1
|
Icedo-Nuñez S, Luna-Ramirez RI, Enns RM, Speidel SE, Hernández J, Zeng X, Sánchez-Castro MA, Aguilar-Trejo CM, Luna-Nevárez G, López-González MC, Reyna-Granados JR, Luna-Nevárez P. Validation of Polymorphisms Associated with the Immune Response After Vaccination Against Porcine Reproductive and Respiratory Syndrome Virus in Yorkshire Gilts. Vet Sci 2025; 12:295. [PMID: 40284797 PMCID: PMC12031381 DOI: 10.3390/vetsci12040295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
Porcine respiratory and reproductive syndrome is a viral disease that impacts the health and profitability of swine farms, largely due to significant variation in the vaccination response. The objective was to identify and validate molecular markers associated with the antibody response in gilts following vaccination against the PRRSV. The study included one hundred (n = 100) 6-month-old Yorkshire gilts that were negative for the PRRSV. Gilts were randomly assigned to one of two treatments, PRRS-vaccinated (n = 75) and control (n = 25) groups. Blood samples collected on day 21 were analyzed to evaluate the antibody response, as indicated by the sample-to-positive (S/P) ratio, to the PRRSV following vaccination. DNA was extracted and genotyped using a low-density chip containing 10,000 single nucleotide polymorphisms (SNPs). A genome-wide association study (GWAS) was conducted to identify candidate SNPs associated with the S/P ratio, which were validated in two independent gilt populations (n = 226). The SNPs rs707264998, rs708860811, and rs81358818 in the genes RNF144B, XKR9, and BMAL1, respectively, were significantly associated (p < 0.01) with the S/P ratio and demonstrated an additive effect. In conclusion, three SNPs are proposed as candidate markers for an enhanced immune response to vaccination against the PRRSV and may be beneficial in genetic selection programs.
Collapse
Affiliation(s)
- Salvador Icedo-Nuñez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Rosa I. Luna-Ramirez
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - R. Mark Enns
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Scott E. Speidel
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Mexico
| | - Xi Zeng
- Zoetis Inc., VMRD Genetics R&D, Kalamazoo, MI 49007, USA
| | | | - Carlos M. Aguilar-Trejo
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Guillermo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Martha C. López-González
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Javier R. Reyna-Granados
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Pablo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| |
Collapse
|
2
|
Pudjihartono M, Pudjihartono N, O'Sullivan JM, Schierding W. Melanoma-specific mutation hotspots in distal, non-coding, promoter-interacting regions implicate novel candidate driver genes. Br J Cancer 2024; 131:1644-1655. [PMID: 39367275 PMCID: PMC11555344 DOI: 10.1038/s41416-024-02870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND To develop targeted treatments, it is crucial to identify the full spectrum of genetic drivers in melanoma, including those in non-coding regions. However, recent efforts to explore non-coding regions have primarily focused on gene-adjacent elements such as promoters and non-coding RNAs, leaving intergenic distal regulatory elements largely unexplored. METHODS We used Hi-C chromatin contact data from melanoma cells to map distal, non-coding, promoter-interacting regulatory elements genome-wide in melanoma. Using this "promoter-interaction network", alongside whole-genome sequence and gene expression data from the Pan Cancer Analysis of Whole Genomes, we developed multivariate linear regression models to identify distal somatic mutation hotspots that affect promoter activity. RESULTS We identified eight recurrently mutated hotspots that are novel, melanoma-specific, located in promoter-interacting distal regulatory elements, alter transcription factor binding motifs, and affect the expression of genes (e.g., HSPB7, CLDN1, ADCY9 and FDXR) previously implicated as tumour suppressors/oncogenes in various cancers. CONCLUSIONS Our study suggests additional non-coding drivers beyond the well-characterised TERT promoter in melanoma, offering new insights into the disruption of complex regulatory networks by non-coding mutations that may contribute to melanoma development. Furthermore, our study provides a framework for integrating multiple levels of biological data to uncover cancer-specific non-coding drivers.
Collapse
Affiliation(s)
- Michael Pudjihartono
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | | | - Justin M O'Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
- Australian Parkinson's Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia.
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - William Schierding
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
3
|
Gnanapragasam A, Kirbizakis E, Li A, White KH, Mortenson KL, Cavalcante de Moura J, Jawhar W, Yan Y, Falter R, Russett C, Giannias B, Camilleri-Broët S, Bertos N, Cools-Lartigue J, Garzia L, Sangwan V, Ferri L, Zhang X, Bailey SD. HiChIP-Based Epigenomic Footprinting Identifies a Promoter Variant of UXS1 That Confers Genetic Susceptibility to Gastroesophageal Cancer. Cancer Res 2024; 84:2377-2389. [PMID: 38748784 PMCID: PMC11247317 DOI: 10.1158/0008-5472.can-23-2397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/01/2024] [Accepted: 05/08/2024] [Indexed: 07/16/2024]
Abstract
Genome-wide association studies (GWAS) have identified more than a hundred single nucleotide variants (SNV) associated with the risk of gastroesophageal cancer (GEC). The majority of the identified SNVs map to noncoding regions of the genome. Uncovering the causal SNVs and genes they modulate could help improve GEC prevention and treatment. Herein, we used HiChIP against histone 3 lysine 27 acetylation (H3K27ac) to simultaneously annotate active promoters and enhancers, identify the interactions between them, and detect nucleosome-free regions (NFR) harboring potential causal SNVs in a single assay. The application of H3K27ac HiChIP in GEC relevant models identified 61 potential functional SNVs that reside in NFRs and interact with 49 genes at 17 loci. The approach led to a 67% reduction in the number of SNVs in linkage disequilibrium at these 17 loci, and at 7 loci, a single putative causal SNV was identified. One SNV, rs147518036, located within the promoter of the UDP-glucuronate decarboxylase 1 (UXS1) gene, seemed to underlie the GEC risk association captured by the rs75460256 index SNV. The rs147518036 SNV creates a GABPA DNA recognition motif, resulting in increased promoter activity, and CRISPR-mediated inhibition of the UXS1 promoter reduced the viability of the GEC cells. These findings provide a framework that simplifies the identification of potentially functional regulatory SNVs and target genes underlying risk-associated loci. In addition, the study implicates increased expression of the enzyme UXS1 and activation of its metabolic pathway as a predisposition to gastric cancer, which highlights potential therapeutic avenues to treat this disease. Significance: Epigenomic footprinting using a histone posttranslational modification targeted 3D genomics methodology elucidates functional noncoding sequence variants and their target genes at cancer risk loci.
Collapse
Affiliation(s)
- Ansley Gnanapragasam
- The Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Eftyhios Kirbizakis
- The Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Anna Li
- The Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
| | - Kyle H White
- The Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Department of Pathology, McGill University, Montreal, Canada
| | | | - Juliana Cavalcante de Moura
- The Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
| | - Wajih Jawhar
- The Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Department of Surgery, McGill University, Montreal, Canada
| | - Yifei Yan
- The Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
| | - Reilly Falter
- Department of Experimental Medicine, McGill University, Montreal, Canada
| | - Colleen Russett
- The Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
| | - Betty Giannias
- The Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
| | - Sophie Camilleri-Broët
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Nicholas Bertos
- The Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
| | - Jonathan Cools-Lartigue
- The Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Department of Pathology, McGill University, Montreal, Canada
| | - Livia Garzia
- The Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
- Department of Surgery, McGill University, Montreal, Canada
- Department of Pathology, McGill University, Montreal, Canada
| | - Veena Sangwan
- The Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Department of Pathology, McGill University, Montreal, Canada
| | - Lorenzo Ferri
- The Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Department of Pathology, McGill University, Montreal, Canada
| | - Xiaoyang Zhang
- Department of Experimental Medicine, McGill University, Montreal, Canada
| | - Swneke D Bailey
- The Cancer Research Program, Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
- Department of Surgery, McGill University, Montreal, Canada
- Department of Pathology, McGill University, Montreal, Canada
| |
Collapse
|
4
|
Long T, Li J, Yin T, Liu K, Wang Y, Long J, Wang J, Cheng L. A genetic variant in gene NDUFAF4 confers the risk of non-small cell lung cancer by perturbing hsa-miR-215 binding. Mol Carcinog 2024; 63:145-159. [PMID: 37787384 DOI: 10.1002/mc.23642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Hsa-microRNA-215 (hsa-miR-215) plays multiple roles in carcinogenesis through regulating its target genes. Genetic variants in hsa-miR-215 target sites thus may affect hsa-miR-215-mRNA interactions, result in altered expression of target genes and even influence cancer susceptibility. This study aimed to investigate the associations of genetic variants which located in the binding sites of hsa-miR-215 with non-small cell lung cancer (NSCLC) susceptibility in the Chinese population and reveal the potential regulatory mechanism of functional variants in NSCLC development. The candidate genetic variants were predicted and screened through bioinformatics analysis based on the degree of complementarity of hsa-miR-215 sequences. The potential effects of genetic variants on the binding ability of hsa-miR-215 and target genes were also predicted. A case-control study with 932 NSCLC patients and 1036 healthy controls was conducted to evaluate the association of candidate genetic variants with NSCLC susceptibility, and an independent case-control study with 552 NSCLC cases and 571 controls were used to further validate the promising associations. Dual luciferase reporter gene assay was applied to explore the regulation of the genetic variants on transcription activity of target gene. Cell phenotyping experiments in vitro and RNA sequencing (RNA-seq) were then carried out to preliminarily explore the potential regulatory mechanisms of the target genes in NSCLC. A total of five candidate genetic variants located in the binding sites of hsa-miR-215 were screened. The two-stage case-control study showed that a variant rs1854268 A > T, which located in the 3' untranslated (3'UTR) region of NDUFAF4 gene, was associated with decreased risk of NSCLC (additive model, odds ratio [OR] = 0.83, 95% confidence interval [CI]: 0.75-0.92, p < 0.001). Functional annotation displayed that rs1854268 A > T might downregulate the expression of NDUFAF4 by enhancing the binding affinity of hsa-miR-215-5p to NDUFAF4 mRNA. Additionally, transient knockdown of the NDUFAF4 could inhibit lung cancer cell migration and promote lung cancer cell apoptosis. Further RNA-seq analysis revealed that the knockdown of NDUFAF4 may affect NSCLC development by downregulating the nuclear factor kappa B (NF-κB) and phosphoinositide 3 kinase-AKT (PI3K-AKT) signaling pathways. Moreover, the overexpression of CCND1 could partially attenuate the effects of NDUFAF4 knock down on lung cancer cell migration and apoptosis, indicating that CCND1 may be involved in the tumor-promoting effects of NDUFAF4 as a downstream molecule of NDUFAF4 gene. In conclusion, the genetic variant rs1854268 (A > T) on NDUFAF4 confers NSCLC susceptibility by altering the binding affinity of hsa-miR-215-5p, thus regulating the expression of NDUFAF4 and subsequently influencing downstream tumor molecules and pathways such as CCND1, NF kappa B, and PI3K-AKT signaling pathways.
Collapse
Affiliation(s)
- Tingting Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongxin Yin
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieyi Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianing Wang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Zamorano-Algandar R, Medrano JF, Thomas MG, Enns RM, Speidel SE, Sánchez-Castro MA, Luna-Nevárez G, Leyva-Corona JC, Luna-Nevárez P. Genetic Markers Associated with Milk Production and Thermotolerance in Holstein Dairy Cows Managed in a Heat-Stressed Environment. BIOLOGY 2023; 12:biology12050679. [PMID: 37237493 DOI: 10.3390/biology12050679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Dairy production in Holstein cows in a semiarid environment is challenging due to heat stress. Under such conditions, genetic selection for heat tolerance appears to be a useful strategy. The objective was to validate molecular markers associated with milk production and thermotolerance traits in Holstein cows managed in a hot and humid environment. Lactating cows (n = 300) exposed to a heat stress environment were genotyped using a medium-density array including 53,218 SNPs. A genome-wide association study (GWAS) detected six SNPs associated with total milk yield (MY305) that surpassed multiple testing (p < 1.14 × 10-6). These SNPs were further validated in 216 Holstein cows from two independent populations that were genotyped using the TaqMan bi-allelic discrimination method and qPCR. In these cows, only the SNPs rs8193046, rs43410971, and rs382039214, within the genes TLR4, GRM8, and SMAD3, respectively, were associated (p < 0.05) with MY305, rectal temperature (RT), and respiratory rate. Interestingly, these variables improved as the number of favorable genotypes of the SNPs increased from 0 to 3. In addition, a regression analysis detected RT as a significant predictor (R2 = 0.362) for MY305 in cows with >1 favorable genotype, suggesting this close relationship was influenced by genetic markers. In conclusion, SNPs in the genes TLR4, GRM8, and SMAD3 appear to be involved in the molecular mechanism that regulates milk production in cows under heat-stressed conditions. These SNPs are proposed as thermotolerance genetic markers for a selection program to improve the milk performance of lactating Holstein cows managed in a semiarid environment.
Collapse
Affiliation(s)
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | - R Mark Enns
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Scott E Speidel
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Guillermo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - José C Leyva-Corona
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| | - Pablo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón 85000, Mexico
| |
Collapse
|
6
|
Castillo-Salas CA, Luna-Nevárez G, Reyna-Granados JR, Luna-Ramirez RI, Limesand SW, Luna-Nevárez P. Molecular markers for thermo-tolerance are associated with reproductive and physiological traits in Pelibuey ewes raised in a semiarid environment. J Therm Biol 2023; 112:103475. [PMID: 36796920 DOI: 10.1016/j.jtherbio.2023.103475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
Pelibuey sheep exhibit reproductive activity through the year, but warm weather lowers their fertility and demonstrates physiological limitations of environmental heat stress. Single nucleotide polymorphisms (SNPs) associated with heat stress tolerance in sheep have been reported previously. The objective was to validate the association of seven thermo-tolerance SNP markers with reproductive and physiological traits in Pelibuey ewes raised in a semiarid region. Pelibuey ewes were assigned to a cool (January 1st.- March 31st.; n = 101) or warm (April 1st.- August 31st.; n = 104) experimental group. All ewes were exposed to fertile rams and assessed for pregnancy diagnosis 90 days later; lambing day was reported at birth. These data served to calculate the reproductive traits of services per conception, prolificacy, days to estrus, days to conception, conception rate and lambing rate. Rectal temperature, rump/leg skin temperature and respiratory rate were measured and reported as physiological traits. Blood samples were collected and processed to extract DNA, which was genotyped using the TaqMan allelic discrimination method and qPCR. A mixed effects statistical model was used to validate associations between SNP genotypes and phenotypic traits. The SNPs rs421873172, rs417581105 and rs407804467 were confirmed as markers associated with reproductive and physiological traits (P < 0.05), and these SNPs were in the genes PAM, STAT1 and FBXO11, respectively. Interestingly, these SNP markers resulted as predictors for the evaluated traits but only in ewes from the warm group, which indicated their association with heat-stress tolerance. An additive SNP effect was confirmed with the highest contribution (P < 0.01) of the SNP rs417581105 for the evaluated traits. Reproductive performance improved (P < 0.05) and physiological parameters decreased in ewes carrying favorable SNP genotypes. In conclusion, three thermo-tolerance SNP markers were associated with improved reproductive and physiological traits in a prospective population of heat-stressed ewes raised in a semiarid environment.
Collapse
Affiliation(s)
- Candelario A Castillo-Salas
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, 85000, México
| | - Guillermo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, 85000, México
| | - Javier R Reyna-Granados
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, 85000, México
| | - Rosa I Luna-Ramirez
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Pablo Luna-Nevárez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Sonora, 85000, México.
| |
Collapse
|
7
|
Lee HY, Jang HR, Li H, Samuel VT, Dudek KD, Osipovich AB, Magnuson MA, Sklar J, Shulman GI. Deletion of Jazf1 gene causes early growth retardation and insulin resistance in mice. Proc Natl Acad Sci U S A 2022; 119:e2213628119. [PMID: 36442127 PMCID: PMC9894197 DOI: 10.1073/pnas.2213628119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Single-nucleotide polymorphisms in the human juxtaposed with another zinc finger protein 1 (JAZF1) gene have repeatedly been associated with both type 2 diabetes (T2D) and height in multiple genome-wide association studies (GWAS); however, the mechanism by which JAZF1 causes these traits is not yet known. To investigate the possible functional role of JAZF1 in growth and glucose metabolism in vivo, we generated Jazf1 knockout (KO) mice and examined body composition and insulin sensitivity both in young and adult mice by using 1H-nuclear magnetic resonance and hyperinsulinemic-euglycemic clamp techniques. Plasma concentrations of insulin-like growth factor 1 (IGF-1) were reduced in both young and adult Jazf1 KO mice, and young Jazf1 KO mice were shorter in stature than age-matched wild-type mice. Young Jazf1 KO mice manifested reduced fat mass, whereas adult Jazf1 KO mice manifested increased fat mass and reductions in lean body mass associated with increased plasma growth hormone (GH) concentrations. Adult Jazf1 KO manifested muscle insulin resistance that was further exacerbated by high-fat diet feeding. Gene set enrichment analysis in Jazf1 KO liver identified the hepatocyte hepatic nuclear factor 4 alpha (HNF4α), which was decreased in Jazf1 KO liver and in JAZF1 knockdown cells. Moreover, GH-induced IGF-1 expression was inhibited by JAZF1 knockdown in human hepatocytes. Taken together these results demonstrate that reduction of JAZF1 leads to early growth retardation and late onset insulin resistance in vivo which may be mediated through alterations in the GH-IGF-1 axis and HNF4α.
Collapse
Affiliation(s)
- Hui-Young Lee
- aLaboratory of Mitochondria and Metabolic Diseases, School of Medicine, Gachon University, Incheon21999, Korea
- bDepartment of Molecular Medicine, School of Medicine, Gachon University, Incheon21999, Korea
- cKorea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon21999, Korea
| | - Hye Rim Jang
- aLaboratory of Mitochondria and Metabolic Diseases, School of Medicine, Gachon University, Incheon21999, Korea
- bDepartment of Molecular Medicine, School of Medicine, Gachon University, Incheon21999, Korea
| | - Hui Li
- dDepartment of Pathology, University of Virginia, Charlottesville, VA22908
| | - Varman T. Samuel
- eDepartment of Internal Medicine, Yale School of Medicine, New Haven, CT06510
- fWest Haven Veterans Affairs Medical Center, West Haven, CT06516
| | - Karrie D. Dudek
- gDepartment of Cell and Developmental Biology, Vanderbilt University, NashvilleTN37232
| | - Anna B. Osipovich
- hDepartment of Molecular Physiology and Biophysics, Vanderbilt UniversityNashville, TN37232
| | - Mark A. Magnuson
- hDepartment of Molecular Physiology and Biophysics, Vanderbilt UniversityNashville, TN37232
- 1To whom correspondence may be addressed. , , or
| | - Jeffrey Sklar
- iDepartment of Pathology, Yale School of Medicine, New HavenCT06510
- 1To whom correspondence may be addressed. , , or
| | - Gerald I. Shulman
- eDepartment of Internal Medicine, Yale School of Medicine, New Haven, CT06510
- jDepartment of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT06510
- 1To whom correspondence may be addressed. , , or
| |
Collapse
|
8
|
Mo Z, Xin J, Chai R, Woo PY, Chan DT, Wang J. Epidemiological characteristics and genetic alterations in adult diffuse glioma in East Asian populations. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0418. [PMID: 36350002 PMCID: PMC9630523 DOI: 10.20892/j.issn.2095-3941.2022.0418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/20/2022] [Indexed: 05/06/2024] Open
Abstract
Understanding the racial specificities of diseases-such as adult diffuse glioma, the most common primary malignant tumor of the central nervous system-is a critical step toward precision medicine. Here, we comprehensively review studies of gliomas in East Asian populations and other ancestry groups to clarify the racial differences in terms of epidemiology and genomic characteristics. Overall, we observed a lower glioma incidence in East Asians than in Whites; notably, patients with glioblastoma had significantly younger ages of onset and longer overall survival than the Whites. Multiple genome-wide association studies of various cohorts have revealed single nucleotide polymorphisms associated with overall and subtype-specific glioma susceptibility. Notably, only 3 risk loci-5p15.33, 11q23.3, and 20q13.33-were shared between patients with East Asian and White ancestry, whereas other loci predominated only in particular populations. For instance, risk loci 12p11.23, 15q15-21.1, and 19p13.12 were reported in East Asians, whereas risk loci 8q24.21, 1p31.3, and 1q32.1 were reported in studies in White patients. Although the somatic mutational profiles of gliomas between East Asians and non-East Asians were broadly consistent, a lower incidence of EGFR amplification in glioblastoma and a higher incidence of 1p19q-IDH-TERT triple-negative low-grade glioma were observed in East Asian cohorts. By summarizing large-scale disease surveillance, germline, and somatic genomic studies, this review reveals the unique characteristics of adult diffuse glioma among East Asians, to guide clinical management and policy design focused on patients with East Asian ancestry.
Collapse
Affiliation(s)
- Zongchao Mo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen 518000, China
| | - Junyi Xin
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ruichao Chai
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Peter Y.M. Woo
- Department of Neurosurgery, Kwong Wah Hospital, Hong Kong SAR, China
- Hong Kong Neuro-Oncology Society, Hong Kong SAR, China
| | - Danny T.M. Chan
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Hong Kong SAR, China
| | - Jiguang Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen 518000, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong SAR, China
| |
Collapse
|
9
|
Bahl S, Carroll JS, Lupien M. Chromatin Variants Reveal the Genetic Determinants of Oncogenesis in Breast Cancer. Cold Spring Harb Perspect Med 2022; 12:a041322. [PMID: 36041880 PMCID: PMC9524388 DOI: 10.1101/cshperspect.a041322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Breast cancer presents as multiple distinct disease entities. Each tumor harbors diverse cell populations defining a phenotypic heterogeneity that impinges on our ability to treat patients. To date, efforts mainly focused on genetic variants to find drivers of inter- and intratumor phenotypic heterogeneity. However, these efforts have failed to fully capture the genetic basis of breast cancer. Through recent technological and analytical approaches, the genetic basis of phenotypes can now be decoded by characterizing chromatin variants. These variants correspond to polymorphisms in chromatin states at DNA sequences that serve a distinct role across cell populations. Here, we review the function and causes of chromatin variants as they relate to breast cancer inter- and intratumor heterogeneity and how they can guide the development of treatment alternatives to fulfill the goal of precision cancer medicine.
Collapse
Affiliation(s)
- Shalini Bahl
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| |
Collapse
|
10
|
Hou Y, Zhou M, Li Y, Tian T, Sun X, Chen M, Xu W, Lu M. Risk SNP-mediated LINC01614 upregulation drives head and neck squamous cell carcinoma progression via PI3K/AKT signaling pathway. Mol Carcinog 2022; 61:797-811. [PMID: 35687049 DOI: 10.1002/mc.23422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/11/2022]
Abstract
As potential biomarkers and therapeutic targets, long noncoding RNAs (lncRNAs) are involved in the tumorigenesis of various tumors. Genetic variation in long noncoding regions can lead to lncRNA dysfunction and even cancer. Nevertheless, studies on the association between lncRNA-associated single-nucleotide polymorphisms (SNPs) and the risk of head and neck squamous cell carcinoma (HNSCC) remain inadequate. Here, we aimed to explore the association between SNPs in LINC01614 and HNSCC risk, and the potential role of LINC01614 in tumorigenesis. In this study, we found that rs16854802 A > G (odds ratio [OR] = 1.42, 95% confidence interval [CI]: 1.22-1.77, p < 0.001) and rs3113503 G > C (OR = 1.38, 95% CI: 1.15-1.64, p < 0.001) in LINC01614 increased the risk of HNSCC in the Chinese population. Functional bioinformatic analysis and luciferase reporter assay revealed that rs3113503 G > C variant disrupted the binding of miRNA-616-3p to LINC01614, which resulted in the increased expression of LINC01614. Further analysis of the TCGA database demonstrated that the upregulated LINC01614 in HNSCC cancer tissues was associated with poor prognostic in HNSCC patients. In vitro experiments showed that knockdown of LINC01614 inhibited the proliferation, invasion, and migration ability of HNSCC cells. Mechanistically, allele C of rs3113503 in LINC01614 was more effective than allele G in activating the PI3K/AKT signaling pathway. Moreover, the reduced expression of LINC01614 also inhibited the activation of the PI3K/AKT signaling pathway. In summary, our findings revealed that the risk SNP rs3113503 G > C in LINC01614 altered the binding to miR-616-3p, which led to increased LINC01614 expression and promoted HNSCC progression by activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yaxuan Hou
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zhou
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuncheng Li
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Tian
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xun Sun
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Mo Chen
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Guidance Center for Social Psychological Service, Wuhan Mental Health Center, Huazhong University of Science and Technology, Wuhan, China
| | - Wenmao Xu
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Public Health, Wuhan No. 1 Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Meixia Lu
- Department of Epidemiology and Biostatistics, and The Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Mahjabeen I, Rizwan M, Fareen G, Waqar Ahmed M, Farooq Khan A, Akhtar Kayani M. Mitochondrial sirtuins genetic variations and gastric cancer risk: Evidence from retrospective observational study. Gene 2022; 807:145951. [PMID: 34500051 DOI: 10.1016/j.gene.2021.145951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022]
Abstract
AIMS The purpose of the present study was to analyze the role of selected polymorphisms of SIRT3 and SIRT5 in gastric carcinogenesis. METHODS For this study, 500 blood samples of GC patients and 500 blood samples of healthy individuals were collected. Six selected polymorphisms of mitochondrial sirtuins were analyzed for analysis using Tetra-Arms PCR followed by DNA sequencing. RESULTS Mutant allele frequencies of selected polymorphisms [rs3782116 (p < 0.0001), rs6598072 (p < 0.0001) and rs11246020 (p < 0.0001), rs938222 (p = 0.0136), rs3757261 (p = 0.0005) and rs2841511 (p = 0.0015)] were observed significant higher in GC patients vs controls. Haplotype analysis was performed, and 51 haplotypes were generated using haploview software. Among these haplotypes, eleven haplotypes were found associated with a significantly increased risk of GC. Furthermore, SNP-SNP interaction showed a significant correlation between studied SNPs and GC risk. Kaplan Meier analysis showed that mutant allele frequencies of selected polymorphisms are linked with a significant decrease in survival of GC patients CONCLUSIONS: It can be concluded that selected SNPs may be associated with enhanced risk of GC and hence can be potential prognostic markers for prognosis and predisposition of GC.
Collapse
Affiliation(s)
- Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, Pakistan
| | - Muhammad Rizwan
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, Pakistan
| | - Gul Fareen
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, Pakistan
| | - Malik Waqar Ahmed
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, Pakistan; Pakistan Institute of Rehabilitation Sciences (PIRS), Isra University Islamabad Campus, Islamabad, Pakistan
| | | | - Mahmood Akhtar Kayani
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, Pakistan.
| |
Collapse
|
12
|
Jeet V, Magotra A, Bangar YC, Kumar S, Garg AR, Yadav AS, Bahurupi P. Evaluation of candidate point mutation of Kisspeptin 1 gene associated with litter size in Indian Goat breeds and its effect on transcription factor binding sites. Domest Anim Endocrinol 2022; 78:106676. [PMID: 34626930 DOI: 10.1016/j.domaniend.2021.106676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022]
Abstract
Kisspeptin gene (Kiss1) has a significant role in reproductive processes in mammals. However, only little information is available about the association of Kiss1 gene with litter size in Indian goat breeds. Thus, blood samples from 285 randomly selected animals were collected for DNA isolation and SNP profiling. The PCR product of 242 bp size harboring g.2540C>T mutation of Kiss1 gene was digested with the restriction enzyme Sac1. Least squares analysis revealed that Barbari goats showed significantly higher average litter size (2.86±0.08) compared to Beetal, Sirohi and Sojat breeds (P < 0.01). SNP locus g.2540C>T of Kiss1 gene also showed significant effect on litter size (P < 0.01). Goats with Genotype CT (2.66 ± 0.07) and TT (2.67 ± 0.26) had significantly higher (P < 0.01) litter size than CC (1.50 ± 0.05). From the transcription factor binding site analysis, it was predicted that due to g.2540C>T SNP, both native and mutant variant forms coded for putative binding sites for different transcription Factor. Allele T had putative binding sites for the androgen receptor which plays a significant role in the signaling pathway involved in increase in ovulation rate; which consequently can have a tremendous effect on average litter size.
Collapse
Affiliation(s)
- Vikram Jeet
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal sciences (LUVAS), Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal sciences (LUVAS), Hisar, Haryana, India.
| | - Y C Bangar
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal sciences (LUVAS), Hisar, Haryana, India
| | - S Kumar
- Department of Livestock Farm Complex, Lala Lajpat Rai University of Veterinary and Animal sciences (LUVAS), Hisar, Haryana, India
| | - A R Garg
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal sciences (LUVAS), Hisar, Haryana, India
| | - A S Yadav
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal sciences (LUVAS), Hisar, Haryana, India
| | - P Bahurupi
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal sciences (LUVAS), Hisar, Haryana, India
| |
Collapse
|
13
|
Ibrahim MK, AbdElrahman M, Bader El Din NG, Tawfik S, Abd-Elsalam S, Omran D, Barakat AZ, Farouk S, Elbatae H, El Awady MK. The impact of genetic variations in sofosbuvir metabolizing enzymes and innate immunity mediators on treatment outcome in HCV-infected patients. Microb Pathog 2022; 162:105311. [PMID: 34843922 DOI: 10.1016/j.micpath.2021.105311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is the leading cause of liver diseases worldwide. At present, combinations of different classes of direct-acting antiviral agents (DAAs) are used as treatment options for HCV, in which sofosbuvir (SOF) is the common DAA among different therapeutic regimes. In Egypt, SOF plus daclatasvir (DCV) is the widely used anti-HCV treatment protocol. Herein, we aimed to assess the association between 3 single-nucleotide polymorphisms (SNPs) at the genes coding for 2 SOF metabolizing enzymes: histidine triad nucleotide-binding protein 1 (HINT1) rs4696/rs7728773 and nucleoside diphosphate kinase 1 (NME1) rs3760468, together with the most potent anti-HCV innate molecule, i.e., interferon lambda 3 (IFNL3) rs12979860 and the response to SOF/DCV in Egyptian patients chronically infected with genotype 4 (GT4). SNPs were genotyped using real-time PCR in DNA from patients who achieved sustained virological response (SVR) at 12 weeks post-SOF/DCV treatment (i.e., responders; n = 188), patients who failed to achieve SVR12 (i.e., non-responders; n = 109), and healthy controls (n = 62). Our results demonstrated that patients bearing HINT1 rs7728773 CT/TT (odds ratio 2.119, 95% CI 1.263-3.559, p = 0.005) and IFNL3 rs12979860 CC (odds ratio 3.995, 95% CI 2.126-7.740, p = 0.0001) were more likely to achieve SVR12. However, neither HINT1 rs4696 nor NME1 rs3760468 seems to contribute to the responsiveness to SOF/DCV. Binary regression analysis defined 5 predictor factors independently associated with SVR12: age, bilirubin, hemoglobin, early stages of fibrosis, and combined HINT1 rs7728773 and IFNL3 rs12979860 favorable and mixed genotypes (odds ratio 3.134, 95% CI 1.518-6.47, p = 0.002), and that was confirmed by the combined ROC curve for the 5 predictor factors (AUC = 0.91, 95% CI 0.869-0.95, P = 0.0001). In conclusion, these data suggest that the two SNPs have the potential in predicting the response rate to SOF/DCV treatment in patients infected with HCV GT4. This study is the first to investigate the pharmacogenetics of SOF metabolizing enzyme and introduce HINT1 rs7728773 as a novel SNP that predicts the treatment efficacy.
Collapse
Affiliation(s)
- Marwa K Ibrahim
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, 33 EL Bohouth St. (formerly El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt.
| | - Mohamed AbdElrahman
- Department of Pharmacy, Al-Mustaqbal University College, Babylon, Iraq; Clinical Pharmacy Unit, Badr University Hospital, Faculty of Medicine, Helwan University, Egypt
| | - Noha G Bader El Din
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, 33 EL Bohouth St. (formerly El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Salwa Tawfik
- Department of Internal Medicine, National Research Center, 33 EL Bohouth St. (formerly El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Sherief Abd-Elsalam
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dalia Omran
- Department of Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University, Egypt
| | - Amal Z Barakat
- Department of Molecular Biology, Biotechnology Research Institute, National Research Center, 33 EL Bohouth St. (formerly El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Sally Farouk
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, 33 EL Bohouth St. (formerly El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| | - Hassan Elbatae
- Department of Tropical Medicine, Faculty of Medicine, Kafer Elshiek University, Kafer Elshiek, Egypt
| | - Mostafa K El Awady
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, 33 EL Bohouth St. (formerly El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt
| |
Collapse
|
14
|
Payer LM, Steranka JP, Kryatova MS, Grillo G, Lupien M, Rocha PP, Burns KH. Alu insertion variants alter gene transcript levels. Genome Res 2021; 31:2236-2248. [PMID: 34799402 PMCID: PMC8647820 DOI: 10.1101/gr.261305.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/23/2021] [Indexed: 12/23/2022]
Abstract
Alu are high copy number interspersed repeats that have accumulated near genes during primate and human evolution. They are a pervasive source of structural variation in modern humans. Impacts that Alu insertions may have on gene expression are not well understood, although some have been associated with expression quantitative trait loci (eQTLs). Here, we directly test regulatory effects of polymorphic Alu insertions in isolation of other variants on the same haplotype. To screen insertion variants for those with such effects, we used ectopic luciferase reporter assays and evaluated 110 Alu insertion variants, including more than 40 with a potential role in disease risk. We observed a continuum of effects with significant outliers that up- or down-regulate luciferase activity. Using a series of reporter constructs, which included genomic context surrounding the Alu, we can distinguish between instances in which the Alu disrupts another regulator and those in which the Alu introduces new regulatory sequence. We next focused on three polymorphic Alu loci associated with breast cancer that display significant effects in the reporter assay. We used CRISPR to modify the endogenous sequences, establishing cell lines varying in the Alu genotype. Our findings indicate that Alu genotype can alter expression of genes implicated in cancer risk, including PTHLH, RANBP9, and MYC These data show that commonly occurring polymorphic Alu elements can alter transcript levels and potentially contribute to disease risk.
Collapse
Affiliation(s)
- Lindsay M Payer
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jared P Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Maria S Kryatova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Giacomo Grillo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Pedro P Rocha
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892-4340, USA
- National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- McKusick-Nathans Institute of Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
15
|
Tian P, Zhong M, Wei GH. Mechanistic insights into genetic susceptibility to prostate cancer. Cancer Lett 2021; 522:155-163. [PMID: 34560228 DOI: 10.1016/j.canlet.2021.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is the second most common cancer in men and is a highly heritable disease that affects millions of individuals worldwide. Genome-wide association studies have to date discovered nearly 270 genetic loci harboring hundreds of single nucleotide polymorphisms (SNPs) that are associated with PCa susceptibility. In contrast, the functional characterization of the mechanisms underlying PCa risk association is still growing. Given that PCa risk-associated SNPs are highly enriched in noncoding cis-regulatory genomic regions, accumulating evidence suggests a widespread modulation of transcription factor chromatin binding and allelic enhancer activity by these noncoding SNPs, thereby dysregulating gene expression. Emerging studies have shown that a proportion of noncoding variants can modulate the formation of transcription factor complexes at enhancers and CTCF-mediated 3D genome architecture. Interestingly, DNA methylation-regulated CTCF binding could orchestrate a long-range chromatin interaction between PCa risk enhancer and causative genes. Additionally, one-causal-variant-two-risk genes or multiple-risk-variant-multiple-genes are prevalent in some PCa risk-associated loci. In this review, we will discuss the current understanding of the general principles of SNP-mediated gene regulation, experimental advances, and functional evidence supporting the mechanistic roles of several PCa genetic loci with potential clinical impact on disease prevention and treatment.
Collapse
Affiliation(s)
- Pan Tian
- Fudan University Shanghai Cancer Center; Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Mengjie Zhong
- Fudan University Shanghai Cancer Center; Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Gong-Hong Wei
- Fudan University Shanghai Cancer Center; Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
16
|
FOXA1 of regulatory variant associated with risk of breast cancer through allele-specific enhancer in the Chinese population. Breast Cancer 2021; 29:247-259. [PMID: 34635981 DOI: 10.1007/s12282-021-01305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND FOXA1 is a pioneer transcription factor which has been established as a carcinogenic factor and can regulate the expression of downstream target genes in breast cancer. We hypothesized that genetic variants modulating FOXA1 expression might play a role in the risk of breast cancer. METHODS Physical interaction predicted by PreSTIGE analysis and CHIA-PET data integration with cis-expression quantitative trait loci (cis-eQTL) based SNP-FOXA1 analysis were used to identify potentially regulatory variants modulating the expression of FOXA1. Then, we utilized a case-control study consisting of 855 new diagnosed breast cancer cases and 920 controls in the Chinese population to identify breast cancer associated variants. Biological assays were conducted in breast cancer cell lines to illustrate the effects of associated variants on breast cancer risk. RESULTS We identified that rs7160774 G > A variant was associated with lower risk of breast cancer (OR = 0.77, 95% confidence interval = 0.62-0.96, P = 0.022). Biological experiments indicated that rs7160774[A] allele down-regulated the expression of FOXA1 compared to the G allele by influencing transcription factor binding affinity, thus playing an important role in the development of breast cancer. CONCLUSION Our study suggested that the regulatory variant rs7160774 was associated with risk of breast cancer by long-range modulating FOXA1 expression and provided critical insights into pinpoint causal genetic variants.
Collapse
|
17
|
Long J, Long T, Li Y, Yuan P, Liu K, Li J, Cheng L. A Functional Polymorphism in Accessible Chromatin Region Confers Risk of Non-Small Cell Lung Cancer in Chinese Population. Front Oncol 2021; 11:698993. [PMID: 34552866 PMCID: PMC8450516 DOI: 10.3389/fonc.2021.698993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022] Open
Abstract
Background The disease-associated non-coding variants identified by genome-wide association studies (GWASs) were enriched in open chromatin regions (OCRs) and implicated in gene regulation. Genetic variants in OCRs thus may exert regulatory functions and contribute to non-small cell lung cancer (NSCLC) susceptibility. Objective To fine map potential functional variants in GWAS loci that contribute to NSCLC predisposition using chromatin accessibility and histone modification data and explore their functions by population study and biochemical experimental analyses. Methods We mapped the chromatin accessible regions of lung tissues using data of assay for transposase-accessible chromatin using sequencing (ATAC-seq) in The Cancer Genome Atlas (TCGA) and prioritized potential regulatory variants within lung cancer GWAS loci by aligning with histone signatures using data of chromatin immunoprecipitation assays followed by sequencing (ChIP-seq) in the Encyclopedia of DNA Elements (ENCODE). A two-stage case–control study with 1,830 cases and 2,001 controls was conducted to explore the associations between candidate variants and NSCLC risk in Chinese population. Bioinformatic annotations and biochemical experiments were performed to further reveal the potential functions of significant variants. Results Sixteen potential functional single-nucleotide polymorphisms (SNPs) were selected as candidates from bioinformatics analyses. Three variants out of the 16 candidate SNPs survived after genotyping in stage 1 case–control study, and only the results of SNP rs13064999 were successfully validated in the analyses of stage 2 case–control study. In combined analyses, rs13064999 was significantly associated with NSCLC risk [additive model; odds ratio (OR) = 1.17; 95%CI, 1.07–1.29; p = 0.001]. Functional annotations indicated its potential enhancer bioactivity, and dual-luciferase reporter assays revealed a significant increase in luciferase activity for the reconstructed plasmid with rs13064999 A allele, when compared to the one with wild-type G allele (pA549 < 0.001, pSK-MES-1 = 0.004). Further electrophoretic mobility shift assays (EMSA) and super-shift assays confirmed a stronger affinity of HP1γ for the binding motif containing SNP rs13064999 A allele. Conclusion These findings suggested that the functional variant rs13064999, identified by the integration of ATAC-seq and ChIP-seq data, contributes to the susceptibility of NSCLC by affecting HP1γ binding, while the exact biological mechanism awaits further exploration.
Collapse
Affiliation(s)
- Jieyi Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peihong Yuan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Yadav T, Magotra A, Bangar YC, Kumar R, Yadav AS, Garg AR, Bahurupi P, Kumar P. Effect of BsaA I genotyped intronic SNP of leptin gene on production and reproduction traits in Indian dairy cattle. Anim Biotechnol 2021; 34:261-267. [PMID: 34370619 DOI: 10.1080/10495398.2021.1955701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the present study, candidate single nucleotide polymorphism (SNP) g.92450765 G > A of leptin gene was explored for Bos indicus cattle with an aim to explore its possible effect on production and reproduction traits. The genotypic and allelic frequencies of BsaA 1 genotyped SNP g.92450765 G > A indicated the predominance of AG (0.65) genotyped Sahiwal cows in our studied population. The least-squares analysis showed a significant association (p < 0.05) of identified genetic variants with total milk yield (TMY) and 305 days milk yield (MY) (p < 0.05). The GG genotyped cows were found to be associated with higher milk yields. However, for reproduction traits under study AA genotype was found to be more favorable with respect to service period and calving interval (p < 0.05). Computational analysis was also performed to predict changes if any in the transcription factor binding sites (TFBS) caused due to the identified SNP in the intronic region of the leptin gene. TFBS analysis predicted that the targeted SNP at g.92450765G > A may lead to the disappearance of TFBS such as Hypermethylated in cancer 2 protein (HIC2), Max-binding protein MNT (MNT), Cyclic AMP-dependent transcription factor -3 (ATF3), Myc-associated factor X (MAX) and Microphthalmia-associated transcription factor (MITF). It may lead to changes in transcriptional regulation.
Collapse
Affiliation(s)
- Tejwanti Yadav
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, India
| | - Yogesh C Bangar
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, India
| | - Ramesh Kumar
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, India
| | - A S Yadav
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, India
| | - Asha Rani Garg
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, India
| | - Pooja Bahurupi
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, India
| | - Pankaj Kumar
- Disease Investigation Lab Rohtak, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, India
| |
Collapse
|
19
|
SNP-mediated lncRNA-ENTPD3-AS1 upregulation suppresses renal cell carcinoma via miR-155/HIF-1α signaling. Cell Death Dis 2021; 12:672. [PMID: 34218253 PMCID: PMC8254807 DOI: 10.1038/s41419-021-03958-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Over the last decade, more than 10 independent SNPs have been discovered to be associated with the risk of renal cell carcinoma among different populations. However, the biological functions of them remain poorly understood. In this study, we performed eQTL analysis, ChIP-PCR, luciferase reporter assay, and Cox regression analysis to identify the functional role and underlying mechanism of rs67311347 in RCC. The ENCORI database, which contains the lncRNA–miRNA–mRNA interactions, was used to explore the possible target miRNA of ENTPD3-AS1. The results showed that the G > A mutation of rs67311347 created a binding motif of ZNF8 and subsequently upregulated ENTPD3-AS1 expression by acting as an enhancer. The TCGA-KIRC and our cohorts both confirmed the downregulation of ENTPD3-AS1 in RCC tissues and demonstrated that increased ENTPD3-AS1 expression was associated with good OS and PFS. Furthermore, ENTPD3-AS1 interacted with miR-155-5p and activated the expression of HIF-1α, which was an important tumor suppressor gene in the development of RCC. The functional experiments revealed that overexpression of ENTPD3-AS1 inhibited cell proliferation in RCC cell lines and the effect could be rescued by knocking down HIF-1α. Our findings reveal that SNP-mediated lncRNA-ENTPD3-AS1 upregulation suppresses renal cell carcinoma via miR-155/HIF-1α signaling.
Collapse
|
20
|
He Y, Liu H, Luo S, Amos CI, Lee JE, Yang K, Qureshi AA, Han J, Wei Q. Genetic variants of EML1 and HIST1H4E in myeloid cell-related pathway genes independently predict cutaneous melanoma-specific survival. Am J Cancer Res 2021; 11:3252-3262. [PMID: 34249459 PMCID: PMC8263692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/07/2020] [Indexed: 06/13/2023] Open
Abstract
Both in vivo and in vitro evidence has supported a key role of myeloid cells in immune suppression in melanoma and in promoting melanocytic metastases. Some single-nucleotide polymorphisms (SNPs) have been shown to predict cutaneous melanoma-specific survival (CMSS), but the association between genetic variation in myeloid cell-related genes and cutaneous melanoma (CM) patient survival remains unknown. METHODS we investigated associations between SNPs in myeloid cell-related pathway genes and CMSS in a discovery dataset of 850 CM patients and replicated the findings in another dataset of 409 CM patients. RESULTS we identified two SNPs (EML1 rs10151787 A>G and HIST1H4E rs2069018 T>C) as independent prognostic factors for CMSS, with adjusted allelic hazards ratios of 1.56 (95% confidence interval =1.19-2.05, P=0.001) and 1.66 (1.22-2.26, P=0.001), respectively; so were their combined unfavorable alleles in a dose-response manner in both discovery and replication datasets (P trend<0.001 and 0.002, respectively). Additional functional analysis revealed that both EML1 rs10151787 G and HIST1H4E rs2069018 C alleles were associated with elevated mRNA expression levels in normal tissues. CONCLUSIONS Our findings suggest that EML1 rs10151787 A>G and HIST1H4E rs2069018 T>C are independent prognostic biomarkers for CMSS.
Collapse
Affiliation(s)
- Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of MedicineDurham, NC 27710, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of MedicineHouston, TX 77030, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer CenterHouston, TX 77030, USA
| | - Keming Yang
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana UniversityIndianapolis, IN 46202, USA
| | - Abrar A Qureshi
- Department of Dermatology, Rhode Island HospitalProvidence, RI 02901, USA
- Warren Alpert Medical School at Brown UniversityProvidence, RI 02901, USA
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana UniversityIndianapolis, IN 46202, USA
- The Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA 02115, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
- Department of Medicine, Duke University School of MedicineDurham, NC 27710, USA
| |
Collapse
|
21
|
Gaare JJ, Nido G, Dölle C, Sztromwasser P, Alves G, Tysnes OB, Haugarvoll K, Tzoulis C. Meta-analysis of whole-exome sequencing data from two independent cohorts finds no evidence for rare variant enrichment in Parkinson disease associated loci. PLoS One 2020; 15:e0239824. [PMID: 33002040 PMCID: PMC7529297 DOI: 10.1371/journal.pone.0239824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
Parkinson disease (PD) is a complex neurodegenerative disorder influenced by both environmental and genetic factors. While genome wide association studies have identified several susceptibility loci, many causal variants and genes underlying these associations remain undetermined. Identifying these is essential in order to gain mechanistic insight and identify biological pathways that may be targeted therapeutically. We hypothesized that gene-based enrichment of rare mutations is likely to be found within susceptibility loci for PD and may help identify causal genes. Whole-exome sequencing data from two independent cohorts were analyzed in tandem and by meta-analysis and a third cohort genotyped using the NeuroX-array was used for replication analysis. We employed collapsing methods (burden and the sequence kernel association test) to detect gene-based enrichment of rare, protein-altering variation within established PD susceptibility loci. Our analyses showed trends for three genes (GALC, PARP9 and SEC23IP), but none of these survived multiple testing correction. Our findings provide no evidence of rare mutation enrichment in genes within PD-associated loci, in our datasets. While not excluding that rare mutations in these genes may influence the risk of idiopathic PD, our results suggest that, if such effects exist, much larger sequencing datasets will be required for their detection.
Collapse
Affiliation(s)
- Johannes Jernqvist Gaare
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Gonzalo Nido
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Christian Dölle
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Paweł Sztromwasser
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Computational Biology Unit, Institute of Informatics, University of Bergen, Bergen, Norway
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Guido Alves
- The Norwegian Centre for Movement Disorders and Department of Neurology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Ole-Bjørn Tysnes
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kristoffer Haugarvoll
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- * E-mail: ,
| |
Collapse
|
22
|
Pioneer of prostate cancer: past, present and the future of FOXA1. Protein Cell 2020; 12:29-38. [PMID: 32946061 PMCID: PMC7815845 DOI: 10.1007/s13238-020-00786-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/18/2020] [Indexed: 01/27/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed non-cutaneous cancers in North American men. While androgen deprivation has remained as the cornerstone of prostate cancer treatment, resistance ensues leading to lethal disease. Forkhead box A1 (FOXA1) encodes a pioneer factor that induces open chromatin conformation to allow the binding of other transcription factors. Through direct interactions with the Androgen Receptor (AR), FOXA1 helps to shape AR signaling that drives the growth and survival of normal prostate and prostate cancer cells. FOXA1 also possesses an AR-independent role of regulating epithelial-to-mesenchymal transition (EMT). In prostate cancer, mutations converge onto the coding sequence and cis-regulatory elements (CREs) of FOXA1, leading to functional alterations. In addition, FOXA1 activity in prostate cancer can be modulated post-translationally through various mechanisms such as LSD1-mediated protein demethylation. In this review, we describe the latest discoveries related to the function and regulation of FOXA1 in prostate cancer, pointing to their relevance to guide future clinical interventions.
Collapse
|
23
|
Zhang X, Meyerson M. Illuminating the noncoding genome in cancer. ACTA ACUST UNITED AC 2020; 1:864-872. [DOI: 10.1038/s43018-020-00114-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 08/13/2020] [Indexed: 02/08/2023]
|
24
|
Plunde O, Larsson SC, Artiach G, Thanassoulis G, Carracedo M, Franco-Cereceda A, Eriksson P, Bäck M. FADS1 (Fatty Acid Desaturase 1) Genotype Associates With Aortic Valve FADS mRNA Expression, Fatty Acid Content and Calcification. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e002710. [PMID: 32397743 PMCID: PMC7299231 DOI: 10.1161/circgen.119.002710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Aortic stenosis (AS) contributes to cardiovascular mortality and morbidity but disease mechanisms remain largely unknown. Recent evidence associates a single nucleotide polymorphism rs174547 within the FADS1 gene, encoding FADS1 (fatty acid desaturase 1), with risk of several cardiovascular outcomes, including AS. FADS1 encodes a rate-limiting enzyme for ω-3 and ω-6 fatty acid metabolism. The aim of this study was to decipher the local transcriptomic and lipidomic consequences of rs174547 in tricuspid aortic valves from patients with AS. METHODS Expression quantitative trait loci study was performed using data from Illumina Human610-Quad BeadChip, Infinium Global Screening Arrays, and Affymetrix Human Transcriptome 2.0 arrays in calcified and noncalcified aortic valve tissue from 58 patients with AS (mean age, 74.2; SD, 5.9). Fatty acid content was assessed in aortic valves from 25 patients with AS using gas chromatography. Δ5 and Δ6 desaturase activity was assessed by the product-to-precursor ratio. RESULTS The minor C-allele of rs174547, corresponding to the protective genotype for AS, was associated with higher FADS2 mRNA levels in calcified valve tissue, whereas FADS1 mRNA and other transcripts in proximity of the single nucleotide polymorphism were unaltered. In contrast, the FADS1 Δ5-desaturase activity and the FADS2 Δ6-desaturase activity were decreased. Finally, docosahexaenoic acid was decreased in calcified tissue compared with non-calcified tissue and C-allele carriers exhibited increased docosahexaenoic acid levels. Overall desaturase activity measured with ω-3 fatty acids was higher in C-allele carriers. CONCLUSIONS The association between the FADS1 genotype and AS may implicate effects on valvular fatty acids.
Collapse
Affiliation(s)
- Oscar Plunde
- Department of Medicine Solna, Unit of Cardiovascular Medicine (O.P., G.A., M.C., P.E., M.B.), Karolinska Institutet, Stockholm
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine (S.C.L.), Karolinska Institutet, Stockholm.,Department of Surgical Sciences, Uppsala University, Sweden (S.C.L.)
| | - Gonzalo Artiach
- Department of Medicine Solna, Unit of Cardiovascular Medicine (O.P., G.A., M.C., P.E., M.B.), Karolinska Institutet, Stockholm
| | - George Thanassoulis
- Division of Experimental Medicine, McGill University Health Centre, Montreal, QC, Canada (G.T.)
| | - Miguel Carracedo
- Department of Medicine Solna, Unit of Cardiovascular Medicine (O.P., G.A., M.C., P.E., M.B.), Karolinska Institutet, Stockholm
| | - Anders Franco-Cereceda
- Department of Molecular Medicine and Surgery (A.F.-C.), Karolinska Institutet, Stockholm.,Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden (A.F.-C., M.B.)
| | - Per Eriksson
- Department of Medicine Solna, Unit of Cardiovascular Medicine (O.P., G.A., M.C., P.E., M.B.), Karolinska Institutet, Stockholm
| | - Magnus Bäck
- Department of Medicine Solna, Unit of Cardiovascular Medicine (O.P., G.A., M.C., P.E., M.B.), Karolinska Institutet, Stockholm.,Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden (A.F.-C., M.B.)
| |
Collapse
|
25
|
Ma YF, Adeola AC, Sun YB, Xie HB, Zhang YP. CaptureProbe: a java tool for designing probes for capture Hi-C applications. Zool Res 2020; 41:94-96. [PMID: 31840950 PMCID: PMC6956725 DOI: 10.24272/j.issn.2095-8137.2020.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Yun-Fei Ma
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yan-Bo Sun
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Hai-Bing Xie
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,State Key Laboratory for Conservation and Utilization of Bio-resource, and Key Laboratory for Animal Genetic Diversity and Evolution of High Education in Yunnan Province, Yunnan University, Kunming, Yunnan 650091, China. E-mail:
| |
Collapse
|
26
|
Özgöz A, Mutlu İçduygu F, Yükseltürk A, ŞamlI H, Hekİmler Öztürk K, Başkan Z. Low-penetrance susceptibility variants and postmenopausal oestrogen receptor positive breast cancer. J Genet 2020. [DOI: 10.1007/s12041-019-1174-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Ke J, Tian J, Mei S, Ying P, Yang N, Wang X, Zou D, Peng X, Yang Y, Zhu Y, Gong Y, Wang Z, Gong J, Zhong R, Chang J, Miao X. Genetic Predisposition to Colon and Rectal Adenocarcinoma Is Mediated by a Super-enhancer Polymorphism Coactivating CD9 and PLEKHG6. Cancer Epidemiol Biomarkers Prev 2020; 29:850-859. [PMID: 31988071 DOI: 10.1158/1055-9965.epi-19-1116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/22/2019] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified dozens of loci associated with colon and rectal adenocarcinoma risk. As tissue-specific super-enhancers (SE) play important roles in tumorigenesis, we systematically investigate SEs and inner variants in established GWAS loci to decipher the underlying biological mechanisms. METHODS Through a comprehensive bioinformatics analysis on multi-omics data, we screen potential single-nucleotide polymorphisms (SNP) in cancer-specific SEs, and then subject them to a two-stage case-control study containing 4,929 cases and 7,083 controls from the Chinese population. A series of functional assays, including reporter gene assays, electrophoretic mobility shift assays (EMSA), CRISPR-Cas9 genome editing, chromosome conformation capture (3C) assays, and cell proliferation experiments, are performed to characterize the variant's molecular consequence and target genes. RESULTS The SNP rs11064124 in 12p13.31 is found significantly associated with the risk of colon and rectal adenocarcinoma with an odds ratio (OR) of 0.87 [95% confidence interval (CI), 0.82-0.92, P = 8.67E-06]. The protective rs11064124-G weakens the binding affinity with vitamin D receptor (VDR) and increases the enhancer's activity and interactions with two target genes' promoters, thus coactivating the transcription of CD9 and PLEKHG6, which are both putative tumor suppressor genes for colon and rectal adenocarcinoma. CONCLUSIONS Our integrative study highlights an SE polymorphism rs11064124 and two susceptibility genes CD9 and PLEKHG6 in 12p13.31 for colon and rectal adenocarcinoma. IMPACT These findings suggest a novel insight for genetic pathogenesis of colon and rectal adenocarcinoma, involving transcriptional coactivation of diverse susceptibility genes via the SE element as a gene regulation hub.
Collapse
Affiliation(s)
- Juntao Ke
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shufang Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingting Ying
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyang Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danyi Zou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiating Peng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Rong Zhong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Miao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
28
|
Mazrooei P, Kron KJ, Zhu Y, Zhou S, Grillo G, Mehdi T, Ahmed M, Severson TM, Guilhamon P, Armstrong NS, Huang V, Yamaguchi TN, Fraser M, van der Kwast T, Boutros PC, He HH, Bergman AM, Bristow RG, Zwart W, Lupien M. Cistrome Partitioning Reveals Convergence of Somatic Mutations and Risk Variants on Master Transcription Regulators in Primary Prostate Tumors. Cancer Cell 2019; 36:674-689.e6. [PMID: 31735626 DOI: 10.1016/j.ccell.2019.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/02/2019] [Accepted: 10/17/2019] [Indexed: 12/26/2022]
Abstract
Thousands of noncoding somatic single-nucleotide variants (SNVs) of unknown function are reported in tumors. Partitioning the genome according to cistromes reveals the enrichment of somatic SNVs in prostate tumors as opposed to adjacent normal tissue cistromes of master transcription regulators, including AR, FOXA1, and HOXB13. This parallels enrichment of prostate cancer genetic predispositions over these transcription regulators' tumor cistromes, exemplified at the 8q24 locus harboring both risk variants and somatic SNVs in cis-regulatory elements upregulating MYC expression. However, Massively Parallel Reporter Assays reveal that few SNVs can alter the transactivation potential of individual cis-regulatory elements. Instead, similar to inherited risk variants, SNVs accumulate in cistromes of master transcription regulators required for prostate cancer development.
Collapse
Affiliation(s)
- Parisa Mazrooei
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ken J Kron
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Yanyun Zhu
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Stanley Zhou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Giacomo Grillo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Tahmid Mehdi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Musaddeque Ahmed
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Tesa M Severson
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paul Guilhamon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | - Vincent Huang
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | | | - Michael Fraser
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Theodorus van der Kwast
- Department of Pathology and Laboratory Medicine, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Andries M Bergman
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Robert G Bristow
- CRUK Manchester Institute and Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, UK
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands; Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada.
| |
Collapse
|
29
|
Ahmed MW, Mahjabeen I, Gul S, Khursheed A, Mehmood A, Kayani MA. Relationship of single nucleotide polymorphisms and haplotype interaction of mitochondrial unfolded protein response pathway genes with head and neck cancer. Future Oncol 2019; 15:3819-3829. [PMID: 31651195 DOI: 10.2217/fon-2019-0365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: In this study, we evaluated the effect of selected polymorphisms of mitochondrial unfolded protein response (UPRmt) pathway in 500 head and neck cancer (HNC) patients and 500 healthy controls from Pakistan. Materials & methods: The experiments were conducted using tetra-ARMS PCR followed by DNA sequencing. Results: Multivariate analysis showed that AA genotype of rs3782116 showed fivefold, GG genotype of rs6598072 approximately twofold and CC genotype of rs4946936 and TT genotype of rs12212067 showed twofold increased risk of HNC. Furthermore, haplotype analysis showed that certain haplotypes of UPRmt pathway single nucleotide polymorphisms have significant association with increased HNC risk. Conclusion: These results show that genetic aberrations in UPRmt pathway genes have association with increased HNC risk and can be an indicator of advance clinical outcome especially invasion and metastasis.
Collapse
Affiliation(s)
- Malik Waqar Ahmed
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad Pakistan
| | - Shazma Gul
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad Pakistan
| | - Anum Khursheed
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad Pakistan
| | - Azhar Mehmood
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad Pakistan
| |
Collapse
|
30
|
Mei S, Ke J, Tian J, Ying P, Yang N, Wang X, Zou D, Peng X, Yang Y, Zhu Y, Gong Y, Zhong R, Chang J, Miao X. A functional variant in the boundary of a topological association domain is associated with pancreatic cancer risk. Mol Carcinog 2019; 58:1855-1862. [DOI: 10.1002/mc.23077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Shufang Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Juntao Ke
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jianbo Tian
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Pingting Ying
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Nan Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Xiaoyang Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Danyi Zou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Xiating Peng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Yang Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Ying Zhu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Yajie Gong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Rong Zhong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jiang Chang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Xiaoping Miao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment & Health (Ministry of Education), Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| |
Collapse
|
31
|
Sanese P, Forte G, Disciglio V, Grossi V, Simone C. FOXO3 on the Road to Longevity: Lessons From SNPs and Chromatin Hubs. Comput Struct Biotechnol J 2019; 17:737-745. [PMID: 31303978 PMCID: PMC6606898 DOI: 10.1016/j.csbj.2019.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Health span is driven by a precise interplay between genes and the environment. Cell response to environmental cues is mediated by signaling cascades and genetic variants that affect gene expression by regulating chromatin plasticity. Indeed, they can promote the interaction of promoters with regulatory elements by forming active chromatin hubs. FOXO3 encodes a transcription factor with a strong impact on aging and age-related phenotypes, as it regulates stress response, therefore affecting lifespan. A significant association has been shown between human longevity and several FOXO3 variants located in intron 2. This haplotype block forms a putative aging chromatin hub in which FOXO3 has a central role, as it modulates the physical connection and activity of neighboring genes involved in age-related processes. Here we describe the role of FOXO3 and its single-nucleotide polymorphisms (SNPs) in healthy aging, with a focus on the enhancer region encompassing the SNP rs2802292, which upregulates FOXO3 expression and can promote the activity of the aging hub in response to different stress stimuli. FOXO3 protective effect on lifespan may be due to the accessibility of this region to transcription factors promoting its expression. This could in part explain the differences in FOXO3 association with longevity between genders, as its activity in females may be modulated by estrogens through estrogen receptor response elements located in the rs2802292-encompassing region. Altogether, the molecular mechanisms described here may help establish whether the rs2802292 SNP can be taken advantage of in predictive medicine and define the potential of targeting FOXO3 for age-related diseases.
Collapse
Key Words
- 3C, Chromosome conformation capture
- 5′UTR, Five prime untranslated region
- ACH, Active chromatin hub
- Aging
- Chromatin hub
- ER, Estrogen receptor
- ERE, Estrogen-responsive element
- FHRE, Forkhead response element
- FOXO3
- FOXO3, Forkhead box 3
- GPx, Glutathione peroxidase
- GWAS, Genome-wide association study
- HPS, Hamartomatous polyposis syndrome
- HSE, Heat shock element
- HSF1, Heat shock factor 1
- IGF-1, Insulin growth factor-1
- LD, Linkage disequilibrium
- Longevity
- PHTS, PTEN hamartoma tumor syndrome
- PJS, Peutz-Jeghers syndrome
- ROS, Reactive oxygen species
- SNP
- SNP, Single nucleotide polymorphism
- SNV, Single nucleotide variant
- SOD2, Superoxide dismutase 2
- TAD, Topologically associated domain
Collapse
Affiliation(s)
- Paola Sanese
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology ‘S. de Bellis’ Research Hospital, Via Turi, 27, 70013 Castellana Grotte (BA), Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology ‘S. de Bellis’ Research Hospital, Via Turi, 27, 70013 Castellana Grotte (BA), Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology ‘S. de Bellis’ Research Hospital, Via Turi, 27, 70013 Castellana Grotte (BA), Italy
| | - Cristiano Simone
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
- Medical Genetics, National Institute of Gastroenterology ‘S. de Bellis’ Research Hospital, Via Turi, 27, 70013 Castellana Grotte (BA), Italy
| |
Collapse
|
32
|
Guo Z, Wang Y, Zhao Y, Jin Y, An L, Xu H, Liu Z, Chen X, Zhou H, Wang H, Zhang W. A Functional 5'-UTR Polymorphism of MYC Contributes to Nasopharyngeal Carcinoma Susceptibility and Chemoradiotherapy Induced Toxicities. J Cancer 2019; 10:147-155. [PMID: 30662535 PMCID: PMC6329860 DOI: 10.7150/jca.28534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/24/2018] [Indexed: 02/05/2023] Open
Abstract
MYC is a transcription factor acting as a pivotal regulator of genes involved in cell cycle progression, apoptosis, differentiation and metabolism. In this study, we evaluated the association of MYC polymorphisms with nasopharyngeal carcinoma (NPC) risk and chemoradiotherapy induced toxicities among Chinese population. By using bioinformatic tools, five potential functional single nucleotide polymorphisms of MYC were genotyped in a case-control study with 684 NPC patients and 823 healthy controls. We found two SNPs rs4645948 (C>T) and rs2071346 (G>T) were significantly associated with increased risk of developing NPC (TT+CT vs CC, OR=1.557, P=3.34×10-4; TT+GT vs GG, OR=1.361, P=0.007, respectively). In addition, rs4645948 (C>T) was conferred with increased risk of anemia (CT vs CC, OR=2.152, P=0.001) and severe leukopenia (CT vs CC, OR=1.893, P=0.034) for NPC patients receiving chemoradiotherapy. We also found rs2071346 (G>T) variant genotype carriers were subjected to higher risk of anemia (GT vs GG, OR=1.665, P=0.022) and thrombocytopenia (GT vs GG, OR=1.685, P=0.035). Our results demonstrated that the relative expression of MYC was dramatically higher in NPC tissues compared to rhinitis tissues. Over-expression of MYC was positively correlated with advanced T stage, N stage, and late clinical stage. Notably, the expression of MYC in rs4645948 CT and TT genotypes carriers were significantly higher than CC genotype carriers. Luciferase reporter assay indicated that the T allele of rs4645948 led to significantly higher transcription activity of MYC compared to the C allele. These findings suggested that individual carrying the rs4645948 T allele may be at greater risk for NPC due to an increase of MYC transcriptional activity and an augment of MYC expression.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Youhong Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Yu Zhao
- Key Laboratory of Translational Radiation Oncology, Hunan Province; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, P.R. China
| | - Yi Jin
- Key Laboratory of Translational Radiation Oncology, Hunan Province; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, P.R. China
| | - Liang An
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Heng Xu
- Department of Laboratory Medicine, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610000, P.R. China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| | - Hui Wang
- Key Laboratory of Translational Radiation Oncology, Hunan Province; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410008, P.R. China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China
| |
Collapse
|
33
|
Yang Z, Zhao S, Zhou X, Zhao H, Jiang X. PCAT-1: A pivotal oncogenic long non-coding RNA in human cancers. Biomed Pharmacother 2018; 110:493-499. [PMID: 30530229 DOI: 10.1016/j.biopha.2018.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/17/2018] [Accepted: 12/02/2018] [Indexed: 12/30/2022] Open
Abstract
Prostate cancer-associated transcript 1 (PCAT-1) is a newly identified long non-coding RNA comprising two exons, located in the Chr8q24 gene desert approximately 725 kb upstream of the MYC oncogene. PCAT-1 is dysregulated and acts as an oncogene in different types of cancers and has been implicated in several processes correlated with carcinogenesis, such as cell proliferation, invasion, metastasis, apoptosis, cell cycle, chemoresistance, and homologous recombination. The mechanisms underlying the effects of PCAT-1 are complex and involve multiple factors and signaling pathways. In this paper, we systematically review the multiple pathological functions of PCAT-1 in diverse malignancies to elucidate its potential molecular mechanisms and to provide new directions for future research.
Collapse
Affiliation(s)
- Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shan Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiangyu Zhou
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiying Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
34
|
Zhang Y, Yang B, Cheng X, Liu L, Zhu Y, Gong Y, Yang Y, Tian J, Peng X, Zou D, Yang L, Mei S, Wang X, Lou J, Ke J, Li J, Gong J, Chang J, Yuan P, Zhong R. Integrative functional genomics identifies regulatory genetic variant modulating RAB31 expression and altering susceptibility to breast cancer. Mol Carcinog 2018; 57:1845-1854. [DOI: 10.1002/mc.22902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/14/2018] [Accepted: 08/31/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Yi Zhang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
- School of Public Health; Zunyi Medical University; Zunyi Guizhou China
| | - Beifang Yang
- Hubei Institute for Infectious Disease Control and Prevention; Hubei Provincial Center for Disease Control and Prevention; Wuhan China
| | - Xiang Cheng
- Department of Hepatobiliary Surgery; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Li Liu
- Guangdong Key Lab of Molecular Epidemiology and Department of Epidemiology and Biostatistics; School of Public Health; Guangdong Pharmaceutical University; Guangzhou China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Yajie Gong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Yang Yang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Danyi Zou
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Lan Yang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Shufang Mei
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Jiao Lou
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Juntao Ke
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Jiaoyuan Li
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Jing Gong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Peng Yuan
- Department of VIP Medical Services; National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health; School of Public Health; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| |
Collapse
|
35
|
Mehdi T, Bailey SD, Guilhamon P, Lupien M. C3D: a tool to predict 3D genomic interactions between cis-regulatory elements. Bioinformatics 2018; 35:877-879. [DOI: 10.1093/bioinformatics/bty717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 06/15/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Tahmid Mehdi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
| | - Swneke D Bailey
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Paul Guilhamon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| |
Collapse
|
36
|
Hua JT, Ahmed M, Guo H, Zhang Y, Chen S, Soares F, Lu J, Zhou S, Wang M, Li H, Larson NB, McDonnell SK, Patel PS, Liang Y, Yao CQ, van der Kwast T, Lupien M, Feng FY, Zoubeidi A, Tsao MS, Thibodeau SN, Boutros PC, He HH. Risk SNP-Mediated Promoter-Enhancer Switching Drives Prostate Cancer through lncRNA PCAT19. Cell 2018; 174:564-575.e18. [DOI: 10.1016/j.cell.2018.06.014] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/26/2018] [Accepted: 06/06/2018] [Indexed: 11/30/2022]
|
37
|
Fagnocchi L, Poli V, Zippo A. Enhancer reprogramming in tumor progression: a new route towards cancer cell plasticity. Cell Mol Life Sci 2018; 75:2537-2555. [PMID: 29691590 PMCID: PMC11105402 DOI: 10.1007/s00018-018-2820-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022]
Abstract
Cancer heterogeneity arises during tumor progression as a consequence of genetic insults, environmental cues, and reversible changes in the epigenetic state, favoring tumor cell plasticity. The role of enhancer reprogramming is emerging as a relevant field in cancer biology as it supports adaptation of cancer cells to those environmental changes encountered during tumor progression and metastasis seeding. In this review, we describe the cancer-related alterations that drive oncogenic enhancer activity, leading to dysregulated transcriptional programs. We discuss the molecular mechanisms of both cis- and trans-factors in overriding the regulatory circuits that maintain cell-type specificity and imposing an alternative, de-regulated enhancer activity in cancer cells. We further comment on the increasing evidence which implicates stress response and aging-signaling pathways in the enhancer landscape reprogramming during tumorigenesis. Finally, we focus on the potential therapeutic implications of these enhancer-mediated subverted transcriptional programs, putting particular emphasis on the lack of information regarding tumor progression and the metastatic outgrowth, which still remain the major cause of mortality related to cancer.
Collapse
Affiliation(s)
- Luca Fagnocchi
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| | - Vittoria Poli
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Alessio Zippo
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
- Department of Epigenetics, Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Via F. Sforza 35, 20122, Milan, Italy.
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
38
|
Yuan Q, Chu H, Ge Y, Ma G, Du M, Wang M, Zhang Z, Zhang W. LncRNA PCAT1 and its genetic variant rs1902432 are associated with prostate cancer risk. J Cancer 2018; 9:1414-1420. [PMID: 29721051 PMCID: PMC5929086 DOI: 10.7150/jca.23685] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/26/2018] [Indexed: 01/16/2023] Open
Abstract
Emerging evidence has showed that lncRNAs and trait-associated loci in lncRNAs play a crucial role in the progression of cancer including prostate cancer (PCa).This study aimed to investigate the molecular mechanisms of lncRNA PCAT1 involved in PCa development and its genetic variant associated with PCa risk. We applied cell proliferation and apoptosis assays to assess the effect of PCAT1 on PCa cell phenotypes. In addition, the genome-wide profiling of gene expression was assessed from three pairs of DU145 cells transfected with PCAT1 overexpression vector or negative control (NC) vector. Furthermore, a case-control study was conducted to explore the associations of four tagging single nucleotide polymorphisms (tagSNPs) and PCa risk in 850 PCa cases and 860 cancer-free controls. Our results showed that lncRNA PCAT1 promoted cell proliferation and inhibited cell apoptosis. Ingenuity pathway analysis (IPA) indicated that dysregulated mRNAs induced by overexpression of PCAT1 were primarily enriched in androgen-independent prostate tumor term and implicated in the disease and functions networks, such as cell death and survival, cell proliferation and gene expression. Besides, rs1902432 in PCAT1 was significantly associated with increased risk of PCa (Additive model: OR = 1.19, P = 0.014; Co-dominant model: CC vs. TT, OR = 1.45, P =0.012; Recessive model: CC vs. TT/CT, OR= 1.34, P = 0.027). This study suggests that PCAT1 may act as an oncogene through promoting cell proliferation and suppressing cell apoptosis in PCa development, and genetic variant in PCAT1 contributes to the susceptibility to PCa.
Collapse
Affiliation(s)
- Qinbo Yuan
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Urology, Huaiyin Hospital of Huai'an City, Huai'an, China.,Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuqiu Ge
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Gaoxiang Ma
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
39
|
Zhou D, Zhang D, Sun X, Li Z, Ni Y, Shan Z, Li H, Liu C, Zhang S, Liu Y, Zheng R, Pan F, Zhu Y, Shi Y, Lai M. A novel variant associated with HDL-C levels by modifying DAGLB expression levels: An annotation-based genome-wide association study. Eur J Hum Genet 2018; 26:838-847. [PMID: 29476167 DOI: 10.1038/s41431-018-0108-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 12/10/2017] [Accepted: 01/23/2018] [Indexed: 11/09/2022] Open
Abstract
Although numbers of genome-wide association studies (GWAS) have been performed for serum lipid levels, limited heritability has been explained. Studies showed that combining data from GWAS and expression quantitative trait loci (eQTLs) signals can both enhance the discovery of trait-associated SNPs and gain a better understanding of the mechanism. We performed an annotation-based, multistage genome-wide screening for serum-lipid-level-associated loci in totally 6863 Han Chinese. A serum high-density lipoprotein cholesterol (HDL-C) associated variant rs1880118 (hg19 chr7:g. 6435220G>C) was replicated (Pcombined = 1.4E-10). rs1880118 was associated with DAGLB (diacylglycerol lipase, beta) expression levels in subcutaneous adipose tissue (P = 5.9E-42) and explained 47.7% of the expression variance. After the replication, an active segment covering variants tagged by rs1880118 near 5' of DAGLB was annotated using histone modification and transcription factor binding signals. The luciferase report assay revealed that the segment containing the minor alleles showed increased transcriptional activity compared with segment contains the major alleles, which was consistent with the eQTL analyses. The expression-trait association tests indicated the association between the DAGLB and serum HDL-C levels using gene-based approaches called "TWAS" (P = 3.0E-8), "SMR" (P = 1.1E-4), and "Sherlock" (P = 1.6E-6). To summarize, we identified a novel HDL-C-associated variant which explained nearly half of the expression variance of DAGLB. Integrated analyses established a genotype-gene-phenotype three-way association and expanded our knowledge of DAGLB in lipid metabolism.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Epidemiology & Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China.,Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Dandan Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Xiaohui Sun
- Department of Epidemiology & Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266000, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yaqin Ni
- Department of Epidemiology & Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China
| | - Zhongyan Shan
- The Endocrine Institute and Liaoning Provincial Key Laboratory of Endocrine Diseases, Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Hong Li
- Department of Endocrinology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310020, China
| | - Chengguo Liu
- Putuo District People's Hospital, Zhoushan, Zhejiang, 316100, China
| | - Shuai Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Yi Liu
- Department of Epidemiology & Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China
| | - Ruizhi Zheng
- Department of Epidemiology & Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China
| | - Feixia Pan
- Department of Epidemiology & Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China.
| | - Yongyong Shi
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266000, China. .,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Department of Psychiatry, The First Teaching Hospital of Xinjiang Medical University, Urumqi, 830000, China.
| | - Maode Lai
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China. .,Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
40
|
Ke J, Lou J, Chen X, Li J, Liu C, Gong Y, Yang Y, Zhu Y, Zhang Y, Tian J, Chang J, Zhong R, Gong J, Miao X. Identification of a functional variant for colorectal cancer risk mapping to chromosome 5q31.1. Oncotarget 2018; 7:35199-207. [PMID: 27177089 PMCID: PMC5085221 DOI: 10.18632/oncotarget.9298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/11/2016] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies (GWASs) have established chromosome 5q31.1 as a risk locus for colorectal cancer (CRC). We previously identified a potentially regulatory single nucleotide polymorphism (SNP) rs17716310 within 5q31.1. Now, we extended our study with another independent Chinese population, functional assays and analyses of TCGA (The Cancer Genome Atlas) data. Significant associations between rs17716310 and CRC risk were found in Present Study including 1075 CRC cases and 1999 controls (additive model: OR = 1.149, 95% CI = 1.027–1.286, P = 0.016), and in Combined Study including 1766 cases and 2708 controls (additive model: OR = 1.145, 95% CI = 1.045–1.254, P = 0.004). Dual luciferase reporter gene assays indicated that the variant C allele obviously increased transcriptional activity. Using TCGA datasets, we indicated rs17716310 as a cis expression quantitative trait locus (eQTL) for the gene SMAD5, whose expression was significantly higher in CRC tissues. These findings suggested that the functional polymorphism rs17716310 A > C might be a genetic modifier for CRC, promoting the expression of SMAD5 that belonged to the transforming growth factor beta (TGF-β) signaling pathway.
Collapse
Affiliation(s)
- Juntao Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Lou
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueqin Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Zhang X, Choi PS, Francis JM, Gao GF, Campbell JD, Ramachandran A, Mitsuishi Y, Ha G, Shih J, Vazquez F, Tsherniak A, Taylor AM, Zhou J, Wu Z, Berger AC, Giannakis M, Hahn WC, Cherniack AD, Meyerson M. Somatic Superenhancer Duplications and Hotspot Mutations Lead to Oncogenic Activation of the KLF5 Transcription Factor. Cancer Discov 2018; 8:108-125. [PMID: 28963353 PMCID: PMC5760289 DOI: 10.1158/2159-8290.cd-17-0532] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 12/23/2022]
Abstract
The Krüppel-like family of transcription factors plays critical roles in human development and is associated with cancer pathogenesis. Krüppel-like factor 5 gene (KLF5) has been shown to promote cancer cell proliferation and tumorigenesis and to be genomically amplified in cancer cells. We recently reported that the KLF5 gene is also subject to other types of somatic coding and noncoding genomic alterations in diverse cancer types. Here, we show that these alterations activate KLF5 by three distinct mechanisms: (i) Focal amplification of superenhancers activates KLF5 expression in squamous cell carcinomas; (ii) Missense mutations disrupt KLF5-FBXW7 interactions to increase KLF5 protein stability in colorectal cancer; (iii) Cancer type-specific hotspot mutations within a zinc-finger DNA binding domain of KLF5 change its DNA binding specificity and reshape cellular transcription. Utilizing data from CRISPR/Cas9 gene knockout screening, we reveal that cancer cells with KLF5 overexpression are dependent on KLF5 for their proliferation, suggesting KLF5 as a putative therapeutic target.Significance: Our observations, together with previous studies that identified oncogenic properties of KLF5, establish the importance of KLF5 activation in human cancers, delineate the varied genomic mechanisms underlying this occurrence, and nominate KLF5 as a putative target for therapeutic intervention in cancer. Cancer Discov; 8(1); 108-25. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Peter S Choi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Joshua M Francis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Galen F Gao
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Joshua D Campbell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Aruna Ramachandran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Yoichiro Mitsuishi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Gavin Ha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Juliann Shih
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Francisca Vazquez
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Aviad Tsherniak
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Alison M Taylor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Jin Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zhong Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ashton C Berger
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrew D Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
42
|
Deng N, Zhou H, Fan H, Yuan Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 2017; 8:110635-110649. [PMID: 29299175 PMCID: PMC5746410 DOI: 10.18632/oncotarget.22372] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
A large number of genes associated with various cancer types contain single nucleotide polymorphisms (SNPs). SNPs are located in gene promoters, exons, introns as well as 5'- and 3'- untranslated regions (UTRs) and affect gene expression by different mechanisms. These mechanisms depend on the role of the genetic elements in which the individual SNPs are located. Moreover, alterations in epigenetic regulation due to gene polymorphisms add to the complexity underlying cancer susceptibility related to SNPs. In this systematic review, we discuss the various genetic and epigenetic mechanisms involved in determining cancer susceptibility related to various SNPs located in different genetic elements. We also discuss the diagnostic potential of these SNPs and the focus for future studies.
Collapse
Affiliation(s)
- Na Deng
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.,Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Heng Zhou
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Hua Fan
- Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.,National Clinical Research Center for Digestive Diseases, Xi'an 110001, China
| |
Collapse
|
43
|
Donlon TA, Morris BJ, Chen R, Masaki KH, Allsopp RC, Willcox DC, Elliott A, Willcox BJ. FOXO3 longevity interactome on chromosome 6. Aging Cell 2017; 16:1016-1025. [PMID: 28722347 PMCID: PMC5595686 DOI: 10.1111/acel.12625] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2017] [Indexed: 01/07/2023] Open
Abstract
FOXO3 has been implicated in longevity in multiple populations. By DNA sequencing in long‐lived individuals, we identified all single nucleotide polymorphisms (SNPs) in FOXO3 and showed 41 were associated with longevity. Thirteen of these had predicted alterations in transcription factor binding sites. Those SNPs appeared to be in physical contact, via RNA polymerase II binding chromatin looping, with sites in the FOXO3 promoter, and likely function together as a cis‐regulatory unit. The SNPs exhibited a high degree of LD in the Asian population, in which they define a specific longevity haplotype that is relatively common. The haplotype was less frequent in whites and virtually nonexistent in Africans. We identified distant contact points between FOXO3 and 46 neighboring genes, through long‐range physical contacts via CCCTC‐binding factor zinc finger protein (CTCF) binding sites, over a 7.3 Mb distance on chromosome 6q21. When activated by cellular stress, we visualized movement of FOXO3 toward neighboring genes. FOXO3 resides at the center of this early‐replicating and highly conserved syntenic region of chromosome 6. Thus, in addition to its role as a transcription factor regulating gene expression genomewide, FOXO3 may function at the genomic level to help regulate neighboring genes by virtue of its central location in chromatin conformation via topologically associated domains. We believe that the FOXO3 ‘interactome’ on chromosome 6 is a chromatin domain that defines an aging hub. A more thorough understanding of the functions of these neighboring genes may help elucidate the mechanisms through which FOXO3 variants promote longevity and healthy aging.
Collapse
Affiliation(s)
- Timothy A. Donlon
- Department of Research; Genetics Laboratory; Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS); Kuakini Medical Center; Honolulu Hawaii
- John A. Burns School of Medicine; University of Hawaii Manoa; Honolulu Hawaii
| | - Brian J. Morris
- Department of Research; Genetics Laboratory; Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS); Kuakini Medical Center; Honolulu Hawaii
- Basic & Clinical Genomics Laboratory; School of Medical Sciences and Bosch Institute; University of Sydney; Sydney NSW Australia
- Department of Geriatric Medicine; John A. Burns School of Medicine; University of Hawaii; Honolulu Hawaii
| | - Randi Chen
- Department of Research; Genetics Laboratory; Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS); Kuakini Medical Center; Honolulu Hawaii
| | - Kamal H. Masaki
- Department of Research; Genetics Laboratory; Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS); Kuakini Medical Center; Honolulu Hawaii
- Department of Geriatric Medicine; John A. Burns School of Medicine; University of Hawaii; Honolulu Hawaii
| | - Richard C. Allsopp
- John A. Burns School of Medicine; University of Hawaii Manoa; Honolulu Hawaii
| | - D. Craig Willcox
- Department of Research; Genetics Laboratory; Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS); Kuakini Medical Center; Honolulu Hawaii
- Department of Geriatric Medicine; John A. Burns School of Medicine; University of Hawaii; Honolulu Hawaii
- Department of Human Welfare; Okinawa International University; Okinawa Japan
| | - Ayako Elliott
- Department of Research; Genetics Laboratory; Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS); Kuakini Medical Center; Honolulu Hawaii
| | - Bradley J. Willcox
- Department of Research; Genetics Laboratory; Honolulu Heart Program/Honolulu-Asia Aging Study (HAAS); Kuakini Medical Center; Honolulu Hawaii
- Department of Geriatric Medicine; John A. Burns School of Medicine; University of Hawaii; Honolulu Hawaii
| |
Collapse
|
44
|
Zhao Y, Yun D, Zou X, Jiang T, Li G, Hu L, Chen J, Xu J, Mao Y, Chen H, Lu D. Whole exome-wide association study identifies a missense variant in SLC2A4RG associated with glioblastoma risk. Am J Cancer Res 2017; 7:1937-1947. [PMID: 28979815 PMCID: PMC5622227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023] Open
Abstract
In this study, we conducted a genome-wide scan of single nucleotide polymorphisms (SNPs) to identify coding variants that is associated with the risk of glioblastoma (GBM), the most common and most malignant subtype of glioma. We genotyped 1038 GBM cases and 1008 controls in a Chinese Han population using Illumina HumanExome Beadchip v1.0. A missense variant, rs8957 (E[GAG]233D[GAU], SLC2A4RG, 20q13.33), was found being associated with GBM risk, with an odd ratio (OR) of 1.43 (95% confidence interval (CI) = 1.25-1.64, P = 1.72E-07). The G>T transversion at rs8957 leading to changes of subcellular localization of SLC2A4RG, possibly due to the impairment of its nuclear export signal or protein folding. Moreover, the amino acid substitution compromised the function of SLC2A4RG as a cancer suppressor by promoting cell growth through de-inhibition of CDK1 in U87 and U251 cell lines. These results suggest SLC2A4RG plays an important role in the etiology of GBM and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Yingjie Zhao
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan UniversityShanghai 200438, China
| | - Dapeng Yun
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan UniversityShanghai 200438, China
| | - Xiang Zou
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai 200040, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing 100050, China
| | - Gang Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical UniversityXi’an 710038, China
| | - Lingna Hu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan UniversityShanghai 200438, China
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Changzheng Hospital, Second Military Medical UniversityShanghai 200003, China
| | - Jianfeng Xu
- Center for Genomic Translational Medicine and Prevention, Fudan School of Public Health, Fudan UniversityShanghai 200032, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai 200040, China
| | - Hongyan Chen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan UniversityShanghai 200438, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan UniversityShanghai 200438, China
| |
Collapse
|
45
|
Lau W, Andrew T, Maniatis N. High-Resolution Genetic Maps Identify Multiple Type 2 Diabetes Loci at Regulatory Hotspots in African Americans and Europeans. Am J Hum Genet 2017; 100:803-816. [PMID: 28475862 DOI: 10.1016/j.ajhg.2017.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/11/2017] [Indexed: 10/19/2022] Open
Abstract
Interpretation of results from genome-wide association studies for T2D is challenging. Only very few loci have been replicated in African ancestry populations and the identification of the implicated functional genes remain largely undefined. We used genetic maps that capture detailed linkage disequilibrium information in European and African Americans and applied these to large T2D case-control samples in order to estimate locations for putative functional variants in both populations. Replicated T2D locations were tested for evidence of being regulatory hotspots using adipose expression. We validated a sample of our co-location intervals using next generation sequencing and functional annotation, including enhancers, transcription, and chromatin modifications. We identified 111 additional disease-susceptibility locations, 93 of which are cosmopolitan and 18 of which are European specific. We show that many previously known signals are also risk loci in African Americans. The majority of the disease locations appear to confer risk of T2D via the regulation of expression levels for a large number (266) of cis-regulated genes, the majority of which are not the nearest genes to the disease loci. Sequencing three cosmopolitan locations provided candidate functional variants that precisely co-locate with cell-specific chromatin domains and pancreatic islet enhancers. These variants have large effect sizes and are common across populations. Results show that disease-associated loci in different populations, gene expression, and cell-specific regulatory annotation can be effectively integrated by localizing these effects on high-resolution genetic maps. The cis-regulated genes provide insights into the complex molecular pathways involved and can be used as targets for sequencing and functional molecular studies.
Collapse
|
46
|
Bougnères P, Le Fur S, Valtat S, Kamatani Y, Lathrop M, Valleron AJ. Using spatio-temporal surveillance data to test the infectious environment of children before type 1 diabetes diagnosis. PLoS One 2017; 12:e0170658. [PMID: 28152013 PMCID: PMC5289461 DOI: 10.1371/journal.pone.0170658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/09/2017] [Indexed: 12/16/2022] Open
Abstract
The "hygiene hypothesis" postulates that reduced exposure to infections favours the development of autoimmunity and childhood type 1 diabetes (T1D). But on the other side, viruses, notably enteroviruses, are suspected to trigger T1D. The assessment of the possible relationships between infections and T1D still defies the classical tools of epidemiology. We report the methods and results of a geographical approach that maps the addresses of patients to a communicable diseases surveillance database. We mapped the addresses of patients at birth, infancy and T1D diagnosis to the weekly estimates of the regional incidences of 5 frequent communicable diseases routinely collected since 1984 by the French Sentinel network. The pre-diagnostic infectious environment of 3548 patients with T1D diagnosed between 0.5 and 15 years was compared to those of 100 series of age-matched "virtual controls" drawn randomly on the map. Associations were classified as "suggestive" (summer diarrhea, SD, and varicella, V) when p< 0.05, or "significant" (influenza-like infections, ILI) when they passed the Bonferroni correction for FDR. Exposure to ILI and SD were associated with T1D risk, while V seemed protective. In the subset of 2521 patients for which we had genome wide data, we used a case-only approach to search for interactions between SNPs and the infectious environment as defined by the Sentinel database. Two SNPs, rs116624278 and rs77232854, showed significant interaction with exposure to V between 1 and 3 years of life. The infectious associations found should be taken as possible markers of patients' environment, not as direct causative factors of T1D. They require replication in other populations. The increasing public availability of geographical environmental databases will expand the present approach to map thousands of environmental factors to the lifeline of patients affected by various diseases.
Collapse
Affiliation(s)
- Pierre Bougnères
- Department of Pediatric Endocrinology, Bicêtre Hospital, Paris Sud University, AP-HP, Le Kremlin Bicêtre, France
- Inserm U1169, Paris Sud University, Le Kremlin Bicêtre, France
- * E-mail:
| | - Sophie Le Fur
- Department of Pediatric Endocrinology, Bicêtre Hospital, Paris Sud University, AP-HP, Le Kremlin Bicêtre, France
- Inserm U1169, Paris Sud University, Le Kremlin Bicêtre, France
| | | | - Sophie Valtat
- Department of Pediatric Endocrinology, Bicêtre Hospital, Paris Sud University, AP-HP, Le Kremlin Bicêtre, France
| | - Yoichiro Kamatani
- Center for Integrative Medical Sciences, RIKEN, Laboratory for Statistical Analysis, Kanagawa, Japan
| | - Mark Lathrop
- Centre National de Génotypage, Evry, France, and Génome Québec Innovation Centre, McGill University, Montréal (Québec), Canada
| | | |
Collapse
|
47
|
Gordon CM, Zemel BS, Wren TAL, Leonard MB, Bachrach LK, Rauch F, Gilsanz V, Rosen CJ, Winer KK. The Determinants of Peak Bone Mass. J Pediatr 2017; 180:261-269. [PMID: 27816219 DOI: 10.1016/j.jpeds.2016.09.056] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/19/2016] [Accepted: 09/26/2016] [Indexed: 02/07/2023]
Affiliation(s)
- Catherine M Gordon
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH.
| | - Babette S Zemel
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Tishya A L Wren
- Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | | | | | - Frank Rauch
- Shriners Hospital for Children, McGill University, Montreal, Canada
| | - Vicente Gilsanz
- Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | | | - Karen K Winer
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD
| |
Collapse
|
48
|
Laber S, Cox RD. Mouse Models of Human GWAS Hits for Obesity and Diabetes in the Post Genomic Era: Time for Reevaluation. Front Endocrinol (Lausanne) 2017; 8:11. [PMID: 28223964 PMCID: PMC5294391 DOI: 10.3389/fendo.2017.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/13/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Samantha Laber
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- *Correspondence: Samantha Laber, ; Roger D. Cox,
| | - Roger D. Cox
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire, UK
- *Correspondence: Samantha Laber, ; Roger D. Cox,
| |
Collapse
|
49
|
Andrade A, Hope J, Allen A, Yorgan V, Lipscombe D, Pan JQ. A rare schizophrenia risk variant of CACNA1I disrupts Ca V3.3 channel activity. Sci Rep 2016; 6:34233. [PMID: 27756899 PMCID: PMC5069464 DOI: 10.1038/srep34233] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/07/2016] [Indexed: 02/04/2023] Open
Abstract
CACNA1I is a candidate schizophrenia risk gene. It encodes the pore-forming human CaV3.3 α1 subunit, a subtype of voltage-gated calcium channel that contributes to T-type currents. Recently, two de novo missense variations, T797M and R1346H, of hCaV3.3 were identified in individuals with schizophrenia. Here we show that R1346H, but not T797M, is associated with lower hCaV3.3 protein levels, reduced glycosylation, and lower membrane surface levels of hCaV3.3 when expressed in human cell lines compared to wild-type. Consistent with our biochemical analyses, whole-cell hCaV3.3 currents in cells expressing the R1346H variant were ~50% of those in cells expressing WT hCaV3.3, and neither R1346H nor T797M altered channel biophysical properties. Employing the NEURON simulation environment, we found that reducing hCaV3.3 current densities by 22% or more eliminates rebound bursting in model thalamic reticular nucleus (TRN) neurons. Our analyses suggest that a single copy of Chr22: 39665939G > A CACNA1I has the capacity to disrupt CaV3.3 channel-dependent functions, including rebound bursting in TRN neurons, with potential implications for schizophrenia pathophysiology.
Collapse
Affiliation(s)
- A Andrade
- Department of Biological Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH 03824, USA.,Brown Institute for Brain Science, Providence, RI 02912, USA
| | - J Hope
- Stanley Center of Psychiatric Research, Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - A Allen
- Stanley Center of Psychiatric Research, Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| | - V Yorgan
- Brown Institute for Brain Science, Providence, RI 02912, USA
| | - D Lipscombe
- Brown Institute for Brain Science, Providence, RI 02912, USA
| | - J Q Pan
- Stanley Center of Psychiatric Research, Broad Institute of Harvard and MIT, 75 Ames Street, Cambridge, MA 02142, USA
| |
Collapse
|
50
|
Zhou S, Treloar AE, Lupien M. Emergence of the Noncoding Cancer Genome: A Target of Genetic and Epigenetic Alterations. Cancer Discov 2016; 6:1215-1229. [PMID: 27807102 DOI: 10.1158/2159-8290.cd-16-0745] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/17/2016] [Indexed: 12/14/2022]
Abstract
The emergence of whole-genome annotation approaches is paving the way for the comprehensive annotation of the human genome across diverse cell and tissue types exposed to various environmental conditions. This has already unmasked the positions of thousands of functional cis-regulatory elements integral to transcriptional regulation, such as enhancers, promoters, and anchors of chromatin interactions that populate the noncoding genome. Recent studies have shown that cis-regulatory elements are commonly the targets of genetic and epigenetic alterations associated with aberrant gene expression in cancer. Here, we review these findings to showcase the contribution of the noncoding genome and its alteration in the development and progression of cancer. We also highlight the opportunities to translate the biological characterization of genetic and epigenetic alterations in the noncoding cancer genome into novel approaches to treat or monitor disease. SIGNIFICANCE The majority of genetic and epigenetic alterations accumulate in the noncoding genome throughout oncogenesis. Discriminating driver from passenger events is a challenge that holds great promise to improve our understanding of the etiology of different cancer types. Advancing our understanding of the noncoding cancer genome may thus identify new therapeutic opportunities and accelerate our capacity to find improved biomarkers to monitor various stages of cancer development. Cancer Discov; 6(11); 1215-29. ©2016 AACR.
Collapse
Affiliation(s)
- Stanley Zhou
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Aislinn E Treloar
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|