1
|
Kim JK, Sapkota A, Roh T, Jo EK. The intricate interactions between inflammasomes and bacterial pathogens: Roles, mechanisms, and therapeutic potentials. Pharmacol Ther 2025; 265:108756. [PMID: 39581503 DOI: 10.1016/j.pharmthera.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Inflammasomes are intracellular multiprotein complexes that consist of a sensor, an adaptor, and a caspase enzyme to cleave interleukin (IL)-1β and IL-18 into their mature forms. In addition, caspase-1 and -11 activation results in the cleavage of gasdermin D to form pores, thereby inducing pyroptosis. Activation of the inflammasome and pyroptosis promotes host defense against pathogens, whereas dysregulation of the inflammasome can result in various pathologies. Inflammasomes exhibit versatile microbial signal detection, directly or indirectly, through cellular processes, such as ion fluctuations, reactive oxygen species generation, and the disruption of intracellular organelle function; however, bacteria have adaptive strategies to manipulate the inflammasome by altering microbe-associated molecular patterns, intercepting innate pathways with secreted effectors, and attenuating inflammatory and cell death responses. In this review, we summarize recent advances in the diverse roles of the inflammasome during bacterial infections and discuss how bacteria exploit inflammasome pathways to establish infections or persistence. In addition, we highlight the therapeutic potential of harnessing bacterial immune subversion strategies against acute and chronic bacterial infections. A more comprehensive understanding of the significance of inflammasomes in immunity and their intricate roles in the battle between bacterial pathogens and hosts will lead to the development of innovative strategies to address emerging threats posed by the expansion of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Leite EL, Gautron A, Deplanche M, Nicolas A, Ossemond J, Nguyen MT, do Carmo FLR, Gilot D, Azevedo V, Goetz F, Le Loir Y, Otto M, Berkova N. Involvement of caspase-1 in inflammasomes activation and bacterial clearance in S. aureus-infected osteoblast-like MG-63 cells. Cell Microbiol 2020; 22:e13204. [PMID: 32176433 PMCID: PMC10988652 DOI: 10.1111/cmi.13204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 12/27/2022]
Abstract
Staphylococcus aureus, a versatile Gram-positive bacterium, is the main cause of bone and joint infections (BJI), which are prone to recurrence. The inflammasome is an immune signaling platform that assembles after pathogen recognition. It activates proteases, most notably caspase-1 that proteolytically matures and promotes the secretion of mature IL-1β and IL-18. The role of inflammasomes and caspase-1 in the secretion of mature IL-1β and in the defence of S. aureus-infected osteoblasts has not yet been fully investigated. We show here that S. aureus-infected osteoblast-like MG-63 but not caspase-1 knock-out CASP1 -/- MG-63 cells, which were generated using CRISPR-Cas9 technology, activate the inflammasome as monitored by the release of mature IL-1β. The effect was strain-dependent. The use of S. aureus deletion and complemented phenole soluble modulins (PSMs) mutants demonstrated a key role of PSMs in inflammasomes-related IL-1β production. Furthermore, we found that the lack of caspase-1 in CASP1 -/- MG-63 cells impairs their defense functions, as bacterial clearance was drastically decreased in CASP1 -/- MG-63 compared to wild-type cells. Our results demonstrate that osteoblast-like MG-63 cells play an important role in the immune response against S. aureus infection through inflammasomes activation and establish a crucial role of caspase-1 in bacterial clearance.
Collapse
Affiliation(s)
- Elma Lima Leite
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
- Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte- Minas Gerais, Brazil
| | - Arthur Gautron
- Univ Rennes, CNRS, IGDR [(Institut de génétique et développement de Rennes)]-UMR 6290, F-35000, Rennes, France
| | - Martine Deplanche
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| | - Aurelie Nicolas
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| | - Jordane Ossemond
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| | - Minh Thu Nguyen
- Paul-Ehrlich-Institute, Federal Regulatory Agency for Vaccines and Biomedicines, Langen 63225, Germany
| | - Fillipe L. R. do Carmo
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
- Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte- Minas Gerais, Brazil
| | - David Gilot
- Univ Rennes, CNRS, IGDR [(Institut de génétique et développement de Rennes)]-UMR 6290, F-35000, Rennes, France
| | - Vasco Azevedo
- Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte- Minas Gerais, Brazil
| | - Friedrich Goetz
- Mikrobielle Genetik, Universität Tübingen, D-72076 Tübingen, Germany
| | - Yves Le Loir
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| | - Michael Otto
- Laboratory of Human Bacterial Pathogenesis, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Nadia Berkova
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| |
Collapse
|
3
|
Donado CA, Cao AB, Simmons DP, Croker BA, Brennan PJ, Brenner MB. A Two-Cell Model for IL-1β Release Mediated by Death-Receptor Signaling. Cell Rep 2020; 31:107466. [PMID: 32268091 PMCID: PMC7192215 DOI: 10.1016/j.celrep.2020.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/19/2019] [Accepted: 03/10/2020] [Indexed: 01/22/2023] Open
Abstract
Interleukin-1β (IL-1β) is a key orchestrator of anti-microbial immunity whose secretion is typically dependent on activation of inflammasomes. However, many pathogens have evolved strategies to evade inflammasome activation. Here we describe an alternative, two-cell model for IL-1β release where invariant natural killer T (iNKT) cells use the death receptor pathway to instruct antigen-presenting cells to secrete IL-1β. Following cognate interactions with TLR-primed bone marrow-derived dendritic cells (BMDCs), iNKT cells rapidly translocate intracellular Fas ligand to the surface to engage Fas on BMDCs. Fas ligation activates a caspase-8-dependent signaling cascade in BMDCs that drives IL-1β release largely independent of inflammasomes. The apoptotic program initiated by Fas ligation rapidly transitions into a pyroptosis-like form of cell death mediated by gasdermin D. Together, our findings support a two-cell model for IL-1β secretion that may supersede inflammasome activation when cytosolic triggers fail.
Collapse
Affiliation(s)
- Carlos A Donado
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Anh B Cao
- Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Daimon P Simmons
- Department of Pathology, Brigham and Women's and Harvard Medical School, Boston, MA 02115, USA
| | - Ben A Croker
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Division of Allergy, Immunology & Rheumatology, Department of Pediatrics, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Patrick J Brennan
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Michael B Brenner
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Yoon SJ, Jo DH, Park SH, Park JY, Lee YK, Lee MS, Min JK, Jung H, Kim TD, Yoon SR, Chung SW, Kim JH, Choi I, Park YJ. Thioredoxin-Interacting Protein Promotes Phagosomal Acidification Upon Exposure to Escherichia coli Through Inflammasome-Mediated Caspase-1 Activation in Macrophages. Front Immunol 2019; 10:2636. [PMID: 31781121 PMCID: PMC6861186 DOI: 10.3389/fimmu.2019.02636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/24/2019] [Indexed: 11/13/2022] Open
Abstract
In host defense, it is crucial to maintain the acidity of the macrophage phagosome for effective bacterial clearance. However, the mechanisms governing phagosomal acidification upon exposure to gram-negative bacteria have not been fully elucidated. In this study, we demonstrate that in macrophages exposed to Escherichia coli, the thioredoxin-interacting protein (TXNIP)-associated inflammasome plays a role in pH modulation through the activated caspase-1-mediated inhibition of NADPH oxidase. While there was no difference in early-phase bacterial engulfment between Txnip knockout (KO) macrophages and wild-type (WT) macrophages, Txnip KO macrophages were less efficient at destroying intracellular bacteria in the late phase, and their phagosomes failed to undergo appropriate acidification. These phenomena were associated with reactive oxygen species production and were reversed by treatment with an NADPH oxidase inhibitor or a caspase inhibitor. In line with these results, Txnip KO mice were more susceptible to both intraperitoneally administered E. coli and sepsis induced by cecum ligation and puncture than WT mice. Taken together, this study suggests that the TXNIP-associated inflammasome-caspase-1 axis regulates NADPH oxidase to modulate the pH of the phagosome, controlling bacterial clearance by macrophages.
Collapse
Affiliation(s)
- Sung-Jin Yoon
- Environmental Disease Research Center, Daejeon, South Korea
| | - Dong Hyun Jo
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Seung-Ho Park
- Environmental Disease Research Center, Daejeon, South Korea
| | - Jun-Young Park
- Environmental Disease Research Center, Daejeon, South Korea
| | - Yoo-Kyung Lee
- Environmental Disease Research Center, Daejeon, South Korea
| | - Moo-Seung Lee
- Environmental Disease Research Center, Daejeon, South Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Daejeon, South Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Su Wol Chung
- School of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Daejeon, South Korea
| |
Collapse
|
5
|
Yamamura K, Ashida H, Okano T, Kinoshita-Daitoku R, Suzuki S, Ohtani K, Hamagaki M, Ikeda T, Suzuki T. Inflammasome Activation Induced by Perfringolysin O of Clostridium perfringens and Its Involvement in the Progression of Gas Gangrene. Front Microbiol 2019; 10:2406. [PMID: 31708887 PMCID: PMC6823607 DOI: 10.3389/fmicb.2019.02406] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/07/2019] [Indexed: 01/17/2023] Open
Abstract
Clostridium perfringens (C. perfringens) is Gram-positive anaerobic, spore-forming rod-shaped bacterial pathogen that is widely distributed in nature. This bacterium is known as the causative agent of a foodborne illness and of gas gangrene. While the major virulence factors are the α-toxin and perfringolysin O (PFO) produced by type A strains of C. perfringens, the precise mechanisms of how these toxins induce the development of gas gangrene are still not well understood. In this study, we analyzed the host responses to these toxins, including inflammasome activation, using mouse bone marrow-derived macrophages (BMDMs). Our results demonstrated, for the first time, that C. perfringens triggers the activation of caspase-1 and release of IL-1β through PFO-mediated inflammasome activation via a receptor of the Nod-like receptor (NLR) family, pyrin-domain containing 3 protein (NLRP3). The PFO-mediated inflammasome activation was not induced in the cultured myocytes. We further analyzed the functional roles of the toxins in inducing myonecrosis in a mouse model of gas gangrene. Although the myonecrosis was found to be largely dependent on the α-toxin, PFO also induced myonecrosis to a lesser extent, again through the mediation of NLRP3. These results suggest that C. perfringens triggers inflammatory responses via PFO-mediated inflammasome activation via NLRP3, and that this axis contributes in part to the progression of gas gangrene. Our findings provide a novel insight into the molecular mechanisms underlying the pathogenesis of gas gangrene caused by C. perfringens.
Collapse
Affiliation(s)
- Kiyonobu Yamamura
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Ashida
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tokuju Okano
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Kinoshita-Daitoku
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiho Suzuki
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kaori Ohtani
- Department of Bacteriology and Bacterial Infection, Division of Host Defense Mechanism, Tokai University School of Medicine, Isehara, Japan
| | - Miwako Hamagaki
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tohru Ikeda
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Kumar V. The complement system, toll-like receptors and inflammasomes in host defense: three musketeers’ one target. Int Rev Immunol 2019; 38:131-156. [PMID: 31066339 DOI: 10.1080/08830185.2019.1609962] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vijay Kumar
- Children’s Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St Lucia, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Okano T, Ashida H, Suzuki S, Shoji M, Nakayama K, Suzuki T. Porphyromonas gingivalis triggers NLRP3-mediated inflammasome activation in macrophages in a bacterial gingipains-independent manner. Eur J Immunol 2018; 48:1965-1974. [PMID: 30280383 DOI: 10.1002/eji.201847658] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/12/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that has been considered to be one of the bacteria associated with progression of human periodontitis. Subgingival biofilms formed by bacteria, including P. gingivalis, induce chronic inflammation, and activation of inflammasome in the gingival tissue. However, the mechanisms of P. gingivalis-triggering inflammasome activation and the role of bacteria-host interactions are controversial. In this study, we investigated the potential of P. gingivalis for triggering inflammasome activation in human cells and mouse models. We demonstrated that secreted or released factors from bacteria are involved in triggering NLR family, pyrin-domain containing 3 protein (NLRP3) inflammasome in a gingipain-independent manner. Our data indicated that released active caspase-1 and mature IL-1β are eliminated by proteolytic activity of secreted gingipains. These results elucidate the molecular bases for the mechanisms underlying P. gingivalis-triggered inflammasome activation.
Collapse
Affiliation(s)
- Tokuju Okano
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Ashida
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiho Suzuki
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
8
|
Shahbazi M, Soltanzadeh-Yamchi M, Mohammadnia-Afrouzi M. T cell exhaustion implications during transplantation. Immunol Lett 2018; 202:52-58. [PMID: 30130559 DOI: 10.1016/j.imlet.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/05/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
Exhaustion of lymphocyte function, particularly T cell exhaustion, due to prolonged exposure to a high load of foreign antigen is commonly seen during chronic viral infection as well as antitumor immune responses. This phenomenon has been associated with a determined molecular mechanism and phenotypic manifestations on the cell surface. In spite of investigation of exhaustion, mostly about CD8 responses toward viral infections, recent studies have reported that chronic exposure to antigen may develop exhaustion in CD4 + T cells, B cells, and NK cells. Little is known with respect to lymphocyte exhaustion during transplantation and its effect on aberrant anti-graft responses. Through a same mechanobiology observed during chronic exposure of foreign viral antigens, alloantigen persistence mediated by allograft could develop a favorable circumstance for exhaustion of T cells responding to allograft. However, to achieve better manipulation approaches of this event to reduce the complications during transplantation, we need to be armed with a bulk of knowledge with regard to quality and quantity of T cell exhaustion occurring in various allografts, the kinetics of exhaustion development, the impression of immunosuppressive agents on the exhaustion, and the influence of exhaustion on graft survival and immune tolerance.
Collapse
Affiliation(s)
- Mehdi Shahbazi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Soltanzadeh-Yamchi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mousa Mohammadnia-Afrouzi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
9
|
Indramohan M, Stehlik C, Dorfleutner A. COPs and POPs Patrol Inflammasome Activation. J Mol Biol 2017; 430:153-173. [PMID: 29024695 DOI: 10.1016/j.jmb.2017.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 01/07/2023]
Abstract
Sensing and responding to pathogens and tissue damage is a core mechanism of innate immune host defense, and inflammasomes represent a central cytosolic pattern recognition receptor pathway leading to the generation of the pro-inflammatory cytokines interleukin-1β and interleukin-18 and pyroptotic cell death that causes the subsequent release of danger signals to propagate and perpetuate inflammatory responses. While inflammasome activation is essential for host defense, deregulated inflammasome responses and excessive release of inflammatory cytokines and danger signals are linked to an increasing spectrum of inflammatory diseases. In this review, we will discuss recent developments in elucidating the role of PYRIN domain-only proteins (POPs) and the related CARD-only proteins (COPs) in regulating inflammasome responses and their impact on inflammatory disease.
Collapse
Affiliation(s)
- Mohanalaxmi Indramohan
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Interdepartmental Immunobiology Center and Skin Disease Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
10
|
Han L, He H, Qu X, Liu Y, He S, Zheng X, He F, Bai H, Bo X. The relationships among host transcriptional responses reveal distinct signatures underlying viral infection-disease associations. MOLECULAR BIOSYSTEMS 2016; 12:653-65. [PMID: 26699092 DOI: 10.1039/c5mb00657k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genome-scale DNA microarrays and computational biology facilitate new understanding of viral infections at the system level. Recent years have witnessed a major shift from microorganism-centric toward host-oriented characterization and categorization of viral infections and infection related diseases. We established host transcriptional response (HTR) relationships among 23 different types of human viral pathogens based on calculating HTR similarities using computational integration of 587 public available gene expression profiles. We further identified five virus clusters that show consensus internal HTRs and defined cluster signatures using common dysregulated genes. Individual cluster signature genes were distinguished from one another, and functional analysis revealed common and specific host cellular bioprocesses and signaling pathways involved in confronting viral infections. Through literature investigation and support from epidemiological studies, these were confirmed to be important gene factors associating viral infections with cluster-common and cluster-specific non-infectious human disease(s). Our analyses were the first to feature differential HTRs to viral infections as clusters, and they present a new perspective for understanding infection-disease associations and the underlying pathogeneses.
Collapse
Affiliation(s)
- Lu Han
- Department of Traditional Chinese Medicine and Neuroimmunopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China and Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Haochen He
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Xinyan Qu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Yang Liu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Song He
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Xiaofei Zheng
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fuchu He
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Hui Bai
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China. and No. 451 Hospital of Chinese People's Liberation Army, Xi'an, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China.
| |
Collapse
|
11
|
Hughes FM, Kennis JG, Youssef MN, Lowe DW, Shaner BE, Purves JT. The NACHT, LRR and PYD Domains-Containing Protein 3 (NLRP3) Inflammasome Mediates Inflammation and Voiding Dysfunction in a Lipopolysaccharide-Induced Rat Model of Cystitis. ACTA ACUST UNITED AC 2016; 7. [PMID: 27066297 DOI: 10.4172/2155-9899.1000396] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE NOD-like receptors (NLRs) sense sterile and non-sterile signals and form inflammasomes which trigger an inflammatory response through the activation of caspase-1 and release of IL-1β. Recently we have shown the presence of several NLRs in the bladder urothelia and demonstrated the importance of NLRP3 in bladder outlet obstruction and cyclophosphamide-induced cystitis, both models of sterile inflammation. In this study we explore a role for NLRP3 in mediating the response to LPS, a key antigen of uropathogenic bacteria. METHOD In order to bypass the protective glycosaminoglycan layer lining the urothelium, LPS was directly injected into the bladder wall of Sprague-Dawley rats. Glyburide (a NLRP3 inhibitor) or vehicle was administered orally prior to and after injection. Rats were analyzed 24 h later. Inflammasome activity (caspase-1 activity, IL-1β release) and inflammation (Evan's Blue extravasation, bladder weight) were assessed, as was physiological bladder function (urodynamics). RESULTS Injection of LPS stimulated inflammasome activation (caspase-1 activity) and the release of IL-1β into the urine which was prevented by glyburide. Likewise, LPS increased inflammation, (bladder weight and the extravasation of Evan's blue dye), and this was reversed by glyburide. Functionally, animals injected with saline alone demonstrated decreased voiding volume as measured by urodynamics. In the presence of LPS, additional urinary dysfunction was evident with decreased voiding pressures and threshold pressures. The decrease in voiding pressure was blocked by glyburide but the decrease in threshold pressure was not, suggesting that LPS has significant effects mediated by inflammasome-dependent and -independent mechanisms. CONCLUSION Overall, the results demonstrate the potential importance of inflammasomes in bacterial cystitis as well as the ability of the bladder wall injection technique to isolate the in vivo effects of specific inflammasome ligands to the physiological changes associated with cystitis.
Collapse
Affiliation(s)
- Francis M Hughes
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, NC, USA; Department of Urology, Medical University of South Carolina, Charleston, SC, USA
| | - James G Kennis
- Department of Urology, Medical University of South Carolina, Charleston, SC, USA
| | - Melissa N Youssef
- Department of Urology, Medical University of South Carolina, Charleston, SC, USA
| | - Danielle W Lowe
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Brooke E Shaner
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - J Todd Purves
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, NC, USA; Department of Urology, Medical University of South Carolina, Charleston, SC, USA; Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
12
|
Guo W, Wang P, Liu Z, Yang P, Ye P. The activation of pyrin domain-containing-3 inflammasome depends on lipopolysaccharide from Porphyromonas gingivalis and extracellular adenosine triphosphate in cultured oral epithelial cells. BMC Oral Health 2015; 15:133. [PMID: 26511096 PMCID: PMC4625523 DOI: 10.1186/s12903-015-0115-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/10/2015] [Indexed: 01/15/2023] Open
Abstract
Background Gingival epithelial cells are the major population of the gingival tissue, acting as the front-line defense against microbial intrusion and regulating the homeostasis of the periodontal tissue in health and disease via NLR family pyrin domain-containing-3 (NLRP3) inflammasome, which recognizes pathogen- and danger-associated molecular patterns (PAMPs and DAMPs). The aim of this study was to determine whether the activation of NLRP3 inflammasome depends on infection with the periodontal pathogen Porphyromonas gingivalis (P. gingivalis), or stimulation with P. gingivalis lipopolysaccharide (LPS), and/or extracellular adenosine triphosphate (ATP). Methods An oral epithelial cell line was treated with P. gingivalis, P. gingivalis LPS and ATP. The gene and protein expression of NLRP3 inflammasome components were quantified by real time RT-PCR and immunoblots. Production of IL-1β and IL-18 was measured by ELISA. Results There was no increase in NLRP3 inflammasome gene expression after P. gingivalis infection unless pre-stimulated by ATP. Obvious increases of NLRP3 inflammasome gene expression was observed after P. gingivalis LPS stimulation, even pre-stimulated by ATP at 2 h. Conclusions The findings indicate that the activation of NLRP3 inflammasome does not rely on P. gingivalis infection, unless stimulated by P. gingivalis LPS and/or extracellular ATP, suggesting diverse signaling pathways are involved in the host immune response.
Collapse
Affiliation(s)
- Wei Guo
- Department of Periodontology, Shandong Provincial Key Laboratory of Oral Biomedicine, Shandong University, Jinan, 250012, People's Republic of China. .,Department of Endodontics, Yantai Stomatological Hospital, Yantai, Shandong Province, China.
| | - Peng Wang
- Yantai Stomatological Hospital, Yantai, Shandong Province, China.
| | - Zhonghao Liu
- Yantai Stomatological Hospital, Yantai, Shandong Province, China.
| | - Pishan Yang
- Department of Periodontology, Shandong Provincial Key Laboratory of Oral Biomedicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Ping Ye
- Institute of Dental Research, Westmead Millennium Institute and Westmead Centre for Oral Health, Westmead Hospital, Westmead, Australia.
| |
Collapse
|
13
|
Balasubramanian K, Maeda A, Lee JS, Mohammadyani D, Dar HH, Jiang JF, St Croix CM, Watkins S, Tyurin VA, Tyurina YY, Klöditz K, Polimova A, Kapralova VI, Xiong Z, Ray P, Klein-Seetharaman J, Mallampalli RK, Bayir H, Fadeel B, Kagan VE. Dichotomous roles for externalized cardiolipin in extracellular signaling: Promotion of phagocytosis and attenuation of innate immunity. Sci Signal 2015; 8:ra95. [PMID: 26396268 PMCID: PMC4760701 DOI: 10.1126/scisignal.aaa6179] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among the distinct molecular signatures present in the mitochondrion is the tetra-acylated anionic phospholipid cardiolipin, a lipid also present in primordial, single-cell bacterial ancestors of mitochondria and multiple bacterial species today. Cardiolipin is normally localized to the inner mitochondrial membrane; however, when cardiolipin becomes externalized to the surface of dysregulated mitochondria, it promotes inflammasome activation and stimulates the elimination of damaged or nonfunctional mitochondria by mitophagy. Given the immunogenicity of mitochondrial and bacterial membranes that are released during sterile and pathogen-induced trauma, we hypothesized that cardiolipins might function as "eat me" signals for professional phagocytes. In experiments with macrophage cell lines and primary macrophages, we found that membranes with mitochondrial or bacterial cardiolipins on their surface were engulfed through phagocytosis, which depended on the scavenger receptor CD36. Distinct from this process, the copresentation of cardiolipin with the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide dampened TLR4-stimulated production of cytokines. These data suggest that externalized, extracellular cardiolipins play a dual role in host-host and host-pathogen interactions by promoting phagocytosis and attenuating inflammatory immune responses.
Collapse
Affiliation(s)
- Krishnakumar Balasubramanian
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Akihiro Maeda
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Janet S Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dariush Mohammadyani
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Haider Hussain Dar
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jian Fei Jiang
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Claudette M St Croix
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Simon Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vladimir A Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Katharina Klöditz
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Anastassia Polimova
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Valentyna I Kapralova
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Zeyu Xiong
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Rama K Mallampalli
- Department of Internal Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA. Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15215, USA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA. Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden.
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The role of T-cell exhaustion in the failure of clearance of viral infections and tumors is well established. There are several ongoing trials to reverse T-cell exhaustion for treatment of chronic viral infections and tumors. The mechanisms leading to T-cell exhaustion and its role in transplantation, however, are only beginning to be appreciated and are the focus of the present review. RECENT FINDINGS Exhausted T cells exhibit a distinct molecular profile reflecting combinatorial mechanisms involving the interaction of multiple transcription factors important in control of cell metabolism, acquisition of effector function and memory capacity. Change of microenvironmental cues and limiting leukocyte recruitment can modulate T-cell exhaustion. Impaired leukocyte recruitment induces T-cell exhaustion and prevents allograft rejection. SUMMARY Preventing or reversing T-cell exhaustion may lead to prevention of transplant tolerance or triggering of rejection; therefore, caution should be exercised in the use of agents blocking inhibitory receptors for the treatment of chronic viral infections or tumors in transplant recipients. Further definition of the role of T-cell exhaustion in clinical transplantation and an understanding of the mechanisms of induction of T-cell exhaustion are needed to develop strategies for preventing allograft rejection and induction of tolerance.
Collapse
|
15
|
Lobet E, Letesson JJ, Arnould T. Mitochondria: a target for bacteria. Biochem Pharmacol 2015; 94:173-85. [PMID: 25707982 DOI: 10.1016/j.bcp.2015.02.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 01/12/2023]
Abstract
Eukaryotic cells developed strategies to detect and eradicate infections. The innate immune system, which is the first line of defence against invading pathogens, relies on the recognition of molecular patterns conserved among pathogens. Pathogen associated molecular pattern binding to pattern recognition receptor triggers the activation of several signalling pathways leading to the establishment of a pro-inflammatory state required to control the infection. In addition, pathogens evolved to subvert those responses (with passive and active strategies) allowing their entry and persistence in the host cells and tissues. Indeed, several bacteria actively manipulate immune system or interfere with the cell fate for their own benefit. One can imagine that bacterial effectors can potentially manipulate every single organelle in the cell. However, the multiple functions fulfilled by mitochondria especially their involvement in the regulation of innate immune response, make mitochondria a target of choice for bacterial pathogens as they are not only a key component of the central metabolism through ATP production and synthesis of various biomolecules but they also take part to cell signalling through ROS production and control of calcium homeostasis as well as the control of cell survival/programmed cell death. Furthermore, considering that mitochondria derived from an ancestral bacterial endosymbiosis, it is not surprising that a special connection does exist between this organelle and bacteria. In this review, we will discuss different mitochondrial functions that are affected during bacterial infection as well as different strategies developed by bacterial pathogens to subvert functions related to calcium homeostasis, maintenance of redox status and mitochondrial morphology.
Collapse
Affiliation(s)
- Elodie Lobet
- Laboratory of Biochemistry and Cellular Biology (URBC), NAmur Research Institute for LIfe Science (NARILIS), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium.
| | - Jean-Jacques Letesson
- Research Unit in Microorganisms Biology, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium.
| | - Thierry Arnould
- Laboratory of Biochemistry and Cellular Biology (URBC), NAmur Research Institute for LIfe Science (NARILIS), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
16
|
O'Donnell H, McSorley SJ. Salmonella as a model for non-cognate Th1 cell stimulation. Front Immunol 2014; 5:621. [PMID: 25540644 PMCID: PMC4261815 DOI: 10.3389/fimmu.2014.00621] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/21/2014] [Indexed: 01/13/2023] Open
Abstract
Salmonella has been a model pathogen for examining CD4 T cell activation and effector functions for many years due to the strength of the Th1 cell response observed during Salmonella infections, the relative ease of use of Salmonella, the availability of Salmonella-specific T cell reagents, and the well-characterized nature of the model system, the pathogen, and the immune response elicited. Herein, we discuss the use of Salmonella as a model pathogen to explore the complex interaction of T cells with their inflammatory environment. In particular, we address the issue of bystander activation of naïve T cells and non-cognate stimulation of activated and memory T cells. Further, we compare and contrast our current knowledge of these non-cognate responses in CD8 versus CD4 T cells. Finally, we make a case for Salmonella as a particularly appropriate model pathogen in the study of non-cognate CD4 T cell responses based on the strength of the Th1 response during infection, the requirement for CD4 T cells in bacterial clearance, and the well-characterized inflammatory response to conserved molecular patterns induced by Salmonella infection.
Collapse
Affiliation(s)
- Hope O'Donnell
- Department of Anatomy, Physiology and Cell Biology, Center for Comparative Medicine, School of Veterinary Medicine, University of California Davis , Davis, CA , USA ; Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota Medical School - Twin Cities , Minneapolis, MN , USA
| | - Stephen J McSorley
- Department of Anatomy, Physiology and Cell Biology, Center for Comparative Medicine, School of Veterinary Medicine, University of California Davis , Davis, CA , USA
| |
Collapse
|
17
|
Ashida H, Kim M, Sasakawa C. Manipulation of the host cell death pathway by Shigella. Cell Microbiol 2014; 16:1757-66. [PMID: 25264025 DOI: 10.1111/cmi.12367] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/11/2014] [Accepted: 08/21/2014] [Indexed: 12/25/2022]
Abstract
Host cells deploy multiple defences against microbial infection. One prominent host defence mechanism, the death of infected cells, plays a pivotal role in clearing damaged cells, eliminating pathogens, removing replicative niches, exposing intracellular bacterial pathogens to extracellular immune surveillance and presenting bacteria-derived antigens to the adaptive immune system. Although cell death can occur under either physiological or pathophysiological conditions, it acts as an innate defence mechanism against bacterial pathogens by limiting their persistent colonization. However, many bacterial pathogens, including Shigella, have evolved mechanisms that manipulate host cell death for their own benefit.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | | | | |
Collapse
|
18
|
Buchmann K. Evolution of Innate Immunity: Clues from Invertebrates via Fish to Mammals. Front Immunol 2014; 5:459. [PMID: 25295041 PMCID: PMC4172062 DOI: 10.3389/fimmu.2014.00459] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/08/2014] [Indexed: 11/13/2022] Open
Abstract
Host responses against invading pathogens are basic physiological reactions of all living organisms. Since the appearance of the first eukaryotic cells, a series of defense mechanisms have evolved in order to secure cellular integrity, homeostasis, and survival of the host. Invertebrates, ranging from protozoans to metazoans, possess cellular receptors, which bind to foreign elements and differentiate self from non-self. This ability is in multicellular animals associated with presence of phagocytes, bearing different names (amebocytes, hemocytes, coelomocytes) in various groups including animal sponges, worms, cnidarians, mollusks, crustaceans, chelicerates, insects, and echinoderms (sea stars and urchins). Basically, these cells have a macrophage-like appearance and function and the repair and/or fight functions associated with these cells are prominent even at the earliest evolutionary stage. The cells possess pathogen recognition receptors recognizing pathogen-associated molecular patterns, which are well-conserved molecular structures expressed by various pathogens (virus, bacteria, fungi, protozoans, helminths). Scavenger receptors, Toll-like receptors, and Nod-like receptors (NLRs) are prominent representatives within this group of host receptors. Following receptor-ligand binding, signal transduction initiates a complex cascade of cellular reactions, which lead to production of one or more of a wide array of effector molecules. Cytokines take part in this orchestration of responses even in lower invertebrates, which eventually may result in elimination or inactivation of the intruder. Important innate effector molecules are oxygen and nitrogen species, antimicrobial peptides, lectins, fibrinogen-related peptides, leucine rich repeats (LRRs), pentraxins, and complement-related proteins. Echinoderms represent the most developed invertebrates and the bridge leading to the primitive chordates, cephalochordates, and urochordates, in which many autologous genes and functions from their ancestors can be found. They exhibit numerous variants of innate recognition and effector molecules, which allow fast and innate responses toward diverse pathogens despite lack of adaptive responses. The primitive vertebrates (agnathans also termed jawless fish) were the first to supplement innate responses with adaptive elements. Thus hagfish and lampreys use LRRs as variable lymphocyte receptors, whereas higher vertebrates [cartilaginous and bony fishes (jawed fish), amphibians, reptiles, birds, and mammals] developed the major histocompatibility complex, T-cell receptors, and B-cell receptors (immunoglobulins) as additional adaptive weaponry to assist innate responses. Extensive cytokine networks are recognized in fish, but related signal molecules can be traced among invertebrates. The high specificity, antibody maturation, immunological memory, and secondary responses of adaptive immunity were so successful that it allowed higher vertebrates to reduce the number of variants of the innate molecules originating from both invertebrates and lower vertebrates. Nonetheless, vertebrates combine the two arms in an intricate inter-dependent network. Organisms at all developmental stages have, in order to survive, applied available genes and functions of which some may have been lost or may have changed function through evolution. The molecular mechanisms involved in evolution of immune molecules, might apart from simple base substitutions be as diverse as gene duplication, deletions, alternative splicing, gene recombination, domain shuffling, retrotransposition, and gene conversion. Further, variable regulation of gene expression may have played a role.
Collapse
Affiliation(s)
- Kurt Buchmann
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
19
|
Briken V, Ahlbrand SE, Shah S. Mycobacterium tuberculosis and the host cell inflammasome: a complex relationship. Front Cell Infect Microbiol 2013; 3:62. [PMID: 24130966 PMCID: PMC3793174 DOI: 10.3389/fcimb.2013.00062] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/23/2013] [Indexed: 12/31/2022] Open
Abstract
The production of IL-1β during the infection with Mycobacterium tuberculosis (Mtb) is important for successful host immune defense. In macrophages and dendritic cells the host cell inflammasome is crucial for generation of secreted IL-1β in response to Mtb infections. In these cell types Mtb infection only activates the NLRP3-inflammasome. New reports demonstrate that nitric oxide has an important function in the negative regulation of the NLRP3-inflammasome to reduce tissue damage during Mtb infections. The type I interferon, IFN-β, is induced after Mtb infections and can also suppress NLRP3-inflammasome activation. In contrast, IFN-β increases activity of the AIM2-inflammasome after infection with intracellular pathogens such as Francisella tularensis and Listeria monocytogenes. Recent results demonstrate that non-tuberculous mycobacteria but not virulent Mtb induce the AIM2-inflammasome in an IFN-β dependent matter. Indeed, Mtb inhibits AIM2-inflammasome activation via its ESX-1 secretion system. This novel immune evasion mechanism may help Mtb to allow the induction of low levels of IFN-β to suppress the NLRP3-inflammasome without activating the AIM2-inflammasome.
Collapse
Affiliation(s)
- Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| | | | | |
Collapse
|