1
|
Saadh MJ, Muhammad FA, Albadr RJ, Sanghvi G, Ballal S, Pathak PK, Bareja L, Aminov Z, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA. Exosomal non-coding RNAs: key regulators of inflammation-related cardiovascular disorders. Eur J Med Res 2025; 30:395. [PMID: 40390035 PMCID: PMC12087048 DOI: 10.1186/s40001-025-02649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/30/2025] [Indexed: 05/21/2025] Open
Abstract
Inflammation is a complex, tightly regulated process involving biochemical and cellular reactions to harmful stimuli. Often termed "the internal fire", it is crucial for protecting the body and facilitating tissue healing. While inflammation is essential for survival, chronic inflammation can be detrimental, leading to tissue damage and reduced survival. The innate immune system triggers inflammation, closely linked to the development of heart diseases, with significant consequences for individuals. Inflammation in arterial walls or the body substantially contributes to atherosclerotic disease progression, affecting the cardiovascular system. Altered lipoproteins increase the risk of excessive blood clotting, a hallmark of atherosclerotic cardiovascular disease and its complications. Integrating inflammatory biomarkers with established risk assessment techniques can enhance our ability to identify at-risk individuals, assess their risk severity, and recommend appropriate CVD prevention strategies. Exosomes, a type of extracellular vesicle, are released by various cells and mediate cell communication locally and systemically. In the past decade, exosomes have been increasingly studied for their vital roles in health maintenance and disease processes. They can transport substances like non-coding RNAs, lipids, and proteins between cells, influencing immune responses and inflammation to elicit harmful or healing effects. This study focuses on the critical role of inflammation in heart disease progression and how non-coding RNAs in exosomes modulate the inflammatory process, either exacerbating or alleviating inflammation-related damage in the cardiovascular system.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Piyus Kumar Pathak
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
2
|
Bhat MF, Srdanović S, Sundberg LR, Einarsdóttir HK, Marjomäki V, Dekker FJ. Impact of HDAC inhibitors on macrophage polarization to enhance innate immunity against infections. Drug Discov Today 2024; 29:104193. [PMID: 39332483 DOI: 10.1016/j.drudis.2024.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Innate immunity plays an important role in host defense against pathogenic infections. It involves macrophage polarization into either the pro-inflammatory M1 or the anti-inflammatory M2 phenotype, influencing immune stimulation or suppression, respectively. Epigenetic changes during immune reactions contribute to long-term innate immunity imprinting on macrophage polarization. It is becoming increasingly evident that epigenetic modulators, such as histone deacetylase (HDAC) inhibitors (HDACi), enable the enhancement of innate immunity by tailoring macrophage polarization in response to immune stressors. In this review, we summarize current literature on the impact of HDACi and other epigenetic modulators on the functioning of macrophages during diseases that have a strong immune component, such as infections. Depending on the disease context and the chosen therapeutic intervention, HDAC1, HDAC2, HDAC3, HDAC6, or HDAC8 are particularly important in influencing macrophage polarization towards either M1 or M2 phenotypes. We anticipate that therapeutic strategies based on HDAC epigenetic mechanisms will provide a unique approach to boost immunity against disease challenges, including resistant infections.
Collapse
Affiliation(s)
- Mohammad Faizan Bhat
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Sonja Srdanović
- Akthelia Pharmaceuticals, Grandagardi 16, 101 Reykjavik, Iceland
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Sciences and Nanoscience Center, 40014 University of Jyväskylä, Jyväskylä, Finland
| | | | - Varpu Marjomäki
- Department of Biological and Environmental Sciences and Nanoscience Center, 40014 University of Jyväskylä, Jyväskylä, Finland
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
3
|
Hazawa M, Ikliptikawati DK, Iwashima Y, Lin DC, Jiang Y, Qiu Y, Makiyama K, Matsumoto K, Kobayashi A, Nishide G, Keesiang L, Yoshino H, Minamoto T, Suzuki T, Kobayashi I, Meguro-Horike M, Jiang YY, Nishiuchi T, Konno H, Koeffler HP, Hosomichi K, Tajima A, Horike SI, Wong RW. Super-enhancer trapping by the nuclear pore via intrinsically disordered regions of proteins in squamous cell carcinoma cells. Cell Chem Biol 2024; 31:792-804.e7. [PMID: 37924814 DOI: 10.1016/j.chembiol.2023.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/07/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Master transcription factors such as TP63 establish super-enhancers (SEs) to drive core transcriptional networks in cancer cells, yet the spatiotemporal regulation of SEs within the nucleus remains unknown. The nuclear pore complex (NPC) may tether SEs to the nuclear pore where RNA export rates are maximal. Here, we report that NUP153, a component of the NPC, anchors SEs to the NPC and enhances TP63 expression by maximizing mRNA export. This anchoring is mediated through protein-protein interaction between the intrinsically disordered regions (IDRs) of NUP153 and the coactivator BRD4. Silencing of NUP153 excludes SEs from the nuclear periphery, decreases TP63 expression, impairs cellular growth, and induces epidermal differentiation of squamous cell carcinoma. Overall, this work reveals the critical roles of NUP153 IDRs in the regulation of SE localization, thus providing insights into a new layer of gene regulation at the epigenomic and spatial level.
Collapse
Affiliation(s)
- Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Laboratory of molecular cell biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Dini Kurnia Ikliptikawati
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuki Iwashima
- Laboratory of molecular cell biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - De-Chen Lin
- Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Yuan Jiang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R.China; University of Science and Technology of China, Hefei 230026, P.R.China
| | - Yujia Qiu
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kei Makiyama
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Koki Matsumoto
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akiko Kobayashi
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Goro Nishide
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Lim Keesiang
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hironori Yoshino
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Makiko Meguro-Horike
- Advanced Science Research Center, Institute for Gene Research, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Yan-Yi Jiang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R.China; University of Science and Technology of China, Hefei 230026, P.R.China
| | - Takumi Nishiuchi
- Division of Integrated Omics research, Bioscience Core Facility Research Center for Experimental Modeling of Human Disease, Kanazawa University 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Shin-Ichi Horike
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Advanced Science Research Center, Institute for Gene Research, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Richard W Wong
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Laboratory of molecular cell biology, School of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
4
|
Sang T, Wang Y, Wang Z, Sun D, Dou S, Yu Y, Wang X, Zhao C, Wang Q. NEAT1 Deficiency Promotes Corneal Epithelial Wound Healing by Activating cAMP Signaling Pathway. Invest Ophthalmol Vis Sci 2024; 65:10. [PMID: 38466291 DOI: 10.1167/iovs.65.3.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Purpose This study aimed to investigate the role of the long non-coding RNA (lncRNA) NEAT1 in corneal epithelial wound healing in mice. Methods The central corneal epithelium of wild-type (WT), MALAT1 knockout (M-KO), NEAT1 knockout (N-KO), and NEAT1 knockdown (N-KD) mice was scraped to evaluate corneal epithelial and nerve regeneration rates. RNA sequencing of the corneal epithelium from WT and N-KO mice was performed 24 hours after debridement to determine the role of NEAT1. Quantitative PCR (qPCR) and ELISA were used to confirm the bioinformatic analysis. The effects of the cAMP signaling pathway were evaluated in N-KO and N-KD mice using SQ22536, an adenylate cyclase inhibitor. Results Central corneal epithelial debridement in N-KO mice significantly promoted epithelial and nerve regeneration rates while suppressing inflammatory cell infiltration. Furthermore, the expression of Atp1a2, Ppp1r1b, Calm4, and Cngb1, which are key components of the cAMP signaling pathway, was upregulated in N-KO mice, indicative of its activation. Furthermore, the cAMP pathway inhibitor SQ22536 reversed the accelerated corneal epithelial wound healing in both N-KO and N-KD mice. Conclusions NEAT1 deficiency contributes to epithelial repair during corneal wound healing by activating the cAMP signaling pathway, thereby highlighting a potential therapeutic strategy for corneal epithelial diseases.
Collapse
Affiliation(s)
- Tian Sang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Yani Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Zhiqing Wang
- School of Clinical Medicine, Weifang Medical University, Shandong, China
| | - Di Sun
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Yaoyao Yu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Xiaoyun Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| | - Can Zhao
- Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
- School of Ophthalmology, Shandong First Medical University, Shandong, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China
| |
Collapse
|
5
|
Kang J, Rhee J, Wang C, Yang Y, Li G, Li H. Unlocking the dark matter: noncoding RNAs and RNA modifications in cardiac aging. Am J Physiol Heart Circ Physiol 2024; 326:H832-H844. [PMID: 38305752 PMCID: PMC11221808 DOI: 10.1152/ajpheart.00532.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Cardiac aging is a multifaceted process that encompasses structural and functional alterations culminating in heart failure. As the elderly population continues to expand, there is a growing urgent need for interventions to combat age-related cardiac functional decline. Noncoding RNAs have emerged as critical regulators of cellular and biochemical processes underlying cardiac disease. This review summarizes our current understanding of how noncoding RNAs function in the heart during aging, with particular emphasis on mechanisms of RNA modification that control their activity. Targeting noncoding RNAs as potential novel therapeutics in cardiac aging is also discussed.
Collapse
Affiliation(s)
- Jiayi Kang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - James Rhee
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
| | - Chunyan Wang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Yolander Yang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Guoping Li
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Haobo Li
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
6
|
Hu X, Liu D, Zhang J, Fan Y, Ouyang T, Luo Y, Zhang Y, Deng L. A comprehensive review and evaluation of graph neural networks for non-coding RNA and complex disease associations. Brief Bioinform 2023; 24:bbad410. [PMID: 37985451 DOI: 10.1093/bib/bbad410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/07/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Non-coding RNAs (ncRNAs) play a critical role in the occurrence and development of numerous human diseases. Consequently, studying the associations between ncRNAs and diseases has garnered significant attention from researchers in recent years. Various computational methods have been proposed to explore ncRNA-disease relationships, with Graph Neural Network (GNN) emerging as a state-of-the-art approach for ncRNA-disease association prediction. In this survey, we present a comprehensive review of GNN-based models for ncRNA-disease associations. Firstly, we provide a detailed introduction to ncRNAs and GNNs. Next, we delve into the motivations behind adopting GNNs for predicting ncRNA-disease associations, focusing on data structure, high-order connectivity in graphs and sparse supervision signals. Subsequently, we analyze the challenges associated with using GNNs in predicting ncRNA-disease associations, covering graph construction, feature propagation and aggregation, and model optimization. We then present a detailed summary and performance evaluation of existing GNN-based models in the context of ncRNA-disease associations. Lastly, we explore potential future research directions in this rapidly evolving field. This survey serves as a valuable resource for researchers interested in leveraging GNNs to uncover the complex relationships between ncRNAs and diseases.
Collapse
Affiliation(s)
- Xiaowen Hu
- School of Computer Science and Engineering, Central South University,410075 Changsha, China
| | - Dayun Liu
- School of Computer Science and Engineering, Central South University,410075 Changsha, China
| | - Jiaxuan Zhang
- Department of Electrical and Computer Engineering, University of California, San Diego,92093 CA, USA
| | - Yanhao Fan
- School of Computer Science and Engineering, Central South University,410075 Changsha, China
| | - Tianxiang Ouyang
- School of Computer Science and Engineering, Central South University,410075 Changsha, China
| | - Yue Luo
- School of Computer Science and Engineering, Central South University,410075 Changsha, China
| | - Yuanpeng Zhang
- school of software, Xinjiang University, 830046 Urumqi, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University,410075 Changsha, China
| |
Collapse
|
7
|
Dong X, Bai Y, Liao Z, Gritsch D, Liu X, Wang T, Borges-Monroy R, Ehrlich A, Serrano GE, Feany MB, Beach TG, Scherzer CR. Circular RNAs in the human brain are tailored to neuron identity and neuropsychiatric disease. Nat Commun 2023; 14:5327. [PMID: 37723137 PMCID: PMC10507039 DOI: 10.1038/s41467-023-40348-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/20/2023] [Indexed: 09/20/2023] Open
Abstract
Little is known about circular RNAs (circRNAs) in specific brain cells and human neuropsychiatric disease. Here, we systematically identify over 11,039 circRNAs expressed in vulnerable dopamine and pyramidal neurons laser-captured from 190 human brains and non-neuronal cells using ultra-deep, total RNA sequencing. 1526 and 3308 circRNAs are custom-tailored to the cell identity of dopamine and pyramidal neurons and enriched in synapse pathways. 29% of Parkinson's and 12% of Alzheimer's disease-associated genes produced validated circRNAs. circDNAJC6, which is transcribed from a juvenile-onset Parkinson's gene, is already dysregulated during prodromal, onset stages of common Parkinson's disease neuropathology. Globally, addiction-associated genes preferentially produce circRNAs in dopamine neurons, autism-associated genes in pyramidal neurons, and cancers in non-neuronal cells. This study shows that circular RNAs in the human brain are tailored to neuron identity and implicate circRNA-regulated synaptic specialization in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xianjun Dong
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Genomics and Bioinformatics Hub, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Yunfei Bai
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- State Key Lab of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhixiang Liao
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - David Gritsch
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Xiaoli Liu
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Department of Neurology, Zhejiang Hospital, Zhejiang, China
| | - Tao Wang
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Rebeca Borges-Monroy
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Alyssa Ehrlich
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mel B Feany
- Departement of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Clemens R Scherzer
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, USA.
- Precision Neurology Program, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Dong X, Bai Y, Liao Z, Gritsch D, Liu X, Wang T, Borges-Monroy R, Ehrlich A, Serano GE, Feany MB, Beach TG, Scherzer CR. Circular RNAs in the human brain are tailored to neuron identity and neuropsychiatric disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.535194. [PMID: 37066229 PMCID: PMC10103951 DOI: 10.1101/2023.04.01.535194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Little is known about circular RNAs (circRNAs) in specific brain cells and human neuropsychiatric disease. Here, we systematically identified over 11,039 circRNAs expressed in vulnerable dopamine and pyramidal neurons laser-captured from 190 human brains and non-neuronal cells using ultra-deep, total RNA sequencing. 1,526 and 3,308 circRNAs were custom-tailored to the cell identity of dopamine and pyramidal neurons and enriched in synapse pathways. 88% of Parkinson's and 80% of Alzheimer's disease-associated genes produced circRNAs. circDNAJC6, produced from a juvenile-onset Parkinson's gene, was already dysregulated during prodromal, onset stages of common Parkinson's disease neuropathology. Globally, addiction-associated genes preferentially produced circRNAs in dopamine neurons, autism-associated genes in pyramidal neurons, and cancers in non-neuronal cells. This study shows that circular RNAs in the human brain are tailored to neuron identity and implicate circRNA- regulated synaptic specialization in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xianjun Dong
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- Genomics and Bioinformatics Hub, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Yunfei Bai
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- State Key Lab of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhixiang Liao
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
| | - David Gritsch
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
| | - Xiaoli Liu
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- Department of Neurology, Zhejiang Hospital, Zhejiang, China
| | - Tao Wang
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- School of Computer Science, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Rebeca Borges-Monroy
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
| | - Alyssa Ehrlich
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mel B. Feany
- Departement of Pathology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Clemens R. Scherzer
- APDA Center for Advanced Parkinson Disease Research, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, USA
- Precision Neurology Program, Harvard Medical School and Brigham & Women’s Hospital, Boston, MA, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Mattick JS. RNA out of the mist. Trends Genet 2023; 39:187-207. [PMID: 36528415 DOI: 10.1016/j.tig.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/08/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
RNA has long been regarded primarily as the intermediate between genes and proteins. It was a surprise then to discover that eukaryotic genes are mosaics of mRNA sequences interrupted by large tracts of transcribed but untranslated sequences, and that multicellular organisms also express many long 'intergenic' and antisense noncoding RNAs (lncRNAs). The identification of small RNAs that regulate mRNA translation and half-life did not disturb the prevailing view that animals and plant genomes are full of evolutionary debris and that their development is mainly supervised by transcription factors. Gathering evidence to the contrary involved addressing the low conservation, expression, and genetic visibility of lncRNAs, demonstrating their cell-specific roles in cell and developmental biology, and their association with chromatin-modifying complexes and phase-separated domains. The emerging picture is that most lncRNAs are the products of genetic loci termed 'enhancers', which marshal generic effector proteins to their sites of action to control cell fate decisions during development.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia; UNSW RNA Institute, UNSW, Sydney, NSW 2052, Australia.
| |
Collapse
|
10
|
Wang Y, Fan Y, Fan D, Zhou X, Jiao Y, Deng XW, Zhu D. The noncoding RNA HIDDEN TREASURE 1 promotes phytochrome B-dependent seed germination by repressing abscisic acid biosynthesis. THE PLANT CELL 2023; 35:700-716. [PMID: 36423345 PMCID: PMC9940872 DOI: 10.1093/plcell/koac334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Light is a major environmental factor for seed germination. Red light-activated phytochrome B (phyB) promotes seed germination by modulating the dynamic balance of two phytohormones, gibberellic acid (GA) and abscisic acid (ABA). How phyB modulates ABA biosynthesis after perceiving a light signal is not yet well understood. Here, we identified the noncoding RNA HIDDEN TREASURE 1 (HID1) as a repressor of ABA biosynthesis acting downstream of phyB during Arabidopsis thaliana seed germination. Loss of HID1 function led to delayed phyB-dependent seed germination. Photoactivated phyB promoted the accumulation of HID1 in the radicle within 48 h of imbibition. Our transcriptomics analysis showed that HID1 and phyB co-regulate the transcription of a common set of genes involved in ABA and GA metabolism. Through a forward genetic screen, we identified three ABA biosynthesis genes, ABA DEFICIENT 1 (ABA1), ABA2, and ABA3, as suppressors of HID1. We further demonstrated that HID1 directly inhibits the transcription of 9-CIS-EPOXYCAROTENOID DIOXYGENASE (NCED9), a gene encoding a key rate-limiting enzyme of ABA biosynthesis. HID1 interacts with ARABIDOPSIS TRITHORAX-RELATED7 (ATXR7), an H3K4me3 methyltransferase, inhibiting its occupancy and H3K4me3 modification at the NCED9 locus. Our study reveals a nuclear mechanism of phyB signaling transmitted through HID1 to control the internal homeostasis of ABA and GA, which gradually optimizes the transcriptional network during seed germination.
Collapse
Affiliation(s)
- Yuqiu Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yangyang Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - De Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Xiaoli Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuntong Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Vershinin AV, Elisafenko EA, Evtushenko EV. Genetic Redundancy in Rye Shows in a Variety of Ways. PLANTS (BASEL, SWITZERLAND) 2023; 12:282. [PMID: 36678994 PMCID: PMC9862056 DOI: 10.3390/plants12020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Fifty years ago Susumu Ohno formulated the famous C-value paradox, which states that there is no correlation between the physical sizes of the genome, i.e., the amount of DNA, and the complexity of the organism, and highlighted the problem of genome redundancy. DNA that does not have a positive effect on the fitness of organisms has been characterized as "junk or selfish DNA". The controversial concept of junk DNA remains viable. Rye is a convenient subject for yet another test of the correctness and scientific significance of this concept. The genome of cultivated rye, Secale cereale L., is considered one of the largest among species of the tribe Triticeae and thus it tops the average angiosperm genome and the genomes of its closest evolutionary neighbors, such as species of barley, Hordeum (by approximately 30-35%), and diploid wheat species, Triticum (approximately 25%). The review provides an analysis of the structural organization of various regions of rye chromosomes with a description of the molecular mechanisms contributing to their size increase during evolution and the classes of DNA sequences involved in these processes. The history of the development of the concept of eukaryotic genome redundancy is traced and the current state of this problem is discussed.
Collapse
Affiliation(s)
- Alexander V. Vershinin
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia
| | - Evgeny A. Elisafenko
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia
| | - Elena V. Evtushenko
- Institute of Molecular and Cellular Biology, SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia
| |
Collapse
|
12
|
Shen Y, Gan Y, Xiao Q, Huang Z, Liu J, Gong S, Wang Y, Yu W, Luo X, Ke C, You W. Divergent Carry-Over Effects of Hypoxia during the Early Development of Abalone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17836-17848. [PMID: 36479946 DOI: 10.1021/acs.est.2c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
After being exposed to environmental stimuli during early developmental stages, some organisms may gain or weaken physiological regulating abilities, which would have long-lasting effects on their performance. Environmental hypoxia events can have significant effects on marine organisms, but for breeding programs and other practical applications, it is important to further explore the long-term physiological effects of early hypoxia exposure in economically significant species. In this study, the Pacific abalone Haliotis discus hannai was exposed to moderate hypoxia (∼4 mg/L) from zygote to trochophora, and the assessments of hypoxia tolerance were conducted on the grow-out stage. The results revealed that juvenile abalones exposed to hypoxia at the early development stages were more hypoxia-tolerant but with slower weight growth, a phenomenon called the trade-off between growth and survival. These phenotypic effects driven by the hypoxia exposure were explained by strong selection of genes involved in signal transduction, autophagy, apoptosis, and hormone regulation. Moreover, long non-coding RNA regulation plays an important role modulating carry-over effects by controlling DNA replication and repair, signal transduction, myocardial activity, and hormone regulation. This study revealed that the ability to create favorable phenotypic differentiation through genetic selection and/or epigenetic regulation is important for the survival and development of aquatic animals in the face of rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Yawei Shen
- State Key Laboratory of Marine Environmental Science, College of the Environmental and Ecology, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
- Fujian Institute for Sustainable Oceans, Xiamen University, Xiamen361102, China
| | - Yang Gan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Qizhen Xiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Zekun Huang
- State Key Laboratory of Marine Environmental Science, College of the Environmental and Ecology, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Junyu Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Shihai Gong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Yi Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Wenchao Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen University, Xiamen361102, China
- Fujian Institute for Sustainable Oceans, Xiamen University, Xiamen361102, China
| |
Collapse
|
13
|
Jiang H, Hu L, Wu Q, Zhang B, Sun J, Li X. Sodium Selenite Regulates the Proliferation and Apoptosis of Gastric Cancer Cells by Suppressing the Expression of LncRNA HOXB-AS1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6356583. [PMID: 39280958 PMCID: PMC11401720 DOI: 10.1155/2022/6356583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 09/18/2024]
Abstract
Gastric carcinoma has a high incidence, accounting for approximately 6% of all cancers worldwide. The in vivo antitumor effect of sodium selenite on gastric carcinoma has been demonstrated. This study therefore aimed to further explore its targets in gastric cancer in vitro and elucidate its mechanism of action. The effects of inorganic sodium selenite (Na2SeO3) on apoptosis, proliferation, and invasion of gastric cancer cells were investigated, and the interaction between Na2SeO3 and expression of long noncoding RNA homeobox B cluster antisense RNA 1 (HOXB-AS1) was investigated to elucidate the specific mechanism of action of selenium on gastric cancer cell proliferation through regulation of HOXB-AS1. Na2SeO3 downregulated the expression of HOXB-AS1 in the human gastric cancer (HGC) cell lines, HGC-27, NCI-N87, and KATO III cells, while inhibiting their proliferation and invasion and inducing apoptosis. The upregulation of HOXB-AS1 produced the opposite results. Na2SeO3 was used to stimulate HGC-27 cells, which caused HOXB-AS1 overexpression. The cell counting kit-8 (CCK-8) assay revealed a decrease in cell proliferation, while western blotting, flow cytometry, and transwell migration assays showed the expression of apoptosis-related (Bad, Bcl-2, and cleaved-caspase-3) and invasion-related (MMP2, E-cadherin, and N-cadherin) proteins, indicating increased apoptosis and decreased invasion. We therefore conclude that Na2SeO3 inhibits the malignant progression of gastric cancer by downregulating the expression of HOXB-AS1 and thus could be used as a potential drug for its treatment.
Collapse
Affiliation(s)
- Hongsheng Jiang
- Department of Gastrointestinal Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
| | - Lingbo Hu
- Department of Health Management Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
| | - Quanfeng Wu
- Department of Gastrointestinal Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
| | - Bitao Zhang
- Department of Gastrointestinal Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
| | - Jianhua Sun
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
| | - Xiaoying Li
- Department of Gastrointestinal Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
| |
Collapse
|
14
|
Fadaei S, Zarepour F, Parvaresh M, Motamedzadeh A, Tamehri Zadeh SS, Sheida A, Shabani M, Hamblin MR, Rezaee M, Zarei M, Mirzaei H. Epigenetic regulation in myocardial infarction: Non-coding RNAs and exosomal non-coding RNAs. Front Cardiovasc Med 2022; 9:1014961. [PMID: 36440025 PMCID: PMC9685618 DOI: 10.3389/fcvm.2022.1014961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 08/13/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of deaths globally. The early diagnosis of MI lowers the rate of subsequent complications and maximizes the benefits of cardiovascular interventions. Many efforts have been made to explore new therapeutic targets for MI, and the therapeutic potential of non-coding RNAs (ncRNAs) is one good example. NcRNAs are a group of RNAs with many different subgroups, but they are not translated into proteins. MicroRNAs (miRNAs) are the most studied type of ncRNAs, and have been found to regulate several pathological processes in MI, including cardiomyocyte inflammation, apoptosis, angiogenesis, and fibrosis. These processes can also be modulated by circular RNAs and long ncRNAs via different mechanisms. However, the regulatory role of ncRNAs and their underlying mechanisms in MI are underexplored. Exosomes play a crucial role in communication between cells, and can affect both homeostasis and disease conditions. Exosomal ncRNAs have been shown to affect many biological functions. Tissue-specific changes in exosomal ncRNAs contribute to aging, tissue dysfunction, and human diseases. Here we provide a comprehensive review of recent findings on epigenetic changes in cardiovascular diseases as well as the role of ncRNAs and exosomal ncRNAs in MI, focusing on their function, diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Sara Fadaei
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrnoosh Parvaresh
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Shabani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Anesthesiology, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mehdi Rezaee
- Department of Anesthesiology, School of Medicine, Shahid Madani Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Zarei
- Tehran Heart Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Iqbal MA, Reyer H, Oster M, Hadlich F, Trakooljul N, Perdomo-Sabogal A, Schmucker S, Stefanski V, Roth C, Camarinha Silva A, Huber K, Sommerfeld V, Rodehutscord M, Wimmers K, Ponsuksili S. Multi-Omics Reveals Different Strategies in the Immune and Metabolic Systems of High-Yielding Strains of Laying Hens. Front Genet 2022; 13:858232. [PMID: 35432452 PMCID: PMC9010826 DOI: 10.3389/fgene.2022.858232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/10/2022] [Indexed: 01/22/2023] Open
Abstract
Lohmann Brown (LB) and Lohmann Selected Leghorn (LSL) are two commercially important laying hen strains due to their high egg production and excellent commercial suitability. The present study integrated multiple data sets along the genotype-phenotype map to better understand how the genetic background of the two strains influences their molecular pathways. In total, 71 individuals were analyzed (LB, n = 36; LSL, n = 35). Data sets include gut miRNA and mRNA transcriptome data, microbiota composition, immune cells, inositol phosphate metabolites, minerals, and hormones from different organs of the two hen strains. All complex data sets were pre-processed, normalized, and compatible with the mixOmics platform. The most discriminant features between two laying strains included 20 miRNAs, 20 mRNAs, 16 immune cells, 10 microbes, 11 phenotypic traits, and 16 metabolites. The expression of specific miRNAs and the abundance of immune cell types were related to the enrichment of immune pathways in the LSL strain. In contrast, more microbial taxa specific to the LB strain were identified, and the abundance of certain microbes strongly correlated with host gut transcripts enriched in immunological and metabolic pathways. Our findings indicate that both strains employ distinct inherent strategies to acquire and maintain their immune and metabolic systems under high-performance conditions. In addition, the study provides a new perspective on a view of the functional biodiversity that emerges during strain selection and contributes to the understanding of the role of host–gut interaction, including immune phenotype, microbiota, gut transcriptome, and metabolome.
Collapse
Affiliation(s)
- Muhammad Arsalan Iqbal
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Alvaro Perdomo-Sabogal
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
| | - Sonja Schmucker
- University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
| | - Volker Stefanski
- University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
| | - Christoph Roth
- University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
| | | | - Korinna Huber
- University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
| | - Vera Sommerfeld
- University of Hohenheim, Institute of Animal Science, Stuttgart, Germany
| | | | - Klaus Wimmers
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
- University Rostock, Faculty of Agricultural and Environmental Sciences, Rostock, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology, Institute of Genome Biology, Dummerstorf, Germany
- *Correspondence: Siriluck Ponsuksili,
| |
Collapse
|
16
|
Chen J, Liu Z, Ma L, Gao S, Fu H, Wang C, Lu A, Wang B, Gu X. Targeting Epigenetics and Non-coding RNAs in Myocardial Infarction: From Mechanisms to Therapeutics. Front Genet 2022; 12:780649. [PMID: 34987550 PMCID: PMC8721121 DOI: 10.3389/fgene.2021.780649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction (MI) is a complicated pathology triggered by numerous environmental and genetic factors. Understanding the effect of epigenetic regulation mechanisms on the cardiovascular disease would advance the field and promote prophylactic methods targeting epigenetic mechanisms. Genetic screening guides individualised MI therapies and surveillance. The present review reported the latest development on the epigenetic regulation of MI in terms of DNA methylation, histone modifications, and microRNA-dependent MI mechanisms and the novel therapies based on epigenetics.
Collapse
Affiliation(s)
- Jinhong Chen
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Zhichao Liu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Li Ma
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Shengwei Gao
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Huanjie Fu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Can Wang
- Acupuncture Department, The First Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Anmin Lu
- Department of TCM, Tianjin University of TCM, Tianjin, China
| | - Baohe Wang
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Xufang Gu
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| |
Collapse
|
17
|
Wedd L, Kucharski R, Maleszka R. DNA Methylation in Honey Bees and the Unresolved Questions in Insect Methylomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:159-176. [DOI: 10.1007/978-3-031-11454-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Sideris N, Dama P, Bayraktar S, Stiff T, Castellano L. LncRNAs in breast cancer: a link to future approaches. Cancer Gene Ther 2022; 29:1866-1877. [PMID: 35788171 PMCID: PMC9750866 DOI: 10.1038/s41417-022-00487-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 01/25/2023]
Abstract
Breast cancer affects millions of women each year. Despite recent advances in targeted treatments breast cancer remains a significant threat to women's health. In recent years the development of high-throughput sequencing technologies has advanced the field of transcriptomics shedding light on the role of non-coding RNAs (ncRNAs), including long ncRNAs (lncRNAs), in human cellular function and disease. LncRNAs are classified as transcripts longer than 200nt with no coding potential. These transcripts constitute a diverse group of regulatory molecules essential to the modulation of crucial cellular processes, which dysregulation of leads to disease. LncRNAs exert their regulatory functions through their sequences and by forming complex secondary and tertiary structures that interact with other transcripts, chromatin and/or proteins. Numerous studies have provided evidence of the involvement of LncRNAs in tumor development and disease progression. They possess multiple characteristics that make them novel therapeutic and diagnostic targets. Indeed, the discovery of a novel mechanism by which lncRNAs associated with proteins can induce the formation of phase-separated droplets broadens our understanding of the spatiotemporal control of cellular processes and opens up developing a new treatment. Nevertheless, the role and the molecular mechanisms of many lncRNAs in the regulation of cellular processes and cancer still remain elusive. This is due to the absence of a thorough characterization of the regulatory role of their loci and the functional impact of their aberrations in cancer biology. Here, we present some of the latest advances concerning the role of LncRNAs in breast cancer.
Collapse
Affiliation(s)
- Nikolaos Sideris
- grid.12082.390000 0004 1936 7590Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - Paola Dama
- grid.12082.390000 0004 1936 7590Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - Salih Bayraktar
- grid.12082.390000 0004 1936 7590Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - Thomas Stiff
- grid.12082.390000 0004 1936 7590Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - Leandro Castellano
- grid.12082.390000 0004 1936 7590Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK ,grid.7445.20000 0001 2113 8111Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
19
|
Ghafouri-Fard S, Abak A, Talebi SF, Shoorei H, Branicki W, Taheri M, Akbari Dilmaghani N. Role of miRNA and lncRNAs in organ fibrosis and aging. Biomed Pharmacother 2021; 143:112132. [PMID: 34481379 DOI: 10.1016/j.biopha.2021.112132] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is the endpoint of pathological remodeling. This process contributes to the pathogenesis of several chronic disorders and aging-associated organ damage. Different molecular cascades contribute to this process. TGF-β, WNT, and YAP/TAZ signaling pathways have prominent roles in this process. A number of long non-coding RNAs and microRNAs have been found to regulate organ fibrosis through modulation of the activity of related signaling pathways. miR-144-3p, miR-451, miR-200b, and miR-328 are among microRNAs that participate in the pathology of cardiac fibrosis. Meanwhile, miR-34a, miR-17-5p, miR-122, miR-146a, and miR-350 contribute to liver fibrosis in different situations. PVT1, MALAT1, GAS5, NRON, PFL, MIAT, HULC, ANRIL, and H19 are among long non-coding RNAs that participate in organ fibrosis. We review the impact of long non-coding RNAs and microRNAs in organ fibrosis and aging-related pathologies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Shu Y, Luo T, Wang M, Zhang Y, Zhang L, Xiao Z, Wang Q, Zhang Q, Zou J, Yu C, Xu S, Yu T, Zhou L, Yu S. Gastrodin promotes CNS myelination via a lncRNA Gm7237/miR-142a/MRF pathway. RNA Biol 2021; 18:1279-1290. [PMID: 33151124 PMCID: PMC8354603 DOI: 10.1080/15476286.2020.1841976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Treatment of central nervous system (CNS) demyelination is greatly hindered by lack of the knowledge regarding to underlying molecular mechanisms as well as therapeutic agents. Here, we report a novel small molecule agent, gastrodin (GAS), which can significantly promote CNS myelination in in vivo mice models. By using high-throughput sequencing analysis, we discover a key long non-coding RNA Gm7237 that can enhance CNS myelination and is up-regulated by GAS. Through using bioinformatic analysis and experimental validations, we further unravel that microRNA-142a (miR-142a) and its target myelin gene regulatory factor (MRF) is under the direct regulation by Gm7237. Finally, we demonstrate that Gm7237/miR-142a/MRF axis is the key pathway involved in CNS myelination mediated by GAS. Overall, our results provide not only a novel agent for therapeutic treatment of CNS demyelination but also a molecular basis responsible for GAS-promoted CNS myelination.
Collapse
Affiliation(s)
- Yue Shu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tianyuan Luo
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Mingda Wang
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Lin Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Zhi Xiao
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Qianxing Wang
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Qiang Zhang
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
- Department of Cerebrovascular, Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Jia Zou
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Tian Yu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Liang Zhou
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Shouyang Yu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
21
|
Parnigoni A, Caon I, Moretto P, Viola M, Karousou E, Passi A, Vigetti D. The role of the multifaceted long non-coding RNAs: A nuclear-cytosolic interplay to regulate hyaluronan metabolism. Matrix Biol Plus 2021; 11:100060. [PMID: 34435179 PMCID: PMC8377009 DOI: 10.1016/j.mbplus.2021.100060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
In the extracellular matrix (ECM), the glycosaminoglycan (GAG) hyaluronan (HA) has different physiological roles favouring hydration, elasticity and cell survival. Three different isoforms of HA synthases (HAS1, 2, and 3) are responsible for the production of HA. In several pathologies the upregulation of HAS enzymes leads to an abnormal HA accumulation causing cell dedifferentiation, proliferation and migration thus favouring cancer progression, fibrosis and vascular wall thickening. An intriguing new player in HAS2 gene expression regulation and HA production is the long non-coding RNA (lncRNA) hyaluronan synthase 2 antisense 1 (HAS2-AS1). A significant part of mammalian genomes corresponds to genes that transcribe lncRNAs; they can regulate gene expression through several mechanisms, being involved not only in maintaining the normal homeostasis of cells and tissues, but also in the onset and progression of different diseases, as demonstrated by the increasing number of studies published through the last decades. HAS2-AS1 is no exception: it can be localized both in the nucleus and in the cytosol, regulating cancer cells as well as vascular smooth muscle cells behaviour. Hyaluronan is a component of the extracellular matrix and is synthetised by three isoenzymes named HAS1, 2, and 3. In several pathologies an upregulation of HAS2 leads to an abnormal accumulation of HA. The long non-coding RNA is a new specific epigenetic regulator of HAS2. In the nucleus HAS2-AS1 modulates chromatin structure around HAS2 promoter increasing transcription. In the cytosol, HAS2-AS1 can interact with several miRNAs altering the expression of several genes as well as can stabilise HAS2 mRNA forming RNA: RNA duplex.
Collapse
Key Words
- 4-MU, 4-methylubelliferone
- 4-MUG, 4-methylumbelliferyl glucuronide
- Atherosclerosis
- Cancer
- ECM, extracellular matrix
- EMT, epithelial to mesenchymal transition
- Epigenetics
- Extracellular matrix
- GAG, glycosaminoglycans
- Glycosaminoglycans
- HA, hyaluronan
- HAS2
- HAS2, hyaluronan synthase 2
- HAS2-AS1
- HAS2–AS1, hyaluronan synthase 2 natural antisense 1
- HIFs, hypoxia-inducible factors
- NF-κB, nuclear factor κ–light-chain enhancer of activated B cell
- PG, proteoglycan
- PTM, post-translational modification
- Proteoglycans
- RBP, RNA-binding protein
- SIRT1, sirtuin 1
- SMCs, smooth muscle cells
- TNF-α, tumour necrosis factor alpha
- UDP-GlcNAc, UDP-N-acetylglucosamine
- UDP-GlcUA, UDP-glucuronic acid
- ceRNA, competitive endogenous RNA
- lncRNA, long non-coding RNA
- miRNA, micro-RNA
Collapse
Affiliation(s)
- Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Paola Moretto
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, via J.H. Dunant 5, 21100 Varese, Italy
| |
Collapse
|
22
|
Ali A, Murani E, Hadlich F, Liu X, Wimmers K, Ponsuksili S. In Utero Fetal Weight in Pigs Is Regulated by microRNAs and Their Target Genes. Genes (Basel) 2021; 12:genes12081264. [PMID: 34440438 PMCID: PMC8393551 DOI: 10.3390/genes12081264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
Impaired skeletal muscle growth in utero can result in reduced birth weight and poor carcass quality in pigs. Recently, we showed the role of microRNAs (miRNAs) and their target genes in prenatal skeletal muscle development and pathogenesis of intrauterine growth restriction (IUGR). In this study, we performed an integrative miRNA-mRNA transcriptomic analysis in longissimus dorsi muscle (LDM) of pig fetuses at 63 days post conception (dpc) to identify miRNAs and genes correlated to fetal weight. We found 13 miRNAs in LDM significantly correlated to fetal weight, including miR-140, miR-186, miR-101, miR-15, miR-24, miR-29, miR-449, miR-27, miR-142, miR-99, miR-181, miR-199, and miR-210. The expression of these miRNAs decreased with an increase in fetal weight. We also identified 1315 genes significantly correlated to fetal weight at 63 dpc, of which 135 genes were negatively correlated as well as identified as potential targets of the above-listed 13 miRNAs. These miRNAs and their target genes enriched pathways and biological processes important for fetal growth, development, and metabolism. These results indicate that the transcriptomic profile of skeletal muscle can be used to predict fetal weight, and miRNAs correlated to fetal weight can serve as potential biomarkers of prenatal fetal health and growth.
Collapse
Affiliation(s)
- Asghar Ali
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.A.); (E.M.); (F.H.); (X.L.); (K.W.)
| | - Eduard Murani
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.A.); (E.M.); (F.H.); (X.L.); (K.W.)
| | - Frieder Hadlich
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.A.); (E.M.); (F.H.); (X.L.); (K.W.)
| | - Xuan Liu
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.A.); (E.M.); (F.H.); (X.L.); (K.W.)
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.A.); (E.M.); (F.H.); (X.L.); (K.W.)
- Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.A.); (E.M.); (F.H.); (X.L.); (K.W.)
- Correspondence: ; Tel.: +49-38208-68703; Fax: +49-38208-68702
| |
Collapse
|
23
|
Long non-coding RNAs in neurodegenerative diseases. Neurochem Int 2021; 148:105096. [PMID: 34118305 DOI: 10.1016/j.neuint.2021.105096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/30/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases are gradually becoming the main burden of society. The morbidity and mortality caused by neurodegenerative diseases remain significant health-care concerns. For most neurodegenerative diseases, there are no effective treatments. Over the past few decades, in a quest to exploit efficacious disease-modifying therapies for the treatment of neurodegenerative diseases, disease mechanisms, reliable biomarkers and therapeutic targets have become a research priority. At present, lncRNA is an area with potential research value. In this article, we first summarize some of the existing results of research into lncRNAs, including origin, molecular characteristics, location types, and functional types. We then introduce the possible functions of lncRNAs in different neurodegenerative diseases. Furthermore, some lncRNAs which show promise as biomarkers or potential therapeutic targets are systematically summarized.
Collapse
|
24
|
Hussen BM, Azimi T, Hidayat HJ, Taheri M, Ghafouri-Fard S. Long Non-coding RNA RMRP in the Pathogenesis of Human Disorders. Front Cell Dev Biol 2021; 9:676588. [PMID: 33996836 PMCID: PMC8120005 DOI: 10.3389/fcell.2021.676588] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
RNA component of mitochondrial RNA processing endoribonuclease (RMRP) is a non-coding transcript firstly acknowledged for its association with the cartilage-hair hypoplasia (CHH) syndrome, a rare autosomal recessive condition. This transcript has been spotted in both nucleus and mitochondria. In addition to its role in the pathogenesis of CHH, RMRP participates in the pathogenesis of cancers. Independent studies in bladder cancer, colon cancer, hepatocellular carcinoma, lung cancer, breast carcinoma and multiple myeloma have confirmed the oncogenic effects of RMRP. Mechanistically, RMRP serves as a sponge for some miRNAs such as miR-206, miR-613, and miR-217. In addition to these miRNAs, expressions of tens of miRNAs have been altered following RMRP silencing, implying the vast extent of RMRP/miRNA network. In the present narrative review, we explain the role of RMRP in the development of cancers and some other non-malignant disorders.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Tahereh Azimi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahadddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Villarreal LP, Witzany G. Social Networking of Quasi-Species Consortia drive Virolution via Persistence. AIMS Microbiol 2021; 7:138-162. [PMID: 34250372 PMCID: PMC8255905 DOI: 10.3934/microbiol.2021010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/25/2021] [Indexed: 12/31/2022] Open
Abstract
The emergence of cooperative quasi-species consortia (QS-C) thinking from the more accepted quasispecies equations of Manfred Eigen, provides a conceptual foundation from which concerted action of RNA agents can now be understood. As group membership becomes a basic criteria for the emergence of living systems, we also start to understand why the history and context of social RNA networks become crucial for survival and function. History and context of social RNA networks also lead to the emergence of a natural genetic code. Indeed, this QS-C thinking can also provide us with a transition point between the chemical world of RNA replicators and the living world of RNA agents that actively differentiate self from non-self and generate group identity with membership roles. Importantly the social force of a consortia to solve complex, multilevel problems also depend on using opposing and minority functions. The consortial action of social networks of RNA stem-loops subsequently lead to the evolution of cellular organisms representing a tree of life.
Collapse
|
26
|
Reverse Engineering of Ewing Sarcoma Regulatory Network Uncovers PAX7 and RUNX3 as Master Regulators Associated with Good Prognosis. Cancers (Basel) 2021; 13:cancers13081860. [PMID: 33924679 PMCID: PMC8070584 DOI: 10.3390/cancers13081860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 12/24/2022] Open
Abstract
Ewing Sarcoma (ES) is a rare malignant tumor occurring most frequently in adolescents and young adults. The ES hallmark is a chromosomal translocation between the chromosomes 11 and 22 that results in an aberrant transcription factor (TF) through the fusion of genes from the FET and ETS families, commonly EWSR1 and FLI1. The regulatory mechanisms behind the ES transcriptional alterations remain poorly understood. Here, we reconstruct the ES regulatory network using public available transcriptional data. Seven TFs were identified as potential MRs and clustered into two groups: one composed by PAX7 and RUNX3, and another composed by ARNT2, CREB3L1, GLI3, MEF2C, and PBX3. The MRs within each cluster act as reciprocal agonists regarding the regulation of shared genes, regulon activity, and implications in clinical outcome, while the clusters counteract each other. The regulons of all the seven MRs were differentially methylated. PAX7 and RUNX3 regulon activity were associated with good prognosis while ARNT2, CREB3L1, GLI3, and PBX3 were associated with bad prognosis. PAX7 and RUNX3 appear as highly expressed in ES biopsies and ES cell lines. This work contributes to the understanding of the ES regulome, identifying candidate MRs, analyzing their methilome and pointing to potential prognostic factors.
Collapse
|
27
|
Cohen I, Bar C, Liu H, Valdes VJ, Zhao D, Galbo PM, Silva JM, Koseki H, Zheng D, Ezhkova E. Polycomb complexes redundantly maintain epidermal stem cell identity during development. Genes Dev 2021; 35:354-366. [PMID: 33602871 PMCID: PMC7919412 DOI: 10.1101/gad.345363.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022]
Abstract
In this study, Cohen et al. sought to understand the functional contribution of PRC1 and PRC2, which largely overlap in their genomic binding and cooperate to establish repressive chromatin domains demarcated by H2AK119ub and H3K27me3, to gene repression. By using the developing murine epidermis as a paradigm, they uncovered a previously unappreciated functional redundancy between Polycomb complexes, and their findings show how PRC1 and PRC2 function as two independent counterparts, providing a repressive safety net that protects and preserves lineage identity. Polycomb repressive complex 1 (PRC1) and PRC2 are critical epigenetic developmental regulators. PRC1 and PRC2 largely overlap in their genomic binding and cooperate to establish repressive chromatin domains demarcated by H2AK119ub and H3K27me3. However, the functional contribution of each complex to gene repression has been a subject of debate, and understanding of its physiological significance requires further studies. Here, using the developing murine epidermis as a paradigm, we uncovered a previously unappreciated functional redundancy between Polycomb complexes. Coablation of PRC1 and PRC2 in embryonic epidermal progenitors resulted in severe defects in epidermal stratification, a phenotype not observed in the single PRC1-null or PRC2-null epidermis. Molecular dissection indicated a loss of epidermal identity that was coupled to a strong derepression of nonlineage transcription factors, otherwise repressed by either PRC1 or PRC2 in the absence of its counterpart. Ectopic expression of subsets of PRC1/2-repressed nonepidermal transcription factors in wild-type epidermal stem cells was sufficient to suppress epidermal identity genes, highlighting the importance of functional redundancy between PRC1 and PRC2. Altogether, our studies show how PRC1 and PRC2 function as two independent counterparts, thereby providing a repressive safety net that protects and preserves lineage identity.
Collapse
Affiliation(s)
- Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Carmit Bar
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Hequn Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Victor J Valdes
- Department of Cell Biology and Development, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Dejian Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Yale Center for Genome Analysis, Yale University, New Haven, Connecticut 06510, USA.,Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Phillip M Galbo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Jose M Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (RIKEN-IMS), Tsurumi-ku, Yokohama 230-0045, Japan.,AMED-CREST, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
28
|
Jiang Y, Sun-Waterhouse D, Chen Y, Li F, Li D. Epigenetic mechanisms underlying the benefits of flavonoids in cardiovascular health and diseases: are long non-coding RNAs rising stars? Crit Rev Food Sci Nutr 2021; 62:3855-3872. [PMID: 33427492 DOI: 10.1080/10408398.2020.1870926] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases (CVDs) rank as the first leading cause of death globally. High dietary polyphenol (especially flavonoids) intake has strongly been associated with low incidence of the primary outcome, overall mortality, blood pressure, inflammatory biomarkers, onset of new-onset type 2 diabetes mellitus (T2DM), and obesity. Phytogenic flavonoids affect the physiological and pathological processes of CVDs by modulating various biochemical signaling pathways. Non-coding RNAs (ncRNAs) have attracted increasing attention as fundamental regulator of gene expression involved in CVDs. Among the different ncRNA subgroups, long ncRNAs (lncRNAs) have recently emerged as regulatory eukaryotic transcripts and therapeutic targets with important and diverse functions in health and diseases. lncRNAs may be associated with the initiation, development and progression of CVDs by modulating acute and chronic inflammation, adipogenesis and lipid metabolism, and cellular physiology. This review summarizes this research on the modulatory effects of lncRNAs and their roles in mediating cellular processes. The mechanisms of action of flavonoids underlying their therapeutic effects on CVDs are also discussed. Based on our review, flavonoids might facilitate a significant epigenetic modification as part (if not full) of their tissue-/cell-related biological effects. This finding may be attributed to their interaction with cellular signaling pathways involved in chronic diseases. Certain lncRNAs might be the target of specific flavonoids, and some critical signaling processes involved in the intervention of CVDs might mediate the therapeutic roles of flavonoids.
Collapse
Affiliation(s)
- Yang Jiang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian, PR China
| | | | - Yilun Chen
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian, PR China
| | - Feng Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian, PR China
| | - Dapeng Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian, PR China
| |
Collapse
|
29
|
Ruggeri E, Lira-Albarrán S, Grow EJ, Liu X, Harner R, Maltepe E, Ramalho-Santos M, Donjacour A, Rinaudo P. Sex-specific epigenetic profile of inner cell mass of mice conceived in vivo or by IVF. Mol Hum Reprod 2020; 26:866-878. [PMID: 33010164 PMCID: PMC7821709 DOI: 10.1093/molehr/gaaa064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
The preimplantation stage of development is exquisitely sensitive to environmental stresses, and changes occurring during this developmental phase may have long-term health effects. Animal studies indicate that IVF offspring display metabolic alterations, including hypertension, glucose intolerance and cardiac hypertrophy, often in a sexual dimorphic fashion. The detailed nature of epigenetic changes following in-vitro culture is, however, unknown. This study was performed to evaluate the epigenetic (using whole-genome bisulfite sequencing (WGBS) and assay for transposase-accessible chromatin using sequencing (ATAC-seq)) and transcriptomic changes (using RNA-seq) occurring in the inner cell mass (ICM) of male or female mouse embryos generated in vivo or by IVF. We found that the ICM of IVF embryos, compared to the in-vivo ICM, differed in 3% of differentially methylated regions (DMRs), of which 0.1% were located on CpG islands. ATAC-seq revealed that 293 regions were more accessible and 101 were less accessible in IVF embryos, while RNA-seq revealed that 21 genes were differentially regulated in IVF embryos. Functional enrichment analysis revealed that stress signalling (STAT and NF-kB signalling), developmental processes and cardiac hypertrophy signalling showed consistent changes in WGBS and ATAC-seq platforms. In contrast, male and female embryos showed minimal changes. Male ICM had an increased number of significantly hyper-methylated DMRs, while only 27 regions showed different chromatin accessibility and only one gene was differentially expressed. In summary, this study provides the first comprehensive analysis of DNA methylation, chromatin accessibility and RNA expression changes induced by IVF in male and female ICMs. This dataset can be of value to all researchers interested in the developmental origin of health and disease (DOHaD) hypothesis and might lead to a better understanding of how early embryonic manipulation may affect adult health.
Collapse
Affiliation(s)
- Elena Ruggeri
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
- San Diego Zoo Global, Institute for Conservation Research, Reproductive Sciences, Escondido, CA, 92027, USA
| | - Saúl Lira-Albarrán
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Edward J Grow
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Xiaowei Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Royce Harner
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, CA, 94143, USA
| | - Miguel Ramalho-Santos
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, ON, M5G1X5, Canada
- Department of Molecular Genetics, University of Toronto, ON, M5S1A8, Canada
| | - Annemarie Donjacour
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Paolo Rinaudo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
30
|
Palazzo AF, Koonin EV. Functional Long Non-coding RNAs Evolve from Junk Transcripts. Cell 2020; 183:1151-1161. [PMID: 33068526 DOI: 10.1016/j.cell.2020.09.047] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022]
Abstract
Transcriptome studies reveal pervasive transcription of complex genomes, such as those of mammals. Despite popular arguments for functionality of most, if not all, of these transcripts, genome-wide analysis of selective constraints indicates that most of the produced RNA are junk. However, junk is not garbage. On the contrary, junk transcripts provide the raw material for the evolution of diverse long non-coding (lnc) RNAs by non-adaptive mechanisms, such as constructive neutral evolution. The generation of many novel functional entities, such as lncRNAs, that fuels organismal complexity does not seem to be driven by strong positive selection. Rather, the weak selection regime that dominates the evolution of most multicellular eukaryotes provides ample material for functional innovation with relatively little adaptation involved.
Collapse
Affiliation(s)
- Alexander F Palazzo
- Department of Biochemistry, University of Toronto, Toronto, ON M5G 1M1, Canada.
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
31
|
Dong Z, Liu X, Tan L. Biophysical insights into the interaction of two enantiomers of Ru(II) complex [Ru(bpy) 2(7-CH 3-dppz)] 2+ with the RNA poly(U-A⁎U) triplex. J Biol Inorg Chem 2020; 25:1085-1095. [PMID: 33040210 DOI: 10.1007/s00775-020-01825-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 09/28/2020] [Indexed: 01/14/2023]
Abstract
To determine the factors affecting the stabilization of RNA triple-stranded structure by chiral Ru(II) polypyridyl complexes, a new pair of enantiomers, ∆-[Ru(bpy)2(7-CH3-dppz)]2+ (∆-1; bpy = 2,2'-bipyridine, 7-CH3-dppz = 7-methyl-dipyrido[3,2-a,2',3'-c]phenazine) and Λ-[Ru(bpy)2(7-CH3-dppz)]2+ (Λ-1), have been synthesized and characterized in this work. Binding properties of the two enantiomers with the RNA poly(U-A⁎U) triplex (where "-" denotes the Watson - Crick base pairing and "⁎" denotes the Hoogsteen base pairing) have been studied by spectroscopy and hydrodynamics methods. Under the conditions used in this study, changes in absorption spectra of the two enantiomers are not very different from each other when bound to the triplex, although the binding affinity of ∆-1 is higher than that of Λ-1. Fluorescence titrations and viscosity experiments give convincing evidence for a true intercalative binding of enantiomers with the triplex. However, melting experiments indicated that the two enantiomers selectively stabilized the triplex. The enantiomer ∆-1 stabilize the template duplex and third-strand of the triplex, while it's more effective for stabilization of the template duplex. In stark contrast to ∆-1, Λ-1 stabilizes the triplex without any effect on the third-strand stabilization, suggesting this one extremely prefers to stabilize the template duplex rather than third-strand. Besides, the triplex stabilization effect of ∆-1 is more marked in comparison with that of Λ-1. The obtained results suggest that substituent effects and chiralities of Ru(II) polypyridyl complexes play important roles in the triplex stabilization. Complexes Λ/Δ-[Ru(bpy)2(7-CH3-dppz)]2+ (Λ/Δ-1; bpy = 2,2'-bipyridine, 7-CH3-dppz = 7-methyl-dipyrido[3,2-a,2',3'-c]phenazine) were prepared as stabilizers for poly(U-A ∗ U) triplex. Results suggest the triplex stabilization depends the chiral structures of Λ/Δ-1, indicating that [Ru(bpy)2(7-CH3-dppz)]2+ is a non-specific intercalator for poly(U-A ∗ U) investigated in this work.
Collapse
Affiliation(s)
- Zhan Dong
- College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Xiaohua Liu
- Academic Affairs Office, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Lifeng Tan
- Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, 411105, People's Republic of China. .,Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|
32
|
Lambert K, Hunter RG, Bartlett AA, Lapp HE, Kent M. In search of optimal resilience ratios: Differential influences of neurobehavioral factors contributing to stress-resilience spectra. Front Neuroendocrinol 2020; 56:100802. [PMID: 31738947 DOI: 10.1016/j.yfrne.2019.100802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/07/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022]
Abstract
The ability to adapt to stressful circumstances, known as emotional resilience, is a key factor in the maintenance of mental health. Several individual biomarkers of the stress response (e.g., corticosterone) that influence an animal's position along the continuum that ranges from adaptive allostasis to maladaptive allostatic load have been identified. Extending beyond specific biomarkers of stress responses, however, it is also important to consider stress-related responses relative to other relevant responses for a thorough understanding of the underpinnings of adaptive allostasis. In this review, behavioral, neurobiological, developmental and genomic variables are considered in the context of emotional resilience [e.g., explore/exploit behavioral tendencies; DHEA/CORT ratios and relative proportions of protein-coding/nonprotein-coding (transposable) genomic elements]. As complex and multifaceted relationships between pertinent allostasis biomediators are identified, translational applications for optimal resilience are more likely to emerge as effective therapeutic strategies.
Collapse
Affiliation(s)
- Kelly Lambert
- Dept of Psychology, B326 Gottwald Science Center, University of Richmond, VA 23173, United States.
| | - Richard G Hunter
- Dept of Psychology, University of Massachusetts-Boston, 100 Morrissey Blvd., Boston, MA 00252, United States
| | - Andrew A Bartlett
- Dept of Psychology, University of Massachusetts-Boston, 100 Morrissey Blvd., Boston, MA 00252, United States
| | - Hannah E Lapp
- Dept of Psychology, University of Massachusetts-Boston, 100 Morrissey Blvd., Boston, MA 00252, United States
| | - Molly Kent
- Dept of Psychology, B326 Gottwald Science Center, University of Richmond, VA 23173, United States
| |
Collapse
|
33
|
Nguyen ND, Blaby IK, Wang D. ManiNetCluster: a novel manifold learning approach to reveal the functional links between gene networks. BMC Genomics 2019; 20:1003. [PMID: 31888454 PMCID: PMC6936142 DOI: 10.1186/s12864-019-6329-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The coordination of genomic functions is a critical and complex process across biological systems such as phenotypes or states (e.g., time, disease, organism, environmental perturbation). Understanding how the complexity of genomic function relates to these states remains a challenge. To address this, we have developed a novel computational method, ManiNetCluster, which simultaneously aligns and clusters gene networks (e.g., co-expression) to systematically reveal the links of genomic function between different conditions. Specifically, ManiNetCluster employs manifold learning to uncover and match local and non-linear structures among networks, and identifies cross-network functional links. RESULTS We demonstrated that ManiNetCluster better aligns the orthologous genes from their developmental expression profiles across model organisms than state-of-the-art methods (p-value <2.2×10-16). This indicates the potential non-linear interactions of evolutionarily conserved genes across species in development. Furthermore, we applied ManiNetCluster to time series transcriptome data measured in the green alga Chlamydomonas reinhardtii to discover the genomic functions linking various metabolic processes between the light and dark periods of a diurnally cycling culture. We identified a number of genes putatively regulating processes across each lighting regime. CONCLUSIONS ManiNetCluster provides a novel computational tool to uncover the genes linking various functions from different networks, providing new insight on how gene functions coordinate across different conditions. ManiNetCluster is publicly available as an R package at https://github.com/daifengwanglab/ManiNetCluster.
Collapse
Affiliation(s)
- Nam D Nguyen
- Deparment of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ian K Blaby
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA. .,US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, 4720, CA, USA.
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, 53726, WI, USA. .,Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA.
| |
Collapse
|
34
|
Begolli R, Sideris N, Giakountis A. LncRNAs as Chromatin Regulators in Cancer: From Molecular Function to Clinical Potential. Cancers (Basel) 2019; 11:E1524. [PMID: 31658672 PMCID: PMC6826483 DOI: 10.3390/cancers11101524] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/28/2019] [Accepted: 10/06/2019] [Indexed: 12/15/2022] Open
Abstract
During the last decade, high-throughput sequencing efforts in the fields of transcriptomics and epigenomics have shed light on the noncoding part of the transcriptome and its potential role in human disease. Regulatory noncoding RNAs are broadly divided into short and long noncoding transcripts. The latter, also known as lncRNAs, are defined as transcripts longer than 200 nucleotides with low or no protein-coding potential. LncRNAs form a diverse group of transcripts that regulate vital cellular functions through interactions with proteins, chromatin, and even RNA itself. Notably, an important regulatory aspect of these RNA species is their association with the epigenetic machinery and the recruitment of its regulatory apparatus to specific loci, resulting in DNA methylation and/or post-translational modifications of histones. Such epigenetic modifications play a pivotal role in maintaining the active or inactive transcriptional state of chromatin and are crucial regulators of normal cellular development and tissue-specific gene expression. Evidently, aberrant expression of lncRNAs that interact with epigenetic modifiers can cause severe epigenetic disruption and is thus is closely associated with altered gene function, cellular dysregulation, and malignant transformation. Here, we survey the latest breakthroughs concerning the role of lncRNAs interacting with the epigenetic machinery in various forms of cancer.
Collapse
Affiliation(s)
- Rodiola Begolli
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece.
| | - Nikos Sideris
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece.
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece.
- B.S.R.C "Alexander Fleming", 34 Fleming str, 16672 Vari, Greece.
| |
Collapse
|
35
|
Gooding AJ, Parker KA, Valadkhan S, Schiemann WP. The IncRNA BORG: A novel inducer of TNBC metastasis, chemoresistance, and disease recurrence. ACTA ACUST UNITED AC 2019; 5. [PMID: 31435529 DOI: 10.20517/2394-4722.2019.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although greater than 90% of breast cancer-related mortality can be attributed to metastases, the molecular mechanisms underpinning the dissemination of primary breast tumor cells and their ability to establish malignant lesions in distant tissues remain incompletely understood. Genomic and transcriptomic analyses identified a class of transcripts called long noncoding RNA (lncRNA), which interact both directly and indirectly with key components of gene regulatory networks to alter cell proliferation, invasion, and metastasis. We identified a pro-metastatic lncRNA BORG whose aberrant expression promotes metastatic relapse by reactivating proliferative programs in dormant disseminated tumor cells (DTCs). BORG expression is broadly and strongly induced by environmental and chemotherapeutic stresses, a transcriptional response that facilitates the survival of DTCs. Transcriptomic reprogramming in response to BORG resulted in robust signaling via survival and viability pathways, as well as decreased activation of cell death pathways. As such, BORG expression acts as a (i) marker capable of predicting which breast cancer patients are predisposed to develop secondary metastatic lesions, and (ii) unique therapeutic target to maximize chemosensitivity of DTCs. Here we review the molecular and cellular factors that contribute to the pathophysiological activities of BORG during its regulation of breast cancer metastasis, chemoresistance, and disease recurrence.
Collapse
Affiliation(s)
- Alex J Gooding
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kimberly A Parker
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
36
|
Broecker F, Moelling K. What viruses tell us about evolution and immunity: beyond Darwin? Ann N Y Acad Sci 2019; 1447:53-68. [PMID: 31032941 PMCID: PMC6850104 DOI: 10.1111/nyas.14097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/09/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022]
Abstract
We describe mechanisms of genetic innovation mediated by viruses and related elements that, during evolution, caused major genetic changes beyond what was anticipated by Charles Darwin. Viruses and related elements introduced genetic information and have shaped the genomes and immune systems of all cellular life forms. None of these mechanisms contradict Darwin's theory of evolution but extend it by means of sequence information that has recently become available. Not only do small increments of genetic information contribute to evolution, but also do major events such as infection by viruses or bacteria, which can supply new genetic information to a host by horizontal gene transfer. Thereby, viruses and virus-like elements act as major drivers of evolution.
Collapse
Affiliation(s)
- Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
37
|
Zhang Y, Zhang D, Lv J, Wang S, Zhang Q. LncRNA SNHG15 acts as an oncogene in prostate cancer by regulating miR-338-3p/FKBP1A axis. Gene 2019; 705:44-50. [PMID: 30981837 DOI: 10.1016/j.gene.2019.04.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 12/26/2022]
Abstract
Long non-coding RNAs (lncRNAs) are crucial regulators in the progression of various diseases. Although the role of lncRNAs in prostate cancer (PCa) has been studied in recent years, there are still numerous lncRNAs need to be elucidated. This study aims to detect the role of lncRNA small nucleolar RNA host gene 15 (SNHG15) in human prostate cancer. Using qRT-PCR analysis, we identified the upregulation of SNHG15 in PCa cell lines. Loss-of function assays were conducted to determine the regulatory effect of SNHG15 on PCa cell proliferation, migration and epithelial-mesenchymal transition (EMT). According to the results of functional assays, we found that knockdown of SNHG15 impaired cell viability, suppressed cell proliferation, inhibited cell migration and invasion, reversed EMT progress. All these findings revealed the oncogenic function of SNHG15 in PCa. Mechanism investigation revealed that SNHG15 was located in the cytoplasm of PCa cells and acted as a molecular sponge of microRNA-338-3p (miR-338-3p). Moreover, FKBP prolyl isomerase 1A (FKBP1A) was a target of miR-338-3p. This investigation demonstrated that SNHG15 may serve as a competing endogenous RNA (ceRNA) to regulate miR-338-3p and FKBP1A. Finally, the involvement of miR-338-3p and FKBP1A in SNHG15-mediated biological function was demonstrated by performing rescue assays. In summary, our study revealed the function of a novel pathway in PCa.
Collapse
Affiliation(s)
- Yuelong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Dahong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jia Lv
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Shuai Wang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Qi Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
38
|
Sparber P, Filatova A, Khantemirova M, Skoblov M. The role of long non-coding RNAs in the pathogenesis of hereditary diseases. BMC Med Genomics 2019; 12:42. [PMID: 30871545 PMCID: PMC6416829 DOI: 10.1186/s12920-019-0487-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Thousands of long non-coding RNA (lncRNA) genes are annotated in the human genome. Recent studies showed the key role of lncRNAs in a variety of fundamental cellular processes. Dysregulation of lncRNAs can drive tumorigenesis and they are now considered to be a promising therapeutic target in cancer. However, how lncRNAs contribute to the development of hereditary diseases in human is still mostly unknown. Results This review is focused on hereditary diseases in the pathogenesis of which long non-coding RNAs play an important role. Conclusions Fundamental research in the field of molecular genetics of lncRNA is necessary for a more complete understanding of their significance. Future research will help translate this knowledge into clinical practice which will not only lead to an increase in the diagnostic rate but also in the future can help with the development of etiotropic treatments for hereditary diseases.
Collapse
Affiliation(s)
- Peter Sparber
- Research Center for Medical Genetics, Moscow, Russia.
| | | | - Mira Khantemirova
- Novosibirsk State University, Novosibirsk, Russia.,Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Mikhail Skoblov
- Research Center for Medical Genetics, Moscow, Russia.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
39
|
Das R, Feng FY, Selth LA. Long non-coding RNAs in prostate cancer: Biological and clinical implications. Mol Cell Endocrinol 2019; 480:142-152. [PMID: 30391670 DOI: 10.1016/j.mce.2018.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/12/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022]
Abstract
Prostate cancer (PCa) is a major health issue in the Western world. Current clinical imperatives for this disease include better stratification of indolent versus aggressive disease to enable improved patient management, as well as the identification of more effective therapies for the prevention and treatment of metastatic and therapy-resistant PCa. The advent of next-generation transcriptomics led to the identification of an important class of molecules, long non-coding RNAs (lncRNAs). LncRNAs have critical functions in normal physiology, but their dysregulation has also been implicated in the development and progression of a variety of cancers, including PCa. Importantly, a subset of lncRNAs are highly prostate-specific, suggesting potential for utility as both biomarkers and therapeutic targets. In this review, we summarise the biology of lncRNAs and their mechanisms of action in the development and progression of prostate cancer. Additionally, we cast a critical eye over the potential for this class of molecules to impact on clinical practice.
Collapse
Affiliation(s)
- Rajdeep Das
- Department of Radiation Oncology, University of California San Francisco, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, USA.
| | - Felix Y Feng
- Department of Radiation Oncology, University of California San Francisco, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, USA; Department of Urology, University of California San Francisco, USA
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
40
|
Abstract
Function is an onerous concept, as the recent study by Steven Salzberg and colleagues demonstrates. We should be careful and always specific in using the ‘F-word’.
Collapse
Affiliation(s)
- W Ford Doolittle
- Department of Biochemistry and Molecular Biology, Dalhousie University Faculty of Medicine, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
41
|
Developmental Dynamics of Long Noncoding RNA Expression during Sexual Fruiting Body Formation in Fusarium graminearum. mBio 2018; 9:mBio.01292-18. [PMID: 30108170 PMCID: PMC6094484 DOI: 10.1128/mbio.01292-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Long noncoding RNA (lncRNA) plays important roles in sexual development in eukaryotes. In filamentous fungi, however, little is known about the expression and roles of lncRNAs during fruiting body formation. By profiling developmental transcriptomes during the life cycle of the plant-pathogenic fungus Fusarium graminearum, we identified 547 lncRNAs whose expression was highly dynamic, with about 40% peaking at the meiotic stage. Many lncRNAs were found to be antisense to mRNAs, forming 300 sense-antisense pairs. Although small RNAs were produced from these overlapping loci, antisense lncRNAs appeared not to be involved in gene silencing pathways. Genome-wide analysis of small RNA clusters identified many silenced loci at the meiotic stage. However, we found transcriptionally active small RNA clusters, many of which were associated with lncRNAs. Also, we observed that many antisense lncRNAs and their respective sense transcripts were induced in parallel as the fruiting bodies matured. The nonsense-mediated decay (NMD) pathway is known to determine the fates of lncRNAs as well as mRNAs. Thus, we analyzed mutants defective in NMD and identified a subset of lncRNAs that were induced during sexual development but suppressed by NMD during vegetative growth. These results highlight the developmental stage-specific nature and functional potential of lncRNA expression in shaping the fungal fruiting bodies and provide fundamental resources for studying sexual stage-induced lncRNAs. Fusarium graminearum is the causal agent of the head blight on our major staple crops, wheat and corn. The fruiting body formation on the host plants is indispensable for the disease cycle and epidemics. Long noncoding RNA (lncRNA) molecules are emerging as key regulatory components for sexual development in animals and plants. To date, however, there is a paucity of information on the roles of lncRNAs in fungal fruiting body formation. Here we characterized hundreds of lncRNAs that exhibited developmental stage-specific expression patterns during fruiting body formation. Also, we discovered that many lncRNAs were induced in parallel with their overlapping transcripts on the opposite DNA strand during sexual development. Finally, we found a subset of lncRNAs that were regulated by an RNA surveillance system during vegetative growth. This research provides fundamental genomic resources that will spur further investigations on lncRNAs that may play important roles in shaping fungal fruiting bodies.
Collapse
|
42
|
The State of Long Non-Coding RNA Biology. Noncoding RNA 2018; 4:ncrna4030017. [PMID: 30103474 PMCID: PMC6162524 DOI: 10.3390/ncrna4030017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
Transcriptomic studies have demonstrated that the vast majority of the genomes of mammals and other complex organisms is expressed in highly dynamic and cell-specific patterns to produce large numbers of intergenic, antisense and intronic long non-protein-coding RNAs (lncRNAs). Despite well characterized examples, their scaling with developmental complexity, and many demonstrations of their association with cellular processes, development and diseases, lncRNAs are still to be widely accepted as major players in gene regulation. This may reflect an underappreciation of the extent and precision of the epigenetic control of differentiation and development, where lncRNAs appear to have a central role, likely as organizational and guide molecules: most lncRNAs are nuclear-localized and chromatin-associated, with some involved in the formation of specialized subcellular domains. I suggest that a reassessment of the conceptual framework of genetic information and gene expression in the 4-dimensional ontogeny of spatially organized multicellular organisms is required. Together with this and further studies on their biology, the key challenges now are to determine the structure–function relationships of lncRNAs, which may be aided by emerging evidence of their modular structure, the role of RNA editing and modification in enabling epigenetic plasticity, and the role of RNA signaling in transgenerational inheritance of experience.
Collapse
|
43
|
Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, Leistner DM, Jakob P, Nakagawa S, Blankenberg S, Engelhardt S, Thum T, Weber C, Meder B, Hajjar R, Landmesser U. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J 2018; 39:2704-2716. [PMID: 28430919 PMCID: PMC6454570 DOI: 10.1093/eurheartj/ehx165] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/14/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Recent research has demonstrated that the non-coding genome plays a key role in genetic programming and gene regulation during development as well as in health and cardiovascular disease. About 99% of the human genome do not encode proteins, but are transcriptionally active representing a broad spectrum of non-coding RNAs (ncRNAs) with important regulatory and structural functions. Non-coding RNAs have been identified as critical novel regulators of cardiovascular risk factors and cell functions and are thus important candidates to improve diagnostics and prognosis assessment. Beyond this, ncRNAs are rapidly emgerging as fundamentally novel therapeutics. On a first level, ncRNAs provide novel therapeutic targets some of which are entering assessment in clinical trials. On a second level, new therapeutic tools were developed from endogenous ncRNAs serving as blueprints. Particularly advanced is the development of RNA interference (RNAi) drugs which use recently discovered pathways of endogenous short interfering RNAs and are becoming versatile tools for efficient silencing of protein expression. Pioneering clinical studies include RNAi drugs targeting liver synthesis of PCSK9 resulting in highly significant lowering of LDL cholesterol or targeting liver transthyretin (TTR) synthesis for treatment of cardiac TTR amyloidosis. Further novel drugs mimicking actions of endogenous ncRNAs may arise from exploitation of molecular interactions not accessible to conventional pharmacology. We provide an update on recent developments and perspectives for diagnostic and therapeutic use of ncRNAs in cardiovascular diseases, including atherosclerosis/coronary disease, post-myocardial infarction remodelling, and heart failure.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Johann Wolfgang Goethe Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
- DZHK, Site Rhein-Main, Frankfurt, Germany
| | - Stephane Heymans
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg (ICH), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
- DZHK, Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Mahir Karakas
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - David-Manuel Leistner
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Philipp Jakob
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo, Japan
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Stefan Engelhardt
- Institute for Pharmacology and Toxikology, Technische Universität München, Biedersteiner Strasse 29, München, Germany
- DZHK, Site Munich, Munich, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Christian Weber
- DZHK, Site Munich, Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstrasse 8a/9, Munich, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg (ICH), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
- DZHK, Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Roger Hajjar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ulf Landmesser
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
- Berlin Institute of Health, Kapelle-Ufer 2, Berlin, Germany
| |
Collapse
|
44
|
Seo W, Taniuchi I. Regulation of hematopoiesis and immune responses by long non-coding RNAs. Int Immunol 2018; 29:165-172. [PMID: 28444293 DOI: 10.1093/intimm/dxx021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/12/2017] [Indexed: 12/19/2022] Open
Abstract
Since the first draft of the human genome sequence was released in 2001, unprecedentedly rapid progress has been made in whole genome-wide approaches by utilizing next-generation-sequencing technologies. The last decade alone has generated enormous data in the forms of exome sequencing, transcriptomes, transcription factor occupancy, genomic variation profiling and epigenetic modifications. One of the most striking realizations from sequencing studies has been the discovery and characterization of non-coding RNAs (ncRNAs). Although the extent to which ncRNAs are functional in vivo is still a controversial topic, there is at least a consensus that some ncRNAs are functional and that they play various roles in biology. Among the several kinds of ncRNAs, long ncRNAs (lncRNAs) in particular have received more attention because they have a larger potential to act as multifunctional regulators. Not surprisingly, researchers in the field of immunology have started to examine ncRNAs as new regulatory mechanisms. In this review, we will summarize some lncRNAs that have been reported to function in the immune system and then argue that there is still a long way to go before we can achieve a complete understanding of lncRNAs.
Collapse
Affiliation(s)
- Wooseok Seo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
45
|
Skinkyte-Juskiene R, Kogelman LJ, Kadarmideen HN. Transcription Factor Co-expression Networks of Adipose RNA-Seq Data Reveal Regulatory Mechanisms of Obesity. Curr Genomics 2018; 19:289-299. [PMID: 29755291 PMCID: PMC5930450 DOI: 10.2174/1389202918666171005095059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/28/2017] [Accepted: 09/07/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Transcription Factors (TFs) control actuation of genes in the genome and are key mediators of complex processes such as obesity. Master Regulators (MRs) are the genes at the top of a regulation hierarchy which regulate other genes. OBJECTIVE To elucidate clusters of highly co-expressed TFs (modules), involved pathways, highly inter-connected TFs (hub-TFs) and MRs leading to obesity and leanness, using porcine model for human obesity. METHODS We identified 817 expressed TFs in RNA-Sequencing dataset representing extreme degrees of obesity (DO; lean, obese). We built a single Weighted Transcription Factor Co-expression Network (WTFCN) and TF sub-networks (based on the DO). Hub-TFs and MRs (using iRegulon) were identi-fied in biologically relevant WTFCNs modules. RESULTS Single WTFCN detected the Red module significantly associated with DO (P < 0.03). This module was enriched for regulation processes in the immune system, e.g.: Immune system process (Padj = 2.50E-06) and metabolic lifestyle disorders, e.g. Circadian rhythm - mammal pathway (Padj = 2.33E-11). Detected MR, hub-TF SPI1 was involved in obesity, immunity and osteoporosis. Within the obese sub-network, the Red module suggested possible associations with immunity, e.g. TGF-beta signaling pathway (Padj = 1.73E-02) and osteoporosis, e.g. Osteoclast differentiation (Padj = 1.94E-02). Within the lean sub-network, the Magenta module displayed associations with type 2 diabetes, obesity and os-teoporosis e.g. Notch signaling pathway (Padj = 2.40E-03), osteoporosis e.g. hub-TF VDR (a prime candidate gene for osteoporosis). CONCLUSION Our results provide insights into the regulatory network of TFs and biologically relevant hub TFs in obesity.
Collapse
Affiliation(s)
- Ruta Skinkyte-Juskiene
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C, Denmark
| | - Lisette J.A. Kogelman
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C, Denmark
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Rigshospitalet Glostrup, Nordre Ringvej 69, 2600 Glostrup, Denmark
| | - Haja N. Kadarmideen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C, Denmark
- Section of Systems Genomics, Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet, Building 208, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
46
|
Liang L, Xu J, Wang M, Xu G, Zhang N, Wang G, Zhao Y. LncRNA HCP5 promotes follicular thyroid carcinoma progression via miRNAs sponge. Cell Death Dis 2018; 9:372. [PMID: 29515098 PMCID: PMC5841368 DOI: 10.1038/s41419-018-0382-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/22/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
Abstract
Long non-coding RNAs (lncRNAs), which are important functional regulators in cancer, have received increased attention in recent years. In this study, next-generation sequencing technology was used to identify aberrantly expressed lncRNAs in follicular thyroid carcinoma (FTC). The long non-coding RNA-HLA complex P5 (HCP5) was found to be overexpressed in FTC. The results of the qPCR analysis were consistent with the sequencing results. In addition, functional experiments showed that overexpression of HCP5 can promote the proliferation, migration, invasiveness and angiogenic ability of FTC cells. Furthermore, according to the sequencing results, HCP5 and alpha-2, 6-sialyltransferase 2 (ST6GAL2) were co-expressed in FTC. We hypothesised that ST6GAL2 may be regulated by HCP5, which would in turn mediate the activity of FTC cells. Through qPCR, immunostaining analyses and functional experiments, we determined that the expression of HCP5 was elevated and was correlated with the levels of ST6GAL2 in FTC tissues and cells. Mechanistic experiments showed that HCP5 functions as a competing endogenous RNA (ceRNA) and acts as a sponge for miR-22-3p, miR-186-5p and miR-216a-5p, which activates ST6GAL2. In summary, our study revealed that HCP5 is a tumour regulator in the development of FTC and that it may contribute to improvement of FTC diagnosis and therapy.
Collapse
Affiliation(s)
- Leilei Liang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jingchao Xu
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meng Wang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Gaoran Xu
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ning Zhang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Guangzhi Wang
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China.
| | - Yongfu Zhao
- Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
47
|
Beyond Royalactin and a master inducer explanation of phenotypic plasticity in honey bees. Commun Biol 2018; 1:8. [PMID: 30271895 PMCID: PMC6123742 DOI: 10.1038/s42003-017-0004-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022] Open
Abstract
Distinct female castes produced from one genotype are the trademark of a successful evolutionary invention in eusocial insects known as reproductive division of labour. In honey bees, fertile queens develop from larvae fed a complex diet called royal jelly. Recently, one protein in royal jelly, dubbed Royalactin, was deemed to be the exclusive driver of queen bee determination. However, this notion has not been universally accepted. Here I critically evaluate this line of research and argue that the sheer complexity of creating alternate phenotypes from one genotype cannot be reduced to a single dietary component. An acceptable model of environmentally driven caste differentiation should include the facets of dynamic thinking, such as the concepts of attractor states and genetic hierarchical networks. In honeybees, genotypically identical females develop into queens or sterile workers, depending on their diets. In this review, Ryszard Maleszka discusses the controversial role of the royal jelly protein Royalactin in caste determination and provides a framework for moving beyond the master inducer concept.
Collapse
|
48
|
Saha P, Verma S, Pathak RU, Mishra RK. Long Noncoding RNAs in Mammalian Development and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:155-198. [PMID: 28815540 DOI: 10.1007/978-981-10-5203-3_6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Following analysis of sequenced genomes and transcriptome of many eukaryotes, it is evident that virtually all protein-coding genes have already been discovered. These advances have highlighted an intriguing paradox whereby the relative amount of protein-coding sequences remain constant but nonprotein-coding sequences increase consistently in parallel to increasing evolutionary complexity. It is established that differences between species map to nonprotein-coding regions of the genome that surprisingly is transcribed extensively. These transcripts regulate epigenetic processes and constitute an important layer of regulatory information essential for organismal development and play a causative role in diseases. The noncoding RNA-directed regulatory circuit controls complex characteristics. Sequence variations in noncoding RNAs influence evolution, quantitative traits, and disease susceptibility. This chapter presents an account on a class of such noncoding transcripts that are longer than 200 nucleotides (long noncoding RNA-lncRNA) in mammalian development and diseases.
Collapse
Affiliation(s)
- Parna Saha
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Shreekant Verma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Rashmi U Pathak
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
49
|
Zeng Y, Xu Y, Shu R, Sun L, Tian Y, Shi C, Zheng Z, Wang K, Luo H. Altered expression profiles of circular RNA in colorectal cancer tissues from patients with lung metastasis. Int J Mol Med 2017; 40:1818-1828. [PMID: 29039473 PMCID: PMC5716445 DOI: 10.3892/ijmm.2017.3189] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/28/2017] [Indexed: 01/05/2023] Open
Abstract
The lung is the most common extra-abdominal site of metastasis in colorectal cancer (CRC), in which circular RNA (circRNA) may have a crucial role. Therefore, the present study detected circRNA expression to identify novel targets to further study lung metastasis in CRC. In the present study, total RNA was extracted from CRC tissues of patients with and without lung metastasis to perform high-throughput microarray assay in order to detect differentially expressed circRNA. Following this, gene ontology (GO) and pathway analyses of the genes producing differentially expressed circRNA were performed to predict the function of circRNA using standard enrichment computational methods. Additionally, the circRNA/microRNA (miRNA) interactions were constructed with bioinformatics methods to predict the binding of miRNA with circRNA. In the CRC tissues from patients with lung metastasis, 431 circRNA were detected to be differentially expressed, including 192 upregulated and 239 downregulated over 2-fold compared with the CRC tissues without metastasis. Furthermore, GO analysis revealed that the genes producing upregulated circRNA were involved in DNA repair, while the genes producing downregulated circRNA were enriched in signal transduction. By pathway analysis, it was identified that the genes producing downregulated circRNA were involved in the nuclear factor-κB and Wnt signaling pathway in the CRC tissues from patients with lung metastasis compared with the CRC tissues without metastasis. In addition, it was demonstrated that hsa_circRNA_105055, hsa_circRNA_086376 and hsa_circRNA_102761 could commonly bind with miR-7 regulating target genes PRKCB, EPHA3, BRCA1 and ABCC1. The findings of the present study may provide a novel perspective on circRNA and lay a foundation for future research of potential roles of circRNA in CRC with lung metastasis.
Collapse
Affiliation(s)
- Yujian Zeng
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yu Xu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Ruo Shu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Liang Sun
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yan Tian
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Chengmin Shi
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Zhibin Zheng
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Kunhua Wang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
50
|
Deveson IW, Hardwick SA, Mercer TR, Mattick JS. The Dimensions, Dynamics, and Relevance of the Mammalian Noncoding Transcriptome. Trends Genet 2017; 33:464-478. [PMID: 28535931 DOI: 10.1016/j.tig.2017.04.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/24/2017] [Indexed: 01/02/2023]
Abstract
The combination of pervasive transcription and prolific alternative splicing produces a mammalian transcriptome of great breadth and diversity. The majority of transcribed genomic bases are intronic, antisense, or intergenic to protein-coding genes, yielding a plethora of short and long non-protein-coding regulatory RNAs. Long noncoding RNAs (lncRNAs) share most aspects of their biogenesis, processing, and regulation with mRNAs. However, lncRNAs are typically expressed in more restricted patterns, frequently from enhancers, and exhibit almost universal alternative splicing. These features are consistent with their role as modular epigenetic regulators. We describe here the key studies and technological advances that have shaped our understanding of the dimensions, dynamics, and biological relevance of the mammalian noncoding transcriptome.
Collapse
Affiliation(s)
- Ira W Deveson
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Simon A Hardwick
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Tim R Mercer
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - John S Mattick
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|