández Battez A, Rodríguez E. Enhancement of Arthrospira sp. culturing for sulfate removal and mining wastewater bioremediation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:1116-1126. [PMID: 36263990 DOI: 10.1080/15226514.2022.2135680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sulfate content in mining wastewater can reach concentrations over 2,000 mg·L-1, which is considered as a pollutant of concern. In this article, two cyanobacteria species were cultured using highly sulfated wastewater (3,000 mg·L-1) as the culture medium. This investigation aimed to analyze the sulfate bioremediation potential of microalgae while enhancing the uptaking of this pollutant through the design of a novel nutritional medium. The results obtained show the suitability of Arthrospira maxima as a bioremediation organism of sulfated wastewater. The appropriateness of this organism is based on its great growth performance when cultured in this residue, 2.16 times higher than the initial value. Moreover, the initially obtained sulfate reduction, 23.3%, was significantly enhanced to a final removal of 73% (2,247 mg·L-1). In addition, scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to evaluate sulfur crystallization. To the best of our knowledge, there are no previous works focused on microalgal sulfate removal that have reached such an uptaking rate. Accordingly, this study presents the highest performance on sulfate microalgal bioremediation published to date. Our findings suggest that A. maxima can be cultured for sulfated wastewater bioremediation while showing a removal yield that is theoretically sufficient for industrial applications.
Collapse
Affiliation(s)
- M Blanco-Vieites
- Neoalgae Micro Seaweeds Products, Calle Carmen Leal Mata, Gijon, Spain
- Department of Construction and Manufacturing Engineering, University of Oviedo, Gijon, Spain
| | - D Suárez-Montes
- Neoalgae Micro Seaweeds Products, Calle Carmen Leal Mata, Gijon, Spain
| | - A Hernández Battez
- Department of Construction and Manufacturing Engineering, University of Oviedo, Gijon, Spain
| | - E Rodríguez
- Department of Construction and Manufacturing Engineering, University of Oviedo, Gijon, Spain
| |
Collapse
|
28
|
|
29
|
Ali Y, Simachew A, Gessesse A. Diversity of Culturable Alkaliphilic Nitrogen-Fixing Bacteria from a Soda Lake in the East African Rift Valley. Microorganisms 2022; 10:microorganisms10091760. [PMID: 36144362 PMCID: PMC9501543 DOI: 10.3390/microorganisms10091760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Lake Chitu is a highly productive soda lake found in the East African Rift Valley, where Arthrospira fusiformis (Spirulina platensis) is the main primary producer. High biomass accumulation requires an adequate supply of nitrogen. However, Lake Chitu is a closed system without any external nutrient input. A recent study has also demonstrated the presence of a diverse group of denitrifying bacteria, indicating a possible loss of nitrate released from the oxidation of organic matter. The aim of this study was to isolate culturable nitrogen-fixing alkaliphiles and evaluate their potential contribution in the nitrogen economy of the soda lake. A total of 118 alkaliphiles belonging to nine different operational taxonomic units (OTUs) were isolated using a nitrogen-free medium. Nineteen isolates were tested for the presence of the nifH gene, and 11 were positive. The ability to fix nitrogen was tested by co-culturing with a non-nitrogen-fixing alkaliphile, Alkalibacterium sp. 3.5*R1. When inoculated alone, Alkalibacterium sp. 3.5*R1 failed to grow on a nitrogen-free medium, but grew very well when co-cultured with the nitrogen-fixing alkaliphile NF10m6 isolated in this study, indicating the availability of nitrogen. These results show that nitrogen fixation by alkaliphiles may have an important contribution as a source of nitrogen in soda lakes.
Collapse
Affiliation(s)
- Yordanos Ali
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
- Industrial Biotechnology Research Directorate, Bio and Emerging Technology Institute, Addis Ababa P.O. Box 5954, Ethiopia
| | - Addis Simachew
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Amare Gessesse
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana
- Correspondence: ; Tel.: +267-4931871
| |
Collapse
|
30
|
Optimisation of Operational Conditions during the Production of Arthrospira platensis Using Pilot-Scale Raceway Reactors, Protein Extraction, and Assessment of their Techno-Functional Properties. Foods 2022; 11:foods11152341. [PMID: 35954107 PMCID: PMC9368457 DOI: 10.3390/foods11152341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to identify the optimum combination of dilution rate and depth of the culture to maximise the Arthrospira platensis BEA005B (Spirulina) productivity using 80 m2 raceway reactors. By varying these two main operational conditions, the areal biomass productivity of the reactors varied by over 55%. The optimum combination, optimised using a surface response methodology, was a depth of 0.10 m and a dilution rate of 0.33 day-1, which led to a biomass productivity of 30.2 g·m-2·day-1 on a dry weight basis when operating the reactors in semi-continuous mode. The composition of the produced biomass was 62.2% proteins, 42.5% carbohydrates, 11.6% ashes, and 8.1% lipids. The isolated proteins contained all the essential amino acids (except for tryptophan, which was not determined); highlighting the content of valine (6.8%), histidine (8.3%), and lysine (7.5%). The functional properties of the proteins were also assessed, demonstrating huge potential for their use in the development of innovative and sustainable foods.
Collapse
|
31
|
Liu H, Chen Y, Yang H, Hu J, Wang X, Chen H. Evolution pathway of nitrogen in hydrothermal liquefaction polygeneration of Spirulina as the typical high-protein microalgae. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Thevarajah B, Nishshanka GKSH, Premaratne M, Nimarshana P, Nagarajan D, Chang JS, Ariyadasa TU. Large-scale production of Spirulina-based proteins and c-phycocyanin: A biorefinery approach. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
33
|
Techno-functional, biological and structural properties of Spirulina platensis peptides from different proteases. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Abstract
Cultivation of photosynthetic microorganisms in wastewater is a potential cost-effective method of treating wastewater and simultaneously providing the essential nutrients for high-value biomass production. This study investigates the cultivation of the cyanobacterium Arthrospira platensis in non-diluted and non-pretreated brewery wastewater under non-sterile and alkaline growth conditions. The system’s performance in terms of biomass productivity, pollutant consumption, pigment production and biomass composition was evaluated under different media formulations (i.e., addition of sodium chloride and/or bicarbonate) and different irradiation conditions (i.e., continuous illumination and 16:8 light:dark photoperiod). It was observed that the combination of sodium bicarbonate with sodium chloride resulted in maximum pigment production recorded at the end of the experiments, and the use of the photoperiod led to increased pollutant removal (up to 90% of initial concentrations) and biomass concentration (950 mg/L). The composition of the microbial communities established during the experiments was also determined. It was observed that heterotrophic bacteria dominated by the phyla of Pseudomonadota, Bacillota, and Bacteroidota prevailed, while the cyanobacteria population showcased a dynamic behavior throughout the experiments, as it increased towards the end of cultivation (relative abundance of 10% and 30% under continuous illumination and photoperiod application, respectively). Overall, Arthrospira platensis-based cultivation proved to be an effective method of brewery wastewater treatment, although the large numbers of heterotrophic bacteria limit the usage of the produced biomass to applications such as biofuel and biofertilizer production.
Collapse
|
35
|
Separation of Microalgae by a Dynamic Bed of Magnetite-Containing Gel in the Application of a Magnetic Field. SEPARATIONS 2022. [DOI: 10.3390/separations9050120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Microalgae are now known as potential microorganisms in the production of chemicals, fuel, and food. Since microalgae live in the sea and the river, they need to be harvested and separated and cultured for further usage. In this study, to separate microalgae, a bed of magnetite-containing gel (Mag gel, 190 µm) was packed in the column by the application of a magnetic field for the separative elution of injected microalgae (including mainly four species), cultured at Saga University in Japan. The applied magnetic field was set at a constant and dynamic-convex manner. At a constant magnetic field of 0.4–1.1 T, the elution percentage of the microalgae at less than 5 µm was 30–50%. At 1.1 T, the larger-sized microalgae were eluted at a percentage of 20%, resulting in the structural change of the bed by the applied magnetic field. In a convex-like change of the magnetic field at 1.1 T ⇄ 0.4 T, the smaller-sized microalgae were selectively eluted, whereas at 1.1 T ⇄ 0.8 T, the larger-sized microalgae were eluted. Dynamic convex-like changes by the magnetic field selectively eluted the microalgae, leading to the separation and the extraction of potential microalgae.
Collapse
|
36
|
Microalgae cultivation in domestic wastewater for wastewater treatment and high value-added production: species selection and comparison. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Verni M, Dingeo C, Rizzello CG, Pontonio E. Lactic Acid Bacteria Fermentation and Endopeptidase Treatment Improve the Functional and Nutritional Features of Arthrospira platensis. Front Microbiol 2021; 12:744437. [PMID: 34956114 PMCID: PMC8692253 DOI: 10.3389/fmicb.2021.744437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed at investigating the effect of fermentation and enzymatic treatment on the degree of proteolysis of wet (WB), dried at low temperature (DB), and freeze-dried Spirulina (LB) proteins that affect the nutritional (e.g., amino acid content and profiles, and protein digestibility) and functional (e.g., antioxidant and antimicrobial activities) properties. The desiccation treatments influenced the unprocessed Spirulina characteristics because, compared with that in WB, peptides and free amino acids content was 73% lower in DB and 34% higher in LB. An integrated approach, including chromatographic and electrophoresis analyses, was used to evaluate the effect of the different bioprocessing options on protein profiles, release of peptides and amino acids, and the overall protein digestibility. Compared with the application of fermentation with the selected Lactiplantibacillus plantarum T0A10, the treatment with the endopeptidase Alcalase®, alone or combined, determined the most intense proteolysis. Moreover, the treatment with Alcalase® of LB allowed the release of potentially bioactive compounds that are able to inhibit Penicillium roqueforti growth, whereas the combination of fermentation with L. plantarum T0A10 and Alcalase® treatment increased Spirulina antioxidant properties, as determined by the scavenging activity toward ABTS radical (up to 60%) and antimicrobial activity against food pathogen Escherichia coli.
Collapse
Affiliation(s)
- Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Cinzia Dingeo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
38
|
Morillas-España A, Lafarga T, Sánchez-Zurano A, Acién-Fernández FG, Rodríguez-Miranda E, Gómez-Serrano C, González-López CV. Year-long evaluation of microalgae production in wastewater using pilot-scale raceway photobioreactors: Assessment of biomass productivity and nutrient recovery capacity. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Villaró S, Ciardi M, Morillas-España A, Sánchez-Zurano A, Acién-Fernández G, Lafarga T. Microalgae Derived Astaxanthin: Research and Consumer Trends and Industrial Use as Food. Foods 2021; 10:foods10102303. [PMID: 34681351 PMCID: PMC8534595 DOI: 10.3390/foods10102303] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a high-value carotenoid currently being produced by chemical synthesis and by extraction from the biomass of the microalga Haematococcus pluvialis. Other microalgae, such as Chlorella zofingiensis, have the potential for being used as sources of astaxanthin. The differences between the synthetic and the microalgae derived astaxanthin are notorious: not only their production and price but also their uses and bioactivity. Microalgae derived astaxanthin is being used as a pigment in food and feed or aquafeed production and also in cosmetic and pharmaceutical products. Several health-promoting properties have been attributed to astaxanthin, and these were summarized in the current review paper. Most of these properties are attributed to the high antioxidant capacity of this molecule, much higher than that of other known natural compounds. The aim of this review is to consider the main challenges and opportunities of microalgae derived products, such as astaxanthin as food. Moreover, the current study includes a bibliometric analysis that summarizes the current research trends related to astaxanthin. Moreover, the potential utilization of microalgae other than H. pluvialis as sources of astaxanthin as well as the health-promoting properties of this valuable compound will be discussed.
Collapse
Affiliation(s)
- Silvia Villaró
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Martina Ciardi
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Ainoa Morillas-España
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Ana Sánchez-Zurano
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Gabriel Acién-Fernández
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Tomas Lafarga
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
- Correspondence:
| |
Collapse
|