1
|
Rahman SMA, Singh G, Khan MS, Balasubramaniam AK, Monga V. Recent developments of pyrimidine appended HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Chem 2025; 157:108273. [PMID: 40037028 DOI: 10.1016/j.bioorg.2025.108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
Acquired Immune Deficiency Syndrome (AIDS) is an ailment that progressively weakens the immune system and is responsible for being the sole cause of 630,000 deaths worldwide in 2023. It is a potentially fatal condition that promotes the growth of malignancies and secondary infection. Viruses like Human Immunodeficiency Virus (HIV-1) and Hepatitis B virus (HBV) employ an enzyme, reverse transcriptase (RT), to replicate their genomes and spread across the host genome. RT has proved to be one of the most important therapeutic targets for the treatment of AIDS as well as for the development of new HIV-1 medications. The pyrimidine nucleus has been described as a dynamic cornerstone in developing new anti-HIV-1 medications and represents a familiar motif found in various marketed anti-HIV-1 drugs, such as diaryl pyrimidines (DAPYs). The rapid emergence of drug-resistant viral strains due to mutations in the HIV-1 RT structure along with their unfavourable pharmacokinetics present new challenges. Recent years have witnessed tremendous progress in the design and discovery of new substituted pyrimidines as potent and selective non-nucleoside reverse transcriptase inhibitors (NNRTIs). Further, the current developments in the field of X-ray crystallography and molecular modeling have remarkably augmented the design strategies, with simultaneous improvement in the resistance profiles. This article comprehensively reviews recent trends in the design and development of pyrimidine-based HIV-1 NNRTIs. The study emphasizes their biological activities, structure-activity relationship, and docking studies to guide the rational design of NNRTIs with desired potency, safety, and efficacy.
Collapse
Affiliation(s)
- S Maheen Abdul Rahman
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, India
| | - Mhd Shabbu Khan
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India
| | - Arun Kumar Balasubramaniam
- Department of Pharmaceutical Sciences, Joan M. Lafleur College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas 77004, USA
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India.
| |
Collapse
|
2
|
Zhu Y, Kleinpeter AB, Rey JS, Shen J, Shen Y, Xu J, Hardenbrook N, Chen L, Lucic A, Perilla JR, Freed EO, Zhang P. Structural basis for HIV-1 capsid adaption to rescue IP6-packaging deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.09.637297. [PMID: 39975075 PMCID: PMC11839029 DOI: 10.1101/2025.02.09.637297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Inositol hexakisphosphate (IP6) promotes HIV-1 assembly via its interaction with the immature Gag lattice, effectively enriching IP6 within virions. During particle maturation, the HIV-1 protease cleaves the Gag polyproteins comprising the immature Gag lattice, releasing IP6 from its original binding site and liberating the capsid (CA) domain of Gag. IP6 then promotes the assembly of mature CA protein into the capsid shell of the viral core, which is required for infection of new target cells. Recently, we reported HIV-1 Gag mutants that assemble virions independently of IP6. However, these mutants are non-infectious and unable to assemble stable capsids. Here, we identified a mutation in the C-terminus of CA - G225R - that restores capsid formation and infectivity to these IP6-packaging-deficient mutants. Furthermore, we show that G225R facilitates the in vitro assembly of purified CA into capsid-like particles (CLPs) at IP6 concentrations well below those required for WT CLP assembly. Using single-particle cryoEM, we solved structures of CA hexamer and hexameric lattice of mature CLPs harbouring the G225R mutation assembled in low-IP6 conditions. The high-resolution (2.7 Å) cryoEM structure combined with molecular dynamics simulations of the G225R capsid revealed that the otherwise flexible and disordered C-terminus of CA becomes structured, extending to the pseudo two-fold hexamer-hexamer interface, thereby stabilizing the mature capsid. This work uncovers a structural mechanism by which HIV-1 adapts to a deficiency in IP6 packaging. Furthermore, the ability of G225R to promote mature capsid assembly in low-IP6 conditions provides a valuable tool for capsid-related studies and may indicate a heretofore unknown role for the unstructured C-terminus in HIV-1 capsid assembly.
Collapse
Affiliation(s)
- Yanan Zhu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Institute for Advanced Study in Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Alex B Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Juan Shen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Yao Shen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jialu Xu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Nathan Hardenbrook
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Long Chen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Anka Lucic
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
3
|
Kc Y, Singh A, Datta S, Das R, Saxena PR, Chapagain S, Nitz TJ, Wild C, Gaur R. C-28 linker length modulates the activity of second-generation HIV-1 maturation inhibitors. Virol J 2025; 22:20. [PMID: 39875943 PMCID: PMC11776332 DOI: 10.1186/s12985-025-02635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Maturation inhibitors (MIs) block HIV-1 maturation by preventing the cleavage of the capsid protein and spacer peptide 1 (CA-SP1). Bevirimat (BVM), a first-in-class MI, displayed sub-optimal efficacy in clinical trials due to presence of SP1:V7A polymorphism in the Gag protein.This polymorphism is inherently present in HIV-1 subtype C and conferred resistance to BVM. Second generation BVM analogs with modifications at C-28 position gained potent activity against HIV-1 subtype C. In this study, we have evaluated the efficacy of nine second-generation MIs (BVM analogs) with varying length of C28 carbon linker against HIV-1 subtype B and C. Increasing the length of carbon linker decreased their activity against both subtypes. These MIs were also active against integrase inhibitor-resistant viruses and protease inhibitor-resistant viruses. Our data has provided vital information that in addition to the nature of the functional group at C28 position of the MI, the length of linker contributes significantly to its activity. The shorter the length, the better the activity of MIs. These results will further pave way for design of novel and potent MIs.
Collapse
Affiliation(s)
- Yuvraj Kc
- Virology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University (SAU), New Delhi, 110068, India
| | - Aradhana Singh
- Virology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University (SAU), New Delhi, 110068, India
| | - Sayantani Datta
- Virology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University (SAU), New Delhi, 110068, India
| | - Ritika Das
- Virology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University (SAU), New Delhi, 110068, India
| | - Pranjal Raj Saxena
- Virology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University (SAU), New Delhi, 110068, India
| | - Subash Chapagain
- Virology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University (SAU), New Delhi, 110068, India
| | - T J Nitz
- DFH Pharma, Gaithersburg, MD, 20886, USA
| | - Carl Wild
- DFH Pharma, Gaithersburg, MD, 20886, USA
| | - Ritu Gaur
- Virology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University (SAU), New Delhi, 110068, India.
| |
Collapse
|
4
|
Giraldo-Ocampo S, Valiente-Echeverría F, Soto-Rifo R. Host RNA-Binding Proteins as Regulators of HIV-1 Replication. Viruses 2024; 17:43. [PMID: 39861832 PMCID: PMC11768693 DOI: 10.3390/v17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
RNA-binding proteins (RBPs) are cellular factors involved in every step of RNA metabolism. During HIV-1 infection, these proteins are key players in the fine-tuning of viral and host cellular and molecular pathways, including (but not limited to) viral entry, transcription, splicing, RNA modification, translation, decay, assembly, and packaging, as well as the modulation of the antiviral response. Targeted studies have been of paramount importance in identifying and understanding the role of RNA-binding proteins that bind to HIV-1 RNAs. However, novel approaches aimed at identifying all the proteins bound to specific RNAs (RBPome), such as RNA interactome capture, have also contributed to expanding our understanding of the HIV-1 replication cycle, allowing the identification of RBPs with functions not only in viral RNA metabolism but also in cellular metabolism. Strikingly, several of the RBPs found through interactome capture are not canonical RBPs, meaning that they do not have conventional RNA-binding domains and are therefore not readily predicted as being RBPs. Further studies on the different cellular targets of HIV-1, such as subtypes of T cells or myeloid cells, or on the context (active replication versus reactivation from latency) are needed to fully elucidate the host RBPome bound to the viral RNA, which will allow researchers and clinicians to discover new therapeutic targets during active replication and provirus reactivation from latency.
Collapse
Affiliation(s)
- Sebastian Giraldo-Ocampo
- Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (S.G.-O.); (F.V.-E.)
- Center for HIV/AIDS Integral Research (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Millennium Institute in Immunology and Immunotherapy, Santiago 8380453, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (S.G.-O.); (F.V.-E.)
- Center for HIV/AIDS Integral Research (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Millennium Institute in Immunology and Immunotherapy, Santiago 8380453, Chile
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (S.G.-O.); (F.V.-E.)
- Center for HIV/AIDS Integral Research (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Millennium Institute in Immunology and Immunotherapy, Santiago 8380453, Chile
| |
Collapse
|
5
|
Abraham AA, Tan ZC, Shrestha P, Bozich ER, Meyer AS. A multivalent binding model infers antibody Fc species from systems serology. PLoS Comput Biol 2024; 20:e1012663. [PMID: 39715286 PMCID: PMC11706497 DOI: 10.1371/journal.pcbi.1012663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/07/2025] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
Systems serology aims to broadly profile the antigen binding, Fc biophysical features, immune receptor engagement, and effector functions of antibodies. This experimental approach excels at identifying antibody functional features that are relevant to a particular disease. However, a crucial limitation of this approach is its incomplete description of what structural features of the antibodies are responsible for the observed immune receptor engagement and effector functions. Knowing these antibody features is important for both understanding how effector responses are naturally controlled through antibody Fc structure and designing antibody therapies with specific effector profiles. Here, we address this limitation by modeling the molecular interactions occurring in these assays and using this model to infer quantities of specific antibody Fc species among the antibodies being profiled. We used several validation strategies to show that the model accurately infers antibody properties and then applied the model to infer previously unavailable antibody fucosylation information from existing systems serology data. Using this capability, we find that COVID-19 vaccine efficacy is associated with the induction of afucosylated spike protein-targeting IgG. Our results also question an existing assumption that controllers of HIV exhibit gp120-targeting IgG that are less fucosylated than those of progressors. Additionally, we confirm that afucosylated IgG is associated with membrane-associated antigens for COVID-19 and HIV, and present new evidence indicating that this relationship is specific to the host cell membrane. Finally, we use the model to identify redundant assay measurements and subsets of information-rich measurements from which Fc properties can be inferred. In total, our modeling approach provides a quantitative framework for the reasoning typically applied in these studies, improving the ability to draw mechanistic conclusions from these data.
Collapse
Affiliation(s)
- Armaan A. Abraham
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
| | - Zhixin Cyrillus Tan
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California, United States of America
| | | | - Emily R. Bozich
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
| | - Aaron S. Meyer
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California, United States of America
| |
Collapse
|
6
|
Xu C, Wu S, Liu P, Huang Y, Chen Y, Ding G, Jia S. Computational identification and analysis of CNP0269688 as a natural product inhibitor disrupting the interaction between the HIV matrix domain and tRNA. Front Chem 2024; 12:1450339. [PMID: 39286001 PMCID: PMC11403411 DOI: 10.3389/fchem.2024.1450339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
Our research is dedicated to combating HIV by targeting its Matrix (MA) domain, which is crucial for viral assembly and replication. This strategy specifically aims to interrupt early-stage infection and deter drug resistance by focusing on this essential domain. Due to the MA domain's conservation across different HIV strains, our approach promises broad-spectrum efficacy, which is particularly crucial in regions marked by significant genetic diversity and resistance issues. In our study, we introduce CNP0269688, a natural product that exhibits high affinity for the HIV-1 Matrix. Through detailed molecular dynamics simulations, we have assessed the compound's structural stability and interaction dynamics, particularly its potential to hinder Protein-tRNA interactions. This analysis lays the groundwork for future experimental investigations. Our efforts are steps toward enhancing HIV treatment, reducing viral transmission, and curbing drug resistance, with the ultimate aim of controlling and eradicating the pandemic, thereby contributing significantly to public health and scientific advancement.
Collapse
Affiliation(s)
- Chengjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Songtao Wu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengju Liu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yao Huang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuchao Chen
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoping Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Denieva Z, Kuzmin PI, Galimzyanov TR, Datta SAK, Rein A, Batishchev OV. Human Immunodeficiency Virus Type 1 Gag Polyprotein Modulates Membrane Physical Properties like a Surfactant: Potential Implications for Virus Assembly. ACS Infect Dis 2024; 10:2870-2885. [PMID: 38917054 PMCID: PMC11320576 DOI: 10.1021/acsinfecdis.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Human immunodeficiency virus (HIV) assembly at an infected cell's plasma membrane requires membrane deformation to organize the near-spherical shape of an immature virus. While the cellular expression of HIV Gag is sufficient to initiate budding of virus-like particles, how Gag generates membrane curvature is not fully understood. Using highly curved lipid nanotubes, we have investigated the physicochemical basis of the membrane activity of recombinant nonmyristoylated Gag-Δp6. Gag protein, upon adsorption onto the membrane, resulted in the shape changes of both charged and uncharged nanotubes. This shape change was more pronounced in the presence of charged lipids, especially phosphatidylinositol bisphosphate (PI(4,5)P2). We found that Gag modified the interfacial tension of phospholipid bilayer membranes, as judged by comparison with the effects of amphipathic peptides and nonionic detergent. Bioinformatic analysis demonstrated that a region of the capsid and SP1 domains junction of Gag is structurally similar to the amphipathic peptide magainin-1. This region accounts for integral changes in the physical properties of the membrane upon Gag adsorption, as we showed with the synthetic CA-SP1 junction peptide. Phenomenologically, membrane-adsorbed Gag could diminish the energetic cost of increasing the membrane area in a way similar to foam formation. We propose that Gag acts as a surface-active substance at the HIV budding site that softens the membrane at the place of Gag adsorption, lowering the energy for membrane bending. Finally, our experimental data and theoretical considerations give a lipid-centric view and common mechanism by which proteins could bend membranes, despite not having intrinsic curvature in their molecular surfaces or assemblies.
Collapse
Affiliation(s)
- Zaret
G. Denieva
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Leninsky pr., 31, bld. 4, 119071 Moscow, Russia
| | - Peter I. Kuzmin
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Leninsky pr., 31, bld. 4, 119071 Moscow, Russia
| | - Timur R. Galimzyanov
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Leninsky pr., 31, bld. 4, 119071 Moscow, Russia
| | - Siddhartha A. K. Datta
- Retroviral
Assembly Section, HIV Dynamics and Replication Program, Center for
Cancer Research, National Cancer Institute,
National Institutes of Health, Frederick, Maryland 21702-1201, United States
| | - Alan Rein
- Retroviral
Assembly Section, HIV Dynamics and Replication Program, Center for
Cancer Research, National Cancer Institute,
National Institutes of Health, Frederick, Maryland 21702-1201, United States
| | - Oleg V. Batishchev
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Leninsky pr., 31, bld. 4, 119071 Moscow, Russia
| |
Collapse
|
8
|
Gashti AB, Agbayani G, Hrapovic S, Nassoury N, Coulombe N, Dudani R, Harrison BA, Akache B, Gilbert R, Chahal PS. Production, purification and immunogenicity of Gag virus-like particles carrying SARS-CoV-2 components. Vaccine 2024; 42:40-52. [PMID: 38042697 DOI: 10.1016/j.vaccine.2023.11.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/28/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
The virus-like particle (VLP) platform is a robust inducer of humoral and cellular immune responses; hence, it has been used in vaccine development for several infectious diseases. In the current work, VLPs carrying SARS-CoV-2 Spike (S) protein (Wuhan strain) with an HIV-1 Gag core were produced using suspension HEK 293SF-3F6 cells by transient transfection. The Gag was fused with green fluorescent protein (GFP) for rapid quantification of the VLPs. Five different versions of Gag-Spike VLPs (Gag-S-VLPs) consisting of Gag-S alone or combined with other SARS-CoV-2 components, namely Gag-S-Nucleocapsid (N), Gag-S-Matrix (M), Gag-S-Envelope (E), Gag-S-MEN, along with Gag alone were produced and processed by clarification, nuclease treatment, concentration by tangential flow filtration (TFF) and diafiltration. A pilot mouse study was performed to evaluate the immunogenicity of the Gag-S-VLPs through the measurement of the humoral and/or cellular responses against all the mentioned SARS-CoV-2 components. Antibody response to Spike was observed in all variants. The highest number of Spike-specific IFN-γ + T cells was detected with Gag-S-VLPs. No induction of antigen-specific cellular responses to M, N or E proteins were detected with any of the Gag-S, M, E/or N VLPs tested. Therefore, the Gag-S-VLP, by reason of consistently eliciting strong antigen-specific cellular and antibody responses, was selected for further evaluation. The purification process was improved by replacing the conventional centrifugation by serial microfiltration in the clarification step, followed by Spike-affinity chromatography to get concentrated VLPs with higher purity. Three different doses of Gag-S-VLP in conjunction with two adjuvants (Quil-A or AddaVax) were used to assess the dose-dependent antigen-specific cellular and antibody responses in mice. The Gag-S-VLP adjuvanted with Quil-A resulted in a stronger Spike-specific cellular response compared to that adjuvanted with AddaVax. A strong spike neutralisation activity was observed for all doses, independent of the adjuvant combination.
Collapse
Affiliation(s)
| | - Gerard Agbayani
- Human Health Therapeutics, National Research Council Canada Ottawa, ON, Canada
| | - Sabahudin Hrapovic
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Montréal, Canada
| | - Nasha Nassoury
- Human Health Therapeutics, National Research Council Canada, Montreal, QC, Canada
| | - Nathalie Coulombe
- Human Health Therapeutics, National Research Council Canada, Montreal, QC, Canada
| | - Renu Dudani
- Human Health Therapeutics, National Research Council Canada Ottawa, ON, Canada
| | - Blair A Harrison
- Human Health Therapeutics, National Research Council Canada Ottawa, ON, Canada
| | - Bassel Akache
- Human Health Therapeutics, National Research Council Canada Ottawa, ON, Canada
| | - Rénald Gilbert
- Human Health Therapeutics, National Research Council Canada, Montreal, QC, Canada; Department of Bioengineering, McGill University, Montreal, QC, Canada.
| | | |
Collapse
|
9
|
Akdeniz M, Al-Shaebi Z, Altunbek M, Bayraktar C, Kayabolen A, Bagci-Onder T, Aydin O. Characterization and discrimination of spike protein in SARS-CoV-2 virus-like particles via surface-enhanced Raman spectroscopy. Biotechnol J 2024; 19:e2300191. [PMID: 37750467 DOI: 10.1002/biot.202300191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Non-infectious virus-like particles (VLPs) are excellent structures for development of many biomedical applications such as drug delivery systems, vaccine production platforms, and detection techniques for infectious diseases including SARS-CoV-2 VLPs. The characterization of biochemical and biophysical properties of purified VLPs is crucial for development of detection methods and therapeutics. The presence of spike (S) protein in their structure is especially important since S protein induces immunological response. In this study, development of a rapid, low-cost, and easy-to-use technique for both characterization and detection of S protein in the two VLPs, which are SARS-CoV-2 VLPs and HIV-based VLPs was achieved using surface-enhanced Raman spectroscopy (SERS). To analyze and classify datasets of SERS spectra obtained from the VLP groups, machine learning classification techniques including support vector machine (SVM), k-nearest neighbors (kNN), and random forest (RF) were utilized. Among them, the SVM classification algorithm demonstrated the best classification performance for SARS-CoV-2 VLPs and HIV-based VLPs groups with 87.5% and 92.5% accuracy, respectively. This study could be valuable for the rapid characterization of VLPs for the development of novel therapeutics or detection of structural proteins of viruses leading to a variety of infectious diseases.
Collapse
Affiliation(s)
- Munevver Akdeniz
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- Nanothera Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Zakarya Al-Shaebi
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- Nanothera Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Mine Altunbek
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts, USA
| | - Canan Bayraktar
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Alisan Kayabolen
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tugba Bagci-Onder
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Omer Aydin
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- Nanothera Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
- Clinical Engineering Research and Implementation Center (ERKAM), Erciyes University, Kayseri, Turkey
- Nanotechnology Research and Application Center (ERNAM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
10
|
Krishnan A, Ali LM, Prabhu SG, Pillai VN, Chameettachal A, Vivet-Boudou V, Bernacchi S, Mustafa F, Marquet R, Rizvi TA. Identification of a putative Gag binding site critical for feline immunodeficiency virus genomic RNA packaging. RNA (NEW YORK, N.Y.) 2023; 30:68-88. [PMID: 37914398 PMCID: PMC10726167 DOI: 10.1261/rna.079840.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
The retroviral Gag precursor plays a central role in the selection and packaging of viral genomic RNA (gRNA) by binding to virus-specific packaging signal(s) (psi or ψ). Previously, we mapped the feline immunodeficiency virus (FIV) ψ to two discontinuous regions within the 5' end of the gRNA that assumes a higher order structure harboring several structural motifs. To better define the region and structural elements important for gRNA packaging, we methodically investigated these FIV ψ sequences using genetic, biochemical, and structure-function relationship approaches. Our mutational analysis revealed that the unpaired U85CUG88 stretch within FIV ψ is crucial for gRNA encapsidation into nascent virions. High-throughput selective 2' hydroxyl acylation analyzed by primer extension (hSHAPE) performed on wild type (WT) and mutant FIV ψ sequences, with substitutions in the U85CUG88 stretch, revealed that these mutations had limited structural impact and maintained nucleotides 80-92 unpaired, as in the WT structure. Since these mutations dramatically affected packaging, our data suggest that the single-stranded U85CUG88 sequence is important during FIV RNA packaging. Filter-binding assays performed using purified FIV Pr50Gag on WT and mutant U85CUG88 ψ RNAs led to reduced levels of Pr50Gag binding to mutant U85CUG88 ψ RNAs, indicating that the U85CUG88 stretch is crucial for ψ RNA-Pr50Gag interactions. Delineating sequences important for FIV gRNA encapsidation should enhance our understanding of both gRNA packaging and virion assembly, making them potential targets for novel retroviral therapeutic interventions, as well as the development of FIV-based vectors for human gene therapy.
Collapse
Affiliation(s)
- Anjana Krishnan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Lizna M Ali
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Suresha G Prabhu
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Vineeta N Pillai
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Akhil Chameettachal
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67084 Strasbourg cedex, France
| | - Serena Bernacchi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67084 Strasbourg cedex, France
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 67084 Strasbourg cedex, France
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
- Zayed bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Javorsky A, Humbert PO, Kvansakul M. Viral manipulation of cell polarity signalling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119536. [PMID: 37437846 DOI: 10.1016/j.bbamcr.2023.119536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Cell polarity refers to the asymmetric distribution of biomacromolecules that enable the correct orientation of a cell in a particular direction. It is thus an essential component for appropriate tissue development and function. Viral infections can lead to dysregulation of polarity. This is associated with a poor prognosis due to viral interference with core cell polarity regulatory scaffolding proteins that often feature PDZ (PSD-95, DLG, and ZO-1) domains including Scrib, Dlg, Pals1, PatJ, Par3 and Par6. PDZ domains are also promiscuous, binding to several different partners through their C-terminal region which contain PDZ-binding motifs (PBM). Numerous viruses encode viral effector proteins that target cell polarity regulators for their benefit and include papillomaviruses, flaviviruses and coronaviruses. A better understanding of the mechanisms of action utilised by viral effector proteins to subvert host cell polarity sigalling will provide avenues for future therapeutic intervention, while at the same time enhance our understanding of cell polarity regulation and its role tissue homeostasis.
Collapse
Affiliation(s)
- Airah Javorsky
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia; Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia; Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
12
|
Simpson J, Kozak CA, Boso G. Evolutionary conservation of an ancient retroviral gagpol gene in Artiodactyla. J Virol 2023; 97:e0053523. [PMID: 37668369 PMCID: PMC10537755 DOI: 10.1128/jvi.00535-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/28/2023] [Indexed: 09/06/2023] Open
Abstract
The genomes of mammals contain fingerprints of past infections by ancient retroviruses that invaded the germline of their ancestors. Most of these endogenous retroviruses (ERVs) contain only remnants of the original retrovirus; however, on rare occasions, ERV genes can be co-opted for a beneficial host function. While most studies of co-opted ERVs have focused on envelope genes, including the syncytins that function in placentation, there are examples of co-opted gag genes including one we recently discovered in simian primates. Here, we searched for other intact gag genes in non-primate mammalian lineages. We began by examining the genomes of extant camel species, which represent a basal lineage in the order Artiodactyla. This identified a gagpol gene with a large open reading frame (ORF) (>3,500 bp) in the same orthologous location in Artiodactyla species but that is absent in other mammals. Thus, this ERV was fixed in the common ancestor of all Artiodactyla at least 64 million years ago. The amino acid sequence of this gene, termed ARTgagpol, contains recognizable matrix, capsid, nucleocapsid, and reverse transcriptase domains in ruminants, with an RNase H domain in camels and pigs. Phylogenetic analysis and structural prediction of its reverse transcriptase and RNase H domains groups ARTgagpol with gammaretroviruses. Transcriptomic analysis shows ARTgagpol expression in multiple tissues suggestive of a co-opted host function. These findings identify the oldest and largest ERV-derived gagpol gene with an intact ORF in mammals, an intriguing milestone in the co-evolution of mammals and retroviruses. IMPORTANCE Retroviruses are unique among viruses that infect animals as they integrate their reverse-transcribed double-stranded DNA into host chromosomes. When this happens in a germline cell, such as sperm, egg, or their precursors, the integrated retroviral copies can be passed on to the next generation as endogenous retroviruses (ERVs). On rare occasions, the genes of these ERVs can be domesticated by the host. In this study we used computational similarity searches to identify an ancient ERV with an intact viral gagpol gene in the genomes of camels that is also found in the same genomic location in other even-toed ungulates suggesting that it is at least 64 million years old. Broad tissue expression and predicted preservation of the reverse transcriptase fold of this protein suggest that it may be domesticated for a host function. This is the oldest known intact gagpol gene of an ancient retrovirus in mammals.
Collapse
Affiliation(s)
- J'Zaria Simpson
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christine A. Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Guney Boso
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Puławski W, Koliński A, Koliński M. Integrative modeling of diverse protein-peptide systems using CABS-dock. PLoS Comput Biol 2023; 19:e1011275. [PMID: 37405984 DOI: 10.1371/journal.pcbi.1011275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023] Open
Abstract
The CABS model can be applied to a wide range of protein-protein and protein-peptide molecular modeling tasks, such as simulating folding pathways, predicting structures, docking, and analyzing the structural dynamics of molecular complexes. In this work, we use the CABS-dock tool in two diverse modeling tasks: 1) predicting the structures of amyloid protofilaments and 2) identifying cleavage sites in the peptide substrates of proteolytic enzymes. In the first case, simulations of the simultaneous docking of amyloidogenic peptides indicated that the CABS model can accurately predict the structures of amyloid protofilaments which have an in-register parallel architecture. Scoring based on a combination of symmetry criteria and estimated interaction energy values for bound monomers enables the identification of protofilament models that closely match their experimental structures for 5 out of 6 analyzed systems. For the second task, it has been shown that CABS-dock coarse-grained docking simulations can be used to identify the positions of cleavage sites in the peptide substrates of proteolytic enzymes. The cleavage site position was correctly identified for 12 out of 15 analyzed peptides. When combined with sequence-based methods, these docking simulations may lead to an efficient way of predicting cleavage sites in degraded proteins. The method also provides the atomic structures of enzyme-substrate complexes, which can give insights into enzyme-substrate interactions that are crucial for the design of new potent inhibitors.
Collapse
Affiliation(s)
- Wojciech Puławski
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | - Michał Koliński
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Rivera-Cuevas Y, Carruthers VB. The multifaceted interactions between pathogens and host ESCRT machinery. PLoS Pathog 2023; 19:e1011344. [PMID: 37141275 PMCID: PMC10159163 DOI: 10.1371/journal.ppat.1011344] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) machinery consists of multiple protein complexes that coordinate vesicle budding away from the host cytosol. ESCRTs function in many fundamental cellular processes including the biogenesis of multivesicular bodies and exosomes, membrane repair and restoration, and cell abscission during cytokinesis. Work over the past 2 decades has shown that a diverse cohort of viruses critically rely upon host ESCRT machinery for virus replication and envelopment. More recent studies reported that intracellular bacteria and the intracellular parasite Toxoplasma gondii benefit from, antagonize, or exploit host ESCRT machinery to preserve their intracellular niche, gain resources, or egress from infected cells. Here, we review how intracellular pathogens interact with the ESCRT machinery of their hosts, highlighting the variety of strategies they use to bind ESCRT complexes using short linear amino acid motifs like those used by ESCRTs to sequentially assemble on target membranes. Future work exposing new mechanisms of this molecular mimicry will yield novel insight of how pathogens exploit host ESCRT machinery and how ESCRTs facilitate key cellular processes.
Collapse
Affiliation(s)
- Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
15
|
Socas L, Ambroggio E. HIV-1 Gag specificity for PIP2 is regulated by macromolecular electric properties of both protein and membrane local environments. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOMEMBRANES 2023; 1865:184157. [PMID: 37028700 DOI: 10.1016/j.bbamem.2023.184157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
HIV-1 assembly occurs at the plasma membrane, with the Gag polyprotein playing a crucial role. Gag association with the membrane is directed by the matrix domain (MA), which is myristoylated and has a highly basic region that interacts with anionic lipids. Several pieces of evidence suggest that the presence of phosphatidylinositol-(4,5)-bisphosphate (PIP2) highly influences this binding. Furthermore, MA also interacts with nucleic acids, which is proposed to be important for the specificity of GAG for PIP2-containing membranes. It is hypothesized that RNA has a chaperone function by interacting with the MA domain, preventing Gag from associating with unspecific lipid interfaces. Here, we study the interaction of MA with monolayer and bilayer membrane systems, focusing on the specificity for PIP2 and on the possible effects of a Gag N-terminal peptide on impairing the binding for either RNA or membrane. We found that RNA decreases the kinetics of the protein association with lipid monolayers but has no effect on the selectivity for PIP2. Interestingly, for bilayer systems, this selectivity increases in presence of both the peptide and RNA, even for highly negatively charged compositions, where MA alone does not discriminate between membranes with or without PIP2. Therefore, we propose that the specificity of MA for PIP2-containing membranes might be related to the electrostatic properties of both membrane and protein local environments, rather than a simple difference in molecular affinities. This scenario provides a new understanding of the regulation mechanism, with a macromolecular view, rather than considering molecular interactions within a ligand-receptor model.
Collapse
|
16
|
Chameettachal A, Mustafa F, Rizvi TA. Understanding Retroviral Life Cycle and its Genomic RNA Packaging. J Mol Biol 2023; 435:167924. [PMID: 36535429 DOI: 10.1016/j.jmb.2022.167924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Members of the family Retroviridae are important animal and human pathogens. Being obligate parasites, their replication involves a series of steps during which the virus hijacks the cellular machinery. Additionally, many of the steps of retrovirus replication are unique among viruses, including reverse transcription, integration, and specific packaging of their genomic RNA (gRNA) as a dimer. Progress in retrovirology has helped identify several molecular mechanisms involved in each of these steps, but many are still unknown or remain controversial. This review summarizes our present understanding of the molecular mechanisms involved in various stages of retrovirus replication. Furthermore, it provides a comprehensive analysis of our current understanding of how different retroviruses package their gRNA into the assembling virions. RNA packaging in retroviruses holds a special interest because of the uniqueness of packaging a dimeric genome. Dimerization and packaging are highly regulated and interlinked events, critical for the virus to decide whether its unspliced RNA will be packaged as a "genome" or translated into proteins. Finally, some of the outstanding areas of exploration in the field of RNA packaging are highlighted, such as the role of epitranscriptomics, heterogeneity of transcript start sites, and the necessity of functional polyA sequences. An in-depth knowledge of mechanisms that interplay between viral and cellular factors during virus replication is critical in understanding not only the virus life cycle, but also its pathogenesis, and development of new antiretroviral compounds, vaccines, as well as retroviral-based vectors for human gene therapy.
Collapse
Affiliation(s)
- Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates. https://twitter.com/chameettachal
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
17
|
Smith RA, Raugi DN, Nixon RS, Song J, Seydi M, Gottlieb GS. Intrinsic resistance of HIV-2 and SIV to the maturation inhibitor GSK2838232. PLoS One 2023; 18:e0280568. [PMID: 36652466 PMCID: PMC9847912 DOI: 10.1371/journal.pone.0280568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
GSK2838232 (GSK232) is a novel maturation inhibitor that blocks the proteolytic cleavage of HIV-1 Gag at the junction of capsid and spacer peptide 1 (CA/SP1), rendering newly-formed virions non-infectious. To our knowledge, GSK232 has not been tested against HIV-2, and there are limited data regarding the susceptibility of HIV-2 to other HIV-1 maturation inhibitors. To assess the potential utility of GSK232 as an option for HIV-2 treatment, we determined the activity of the compound against a panel of HIV-1, HIV-2, and SIV isolates in culture. GSK232 was highly active against HIV-1 isolates from group M subtypes A, B, C, D, F, and group O, with IC50 values ranging from 0.25-0.92 nM in spreading (multi-cycle) assays and 1.5-2.8 nM in a single cycle of infection. In contrast, HIV-2 isolates from groups A, B, and CRF01_AB, and SIV isolates SIVmac239, SIVmac251, and SIVagm.sab-2, were highly resistant to GSK232. To determine the role of CA/SP1 in the observed phenotypes, we constructed a mutant of HIV-2ROD9 in which the sequence of CA/SP1 was modified to match the corresponding sequence found in HIV-1. The resulting variant was fully susceptible to GSK232 in the single-cycle assay (IC50 = 1.8 nM). Collectively, our data indicate that the HIV-2 and SIV isolates tested in our study are intrinsically resistant to GSK232, and that the determinants of resistance map to CA/SP1. The molecular mechanism(s) responsible for the differential susceptibility of HIV-1 and HIV-2/SIV to GSK232 require further investigation.
Collapse
Affiliation(s)
- Robert A. Smith
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Dana N. Raugi
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Robert S. Nixon
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Jennifer Song
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Moussa Seydi
- Service des Maladies Infectieuses et Tropicales, CHNU de Fann, Dakar, Senegal
| | - Geoffrey S. Gottlieb
- Center for Emerging and Reemerging Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | | |
Collapse
|
18
|
Solomon M, Liang C. Pseudotyped Viruses for Retroviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:61-84. [PMID: 36920692 DOI: 10.1007/978-981-99-0113-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Since the discovery of retroviruses, their genome and replication strategies have been extensively studied, leading to the discovery of several unique features that make them invaluable vectors for virus pseudotyping, gene delivery, and gene therapy. Notably, retroviral vectors enable the integration of a gene of interest into the host genome, they can be used to stably transduce both dividing and nondividing cells, and they can deliver relatively large genes. Today, retroviral vectors are commonly used for many research applications and have become an active tool in gene therapy and clinical trials. This chapter will discuss the important features of the retroviral genome and replication cycle that are crucial for the development of retroviral vectors, the different retrovirus-based vector systems that are commonly used, and finally the research and clinical applications of retroviral vectors.
Collapse
Affiliation(s)
- Magan Solomon
- Lady Davis Institute, Jewish General Hospital, McGill Centre for Viral Diseases, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, McGill Centre for Viral Diseases, Montreal, QC, Canada. .,Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
19
|
Hartz RA, Xu L, Sit SY, Chen J, Venables BL, Lin Z, Zhang S, Li Z, Parker D, Simmons TS, Jenkins S, Hanumegowda UM, Dicker I, Krystal M, Meanwell NA, Regueiro-Ren A. Synthesis, Structure-Activity Relationships, and In Vivo Evaluation of Novel C-17 Amine Derivatives Based on GSK3640254 as HIV-1 Maturation Inhibitors with Broad Spectrum Activity. J Med Chem 2022; 65:15935-15966. [PMID: 36441509 DOI: 10.1021/acs.jmedchem.2c01618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An investigation of the structure-activity relationships of a series of HIV-1 maturation inhibitors (MIs) based on GSK3640254 (4) was conducted by incorporating novel C-17 amine substituents to reduce the overall basicity of the resultant analogues. We found that replacement of the distal amine on the C-17 sidechain present in 4 with a tertiary alcohol in combination with either a heterocyclic ring system or a cyclohexyl ring substituted with polar groups provided potent wild-type HIV-1 MIs that also retained excellent potency against a T332S/V362I/prR41G variant, a laboratory strain that served as a surrogate to assess HIV-1 polymorphic virus coverage. Compound 26 exhibited broad-spectrum HIV-1 activity against an expanded panel of clinically relevant Gag polymorphic viruses and had the most desirable overall profile in this series of compounds. In pharmacokinetic studies, 26 had low clearance and exhibited 24 and 31% oral bioavailability in rats and dogs, respectively.
Collapse
Affiliation(s)
- Richard A Hartz
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Li Xu
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sing-Yuen Sit
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jie Chen
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Brian L Venables
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zeyu Lin
- Department of Virology, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sharon Zhang
- Department of Virology, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zhufang Li
- Department of Virology, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dawn Parker
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Tara S Simmons
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Susan Jenkins
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Umesh M Hanumegowda
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ira Dicker
- Department of Virology, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Mark Krystal
- Department of Virology, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Alicia Regueiro-Ren
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| |
Collapse
|
20
|
CRISPR-Based Tools for Fighting Rare Diseases. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121968. [PMID: 36556333 PMCID: PMC9787644 DOI: 10.3390/life12121968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
Rare diseases affect the life of a tremendous number of people globally. The CRISPR-Cas system emerged as a powerful genome engineering tool and has facilitated the comprehension of the mechanism and development of therapies for rare diseases. This review focuses on current efforts to develop the CRISPR-based toolbox for various rare disease therapy applications and compares the pros and cons of different tools and delivery methods. We further discuss the therapeutic applications of CRISPR-based tools for fighting different rare diseases.
Collapse
|
21
|
Mótyán JA, Kassay N, Matúz K, Tőzsér J. Different Mutation Tolerance of Lentiviral (HIV-1) and Deltaretroviral (BLV and HTLV) Protease Precursors. Viruses 2022; 14:v14091888. [PMID: 36146695 PMCID: PMC9505669 DOI: 10.3390/v14091888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The bovine leukemia virus (BLV) and the human T-lymphothropic viruses (HTLVs) are members of the deltaretrovirus genus of Retroviridae family. An essential event of the retroviral life cycle is the processing of the polyproteins by the viral protease (PR); consequently, these enzymes became important therapeutic targets of the anti-retroviral drugs. As compared to human immunodeficiency viruses (HIVs), the deltaretroviruses have a different replication strategy, as they replicate predominantly in the DNA form, by forcing the infected cell to divide, unlike HIV-1, which replicates mainly by producing a vast number of progeny virions and by reinfection. Due to bypassing the error-prone reverse transcription step of replication, the PRs of deltaretroviruses did not undergo such extensive evolution as HIV PRs and remained more highly conserved. In this work, we studied the abilities of wild-type and modified BLV, HTLV (type 1, 2 and 3), and HIV-1 PRs (fused to an N-terminal MBP tag) for self-processing. We designed a cleavage site mutant MBP-fused BLV PR precursor as well, this recombinant enzyme was unable for self-proteolysis, the MBP fusion tag decreased its catalytic efficiency but showed an unusually low Ki for the IB-268 protease inhibitor. Our results show that the HTLV and BLV deltaretrovirus PRs exhibit lower mutation tolerance as compared to HIV-1 PR, and are less likely to retain their activity upon point mutations at various positions, indicating a higher flexibility of HIV-1 PR in tolerating mutations under selective pressure.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| | - Norbert Kassay
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Krisztina Matúz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| |
Collapse
|
22
|
Marie V, Gordon ML. The HIV-1 Gag Protein Displays Extensive Functional and Structural Roles in Virus Replication and Infectivity. Int J Mol Sci 2022; 23:7569. [PMID: 35886917 PMCID: PMC9323242 DOI: 10.3390/ijms23147569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 01/10/2023] Open
Abstract
Once merely thought of as the protein responsible for the overall physical nature of the human immunodeficiency virus type 1 (HIV-1), the Gag polyprotein has since been elucidated to have several roles in viral replication and functionality. Over the years, extensive research into the polyproteins' structure has revealed that Gag can mediate its own trafficking to the plasma membrane, it can interact with several host factors and can even aid in viral genome packaging. Not surprisingly, Gag has also been associated with HIV-1 drug resistance and even treatment failure. Therefore, this review provides an extensive overview of the structural and functional roles of the HIV-1 Gag domains in virion integrity, functionality and infectivity.
Collapse
Affiliation(s)
- Veronna Marie
- KwaZulu-Natal Research, Innovation and Sequencing Platform, University of KwaZulu-Natal, Durban 4041, South Africa;
| | | |
Collapse
|
23
|
Natural Immunity against HIV-1: Progression of Understanding after Association Studies. Viruses 2022; 14:v14061243. [PMID: 35746714 PMCID: PMC9227919 DOI: 10.3390/v14061243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Natural immunity against HIV has been observed in many individuals in the world. Among them, a group of female sex workers enrolled in the Pumwani sex worker cohort remained HIV uninfected for more than 30 years despite high-risk sex work. Many studies have been carried out to understand this natural immunity to HIV in the hope to develop effective vaccines and preventions. This review focuses on two such examples. These studies started from identifying immunogenetic or genetic associations with resistance to HIV acquisition, and followed up with an in-depth investigation to understand the biological relevance of the correlations of protection, and to develop and test novel vaccines and preventions.
Collapse
|
24
|
Analysis of temporal changes in HIV-1 CRF01_AE gag genetic variability and CD8 T-cell epitope evolution. PLoS One 2022; 17:e0267130. [PMID: 35536783 PMCID: PMC9089901 DOI: 10.1371/journal.pone.0267130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/02/2022] [Indexed: 11/19/2022] Open
Abstract
Currently, little is known about the time-dependent evolution of human immunodeficiency virus-1 (HIV-1) circulating recombinant forms (CRF) 01_AE, a dominant recombinant form associated with HIV-1 epidemics worldwide. Since gag is a highly immunodominant HIV-1 protein, we performed a comparative analysis of the CRF01_AE gag protein’s time-dependent changes and evolution. A total of 3105 HIV-1 CRF01_AE gag sequences representing 17 countries from the timeline 1990–2017 were obtained. The sequences’ phylogenetic relationship and epidemic dynamics were analyzed through a Maximum Likelihood tree and Bayesian Skyline plot, respectively. Genomic variability was measured through Shannon entropy and time-dependent immunoevolution was analyzed using changes in proteasomal degradation pattern, cytotoxic T lymphocytes (CTL) epitopes, and Human leukocyte antigens (HLA) restriction profile. The most recent common ancestor of the HIV CRF01_AE epidemic was estimated to be 1974±1. A period of exponential growth in effective population size began in 1982, fluctuated, and then stabilized in 1999. Genetic variability (entropy) consistently increased, however, epitope variability remained comparable; the highest number of novel CTL epitopes were present in 1995–1999, which were lost over time. The spread of the HIV-1 CRF01_AE epidemic is predominant in countries within Asia. Population immunogenetic pressures in the region may have contributed to the initial changes and following adaptation/stabilization of epitope diversity within gag sequences.
Collapse
|
25
|
Zhou Y, Sotcheff SL, Routh AL. Next-generation sequencing: A new avenue to understand viral RNA-protein interactions. J Biol Chem 2022; 298:101924. [PMID: 35413291 PMCID: PMC8994257 DOI: 10.1016/j.jbc.2022.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 10/25/2022] Open
Abstract
The genomes of RNA viruses present an astonishing source of both sequence and structural diversity. From intracellular viral RNA-host interfaces to interactions between the RNA genome and structural proteins in virus particles themselves, almost the entire viral lifecycle is accompanied by a myriad of RNA-protein interactions that are required to fulfill their replicative potential. It is therefore important to characterize such rich and dynamic collections of viral RNA-protein interactions to understand virus evolution and their adaptation to their hosts and environment. Recent advances in next-generation sequencing technologies have allowed the characterization of viral RNA-protein interactions, including both transient and conserved interactions, where molecular and structural approaches have fallen short. In this review, we will provide a methodological overview of the high-throughput techniques used to study viral RNA-protein interactions, their biochemical mechanisms, and how they evolved from classical methods as well as one another. We will discuss how different techniques have fueled virus research to characterize how viral RNA and proteins interact, both locally and on a global scale. Finally, we will present examples on how these techniques influence the studies of clinically important pathogens such as HIV-1 and SARS-CoV-2.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA.
| | - Stephanea L Sotcheff
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA; Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
26
|
Mattola S, Salokas K, Aho V, Mäntylä E, Salminen S, Hakanen S, Niskanen EA, Svirskaite J, Ihalainen TO, Airenne KJ, Kaikkonen-Määttä M, Parrish CR, Varjosalo M, Vihinen-Ranta M. Parvovirus nonstructural protein 2 interacts with chromatin-regulating cellular proteins. PLoS Pathog 2022; 18:e1010353. [PMID: 35395063 PMCID: PMC9020740 DOI: 10.1371/journal.ppat.1010353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/20/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Autonomous parvoviruses encode at least two nonstructural proteins, NS1 and NS2. While NS1 is linked to important nuclear processes required for viral replication, much less is known about the role of NS2. Specifically, the function of canine parvovirus (CPV) NS2 has remained undefined. Here we have used proximity-dependent biotin identification (BioID) to screen for nuclear proteins that associate with CPV NS2. Many of these associations were seen both in noninfected and infected cells, however, the major type of interacting proteins shifted from nuclear envelope proteins to chromatin-associated proteins in infected cells. BioID interactions revealed a potential role for NS2 in DNA remodeling and damage response. Studies of mutant viral genomes with truncated forms of the NS2 protein suggested a change in host chromatin accessibility. Moreover, further studies with NS2 mutants indicated that NS2 performs functions that affect the quantity and distribution of proteins linked to DNA damage response. Notably, mutation in the splice donor site of the NS2 led to a preferred formation of small viral replication center foci instead of the large coalescent centers seen in wild-type infection. Collectively, our results provide insights into potential roles of CPV NS2 in controlling chromatin remodeling and DNA damage response during parvoviral replication. Parvoviruses are small, nonenveloped DNA viruses, that besides being noteworthy pathogens in many animal species, including humans, are also being developed as vectors for gene and cancer therapy. Canine parvovirus is an autonomously replicating parvovirus that encodes two nonstructural proteins, NS1 and NS2. NS1 is required for viral DNA replication and packaging, as well as gene expression. However, very little is known about the function of NS2. Our studies indicate that NS2 serves a previously undefined important function in chromatin modification and DNA damage responses. Therefore, it appears that although both NS1 and NS2 are needed for a productive infection they play very different roles in the process.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Kari Salokas
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Einari A. Niskanen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Julija Svirskaite
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Teemu O. Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kari J. Airenne
- Kuopio Center for Gene and Cell Therapy (KCT), Kuopio, Finland
| | | | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, University of Cornell, Ithaca, New York, United States of America
| | - Markku Varjosalo
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- * E-mail:
| |
Collapse
|
27
|
Targeting the Nucleosome Acidic Patch by Viral Proteins: Two Birds with One Stone? mBio 2022; 13:e0173321. [PMID: 35343785 PMCID: PMC9040877 DOI: 10.1128/mbio.01733-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The past decade illuminated the H2A-H2B acidic patch as a cornerstone for both nucleosome recognition and chromatin structure regulation. Higher-order folding of chromatin arrays is mediated by interactions of histone H4 tail with an adjacent nucleosome acidic patch. Dynamic chromatin folding ensures a proper regulation of nuclear functions fundamental to cellular homeostasis. Many cellular factors have been shown to act on chromatin by tethering nucleosomes via an arginine anchor binding to the acidic patch. This tethering mechanism has also been described for several viral proteins. In this minireview, we will discuss the structural basis for acidic patch engagement by viral proteins and the implications during respective viral infections. We will also discuss a model in which acidic patch occupancy by these non-self viral proteins alters the local chromatin state by preventing H4 tail-mediated higher-order chromatin folding.
Collapse
|
28
|
Mótyán JA, Mahdi M, Hoffka G, Tőzsér J. Potential Resistance of SARS-CoV-2 Main Protease (Mpro) against Protease Inhibitors: Lessons Learned from HIV-1 Protease. Int J Mol Sci 2022; 23:3507. [PMID: 35408866 PMCID: PMC8998604 DOI: 10.3390/ijms23073507] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome 2 (SARS-CoV-2), has been one of the most devastating pandemics of recent times. The lack of potent novel antivirals had led to global health crises; however, emergence and approval of potent inhibitors of the viral main protease (Mpro), such as Pfizer's newly approved nirmatrelvir, offers hope not only in the therapeutic front but also in the context of prophylaxis against the infection. By their nature, RNA viruses including human immunodeficiency virus (HIV) have inherently high mutation rates, and lessons learnt from previous and currently ongoing pandemics have taught us that these viruses can easily escape selection pressure through mutation of vital target amino acid residues in monotherapeutic settings. In this paper, we review nirmatrelvir and its binding to SARS-CoV-2 Mpro and draw a comparison to inhibitors of HIV protease that were rendered obsolete by emergence of resistance mutations, emphasizing potential pitfalls in the design of inhibitors that may be of important relevance to the long-term use of novel inhibitors against SARS-CoV-2.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
| | - Mohamed Mahdi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
| | - Gyula Hoffka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (J.A.M.); (M.M.); (G.H.)
| |
Collapse
|
29
|
Boso G, Fleck K, Carley S, Liu Q, Buckler-White A, Kozak CA. The Oldest Co-opted gag Gene of a Human Endogenous Retrovirus Shows Placenta-Specific Expression and Is Upregulated in Diffuse Large B-Cell Lymphomas. Mol Biol Evol 2021; 38:5453-5471. [PMID: 34410386 PMCID: PMC8662612 DOI: 10.1093/molbev/msab245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vertebrate genomes contain endogenous retroviruses (ERVs) that represent remnants of past germline infections by ancient retroviruses. Despite comprising 8% of the human genome, the human ERVs (HERVs) do not encode a replication competent retrovirus. However, some HERV genes have been co-opted to serve host functions, most notably the viral envelope-derived syncytins involved in placentation. Here, we identify the oldest HERV intact gag gene with an open reading frame, gagV1. Its provirus contains an intact env, envV1, and the first open reading frame found in an HERV gag leader, pre-gagV1, which encodes a novel protein. This HERV is linked to a related gag gene, gagV3, and these three genes all show patterns of evolutionary conservation in primates. gagV1 and pre-gagV1 orthologs are present in all simian primate lineages indicating that this HERV entered the germline of the common simian primate ancestor at least 43 Ma, whereas gagV3 is found in Old and New World monkeys. gagV1 and gagV3 have undergone recurrent gene conversion events and positive selection. Expression of gagV1, gagV3, and pre-gagV1 is restricted to the placenta in humans and macaques suggesting co-option for placenta-specific host functions. Transcriptomic analysis of human tumors also found upregulated levels of gagV1 transcripts in diffuse large B-cell lymphomas. These findings suggest that these HERV-V genes may be useful markers for the most common type of non-Hodgkin's lymphoma and that they may have contributed to the successive domestications of env and gag genes in eutherians involved in the ongoing ERV-driven evolution of the placenta.
Collapse
Affiliation(s)
- Guney Boso
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Katherine Fleck
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Samuel Carley
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
30
|
Bryostatin-1 decreases HIV-1 infection and viral production in human primary macrophages. J Virol 2021; 96:e0195321. [PMID: 34878918 DOI: 10.1128/jvi.01953-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While combination antiretroviral therapy maintains undetectable viremia in People Living With HIV (PLWH), a life-long treatment is necessary to prevent viremic rebound after therapy cessation. This rebound seemed mainly caused by long lived HIV-1 latently infected cells reversing to a viral productive status. Reversing latency and elimination of these cells by the so-called shock and kill strategy is one of the main investigated leads to achieve an HIV-1 cure. Small molecules referred as latency reversal agents (LRAs) proved to efficiently reactivate latent CD4+ T cells. However, LRAs impact on de novo infection or HIV-1 production in productively infected macrophages remain elusive. Nontoxic doses of bryostatin-1, JQ1 and romidepsin were investigated in human monocyte-derived macrophages (MDMs). Treatment with bryostatin-1 or romidepsin resulted in a downregulation of CD4 and CCR5 receptors respectively, accompanied by a reduction of R5 tropic virus infection. HIV-1 replication was mainly regulated by receptor modulation for bryostatin-1, while romidepsin effect rely on upregulation of SAMHD1 activity. LRA stimulation of chronically infected cells did not enhance neither HIV-1 production nor gene expression. Surprisingly, bryostatin-1 caused a major decrease in viral production. This effect was not viral strain specific but appears to occur only in myeloid cells. Bryostatin-1 treatment of infected MDMs led to decreased amounts of capsid and matrix mature proteins with little to no modulation of precursors. Our observations revealed that bryostatin-1-treated myeloid and CD4+ T cells are responding differently upon HIV-1 infection. Therefore, additional studies are warranted to more fully assess the efficiency of HIV-1 eradicating strategies. Importance HIV-1 persists in a cellular latent form despite therapy that quickly propagates infection upon treatment interruption. Reversing latency would contribute to eradicate these cells, closing a gap to a cure. Macrophages are an acknowledged HIV-1 reservoir during therapy and are suspected to harbor latency establishment in vivo. Yet, the impact of latency reversal agents (LRAs) on HIV-1 infection and viral production in human macrophages is poorly known but nonetheless crucial to probe the safety of this strategy. In this in vitro study, we discovered encouraging anti-replicative features of distinct LRAs in human macrophages. We also described a new viral production inhibition mechanism by protein kinase C agonists which is specific to myeloid cells. This study provides new insights on HIV-1 propagation restriction potentials by LRAs in human macrophages and underline the importance of assessing latency reversal strategy on all HIV-1 targeted cells.
Collapse
|
31
|
A Stretch of Unpaired Purines in the Leader Region of Simian Immunodeficiency Virus (SIV) Genomic RNA is Critical for its Packaging into Virions. J Mol Biol 2021; 433:167293. [PMID: 34624298 DOI: 10.1016/j.jmb.2021.167293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022]
Abstract
Simian immunodeficiency virus (SIV) is an important lentivirus used as a non-human primate model to study HIV replication, and pathogenesis of human AIDS, as well as a potential vector for human gene therapy. This study investigated the role of single-stranded purines (ssPurines) as potential genomic RNA (gRNA) packaging determinants in SIV replication. Similar ssPurines have been implicated as important motifs for gRNA packaging in many retroviruses like, HIV-1, MPMV, and MMTV by serving as Gag binding sites during virion assembly. In examining the secondary structure of the SIV 5' leader region, as recently deduced using SHAPE methodology, we identified four specific stretches of ssPurines (I-IV) in the region that harbors major packaging determinants of SIV. The significance of these ssPurine motifs were investigated by mutational analysis coupled with a biologically relevant single round of replication assay. These analyses revealed that while ssPurine II was essential, the others (ssPurines I, III, & IV) did not significantly contribute to SIV gRNA packaging. Any mutation in the ssPurine II, such as its deletion or substitution, or other mutations that caused base pairing of ssPurine II loop resulted in near abrogation of RNA packaging, further substantiating the crucial role of ssPurine II and its looped conformation in SIV gRNA packaging. Structure prediction analysis of these mutants further corroborated the biological results and further revealed that the unpaired nature of ssPurine II is critical for its function during SIV RNA packaging perhaps by enabling it to function as a specific binding site for SIV Gag.
Collapse
|
32
|
Dronina J, Samukaite-Bubniene U, Ramanavicius A. Advances and insights in the diagnosis of viral infections. J Nanobiotechnology 2021; 19:348. [PMID: 34717656 PMCID: PMC8556785 DOI: 10.1186/s12951-021-01081-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Viral infections are the most common among diseases that globally require around 60 percent of medical care. However, in the heat of the pandemic, there was a lack of medical equipment and inpatient facilities to provide all patients with viral infections. The detection of viral infections is possible in three general ways such as (i) direct virus detection, which is performed immediately 1-3 days after the infection, (ii) determination of antibodies against some virus proteins mainly observed during/after virus incubation period, (iii) detection of virus-induced disease when specific tissue changes in the organism. This review surveys some global pandemics from 1889 to 2020, virus types, which induced these pandemics, and symptoms of some viral diseases. Non-analytical methods such as radiology and microscopy also are overviewed. This review overlooks molecular analysis methods such as nucleic acid amplification, antibody-antigen complex determination, CRISPR-Cas system-based viral genome determination methods. Methods widely used in the certificated diagnostic laboratory for SARS-CoV-2, Influenza A, B, C, HIV, and other viruses during a viral pandemic are outlined. A comprehensive overview of molecular analytical methods has shown that the assay's sensitivity, accuracy, and suitability for virus detection depends on the choice of the number of regions in the viral open reading frame (ORF) genome sequence and the validity of the selected analytical method.
Collapse
Affiliation(s)
- Julija Dronina
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Urte Samukaite-Bubniene
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania.
| |
Collapse
|
33
|
Lavado-García J, Jorge I, Boix-Besora A, Vázquez J, Gòdia F, Cervera L. Characterization of HIV-1 virus-like particles and determination of Gag stoichiometry for different production platforms. Biotechnol Bioeng 2021; 118:2660-2675. [PMID: 33844274 DOI: 10.1002/bit.27786] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/10/2022]
Abstract
The importance of developing new vaccine technologies towards versatile platforms that can cope with global virus outbreaks has been evidenced with the most recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Virus-like particles (VLPs) are a highly immunogenic, safe, and robust approach that can be used to base several vaccine candidates on. Particularly, HIV-1 Gag VLPs is a flexible system comprising a Gag core surrounded by a lipid bilayer that can be modified to present diverse types of membrane proteins or antigens against several diseases, like influenza, dengue, West Nile virus, or human papillomavirus, where it has been proven successful. The size distribution and structural characteristics of produced VLPs vary depending on the cell line used to produce them. In this study, we established an analytical method of characterization for the Gag protein core and clarified the current variability of Gag stoichiometry in HIV-1 VLPs depending on the cell-based production platform, directly determining the number of Gag molecules per VLP in each case. Three Gag peptides have been validated to quantify the number of monomers using parallel reaction monitoring, an accurate and fast, mass-spectrometry-based method that can be used to assess the quality of the produced Gag VLPs regardless of the cell line used. An average of 3617 ± 17 monomers per VLP was obtained for HEK293, substantially varying between platforms, including mammalian and insect cells. This offers a key advantage in quantification and quality control methods to characterize VLP production at a large scale to accelerate new recombinant vaccine production technologies.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cel·lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Inmaculada Jorge
- Laboratory of Cardiovascular Proteomics, Vascular Physiopathology area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Arnau Boix-Besora
- Grup d'Enginyeria Cel·lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Vascular Physiopathology area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cel·lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Laura Cervera
- Grup d'Enginyeria Cel·lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
34
|
Swidorski JJ, Jenkins S, Hanumegowda U, Parker DD, Beno BR, Protack T, Ng A, Gupta A, Shanmugam Y, Dicker IB, Krystal M, Meanwell NA, Regueiro-Ren A. Design and exploration of C-3 benzoic acid bioisosteres and alkyl replacements in the context of GSK3532795 (BMS-955176) that exhibit broad spectrum HIV-1 maturation inhibition. Bioorg Med Chem Lett 2021; 36:127823. [PMID: 33508465 DOI: 10.1016/j.bmcl.2021.127823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/30/2022]
Abstract
GSK3532795 (formerly BMS-955176) is a second-generation HIV-1 maturation inhibitor that has shown broad spectrum antiviral activity and preclinical PK predictive of once-daily dosing in humans. Although efficacy was confirmed in clinical trials, the observation of gastrointestinal intolerability and the emergence of drug resistant virus in a Phase 2b clinical study led to the discontinuation of GSK3532795. As part of the effort to further map the maturation inhibitor pharmacophore and provide additional structural options, the evaluation of alternates to the C-3 phenyl substituent in this chemotype was pursued. A cyclohexene carboxylic acid provided exceptional inhibition of wild-type, V370A and ΔV370 mutant viruses in addition to a suitable PK profile following oral dosing to rats. In addition, a novel spiro[3.3]hept-5-ene was designed to extend the carboxylic acid further from the triterpenoid core while reducing side chain flexibility compared to the other alkyl substituents. This modification was shown to closely emulate the C-3 benzoic acid moiety of GSK3532795 from both a potency and PK perspective, providing a non-traditional, sp3-rich bioisostere of benzene. Herein, we detail additional modifications to the C-3 position of the triterpenoid core that offer effective replacements for the benzoic acid of GSK3532795 and capture the interplay between these new C-3 elements and C-17 modifications that contribute to enhanced polymorph coverage.
Collapse
Affiliation(s)
- Jacob J Swidorski
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA.
| | - Susan Jenkins
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Umesh Hanumegowda
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Dawn D Parker
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Brett R Beno
- Department of Computer-Assisted Drug Design, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Tricia Protack
- Department of Virology, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Alicia Ng
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Anuradha Gupta
- Biocon Bristol Myers Squibb Research & Development Center, Bangalore, India
| | - Yoganand Shanmugam
- Biocon Bristol Myers Squibb Research & Development Center, Bangalore, India
| | - Ira B Dicker
- Department of Virology, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Mark Krystal
- Department of Virology, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Alicia Regueiro-Ren
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| |
Collapse
|
35
|
Bussienne C, Marquet R, Paillart JC, Bernacchi S. Post-Translational Modifications of Retroviral HIV-1 Gag Precursors: An Overview of Their Biological Role. Int J Mol Sci 2021; 22:ijms22062871. [PMID: 33799890 PMCID: PMC8000049 DOI: 10.3390/ijms22062871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
Protein post-translational modifications (PTMs) play key roles in eukaryotes since they finely regulate numerous mechanisms used to diversify the protein functions and to modulate their signaling networks. Besides, these chemical modifications also take part in the viral hijacking of the host, and also contribute to the cellular response to viral infections. All domains of the human immunodeficiency virus type 1 (HIV-1) Gag precursor of 55-kDa (Pr55Gag), which is the central actor for viral RNA specific recruitment and genome packaging, are post-translationally modified. In this review, we summarize the current knowledge about HIV-1 Pr55Gag PTMs such as myristoylation, phosphorylation, ubiquitination, sumoylation, methylation, and ISGylation in order to figure out how these modifications affect the precursor functions and viral replication. Indeed, in HIV-1, PTMs regulate the precursor trafficking between cell compartments and its anchoring at the plasma membrane, where viral assembly occurs. Interestingly, PTMs also allow Pr55Gag to hijack the cell machinery to achieve viral budding as they drive recognition between viral proteins or cellular components such as the ESCRT machinery. Finally, we will describe and compare PTMs of several other retroviral Gag proteins to give a global overview of their role in the retroviral life cycle.
Collapse
|
36
|
Inositol phosphates promote HIV-1 assembly and maturation to facilitate viral spread in human CD4+ T cells. PLoS Pathog 2021; 17:e1009190. [PMID: 33476323 PMCID: PMC7853515 DOI: 10.1371/journal.ppat.1009190] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/02/2021] [Accepted: 11/26/2020] [Indexed: 11/19/2022] Open
Abstract
Gag polymerization with viral RNA at the plasma membrane initiates HIV-1 assembly. Assembly processes are inefficient in vitro but are stimulated by inositol (1,3,4,5,6) pentakisphosphate (IP5) and inositol hexakisphosphate (IP6) metabolites. Previous studies have shown that depletion of these inositol phosphate species from HEK293T cells reduced HIV-1 particle production but did not alter the infectivity of the resulting progeny virions. Moreover, HIV-1 substitutions bearing Gag/CA mutations ablating IP6 binding are noninfectious with destabilized viral cores. In this study, we analyzed the effects of cellular depletion of IP5 and IP6 on HIV-1 replication in T cells in which we disrupted the genes encoding the kinases required for IP6 generation, IP5 2-kinase (IPPK) and Inositol Polyphosphate Multikinase (IPMK). Knockout (KO) of IPPK from CEM and MT-4 cells depleted cellular IP6 in both T cell lines, and IPMK disruption reduced the levels of both IP5 and IP6. In the KO lines, HIV-1 spread was delayed relative to parental wild-type (WT) cells and was rescued by complementation. Virus release was decreased in all IPPK or IPMK KO lines relative to WT cells. Infected IPMK KO cells exhibited elevated levels of intracellular Gag protein, indicative of impaired particle assembly. IPMK KO compromised virus production to a greater extent than IPPK KO suggesting that IP5 promotes HIV-1 particle assembly in IPPK KO cells. HIV-1 particles released from infected IPPK or IPMK KO cells were less infectious than those from WT cells. These viruses exhibited partially cleaved Gag proteins, decreased virion-associated p24, and higher frequencies of aberrant particles, indicative of a maturation defect. Our data demonstrate that IP6 enhances the quantity and quality of virions produced from T cells, thereby preventing defects in HIV-1 replication.
Collapse
|
37
|
Samsudin F, Gan SKE, Bond PJ. The impact of Gag non-cleavage site mutations on HIV-1 viral fitness from integrative modelling and simulations. Comput Struct Biotechnol J 2020; 19:330-342. [PMID: 33425260 PMCID: PMC7779841 DOI: 10.1016/j.csbj.2020.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/19/2023] Open
Abstract
The high mutation rate in retroviruses is one of the leading causes of drug resistance. In human immunodeficiency virus type-1 (HIV-1), synergistic mutations in its protease and the protease substrate - the Group-specific antigen (Gag) polyprotein - work together to confer drug resistance against protease inhibitors and compensate the mutations affecting viral fitness. Some Gag mutations can restore Gag-protease binding, yet most Gag-protease correlated mutations occur outside of the Gag cleavage site. To investigate the molecular basis for this, we now report multiscale modelling approaches to investigate various sequentially cleaved Gag products in the context of clinically relevant mutations that occur outside of the cleavage sites, including simulations of the largest Gag proteolytic product in its viral membrane-bound state. We found that some mutations, such as G123E and H219Q, involve direct interaction with cleavage site residues to influence their local environment, while certain mutations in the matrix domain lead to the enrichment of lipids important for Gag targeting and assembly. Collectively, our results reveal why non-cleavage site mutations have far-reaching implications outside of Gag proteolysis, with important consequences for drugging Gag maturation intermediates and tackling protease inhibitor resistance.
Collapse
Affiliation(s)
- Firdaus Samsudin
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Samuel Ken-En Gan
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- Antibody & Product Development Lab – Large Molecule Innovation, Experimental Drug Development Centre (A*STAR), 138670 Singapore, Singapore
- p53 Laboratory (A*STAR), 138648 Singapore, Singapore
| | - Peter J. Bond
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
38
|
Fok JA, Mayer C. Genetic-Code-Expansion Strategies for Vaccine Development. Chembiochem 2020; 21:3291-3300. [PMID: 32608153 PMCID: PMC7361271 DOI: 10.1002/cbic.202000343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Indexed: 12/16/2022]
Abstract
By providing long-term protection against infectious diseases, vaccinations have significantly reduced death and morbidity worldwide. In the 21st century, (bio)technological advances have paved the way for developing prophylactic vaccines that are safer and more effective as well as enabling the use of vaccines as therapeutics to treat human diseases. Here, we provide a focused review of the utility of genetic code expansion as an emerging tool for the development of vaccines. Specifically, we discuss how the incorporation of immunogenic noncanonical amino acids can aid in eliciting immune responses against adverse self-proteins and highlight the potential of an expanded genetic code for the construction of replication-incompetent viruses. We close the review by discussing the future prospects and remaining challenges for the application of these approaches in the development of both prophylactic and therapeutic vaccines in the near future.
Collapse
Affiliation(s)
- Jelle A. Fok
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474 AGGroningen (TheNetherlands
| | - Clemens Mayer
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49474 AGGroningen (TheNetherlands
| |
Collapse
|
39
|
Vandelli A, Monti M, Milanetti E, Armaos A, Rupert J, Zacco E, Bechara E, Delli Ponti R, Tartaglia GG. Structural analysis of SARS-CoV-2 genome and predictions of the human interactome. Nucleic Acids Res 2020. [PMID: 33068416 DOI: 10.1101/2020.03.28.013789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Specific elements of viral genomes regulate interactions within host cells. Here, we calculated the secondary structure content of >2000 coronaviruses and computed >100 000 human protein interactions with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The genomic regions display different degrees of conservation. SARS-CoV-2 domain encompassing nucleotides 22 500-23 000 is conserved both at the sequence and structural level. The regions upstream and downstream, however, vary significantly. This part of the viral sequence codes for the Spike S protein that interacts with the human receptor angiotensin-converting enzyme 2 (ACE2). Thus, variability of Spike S is connected to different levels of viral entry in human cells within the population. Our predictions indicate that the 5' end of SARS-CoV-2 is highly structured and interacts with several human proteins. The binding proteins are involved in viral RNA processing, include double-stranded RNA specific editases and ATP-dependent RNA-helicases and have strong propensity to form stress granules and phase-separated assemblies. We propose that these proteins, also implicated in viral infections such as HIV, are selectively recruited by SARS-CoV-2 genome to alter transcriptional and post-transcriptional regulation of host cells and to promote viral replication.
Collapse
Affiliation(s)
- Andrea Vandelli
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Michele Monti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Edoardo Milanetti
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Alexandros Armaos
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Jakob Rupert
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
- Department of Biology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Elsa Zacco
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Elias Bechara
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Riccardo Delli Ponti
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
- Department of Biology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 23 Passeig Lluis Companys, 08010 Barcelona, Spain
| |
Collapse
|
40
|
Vandelli A, Monti M, Milanetti E, Armaos A, Rupert J, Zacco E, Bechara E, Delli Ponti R, Tartaglia G. Structural analysis of SARS-CoV-2 genome and predictions of the human interactome. Nucleic Acids Res 2020; 48:11270-11283. [PMID: 33068416 PMCID: PMC7672441 DOI: 10.1093/nar/gkaa864] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
Specific elements of viral genomes regulate interactions within host cells. Here, we calculated the secondary structure content of >2000 coronaviruses and computed >100 000 human protein interactions with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The genomic regions display different degrees of conservation. SARS-CoV-2 domain encompassing nucleotides 22 500-23 000 is conserved both at the sequence and structural level. The regions upstream and downstream, however, vary significantly. This part of the viral sequence codes for the Spike S protein that interacts with the human receptor angiotensin-converting enzyme 2 (ACE2). Thus, variability of Spike S is connected to different levels of viral entry in human cells within the population. Our predictions indicate that the 5' end of SARS-CoV-2 is highly structured and interacts with several human proteins. The binding proteins are involved in viral RNA processing, include double-stranded RNA specific editases and ATP-dependent RNA-helicases and have strong propensity to form stress granules and phase-separated assemblies. We propose that these proteins, also implicated in viral infections such as HIV, are selectively recruited by SARS-CoV-2 genome to alter transcriptional and post-transcriptional regulation of host cells and to promote viral replication.
Collapse
Affiliation(s)
- Andrea Vandelli
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Michele Monti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Edoardo Milanetti
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Alexandros Armaos
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Jakob Rupert
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
- Department of Biology ‘Charles Darwin’, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
| | - Elsa Zacco
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Elias Bechara
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Riccardo Delli Ponti
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16152 Genoa, Italy
- Department of Biology ‘Charles Darwin’, Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 23 Passeig Lluis Companys, 08010 Barcelona, Spain
| |
Collapse
|
41
|
Elucidating the Basis for Permissivity of the MT-4 T-Cell Line to Replication of an HIV-1 Mutant Lacking the gp41 Cytoplasmic Tail. J Virol 2020; 94:JVI.01334-20. [PMID: 32938764 DOI: 10.1128/jvi.01334-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
HIV-1 encodes an envelope glycoprotein (Env) that contains a long cytoplasmic tail (CT) harboring trafficking motifs implicated in Env incorporation into virus particles and viral transmission. In most physiologically relevant cell types, the gp41 CT is required for HIV-1 replication, but in the MT-4 T-cell line the gp41 CT is not required for a spreading infection. To help elucidate the role of the gp41 CT in HIV-1 transmission, in this study, we investigated the viral and cellular factors that contribute to the permissivity of MT-4 cells to gp41 CT truncation. We found that the kinetics of HIV-1 production and virus release are faster in MT-4 than in the other T-cell lines tested, but MT-4 cells express equivalent amounts of HIV-1 proteins on a per-cell basis relative to cells not permissive to CT truncation. MT-4 cells express higher levels of plasma-membrane-associated Env than nonpermissive cells, and Env internalization from the plasma membrane is less efficient than that from another T-cell line, SupT1. Paradoxically, despite the high levels of Env on the surface of MT-4 cells, 2-fold less Env is incorporated into virus particles produced from MT-4 than SupT1 cells. Contact-dependent transmission between cocultured 293T and MT-4 cells is higher than in cocultures of 293T with most other T-cell lines tested, indicating that MT-4 cells are highly susceptible to cell-to-cell infection. These data help to clarify the long-standing question of how MT-4 cells overcome the requirement for the HIV-1 gp41 CT and support a role for gp41 CT-dependent trafficking in Env incorporation and cell-to-cell transmission in physiologically relevant cell lines.IMPORTANCE The HIV-1 Env cytoplasmic tail (CT) is required for efficient Env incorporation into nascent particles and viral transmission in primary CD4+ T cells. The MT-4 T-cell line has been reported to support multiple rounds of infection of HIV-1 encoding a gp41 CT truncation. Uncovering the underlying mechanism of MT-4 T-cell line permissivity to gp41 CT truncation would provide key insights into the role of the gp41 CT in HIV-1 transmission. This study reveals that multiple factors contribute to the unique ability of a gp41 CT truncation mutant to spread in cultures of MT-4 cells. The lack of a requirement for the gp41 CT in MT-4 cells is associated with the combined effects of rapid HIV-1 protein production, high levels of cell-surface Env expression, and increased susceptibility to cell-to-cell transmission compared to nonpermissive cells.
Collapse
|
42
|
Ali LM, Pitchai FNN, Vivet-Boudou V, Chameettachal A, Jabeen A, Pillai VN, Mustafa F, Marquet R, Rizvi TA. Role of Purine-Rich Regions in Mason-Pfizer Monkey Virus (MPMV) Genomic RNA Packaging and Propagation. Front Microbiol 2020; 11:595410. [PMID: 33250884 PMCID: PMC7674771 DOI: 10.3389/fmicb.2020.595410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
A distinguishing feature of the Mason-Pfizer monkey virus (MPMV) packaging signal RNA secondary structure is a single-stranded purine-rich sequence (ssPurines) in close vicinity to a palindromic stem loop (Pal SL) that functions as MPMV dimerization initiation site (DIS). However, unlike other retroviruses, MPMV contains a partially base-paired repeat sequence of ssPurines (bpPurines) in the adjacent region. Both purine-rich sequences have earlier been proposed to act as potentially redundant Gag binding sites to initiate the process of MPMV genomic RNA (gRNA) packaging. The objective of this study was to investigate the biological significance of ssPurines and bpPurines in MPMV gRNA packaging by systematic mutational and biochemical probing analyses. Deletion of either ssPurines or bpPurines individually had no significant effect on MPMV gRNA packaging, but it was severely compromised when both sequences were deleted simultaneously. Selective 2′ hydroxyl acylation analyzed by primer extension (SHAPE) analysis of the mutant RNAs revealed only mild effects on structure by deletion of either ssPurines or bpPurines, while the structure was dramatically affected by the two simultaneous deletions. This suggests that ssPurines and bpPurines play a redundant role in MPMV gRNA packaging, probably as Gag binding sites to facilitate gRNA capture and encapsidation. Interestingly, the deletion of bpPurines revealed an additional severe defect on RNA propagation that was independent of the presence or absence of ssPurines or the gRNA structure of the region. These findings further suggest that the bpPurines play an additional role in the early steps of MPMV replication cycle that is yet to be identified.
Collapse
Affiliation(s)
- Lizna Mohamed Ali
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fathima Nuzra Nagoor Pitchai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Valérie Vivet-Boudou
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ayesha Jabeen
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Vineeta N Pillai
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
43
|
Barrera A, Ramos H, Vera-Otarola J, Fernández-García L, Angulo J, Olguín V, Pino K, Mouland AJ, López-Lastra M. Post-translational modifications of hnRNP A1 differentially modulate retroviral IRES-mediated translation initiation. Nucleic Acids Res 2020; 48:10479-10499. [PMID: 32960212 PMCID: PMC7544202 DOI: 10.1093/nar/gkaa765] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 08/09/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
The full-length mRNAs of the human immunodeficiency virus type-1 (HIV-1), the human T-cell lymphotropic virus type-1 (HTLV-1), and the mouse mammary tumor virus (MMTV) harbor IRESs. The activity of the retroviral-IRESs requires IRES-transacting factors (ITAFs), being hnRNP A1, a known ITAF for the HIV-1 IRES. In this study, we show that hnRNP A1 is also an ITAF for the HTLV-1 and MMTV IRESs. The MMTV IRES proved to be more responsive to hnRNP A1 than either the HTLV-1 or the HIV-1 IRESs. The impact of post-translational modifications of hnRNP A1 on HIV-1, HTLV-1 and MMTV IRES activity was also assessed. Results show that the HIV-1 and HTLV-1 IRESs were equally responsive to hnRNP A1 and its phosphorylation mutants S4A/S6A, S4D/S6D and S199A/D. However, the S4D/S6D mutant stimulated the activity from the MMTV-IRES to levels significantly higher than the wild type hnRNP A1. PRMT5-induced symmetrical di-methylation of arginine residues of hnRNP A1 enabled the ITAF to stimulate the HIV-1 and HTLV-1 IRESs while reducing the stimulatory ability of the ITAF over the MMTV IRES. We conclude that retroviral IRES activity is not only dependent on the recruited ITAFs but also relies on how these proteins are modified at the post-translational level.
Collapse
Affiliation(s)
- Aldo Barrera
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Hade Ramos
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Leandro Fernández-García
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Valeria Olguín
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Karla Pino
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| |
Collapse
|
44
|
Vamva E, Lever AML, Vink CA, Kenyon JC. Development of a Novel Competitive qRT-PCR Assay to Measure Relative Lentiviral Packaging Efficiency. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:307-319. [PMID: 33145367 PMCID: PMC7581820 DOI: 10.1016/j.omtm.2020.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/17/2020] [Indexed: 11/25/2022]
Abstract
Third-generation HIV-1-derived lentiviral vectors are successfully used as therapeutic agents in various clinical applications. To further promote their use, we attempted to enhance vector infectivity by targeting the dimerization and packaging properties of the RNA transfer vector based on the premise that these two processes are tightly linked. We rationally designed mutant vectors to favor the dimeric conformation, potentially enhancing genome packaging. Initial assessments using standard assays generated outputs of variable reproducibility, sometimes with conflicting results. Therefore, we developed a novel competitive qRT-PCR assay in a co-transfection setting to measure the relative packaging efficiencies of wild-type and mutant transfer vectors. Here we report the effect of the dimerization-stabilizing mutations on infectious and physical titers of lentiviral vectors together with their packaging efficiency, measured using our novel assay. Enhancing dimerization did not automatically lead to better vector RNA packaging, suggesting that, for vector functionality, sufficient flexibility of the RNA to adopt different conformations is more important than the dimerization capacity. Our novel competitive qPCR assay enables a more stringent analysis of RNA packaging efficiency, allowing a much more precise understanding of the links between RNA structure, packaging, and infectious titers that will be invaluable for future vector development.
Collapse
Affiliation(s)
- Eirini Vamva
- University of Cambridge Department of Medicine, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.,GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Andrew M L Lever
- University of Cambridge Department of Medicine, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.,Yong Loo Lin School of Medicine, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Conrad A Vink
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Julia C Kenyon
- University of Cambridge Department of Medicine, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.,Yong Loo Lin School of Medicine, 1E Kent Ridge Road, Singapore 119228, Singapore.,Homerton College, Hills Road, Cambridge, CB2 8PH, UK
| |
Collapse
|
45
|
Karnib H, Nadeem MF, Humbert N, Sharma KK, Grytsyk N, Tisné C, Boutant E, Lequeu T, Réal E, Boudier C, de Rocquigny H, Mély Y. The nucleic acid chaperone activity of the HIV-1 Gag polyprotein is boosted by its cellular partner RPL7: a kinetic study. Nucleic Acids Res 2020; 48:9218-9234. [PMID: 32797159 PMCID: PMC7498347 DOI: 10.1093/nar/gkaa659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 01/10/2023] Open
Abstract
The HIV-1 Gag protein playing a key role in HIV-1 viral assembly has recently been shown to interact through its nucleocapsid domain with the ribosomal protein L7 (RPL7) that acts as a cellular co-factor promoting Gag's nucleic acid (NA) chaperone activity. To further understand how the two proteins act together, we examined their mechanism individually and in concert to promote the annealing between dTAR, the DNA version of the viral transactivation element and its complementary cTAR sequence, taken as model HIV-1 sequences. Gag alone or complexed with RPL7 was found to act as a NA chaperone that destabilizes cTAR stem-loop and promotes its annealing with dTAR through the stem ends via a two-step pathway. In contrast, RPL7 alone acts as a NA annealer that through its NA aggregating properties promotes cTAR/dTAR annealing via two parallel pathways. Remarkably, in contrast to the isolated proteins, their complex promoted efficiently the annealing of cTAR with highly stable dTAR mutants. This was confirmed by the RPL7-promoted boost of the physiologically relevant Gag-chaperoned annealing of (+)PBS RNA to the highly stable tRNALys3 primer, favoring the notion that Gag recruits RPL7 to overcome major roadblocks in viral assembly.
Collapse
Affiliation(s)
- Hassan Karnib
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Muhammad F Nadeem
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Nicolas Humbert
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Kamal K Sharma
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Natalia Grytsyk
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Carine Tisné
- Expression génétique microbienne, UMR 8261, CNRS, Université de Paris, Institut de biologie physico-chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Emmanuel Boutant
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Thiebault Lequeu
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Eleonore Réal
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Christian Boudier
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Hugues de Rocquigny
- Inserm – U1259 Morphogenesis and Antigenicity of HIV and Hepatitis Viruses (MAVIVH), 10 boulevard Tonnellé, BP 3223, 37032 Tours Cedex 1, France
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| |
Collapse
|
46
|
Elliott JL, Kutluay SB. Going beyond Integration: The Emerging Role of HIV-1 Integrase in Virion Morphogenesis. Viruses 2020; 12:E1005. [PMID: 32916894 PMCID: PMC7551943 DOI: 10.3390/v12091005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 integrase enzyme (IN) plays a critical role in the viral life cycle by integrating the reverse-transcribed viral DNA into the host chromosome. This function of IN has been well studied, and the knowledge gained has informed the design of small molecule inhibitors that now form key components of antiretroviral therapy regimens. Recent discoveries unveiled that IN has an under-studied yet equally vital second function in human immunodeficiency virus type 1 (HIV-1) replication. This involves IN binding to the viral RNA genome in virions, which is necessary for proper virion maturation and morphogenesis. Inhibition of IN binding to the viral RNA genome results in mislocalization of the viral genome inside the virus particle, and its premature exposure and degradation in target cells. The roles of IN in integration and virion morphogenesis share a number of common elements, including interaction with viral nucleic acids and assembly of higher-order IN multimers. Herein we describe these two functions of IN within the context of the HIV-1 life cycle, how IN binding to the viral genome is coordinated by the major structural protein, Gag, and discuss the value of targeting the second role of IN in virion morphogenesis.
Collapse
Affiliation(s)
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA;
| |
Collapse
|
47
|
Kleinpeter AB, Freed EO. HIV-1 Maturation: Lessons Learned from Inhibitors. Viruses 2020; 12:E940. [PMID: 32858867 PMCID: PMC7552077 DOI: 10.3390/v12090940] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Since the emergence of HIV and AIDS in the early 1980s, the development of safe and effective therapies has accompanied a massive increase in our understanding of the fundamental processes that drive HIV biology. As basic HIV research has informed the development of novel therapies, HIV inhibitors have been used as probes for investigating basic mechanisms of HIV-1 replication, transmission, and pathogenesis. This positive feedback cycle has led to the development of highly effective combination antiretroviral therapy (cART), which has helped stall the progression to AIDS, prolong lives, and reduce transmission of the virus. However, to combat the growing rates of virologic failure and toxicity associated with long-term therapy, it is important to diversify our repertoire of HIV-1 treatments by identifying compounds that block additional steps not targeted by current drugs. Most of the available therapeutics disrupt early events in the replication cycle, with the exception of the protease (PR) inhibitors, which act at the virus maturation step. HIV-1 maturation consists of a series of biochemical changes that facilitate the conversion of an immature, noninfectious particle to a mature infectious virion. These changes include proteolytic processing of the Gag polyprotein by the viral protease (PR), structural rearrangement of the capsid (CA) protein, and assembly of individual CA monomers into hexamers and pentamers that ultimately form the capsid. Here, we review the development and therapeutic potential of maturation inhibitors (MIs), an experimental class of anti-HIV-1 compounds with mechanisms of action distinct from those of the PR inhibitors. We emphasize the key insights into HIV-1 biology and structure that the study of MIs has provided. We will focus on three distinct groups of inhibitors that block HIV-1 maturation: (1) compounds that block the processing of the CA-spacer peptide 1 (SP1) cleavage intermediate, the original class of compounds to which the term MI was applied; (2) CA-binding inhibitors that disrupt capsid condensation; and (3) allosteric integrase inhibitors (ALLINIs) that block the packaging of the viral RNA genome into the condensing capsid during maturation. Although these three classes of compounds have distinct structures and mechanisms of action, they share the ability to block the formation of the condensed conical capsid, thereby blocking particle infectivity.
Collapse
Affiliation(s)
| | - Eric O. Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| |
Collapse
|
48
|
How HIV-1 Gag Manipulates Its Host Cell Proteins: A Focus on Interactors of the Nucleocapsid Domain. Viruses 2020; 12:v12080888. [PMID: 32823718 PMCID: PMC7471995 DOI: 10.3390/v12080888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) polyprotein Gag (Group-specific antigen) plays a central role in controlling the late phase of the viral lifecycle. Considered to be only a scaffolding protein for a long time, the structural protein Gag plays determinate and specific roles in HIV-1 replication. Indeed, via its different domains, Gag orchestrates the specific encapsidation of the genomic RNA, drives the formation of the viral particle by its auto-assembly (multimerization), binds multiple viral proteins, and interacts with a large number of cellular proteins that are needed for its functions from its translation location to the plasma membrane, where newly formed virions are released. Here, we review the interactions between HIV-1 Gag and 66 cellular proteins. Notably, we describe the techniques used to evidence these interactions, the different domains of Gag involved, and the implications of these interactions in the HIV-1 replication cycle. In the final part, we focus on the interactions involving the highly conserved nucleocapsid (NC) domain of Gag and detail the functions of the NC interactants along the viral lifecycle.
Collapse
|
49
|
Sarni S, Biswas B, Liu S, Olson ED, Kitzrow JP, Rein A, Wysocki VH, Musier-Forsyth K. HIV-1 Gag protein with or without p6 specifically dimerizes on the viral RNA packaging signal. J Biol Chem 2020; 295:14391-14401. [PMID: 32817318 DOI: 10.1074/jbc.ra120.014835] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/10/2020] [Indexed: 02/04/2023] Open
Abstract
The HIV-1 Gag protein is responsible for genomic RNA (gRNA) packaging and immature viral particle assembly. Although the presence of gRNA in virions is required for viral infectivity, in its absence, Gag can assemble around cellular RNAs and form particles resembling gRNA-containing particles. When gRNA is expressed, it is selectively packaged despite the presence of excess host RNA, but how it is selectively packaged is not understood. Specific recognition of a gRNA packaging signal (Psi) has been proposed to stimulate the efficient nucleation of viral assembly. However, the heterogeneity of Gag-RNA interactions renders capturing this transient nucleation complex using traditional structural biology approaches challenging. Here, we used native MS to investigate RNA binding of wild-type (WT) Gag and Gag lacking the p6 domain (GagΔp6). Both proteins bind to Psi RNA primarily as dimers, but to a control RNA primarily as monomers. The dimeric complexes on Psi RNA require an intact dimer interface within Gag. GagΔp6 binds to Psi RNA with high specificity in vitro and also selectively packages gRNA in particles produced in mammalian cells. These studies provide direct support for the idea that Gag binding to Psi specifically promotes nucleation of Gag-Gag interactions at the early stages of immature viral particle assembly in a p6-independent manner.
Collapse
Affiliation(s)
- Samantha Sarni
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA.,Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Banhi Biswas
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Shuohui Liu
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA.,Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
| | - Erik D Olson
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA.,Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
| | - Jonathan P Kitzrow
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA.,Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
| | - Alan Rein
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Vicki H Wysocki
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA .,Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Karin Musier-Forsyth
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA .,Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA.,Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
50
|
Boutant E, Bonzi J, Anton H, Nasim MB, Cathagne R, Réal E, Dujardin D, Carl P, Didier P, Paillart JC, Marquet R, Mély Y, de Rocquigny H, Bernacchi S. Zinc Fingers in HIV-1 Gag Precursor Are Not Equivalent for gRNA Recruitment at the Plasma Membrane. Biophys J 2020; 119:419-433. [PMID: 32574557 PMCID: PMC7376094 DOI: 10.1016/j.bpj.2020.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 01/16/2023] Open
Abstract
The human immunodeficiency virus type 1 Gag precursor specifically selects the unspliced viral genomic RNA (gRNA) from the bulk of cellular and spliced viral RNAs via its nucleocapsid (NC) domain and drives gRNA encapsidation at the plasma membrane (PM). To further identify the determinants governing the intracellular trafficking of Gag-gRNA complexes and their accumulation at the PM, we compared, in living and fixed cells, the interactions between gRNA and wild-type Gag or Gag mutants carrying deletions in NC zinc fingers (ZFs) or a nonmyristoylated version of Gag. Our data showed that the deletion of both ZFs simultaneously or the complete NC domain completely abolished intracytoplasmic Gag-gRNA interactions. Deletion of either ZF delayed the delivery of gRNA to the PM but did not prevent Gag-gRNA interactions in the cytoplasm, indicating that the two ZFs display redundant roles in this respect. However, ZF2 played a more prominent role than ZF1 in the accumulation of the ribonucleoprotein complexes at the PM. Finally, the myristate group, which is mandatory for anchoring the complexes at the PM, was found to be dispensable for the association of Gag with the gRNA in the cytosol.
Collapse
Affiliation(s)
- Emmanuel Boutant
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
| | - Jeremy Bonzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Halina Anton
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Maaz Bin Nasim
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Raphael Cathagne
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Eléonore Réal
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Denis Dujardin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Philippe Carl
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Jean-Christophe Paillart
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Hugues de Rocquigny
- Morphogenèse et Antigénicité du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Tours, France.
| | - Serena Bernacchi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France.
| |
Collapse
|