1
|
Doghri I, Jacques M, Nichols S, Roy JP, Dufour S. Visualization of Staphylococcus aureus in the bovine mammary gland by fluorescence in situ hybridization. Res Vet Sci 2025; 189:105634. [PMID: 40187296 DOI: 10.1016/j.rvsc.2025.105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Bovine mastitis poses significant challenges to the dairy industry. Staphylococcus aureus is particularly problematic because of its ability to cause long-lasting infections. The aim of this study was to visualize S. aureus in infected mammary gland tissues via a specific fluorescent oligonucleotide probe and confocal microscopy. Tissue samples were obtained from cows with confirmed positive S. aureus milk cultures. Fluorescent in situ hybridization revealed the existence of large bacterial aggregates, spanning 30-50 μm in size and specifically located within the mammary parenchyma. This is the first direct visualization of S. aureus aggregates within the udder of naturally infected cows.
Collapse
Affiliation(s)
- Ibtissem Doghri
- Regroupement de Recherche Pour un lait de Qualité Optimale (Op+lait), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec J2S 2M2, Canada
| | - Mario Jacques
- Regroupement de Recherche Pour un lait de Qualité Optimale (Op+lait), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec J2S 2M2, Canada; Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec J2S 2M2, Canada.
| | - Sylvain Nichols
- Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec J2S 2M2, Canada.
| | - Jean-Philippe Roy
- Regroupement de Recherche Pour un lait de Qualité Optimale (Op+lait), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec J2S 2M2, Canada; Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec J2S 2M2, Canada.
| | - Simon Dufour
- Regroupement de Recherche Pour un lait de Qualité Optimale (Op+lait), Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec J2S 2M2, Canada; Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec J2S 2M2, Canada.
| |
Collapse
|
2
|
Lan J, Zou J, Xin H, Sun J, Han T, Sun M, Niu M. Nanomedicines as disruptors or inhibitors of biofilms: Opportunities in addressing antimicrobial resistance. J Control Release 2025; 381:113589. [PMID: 40032007 DOI: 10.1016/j.jconrel.2025.113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/02/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
The problem of antimicrobial resistance (AMR) has caused global concern due to its great threat to human health. Evidences are emerging for a critical role of biofilms, one of the natural protective mechanisms developed by bacteria during growth, in resisting commonly used clinical antibiotics. Advances in nanomedicines with tunable physicochemical properties and unique anti-biofilm mechanisms provide opportunities for solving AMR risks more effectively. In this review, we summarize the five "A" stages (adhesion, amplification, alienation, aging and allocation) of biofilm formation and mechanisms through which they protect the internal bacteria. Aimed at the characteristics of biofilms, we emphasize the design "THAT" principles (targeting, hacking, adhering and transport) of nanomedicines in their interactions with biofilms and internal bacteria. Furthermore, recent progresses in multimodal antibacterial nanomedicines, including biofilms disruption and bactericidal activity, and the types of currently available antibiofilm nanomedicines contained organic and inorganic nanomedicines are outlined and highlighted their potential applications in the development of preclinical research. Last but not least, we offer a perspective for the effectiveness of nanomedicines designed to address AMR and challenges associated with their clinical translation.
Collapse
Affiliation(s)
- Jiaming Lan
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jingyu Zou
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - He Xin
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China.
| | - Mengchi Sun
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China; School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| | - Meng Niu
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
3
|
Xu Z, Wang Y, Li S, Li Y, Chang L, Yao Y, Peng Q. Advances of functional nanomaterials as either therapeutic agents or delivery systems in the treatment of periodontitis. BIOMATERIALS ADVANCES 2025; 175:214326. [PMID: 40300444 DOI: 10.1016/j.bioadv.2025.214326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
Periodontitis is a common chronic inflammatory disease primarily caused by pathogenic microorganisms in the oral cavity. Without appropriate treatments, it may lead to the gradual destruction of the supporting tissues of the teeth. While current treatments can alleviate symptoms, they still have limitations, particularly in eliminating pathogenic bacteria, promoting periodontal tissue regeneration, and avoiding antibiotic resistance. In recent years, functional nanomaterials have shown great potential in the treatment of periodontitis due to their unique physicochemical and biological properties. This review summarizes various functionalization strategies of nanomaterials and explores their potential applications in periodontitis treatment, including metal-based nanoparticles, carbon nanomaterials, polymeric nanoparticles, and exosomes. The mechanisms and advances in antibacterial effects, immune regulation, reactive oxygen species (ROS) scavenging, and bone tissue regeneration are discussed in detail. In addition, the challenges and future directions of applying nanomaterials in periodontitis therapy are also discussed.
Collapse
Affiliation(s)
- Ziyi Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuoshun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuanhong Li
- Department of Orthodontics, Shanghai Stomatological Hospital and School of Stomatology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, China
| | - Lili Chang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Zhai X, Liu Y, Hao X, Luo M, Gao Z, Wu J, Yang Z, Gan Y, Zhao S, Song Z, Guan J. Photothermal-Driven α-Amylase-Modified Polydopamine Pot-Like Nanomotors for Enhancing Penetration and Elimination of Drug-Resistant Biofilms. Adv Healthc Mater 2025; 14:e2403033. [PMID: 39901377 DOI: 10.1002/adhm.202403033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/17/2025] [Indexed: 02/05/2025]
Abstract
Biological enzyme-functionalized antibacterial nanoparticles, which can degrade biofilm and kill bacteria under mild reaction conditions, have attracted much attention for the elimination of deep-seated bacterial infections. However, the poor diffusion and penetration capabilities of recently developed biological enzyme-functionalized antibacterial nanoparticles in biofilm severely impair the eradication efficacy of deep-seated bacteria. Herein, a photothermal-driven nanomotor (denoted as APPNM) is developed for enhancing the elimination of drug-resistant biofilms and the eradication of deep-seated bacteria. The nanomotor contained a pot-like polydopamine (PDA) nanostructure and its outer surface is chemically immobilized with a layer of α-amylases. Under exposure to 808 nm near-infrared (NIR) laser irradiation, the self-propelled nanomotors, integrating the α-amylases to destroy the compact structure of biofilms, can penetrate deeply into biofilms and effectively eliminate them. Subsequently, they can accumulate on the surface of bacteria using the inherent bio-adhesion property of PDA, thereby completely eradicating deep-seated bacteria by photothermal effect. These synergistic effects enable them to exhibit superior antibiofilm effects and produce remarkable therapeutic efficacy with accelerated wound healing in vivo. With excellent biocompatibility, the as-developed nanomotors have great potential to be applied for treating biofilm-related infections.
Collapse
Affiliation(s)
- Xiangxiang Zhai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Liu
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaomeng Hao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ming Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhixue Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jinmei Wu
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zili Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Ying Gan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Suling Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhiyong Song
- National Key Laboratory of Agricultural Microbiology, College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
5
|
Arato I, Giovagnoli S, Roscini L, Calvitti M, Bellucci C, Lilli C, Eugeni E, Brancorsini S, Cardinali G, Luca G, Mancuso F. Exploring Sertoli Cells' Innate Bulwark Role Against Infections: In Vitro Performances on Candida tropicalis Biofilms. Cells 2025; 14:495. [PMID: 40214449 PMCID: PMC11988068 DOI: 10.3390/cells14070495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
This study aimed to evaluate the intrinsic in vitro performance of naïve porcine prepubertal Sertoli cells (SCs) and SCs loaded with blank poly(lactic acid) microparticles (MP) or amphotericin B poly(lactic acid) microparticles (AmB-MP) against Candida tropicalis, a prevalent pathogenic non-albicans species. The objective was to assess their impact on biofilm formation and the cellular response mechanisms involved, building on previous findings that highlight SCs' potential as anti-infective agents and drug carriers. Our results demonstrated that SCs successfully internalized Candida tropicalis while maintaining viability and exhibited a strong anti-infective effect, inhibiting biofilm formation by 70%. This inhibition increased to 80-90% when SCs were combined with AmB-MP. The interaction between SCs (both naïve and MP-loaded) and Candida tropicalis triggered the activation of MAPK, AKT, and NF-kB signaling pathways, leading to the upregulated expression of innate immune factors such as MHC-II, TLR-4, TGF-β, IDO, and β-defensin 123. These findings reinforce the role of SCs in infection control and drug delivery. Furthermore, their anti-infective and scavenging activity is linked to a tolerogenic phenotype, suggesting a potential dual therapeutic role at the host-pathogen interface.
Collapse
Affiliation(s)
- Iva Arato
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (M.C.); (E.E.); (G.L.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, 06132 Perugia, Italy; (S.G.); (L.R.); (G.C.)
| | - Luca Roscini
- Department of Pharmaceutical Sciences, University of Perugia, 06132 Perugia, Italy; (S.G.); (L.R.); (G.C.)
| | - Mario Calvitti
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (M.C.); (E.E.); (G.L.)
| | - Catia Bellucci
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (M.C.); (E.E.); (G.L.)
| | - Cinzia Lilli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (M.C.); (E.E.); (G.L.)
| | - Elena Eugeni
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (M.C.); (E.E.); (G.L.)
| | - Stefano Brancorsini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (M.C.); (E.E.); (G.L.)
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences, University of Perugia, 06132 Perugia, Italy; (S.G.); (L.R.); (G.C.)
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (M.C.); (E.E.); (G.L.)
- International Biotechnological Center for Endocrine, Metabolic and Embryo-Reproductive Translational Research (CIRTEMER), Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
- Division of Medical Andrology and Endocrinology of Reproduction, Saint Mary Hospital, 05100 Terni, Italy
| | - Francesca Mancuso
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.A.); (M.C.); (E.E.); (G.L.)
| |
Collapse
|
6
|
Zhou Y, Zhou X, Zhang J, Zhao Y, Ye Z, Xu F, Li F. Confined Mechanical Microenvironment Regulated Antibiotic Resistance in 3D Biofilm Aggregates Probed by Scanning Electrochemical Microscopy. Anal Chem 2025; 97:5517-5526. [PMID: 40029802 DOI: 10.1021/acs.analchem.4c05503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Antibiotic resistance is a significant global concern. Clinical trials have highlighted discrepancies in antibiotic doses between in vivo three-dimensional (3D) biofilms and in vitro two-dimensional biofilm models. A critical factor often overlooked is the confined mechanical microenvironment (e.g., host extracellular matrix (ECM) stiffness) surrounding the in vivo biofilms, leading to inaccurate diagnosis and increased antibiotic resistance. Herein, we designed a 3D agarose-gel-based in vitro biofilm model and applied scanning electrochemical microscopy (SECM) to monitor the metabolic dynamics in situ, including cellular respiration and reactive oxygen species of an embedded single biofilm aggregate. We discovered distinct respiration patterns for biofilm aggregates embedded in stiff and soft gels at the single aggregate level, which was corroborated by transcriptional analysis. Our findings indicate that mechanical cues mediate antibiotic tolerance by reducing metabolic activity and increasing the production of extracellular polymeric substances (EPS). Additionally, we identified that metabolite glycine enhances the tricarboxylic acid cycle, suggesting its potential as an adjuvant to improve antibiotic efficacy. Knocking out the upregulated EPS-related gene (ΔyjbE) results in significantly reduced survival rates of ΔyjbE mutants in stiff agarose gels compared to the wild type, thereby enhancing antibiotic efficacy. Overall, our study demonstrates the versatility of the SECM-based strategy for investigating both metabolic dynamics and antibiotic resistance in biofilms and uncovers the role of ECM stiffness in mediating antibiotic resistance in 3D biofilms, paving the way for improved clinical strategies in antibiotic treatment.
Collapse
Affiliation(s)
- Yan Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xuan Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Junjie Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuxiang Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhaoyang Ye
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
7
|
Grzech-Leśniak Z, Pyrkosz J, Szwach J, Kosidło P, Matys J, Wiench R, Pajączkowska M, Nowicka J, Dominiak M, Grzech-Leśniak K. Antibacterial Effects of Er:YAG Laser Irradiation on Candida-Streptococcal Biofilms. Life (Basel) 2025; 15:474. [PMID: 40141818 PMCID: PMC11943470 DOI: 10.3390/life15030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
In contemporary dentistry, laser-based interventions have become one of the mainstays of care for patients with oral biofilm diseases, such as candidiasis, periodontal disease and peri-implantitis. The purpose of this study was to evaluate the effectiveness of Er:YAG laser (LightWalker, Ljubljana, Fotona, Slovenia) irradiation at varying irradiance levels (T1: 11.3 W/cm2 and T2: 120.54 W/cm2) on microbial viability in single- and dual-species biofilm models, focusing on Candida albicans, Candida glabrata and Streptococcus mutans, to address challenges in managing complex oral biofilms in clinically relevant settings. The results showed substantial microbial reduction, with C. albicans being the most susceptible microorganism (93-99.9%), while C. glabrata exhibited marked resistance at higher irradiance levels. Interestingly, S. mutans demonstrated varying reductions based on the biofilm composition, highlighting the influence of microbial interactions. This study concluded that the Er:YAG laser effectively reduced biofilm viability, with its efficacy depending on the microbial composition and irradiance settings. These findings highlight the need for tailored erbium laser parameters to optimize clinical outcomes, underscoring the need for individualized polymicrobial biofilm management, particularly in periodontal and peri-implant therapies.
Collapse
Affiliation(s)
| | - Jakub Pyrkosz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.P.); (J.S.); (P.K.)
| | - Jagoda Szwach
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.P.); (J.S.); (P.K.)
| | - Patrycja Kosidło
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.P.); (J.S.); (P.K.)
| | - Jacek Matys
- Laser Laboratory, Dental Surgery Department, Faculty of Dentistry, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.M.); (M.D.)
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Magdalena Pajączkowska
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.P.); (J.N.)
| | - Joanna Nowicka
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.P.); (J.N.)
| | - Marzena Dominiak
- Laser Laboratory, Dental Surgery Department, Faculty of Dentistry, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.M.); (M.D.)
| | - Kinga Grzech-Leśniak
- Laser Laboratory, Dental Surgery Department, Faculty of Dentistry, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.M.); (M.D.)
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University VCU, Richmond, VA 23298, USA
| |
Collapse
|
8
|
Sun B, Guo J, Hao B, Cao Y, Chan TKF, Sun M, Sung JJY, Zhang L. Liquid-bodied antibiofilm robot with switchable viscoelastic response for biofilm eradication on complex surface topographies. SCIENCE ADVANCES 2025; 11:eadt8213. [PMID: 40073138 PMCID: PMC11900878 DOI: 10.1126/sciadv.adt8213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
Recalcitrant biofilm infections pose a great challenge to human health. Micro- and nanorobots have been used to eliminate biofilm infections in hard-to-reach regions inside the body. However, applying antibiofilm robots under physiological conditions is limited by the conflicting demands of accessibility and driving force. Here, we introduce a liquid-bodied antibiofilm robot constructed by a dynamically cross-linked magnetic hydrogel. Leveraging the viscoelastic response of the robot enables it to adapt to complex surface topographies such as medical meshes and stents. Upon actuation, the robot can mechanically destroy the biofilm matrix, chemically deactivate bacterial cells, and collect disrupted biofilm debris. The robot's antibiofilm performance is studied in vitro and demonstrated on a medical mesh and a biliary stent. Tracking and navigation under endoscopy and x-ray imaging in an ex vivo porcine bile duct are demonstrated. Last, in vivo antibiofilm treatment is conducted by indwelling infected stents into mice's abdominal cavity and clearing the biofilm infection using the proposed robot.
Collapse
Affiliation(s)
- Bonan Sun
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junjia Guo
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bo Hao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yanfei Cao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tony K. F. Chan
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mengmeng Sun
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Joseph J. Y. Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- CUHK T. Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Zhou H, Negrón O, Abbondante S, Marshall M, Jones B, Ong E, Chumbler N, Tunkey C, Dixon G, Lin H, Plante O, Pearlman E, Gadjeva M. Spatial transcriptomics identifies novel Pseudomonas aeruginosa virulence factors. CELL GENOMICS 2025; 5:100805. [PMID: 40081336 PMCID: PMC11960532 DOI: 10.1016/j.xgen.2025.100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025]
Abstract
To examine host-pathogen interactions, we leveraged a dual spatial transcriptomics approach that simultaneously captures the expression of Pseudomonas aeruginosa genes alongside the entire host transcriptome using a murine model of ocular infection. This method revealed differential pathogen- and host-specific gene expression patterns in infected corneas, which generated a unified transcriptional map of infection. By integrating these data, we developed a predictive ridge regression model trained on images from infected tissues. The model achieved an R2 score of 0.923 in predicting bacterial burden distributions and identifying novel biomarkers associated with disease severity. Among iron acquisition pathogen-specific gene transcripts that showed significant enrichment at the host-pathogen interface, we discovered the novel virulence mediator PA2590, which was required for bacterial virulence. This study therefore highlights the power of combining bacterial and host spatial transcriptomics to uncover complex host-pathogen interactions and identify potentially druggable targets.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Moderna, Inc., 325 Binney St., Cambridge, MA 02142, UK
| | - Oscar Negrón
- Moderna, Inc., 325 Binney St., Cambridge, MA 02142, UK
| | - Serena Abbondante
- Department of Ophthalmology, School of Medicine, University of California, Irvine, 843 Health Sciences Rd., Irvine, CA 92697, USA
| | - Michaela Marshall
- Department of Ophthalmology, School of Medicine, University of California, Irvine, 843 Health Sciences Rd., Irvine, CA 92697, USA
| | - Brandon Jones
- Moderna, Inc., 325 Binney St., Cambridge, MA 02142, UK
| | - Edison Ong
- Moderna, Inc., 325 Binney St., Cambridge, MA 02142, UK
| | | | | | - Groves Dixon
- Moderna, Inc., 325 Binney St., Cambridge, MA 02142, UK
| | - Haining Lin
- Moderna, Inc., 325 Binney St., Cambridge, MA 02142, UK
| | | | - Eric Pearlman
- Department of Ophthalmology, School of Medicine, University of California, Irvine, 843 Health Sciences Rd., Irvine, CA 92697, USA.
| | | |
Collapse
|
10
|
Cai YM, Hong F, De Craemer A, Malone JG, Crabbé A, Coenye T. Echinacoside reduces intracellular c-di-GMP levels and potentiates tobramycin activity against Pseudomonas aeruginosa biofilm aggregates. NPJ Biofilms Microbiomes 2025; 11:40. [PMID: 40055321 PMCID: PMC11889090 DOI: 10.1038/s41522-025-00673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
Cyclic diguanylate (c-di-GMP) is a central biofilm regulator in Pseudomonas aeruginosa, where increased intracellular levels promote biofilm formation and antibiotic tolerance. Targeting the c-di-GMP network may be a promising anti-biofilm approach, but most strategies studied so far aimed at eliminating surface-attached biofilms, while in vivo P. aeruginosa biofilms often occur as suspended aggregates. Here, the expression profile of c-di-GMP metabolism-related genes was analysed among 32 P. aeruginosa strains grown as aggregates in synthetic cystic fibrosis sputum. The diguanylate cyclase SiaD proved essential for auto-aggregation under in vivo-like conditions. Virtual screening predicted a high binding affinity of echinacoside towards the active site of SiaD. Echinacoside reduced c-di-GMP levels and aggregate sizes and potentiated tobramycin activity against aggregates in >80% of strains tested. This synergism was also observed in P. aeruginosa-infected 3-D alveolar epithelial cells and murine lungs, demonstrating echinacoside's potential as an adjunctive therapy for recalcitrant P. aeruginosa infections.
Collapse
Affiliation(s)
- Yu-Ming Cai
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK.
| | - Feng Hong
- Group of Microbiological Engineering and Biomedical Materials, College of Biological Science and Medical Engineering, Donghua University, North Ren Min Road 2999, 201620, Shanghai, China
- National Advanced Functional Fiber Innovation Centre, Wu Jiang, Su Zhou, China
| | - Amber De Craemer
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Jacob George Malone
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
11
|
Nam KM, Yan J. Morphogenesis of confined biofilms: how mechanical interactions determine cellular patterning and global geometry. SOFT MATTER 2025; 21:1436-1450. [PMID: 39901805 PMCID: PMC11791476 DOI: 10.1039/d4sm01180e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
Biofilms are surface-attached bacterial communities encased within extracellular matrices that play significant roles in health and society and serve as prototypical examples of proliferating active nematics. Recent advances in fluorescence microscopy have facilitated an unprecedented view of biofilm development at the single-cell level, thus providing the opportunity to develop a mechanistic understanding of how biofilm development is influenced by mechanical interactions with the environment. Here, we review recent studies that examined the morphogenesis of Vibrio cholerae biofilms under confinement at both single-cell and continuum levels. We describe how biofilms under different confinement modes-embedded and interstitial-can acquire various global geometries and forms of cell orientational ordering different from those in unconfined biofilms, and we demonstrate how these properties arise from the mechanical interplay between the biofilm and its confining medium. We also discuss how this interplay is fundamentally governed by the extracellular matrix, which facilitates the transmission of mechanical stress from the medium into the biofilm via adhesion and friction, and serves as the key feature that distinguishes biofilms from classical bacterial colonies. These studies lay the groundwork for many potential future directions, all of which will contribute to the establishment of a new "developmental biology" of biofilms.
Collapse
Affiliation(s)
- Kee-Myoung Nam
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
12
|
Xu H, Jia D, Guo S, Zheng X, Yang W, Chen H, Zhang Y, Yu Q. Dual-action defense: A photothermal and controlled nitric oxide-releasing coating for preventing biofilm formation. J Colloid Interface Sci 2025; 679:191-200. [PMID: 39447462 DOI: 10.1016/j.jcis.2024.10.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Biofilms formed by pathogenic bacteria on biomedical devices and implants pose a considerable challenge due to their resistance to conventional treatments and their role in severe infections. Preventing biofilm formation is strategically more advantageous than attempting to eliminate the mature biofilms, particularly in addressing the persistence of such formations. In this context, a dual-action antibiofilm coating is developed, utilizing S-nitrosothiols functionalized candle soot (CS), which capitalizes on CS's strong light absorption for photothermal therapy and the controlled release of nitric oxide (NO) from S-nitrosothiols to inhibit biofilm formation. This coating exhibits stable and efficient light-to-heat conversion, along with the ability to release NO gradually at physiological temperatures and to rapidly release NO on demand when triggered by a near-infrared (NIR) laser. Under NIR irradition, the coating generates heat swiftly and releases substantial amounts of NO, which synergistically disrupts bacterial membranes, leading to the leakage of intracellular components and the effective eradication of surface-adhered bacteria. In the absence of NIR irradiation, the coating continuously releases low concentrations of NO, which depletes exopolysaccharides and impedes biofilm formation. The antibiofilm efficacy of this coating is assessed against Staphylococcus aureus and Pseudomonas aeruginosa, demonstrating marked reductions in bacterial viability and biofilm formation in vitro. Additionally, the coating exhibits minimal cytotoxicity and can be easily applied to diverse substrates. This study underscores the potential of this coating as a broad-spectrum, non-toxic approach for preventing biofilm-related complications in biomedical applications.
Collapse
Affiliation(s)
- Hu Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Dongxu Jia
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Shuaihang Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xinyan Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Wei Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, PR China.
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
13
|
Pont S, Nilly F, Berry L, Bonhoure A, Alford MA, Louis M, Nogaret P, Bains M, Lesouhaitier O, Hancock REW, Plésiat P, Blanc-Potard AB. Intracellular Pseudomonas aeruginosa persist and evade antibiotic treatment in a wound infection model. PLoS Pathog 2025; 21:e1012922. [PMID: 39946497 PMCID: PMC11825101 DOI: 10.1371/journal.ppat.1012922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025] Open
Abstract
Persistent bacterial infections evade host immunity and resist antibiotic treatments through various mechanisms that are difficult to evaluate in a living host. Pseudomonas aeruginosa is a main cause of chronic infections in patients with cystic fibrosis (CF) and wounds. Here, by immersing wounded zebrafish embryos in a suspension of P. aeruginosa isolates from CF patients, we established a model of persistent infection that mimics a murine chronic skin infection model. Live and electron microscopy revealed persisting aggregated P. aeruginosa inside zebrafish cells, including macrophages, at unprecedented resolution. Persistent P. aeruginosa exhibited adaptive resistance to several antibiotics, host cell permeable drugs being the most efficient. Moreover, persistent bacteria could be partly re-sensitized to antibiotics upon addition of anti-biofilm molecules that dispersed the bacterial aggregates in vivo. Collectively, this study demonstrates that an intracellular location protects persistent P. aeruginosa in vivo in wounded zebrafish embryos from host innate immunity and antibiotics, and provides new insights into efficient treatments against chronic infections.
Collapse
Affiliation(s)
- Stéphane Pont
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS, Inserm, 34095, Montpellier, France
| | - Flore Nilly
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS, Inserm, 34095, Montpellier, France
| | - Laurence Berry
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS, Inserm, 34095, Montpellier, France
| | - Anne Bonhoure
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS, Inserm, 34095, Montpellier, France
| | - Morgan A. Alford
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Mélissande Louis
- CBSA UR4312, Laboratoire de microbiologie Communication Bactérienne et Stratégies Anti-Infectieuses, Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
| | - Pauline Nogaret
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS, Inserm, 34095, Montpellier, France
| | - Manjeet Bains
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Olivier Lesouhaitier
- CBSA UR4312, Laboratoire de microbiologie Communication Bactérienne et Stratégies Anti-Infectieuses, Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, Rouen, France
| | - Robert E. W. Hancock
- Center for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Patrick Plésiat
- UMR6249 CNRS Chrono-environnement, Université de Franche-Comté, Besançon, France
| | - Anne-Béatrice Blanc-Potard
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS, Inserm, 34095, Montpellier, France
| |
Collapse
|
14
|
Felton SM, Akula N, Kolling GL, Azadi P, Black I, Kumar A, Heiss C, Capobianco J, Uknalis J, Papin JA, Berger BW. Applying a polysaccharide lyase from Stenotrophomonas maltophilia to disrupt alginate exopolysaccharide produced by Pseudomonas aeruginosa clinical isolates. Appl Environ Microbiol 2025; 91:e0185324. [PMID: 39670718 PMCID: PMC11784403 DOI: 10.1128/aem.01853-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Pseudomonas aeruginosa is considered one of the most challenging, drug-resistant, opportunistic pathogens partly due to its ability to synthesize robust biofilms. Biofilm is a mixture of extracellular polymeric substances (EPS) that encapsulates microbial cells, leading to immune evasion, antibiotic resistance, and thus higher risk of infection. In the cystic fibrosis lung environment, P. aeruginosa undergoes a mucoid transition, defined by overproduction of the exopolysaccharide alginate. Alginate encapsulation results in bacterial resistance to antibiotics and the host immune system. Given its role in airway inflammation and chronic infection, alginate is an obvious target to improve treatment for P. aeruginosa infection. Previously, we demonstrated polysaccharide lyase Smlt1473 from Stenotrophomonas maltophilia strain k279a can catalyze the degradation of multiple polyuronides in vitro, including D-mannuronic acid (poly-ManA). Poly-ManA is a major constituent of P. aeruginosa alginate, suggesting that Smlt1473 could have potential application against multidrug-resistant P. aeruginosa and perhaps other microbes with related biofilm composition. In this study, we demonstrate that Smlt1473 can inhibit and degrade alginate from P. aeruginosa. Additionally, we show that tested P. aeruginosa strains are dominant in acetylated alginate and that all but one have similar M-to-G ratios. These results indicate that variation in enzyme efficacy among the isolates is not primarily due to differences in total EPS or alginate chemical composition. Overall, these results demonstrate Smlt1473 can inhibit and degrade P. aeruginosa alginate and suggest that other factors including rate of EPS production, alginate sequence/chain length, or non-EPS components may explain differences in enzyme efficacy. IMPORTANCE Pseudomonas aeruginosa is a major opportunistic human pathogen in part due to its ability to synthesize biofilms that confer antibiotic resistance. Biofilm is a mixture of polysaccharides, DNA, and proteins that encapsulate cells, protecting them from antibiotics, disinfectants, and other cleaning agents. Due to its ability to increase antibiotic and immune resistance, the exopolysaccharide alginate plays a large role in airway inflammation and chronic P. aeruginosa infection. As a result, colonization with P. aeruginosa is the leading cause of morbidity and mortality in CF patients. Thus, it is an obvious target to improve the treatment regimen for P. aeruginosa infection. In this study, we demonstrate that polysaccharide lyase, Smlt1473, inhibits alginate secretion and degrades established alginate from a variety of mucoid P. aeruginosa clinical isolates. Additionally, Smlt1473 differs from other alginate lyases in that it is active against acetylated alginate, which is secreted during chronic lung infection. These results suggest that Smlt1473 may be useful in treating infections associated with alginate-producing P. aeruginosa, as well as have the potential to reduce P. aeruginosa EPS in non-clinical settings.
Collapse
Affiliation(s)
- Samantha M. Felton
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Nikki Akula
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Glynis L. Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ian Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ambrish Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Joseph Capobianco
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Joseph Uknalis
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Bryan W. Berger
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
15
|
Xu L, Zhang X, Wang W, Shen J, Ma K, Wang H, Xue T. The global regulator SpoVG is involved in biofilm formation and stress response in foodborne Staphylococcus aureus. Int J Food Microbiol 2025; 428:110997. [PMID: 39616895 DOI: 10.1016/j.ijfoodmicro.2024.110997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024]
Abstract
Staphylococcus aureus (S. aureus) is a primary culprit of food poisoning. As a highly adaptable pathogen, S. aureus demonstrates formidable biofilm-forming and stress tolerance capabilities, inducing significant challenges to eradicate food contamination caused by this organism. SpoVG, a regulatory protein in S. aureus, controls the expression of numerous genes. However, its role in biofilm formation and stress response in foodborne S. aureus remains to be elucidated. In this study, we investigated the functions of SpoVG involved in food-related stress responses and biofilm formation in S. aureus RMSA50. The results demonstrated that SpoVG deletion enhanced biofilm formation and resistance to heat and desiccation, while decreased tolerance to oxidative stress. Further analysis revealed that cell aggregation and the accumulation of extracellular DNA (eDNA) may contribute to the enhanced biofilm formation. Real-time quantitative reverse transcription-PCR (RT-qPCR) revealed that the expression levels of nuc and sasC, which are related to cell aggregation and eDNA concentration, were significantly altered in the spoVG mutant. Electrophoretic mobility shift assays (EMSA) confirmed that SpoVG directly binds to the promoter region of nuc and sasC to regulate their expression. These findings suggest that SpoVG may serve as a target to decrease biofilm formation and control S. aureus contamination in the food industry.
Collapse
Affiliation(s)
- Li Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xin Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jiawei Shen
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Kai Ma
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China; Food Procession Research Institude, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
16
|
Tabassum N, Khan F, Jeong GJ, Oh DK, Kim YM. Controlling Oral Polymicrobial Biofilm Using Usnic Acid on the Surface of Titanium in the Artificial Saliva Media. Antibiotics (Basel) 2025; 14:115. [PMID: 40001359 PMCID: PMC11852094 DOI: 10.3390/antibiotics14020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Titanium dental implants, while highly successful, face challenges due to polymicrobial infections leading to peri-implantitis and implant failure. Biofilm formation on implant surfaces is the primary cause of these infections, with factors such as matrix production and cross-kingdom interactions contributing to the microbial accumulation of bacterial and fungal pathogens species. To combat this issue, naturally derived molecules have been reported to overcome the hurdle of antimicrobial resistance against the application of conventional antibiotics and antifungals. Methods: The present study aimed to employ the lichen-derived molecules, usnic acid (UA), to retard the development of biofilms of bacterial and fungal pathogens on the surface of titanium kept in the human artificial saliva (HAS) working as a growth-supporting, host-mimicking media. Results: The minimum inhibitory concentration of UA in HAS towards Candida albicans was >512 µg/mL, whereas against Staphylococcus aureus and Streptococcus mutans, it was determined to be 512 µg/mL. Whereas, in the standard growth media, the MIC value of UA towards S. mutans and S. aureus were 8 and 16 µg/mL; however, against C. albicans, it was 512 µg/mL. UA synergistically enhanced the efficacy of the antibiotics toward bacterial pathogens and the efficacy of antifungals against C. albicans. The antibiofilm results depict the fact that in the HAS, UA significantly reduced both mono-species of S. mutans, S. aureus, and C. albicans and mixed-species biofilm of C. albicans with S. mutans and S. aureus on the surface of the titanium. Conclusions: The present study showed that UA is a promising natural drug that can control oral polymicrobial disease as a result of the application of dental implants.
Collapse
Affiliation(s)
- Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (D.K.O.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (D.K.O.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Geum-Jae Jeong
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (D.K.O.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Do Kyung Oh
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (D.K.O.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (D.K.O.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
17
|
Jia D, Zou Y, Zhang Y, Xu H, Yang W, Zheng X, Zhang Y, Yu Q. A self-supplied hydrogen peroxide and nitric oxide-generating nanoplatform enhances the efficacy of chemodynamic therapy for biofilm eradication. J Colloid Interface Sci 2025; 678:20-29. [PMID: 39178688 DOI: 10.1016/j.jcis.2024.08.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Bacterial biofilms present a profound challenge to global public health, often resulting in persistent and recurrent infections that resist treatment. Chemodynamic therapy (CDT), leveraging the conversion of hydrogen peroxide (H2O2) to highly reactive hydroxyl radicals (•OH), has shown potential as an antibacterial approach. Nonetheless, CDT struggles to eliminate biofilms due to limited endogenous H2O2 and the protective extracellular polymeric substances (EPS) within biofilms. This study introduces a multifunctional nanoplatform designed to self-supply H2O2 and generate nitric oxide (NO) to overcome these hurdles. The nanoplatform comprises calcium peroxide (CaO2) for sustained H2O2 production, a copper-based metal-organic framework (HKUST-1) encapsulating CaO2, and l-arginine (l-Arg) as a natural NO donor. When exposed to the acidic microenvironment within biofilms, the HKUST-1 layer decomposes, releasing Cu2+ ions and l-Arg, and exposing the CaO2 core to initiate a cascade of reactions producing reactive species such as H2O2, •OH, and superoxide anions (•O2-). Subsequently, H2O2 catalyzes l-Arg to produce NO, which disperses the biofilm and reacts with •O2- to form peroxynitrite, synergistically eradicating bacteria with •OH. In vitro assays demonstrated the nanoplatform's remarkable antibiofilm efficacy against both Gram-positive Methicillin-resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa, significantly reducing bacterial viability and EPS content. In vivo mouse model experiments validated the nanoplatform's effectiveness in eliminating biofilms and promoting infected wound healing without adverse effects. This study represents a breakthrough in overcoming traditional CDT limitations by integrating self-supplied H2O2 with NO's biofilm-disrupting capabilities, offering a promising therapeutic strategy for biofilm-associated infection.
Collapse
Affiliation(s)
- Dongxu Jia
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, PR China; State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yuheng Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hu Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Wei Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xinyan Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, PR China.
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
18
|
Ma X, Poma A. Clinical translation and envisioned impact of nanotech for infection control: Economy, government policy and public awareness. NANOTECHNOLOGY TOOLS FOR INFECTION CONTROL 2025:299-392. [DOI: 10.1016/b978-0-12-823994-0.00004-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Damyanova T, Stancheva R, Leseva MN, Dimitrova PA, Paunova-Krasteva T, Borisova D, Kamenova K, Petrov PD, Veleva R, Zhivkova I, Topouzova-Hristova T, Haladjova E, Stoitsova S. Gram Negative Biofilms: Structural and Functional Responses to Destruction by Antibiotic-Loaded Mixed Polymeric Micelles. Microorganisms 2024; 12:2670. [PMID: 39770872 PMCID: PMC11728461 DOI: 10.3390/microorganisms12122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
Biofilms are a well-known multifactorial virulence factor with a pivotal role in chronic bacterial infections. Their pathogenicity is determined by the combination of strain-specific mechanisms of virulence and the biofilm extracellular matrix (ECM) protecting the bacteria from the host immune defense and the action of antibacterials. The successful antibiofilm agents should combine antibacterial activity and good biocompatibility with the capacity to penetrate through the ECM. The objective of the study is the elaboration of biofilm-ECM-destructive drug delivery systems: mixed polymeric micelles (MPMs) based on a cationic poly(2-(dimethylamino)ethyl methacrylate)-b-poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA35-b-PCL70-b-PDMAEMA35) and a non-ionic poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO100-b-PPO65-b-PEO100) triblock copolymers, loaded with ciprofloxacin or azithromycin. The MPMs were applied on 24 h pre-formed biofilms of Escherichia coli and Pseudomonas aeruginosa (laboratory strains and clinical isolates). The results showed that the MPMs were able to destruct the biofilms, and the viability experiments supported drug delivery. The biofilm response to the MPMs loaded with the two antibiotics revealed two distinct patterns of action. These were registered on the level of both bacterial cell-structural alterations (demonstrated by scanning electron microscopy) and the interaction with host tissues (ex vivo biofilm infection model on skin samples with tests on nitric oxide and interleukin (IL)-17A production).
Collapse
Affiliation(s)
- Tsvetozara Damyanova
- Department of Microbiology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 26, 1113 Sofia, Bulgaria; (T.D.); (T.P.-K.); (D.B.); (S.S.)
| | - Rumena Stancheva
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 103-A, 1113 Sofia, Bulgaria; (R.S.); (K.K.); (P.D.P.)
| | - Milena N. Leseva
- Department of Immunology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 26, 1113 Sofia, Bulgaria (P.A.D.)
| | - Petya A. Dimitrova
- Department of Immunology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 26, 1113 Sofia, Bulgaria (P.A.D.)
| | - Tsvetelina Paunova-Krasteva
- Department of Microbiology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 26, 1113 Sofia, Bulgaria; (T.D.); (T.P.-K.); (D.B.); (S.S.)
| | - Dayana Borisova
- Department of Microbiology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 26, 1113 Sofia, Bulgaria; (T.D.); (T.P.-K.); (D.B.); (S.S.)
| | - Katya Kamenova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 103-A, 1113 Sofia, Bulgaria; (R.S.); (K.K.); (P.D.P.)
| | - Petar D. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 103-A, 1113 Sofia, Bulgaria; (R.S.); (K.K.); (P.D.P.)
| | - Ralitsa Veleva
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
| | - Ivelina Zhivkova
- National Reference Laboratory “Control and Monitoring of Antimicrobial Resistance”, Department of Clinical Microbiology, National Center of Infectious and Parasitic Disease, Yanko Sakuzov Blvd. 26, 1504 Sofia, Bulgaria;
| | - Tanya Topouzova-Hristova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
| | - Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 103-A, 1113 Sofia, Bulgaria; (R.S.); (K.K.); (P.D.P.)
| | - Stoyanka Stoitsova
- Department of Microbiology, Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Street, bl. 26, 1113 Sofia, Bulgaria; (T.D.); (T.P.-K.); (D.B.); (S.S.)
| |
Collapse
|
20
|
Nazeer RR, Askenasy I, Swain JEV, Welch M. Contribution of the infection ecosystem and biogeography to antibiotic failure in vivo. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:45. [PMID: 39649078 PMCID: PMC11618093 DOI: 10.1038/s44259-024-00063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/11/2024] [Indexed: 12/10/2024]
Abstract
The acquisition of antibiotic resistance in bacteria, though a deeply concerning international issue, is reasonably well-understood at a mechanistic level. Less well-understood is why bacteria that are sensitive in vitro to well-established and widely-used antibiotics sometimes fail to respond to these agents in vivo. This is a particularly common problem in chronic, polymicrobial infection scenarios. Here, we discuss this in vitro-in vivo disconnect from the perspective of the bacterium, focusing in particular on how infection micro/macro-environment, biogeography, and the presence of co-habiting species affect the response to antibiotics. Using selected exemplars, we also consider interventions that might improve treatment outcomes, as well as ecologically 'eubiotic' approaches that have less of an impact on the patient's commensal microflora. In our view, the accrued data strongly suggest that we need a more comprehensive understanding of the in situ microbiology at infection sites.
Collapse
Affiliation(s)
| | - Isabel Askenasy
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Nielsen SM, Johnsen KK, Hansen LBS, Rikvold PD, Møllebjerg A, Palmén LG, Durhuus T, Schlafer S, Meyer RL. Large-scale screening identifies enzyme combinations that remove in situ grown oral biofilm. Biofilm 2024; 8:100229. [PMID: 39830521 PMCID: PMC11740801 DOI: 10.1016/j.bioflm.2024.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 01/22/2025] Open
Abstract
Bacteria in the oral cavity are responsible for the development of dental diseases such as caries and periodontitis, but it is becoming increasingly clear that the oral microbiome also benefits human health. Many oral care products on the market are antimicrobial, killing a large part of the oral microbiome but without removing the disease-causing biofilm. Instead, non-biocidal matrix-degrading enzymes may be used to selectively remove biofilm without harming the overall microbiome. The challenge of using enzymes to degrade biofilms is to match the narrow specificity of enzymes with the large structural diversity of extracellular polymeric substances that hold the biofilm together. In this study, we therefore perform a large-scale screening of single and multi-enzyme formulations to identify combinations of enzymes that most effectively remove dental biofilm. We tested >400 different treatment modalities using 44 different enzymes in combinations with up to six enzymes in each formulation, on in vitro biofilms inoculated with human saliva. Mutanase was the only enzyme capable of removing biofilm on its own. Multi-enzyme formulations removed up to 69 % of the biofilm volume, and the most effective formulations all contained mutanase. We shortlisted 10 enzyme formulations to investigate their efficacy against biofilms formed on glass slabs on dental splints worn by 9 different test subjects. Three of the ten formulations removed more than 50 % of the biofilm volume. If optimal enzyme concentration and exposure time can be reached in vivo, these enzyme combinations have potential to be used in novel non-biocidal oral care products for dental biofilm control.
Collapse
Affiliation(s)
- Signe Maria Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Novonesis A/S, Biologiens Vej 2, 2800, Kgs. Lyngby, Denmark
| | - Karina Kambourakis Johnsen
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark
| | | | - Pernille Dukanovic Rikvold
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark
- Novonesis A/S, Biologiens Vej 2, 2800, Kgs. Lyngby, Denmark
| | - Andreas Møllebjerg
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Novonesis A/S, Biologiens Vej 2, 2800, Kgs. Lyngby, Denmark
| | | | - Thomas Durhuus
- Novonesis A/S, Biologiens Vej 2, 2800, Kgs. Lyngby, Denmark
| | - Sebastian Schlafer
- Section for Oral Ecology, Cariology, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark
- Department of Biology, Faculty of Natural Sciences, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- Department of Biology, Faculty of Natural Sciences, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark
| |
Collapse
|
22
|
Coenye T, Ahonen M, Anderson S, Cámara M, Chundi P, Fields M, Foidl I, Gnimpieba EZ, Griffin K, Hinks J, Loka AR, Lushbough C, MacPhee C, Nater N, Raval R, Slater-Jefferies J, Teo P, Wilks S, Yung M, Webb JS. Global challenges and microbial biofilms: Identification of priority questions in biofilm research, innovation and policy. Biofilm 2024; 8:100210. [PMID: 39221168 PMCID: PMC11364012 DOI: 10.1016/j.bioflm.2024.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Priority question exercises are increasingly used to frame and set future research, innovation and development agendas. They can provide an important bridge between the discoveries, data and outputs generated by researchers, and the information required by policy makers and funders. Microbial biofilms present huge scientific, societal and economic opportunities and challenges. In order to identify key priorities that will help to advance the field, here we review questions from a pool submitted by the international biofilm research community and from practitioners working across industry, the environment and medicine. To avoid bias we used computational approaches to group questions and manage a voting and selection process. The outcome of the exercise is a set of 78 unique questions, categorized in six themes: (i) Biofilm control, disruption, prevention, management, treatment (13 questions); (ii) Resistance, persistence, tolerance, role of aggregation, immune interaction, relevance to infection (10 questions); (iii) Model systems, standards, regulatory, policy education, interdisciplinary approaches (15 questions); (iv) Polymicrobial, interactions, ecology, microbiome, phage (13 questions); (v) Clinical focus, chronic infection, detection, diagnostics (13 questions); and (vi) Matrix, lipids, capsule, metabolism, development, physiology, ecology, evolution environment, microbiome, community engineering (14 questions). The questions presented are intended to highlight opportunities, stimulate discussion and provide focus for researchers, funders and policy makers, informing future research, innovation and development strategy for biofilms and microbial communities.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
- ESCMID Study Group on Biofilms (ESGB), Basel, Switzerland
| | - Merja Ahonen
- Satakunta University of Applied Sciences, Finland
| | - Skip Anderson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Miguel Cámara
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Matthew Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Ines Foidl
- National Biofilms Innovation Centre, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | | - Kristen Griffin
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Jamie Hinks
- Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
| | | | | | - Cait MacPhee
- National Biofilms Innovation Centre, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Natasha Nater
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Rasmita Raval
- National Biofilms Innovation Centre, Open Innovation Hub for Antimicrobial Surfaces, Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Jo Slater-Jefferies
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Pauline Teo
- Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
| | - Sandra Wilks
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Maria Yung
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
| | | | - Jeremy S. Webb
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
23
|
Sunnerhagen T, Bjarnsholt T, Qvortrup K, Bundgaard H, Moser C. Transcatheter aortic valve implantation (TAVI) prostheses in vitro - biofilm formation and antibiotic effects. Biofilm 2024; 8:100236. [PMID: 39555138 PMCID: PMC11565431 DOI: 10.1016/j.bioflm.2024.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Background Transcatheter aortic valve implantation (TAVI) is a percutaneous catheter-based treatment of aortic stenosis as an alternative to open heart valve surgery. In cases of TAVI endocarditis, the treatment possibilities may be limited as surgical removal of the infected valve may be associated with a high risk in elderly, comorbid or frail patients. The propensity of bacteria to form a biofilm on foreign material is assumed to be of importance part of the disease process in TAVI endocarditis, but no studies on biofilm formation on TAVI valves have been conducted. We hypothesize that Staphylococcus aureus and Enterococcus faecalis biofilm formation on TAVI valves may have an impact on antibiotic tolerance and non-surgical cure rates. Methods TAVI valves (pieces including part of the metal frame, approximately 1 cm wide) were exposed to either species in vitro in LB-Krebs Ringer medium at 37 °C, with the bacterial count being assessed by culturing of sonicated TAVI pieces and broth at 0, 4, 18 and 24 h after bacterial exposure. Scanning electron microscopy (SEM) was performed. Effects of ampicillin, gentamicin, moxifloxacin, rifampicin (for S. aureus), and ceftriaxone (for E. faecalis) at 5 times minimal inhibitory concentration were tested alone and in combination with ampicillin. Antibiotics were added to biofilm aged 0 or 24 h and the effects assessed. Results Exposure for 15 min established attachment to all of valve pieces. SEM findings were consistent with biofilm formation and suggested lower amounts of bacteria on the metal compared to the tissue part of the TAVI valves. The number of bacteria attached to the TAVI valves increased until 24 h of incubation from less than 10^1 to a level of approximately 10^9 CFU/g. The bacteria became more tolerant to antibiotics on the TAVI valves over time, with the bactericidal effect against 24-h old biofilm being significantly less effective than against 0-h old biofilm depending on antibiotic. Conclusions The results indicate that bacteria can adhere to metal and tissue parts of the TAVI valves within minutes after an exposure which is comparable to transient bacteremia in vivo, and that the bacteria rapidly gain biofilm properties, associated with significantly reduced antibiotic effect.
Collapse
Affiliation(s)
- Torgny Sunnerhagen
- Department of Clinical Microbiology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
- Division for Infection Medicine, Department for Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Clinical Microbiology and Infection Control, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Qvortrup
- Department of Biomedical Sciences, Core Facility for Integrated Microscopy, University of Copenhagen, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Goetz C, Sanschagrin L, Jubinville E, Jacques M, Jean J. Recent progress in antibiofilm strategies in the dairy industry. J Dairy Sci 2024:S0022-0302(24)01335-3. [PMID: 39603496 DOI: 10.3168/jds.2024-25554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Biofilm formation allows microorganisms including bacteria to persist on abiotic or biotic surfaces, to resist treatments with biocides (disinfectants and antibiotics) and to evade the immune response in animal hosts much more than they do in the planktonic form. Bacteria able to form biofilm can be troublesome in the dairy industry, both by causing clinical symptoms in livestock and by colonizing milking devices and milk processing equipment, resulting in dairy products of lower quality and sometimes raising serious food safety issues. In fact, most of the bacterial species isolated frequently in the dairy chain have the ability to form biofilm. Common examples include Staphylococcus aureus and other staphylococci that frequently infect mammary glands, but also Bacillus spp., Listeria monocytogenes and Pseudomonas spp. which cause spoilage of dairy products and sometimes foodborne illnesses. The economic losses due to biofilm formation in the dairy industry are considerable, and scientists are constantly solicited to develop new antibiofilm strategies, especially using biocides of natural origin. Although the number of studies in this subject area has exploded in recent years, the in vivo efficacy of most novel approaches remains to be explored. Used alone or to increase the efficacy of disinfectants or antibiotics, they could allow the implementation of strategies having less impact on the environment. Their use is expected to lead to less reliance on antibiotics to treat intramammary infections in dairy farms and to the use of lower concentrations of chemical disinfectants in dairy processing plants.
Collapse
Affiliation(s)
- Coralie Goetz
- INRAE, L'Institut Agro Rennes-Angers, UMR 1253 STLO, Rennes Cedex, France
| | - Laurie Sanschagrin
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Eric Jubinville
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada
| | - Mario Jacques
- Regroupement de recherche pour un lait de qualité optimale (Op+lait), Faculté de médecine vétérinaire, Université de Montréal, St Hyacinthe, QC, Canada
| | - Julie Jean
- Département des sciences des aliments, Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, QC, Canada.
| |
Collapse
|
25
|
Isenberg RY, Mandel MJ. Cyclic Diguanylate in the Wild: Roles During Plant and Animal Colonization. Annu Rev Microbiol 2024; 78:533-551. [PMID: 39270684 PMCID: PMC11578789 DOI: 10.1146/annurev-micro-041522-101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Cyclic diguanylate (c-di-GMP) is a near-ubiquitous signaling molecule that regulates the motility-to-sessility transition in many bacterial species. Among the phenotypes influenced by c-di-GMP are biofilm formation, motility, cell cycle, and virulence. The hallmark phenotypes regulated by c-di-GMP-biofilm formation and motility-are key determinants of host-bacterial interactions. A large body of research has identified the roles of c-di-GMP in regulating phenotypes in culture. While numerous studies have investigated roles for c-di-GMP during the establishment and maintenance of pathogenic host-bacterial associations, considerably less attention has been devoted to defining the roles of c-di-GMP during beneficial and commensal associations. This review describes the known roles of c-di-GMP in regulating phenotypes that contribute to host colonization, with a focus on knowledge gaps and future prospects for examining c-di-GMP during beneficial colonization.
Collapse
Affiliation(s)
- Ruth Y Isenberg
- Current affiliation: Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Medical Microbiology and Immunology and Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Mark J Mandel
- Department of Medical Microbiology and Immunology and Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
26
|
Li S, Yue Y, Wang W, Han M, Wan X, Li Q, Chen X, Cao J, Zhang Y, Li J, Li J, Cheng L, Yang J, Wang D, Zhou Z. Ultrasound-Activated Probiotics Vesicles Coating for Titanium Implant Infections Through Bacterial Cuproptosis-Like Death and Immunoregulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405953. [PMID: 39101293 DOI: 10.1002/adma.202405953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Indexed: 08/06/2024]
Abstract
Implant-associated infections (IAIs) are the main cause of prosthetic implant failure. Bacterial biofilms prevent antibiotic penetration, and the unique metabolic conditions in hypoxic biofilm microenvironment may limit the efficacy of conventional antibiotic treatment. Escaping survival bacteria may not be continually eradicated, resulting in the recurrence of IAIs. Herein, a sonosensitive metal-organic framework of Cu-TCPP (tetrakis(4-carboxyphenyl) porphyrin) nanosheets and tinidazole doped probiotic-derived membrane vesicles (OMVs) with high-penetration sonodynamic therapy (SDT), bacterial metabolic state interference, and bacterial cuproptosis-like death to eradicate IAIs is proposed. The Cu-TCPP can convert O2 to toxic 1O2 through SDT in the normoxic conditions, enhancing the hypoxic microenvironment and activating the antibacterial activity of tinidazole. The released Cu(II) under ultrasound can be converted to Cu(I) by exogenous poly(tannic acid) (pTA) and endogenous glutathione. The disruption of the bacterial membrane by SDT can enhance the Cu(I) transporter activity. Transcriptomics indicate that the SDT-enhanced Cu(I) overload and hypoxia-activated therapy hinder the tricarboxylic acid cycle (TCA), leading to bacterial cuproptosis-like death. Moreover, the OMVs-activated therapy can polarize macrophages to a M2-like phenotype and facilitate bone repair. The sonodynamic biofilm microenvironment modulation strategy, whereby the hypoxia-enhanced microenvironment is potentiated to synergize SDT with OMVs-activated therapy, provides an effective strategy for antibacterial and osteogenesis performance.
Collapse
Affiliation(s)
- Shuoyuan Li
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Yue
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenqi Wang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xufeng Wan
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiaochu Li
- Department of orthopedics, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Cao
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangming Zhang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jianshu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Duan Wang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongke Zhou
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
27
|
Khatibzadeh SM, Dahlgren LA, Caswell CC, Ducker WA, Werre SR, Bogers SH. Equine bone marrow-derived mesenchymal stromal cells reduce established S. aureus and E. coli biofilm matrix in vitro. PLoS One 2024; 19:e0312917. [PMID: 39480794 PMCID: PMC11527187 DOI: 10.1371/journal.pone.0312917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Biofilms reduce antibiotic efficacy and lead to complications and mortality in human and equine patients with orthopedic infections. Equine bone marrow-derived mesenchymal stromal cells (MSC) kill planktonic bacteria and prevent biofilm formation, but their ability to disrupt established orthopedic biofilms is unknown. Our objective was to evaluate the ability of MSC to reduce established S. aureus or E. coli biofilms in vitro. We hypothesized that MSC would reduce biofilm matrix and colony-forming units (CFU) compared to no treatment and that MSC combined with the antibiotic, amikacin sulfate, would reduce these components more than MSC or amikacin alone. MSC were isolated from 5 adult Thoroughbred horses in antibiotic-free medium. 24-hour S. aureus or E. coli biofilms were co-cultured in triplicate for 24 or 48 hours in a transwell plate system: untreated (negative) control, 30 μg/mL amikacin, 1 x 106 passage 3 MSC, and MSC with 30 μg/mL amikacin. Treated biofilms were photographed and biofilm area quantified digitally. Biomass was quantified via crystal violet staining, and CFU quantified following enzymatic digestion. Data were analyzed using mixed model ANOVA with Tukey post-hoc comparisons (p < 0.05). MSC significantly reduced S. aureus biofilms at both timepoints and E. coli biofilm area at 48 hours compared to untreated controls. MSC with amikacin significantly reduced S. aureus biofilms versus amikacin and E. coli biofilms versus MSC at 48 hours. MSC significantly reduced S. aureus biomass at both timepoints and reduced S. aureus CFU at 48 hours versus untreated controls. MSC with amikacin significantly reduced S. aureus biomass versus amikacin at 24 hours and S. aureus and E. coli CFU versus MSC at both timepoints. MSC primarily disrupted the biofilm matrix but performed differently on S. aureus versus E. coli. Evaluation of biofilm-MSC interactions, MSC dose, and treatment time are warranted prior to testing in vivo.
Collapse
Affiliation(s)
- Sarah M. Khatibzadeh
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Linda A. Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Clayton C. Caswell
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - William A. Ducker
- Department of Chemical Engineering, College of Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - Stephen R. Werre
- Laboratory for Study Design and Statistical Analysis, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - Sophie H. Bogers
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
28
|
Høiby N, Moser C, Ciofu O. Pseudomonas aeruginosa in the Frontline of the Greatest Challenge of Biofilm Infection-Its Tolerance to Antibiotics. Microorganisms 2024; 12:2115. [PMID: 39597505 PMCID: PMC11596597 DOI: 10.3390/microorganisms12112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
P. aeruginosa biofilms are aggregates of bacteria surrounded by a self-produced matrix which binds to some antibiotics such as aminoglycosides. P. aeruginosa biofilms are tolerant to antibiotics. The treatment of biofilm infections leads to a recurrence of symptoms after finishing antibiotic treatment, although the initial clinical response to the treatment is frequently favorable. There is a concentration gradient of oxygen and nutrients from the surface to the center of biofilms. Surface-located bacteria are multiplying and metabolizing, whereas deeper located bacteria are dormant and tolerant to most antibiotics. Colistin kills dormant bacteria, and combination therapy with colistin and antibiotics which kills multiplying bacteria is efficient in vitro. Some antibiotics such as imipenem induce additional production of the biofilm matrix and of chromosomal beta-lactamase in biofilms. Biofilms present a third Pharmacokinetic/Pharmacodynamic (PK/PD) micro-compartment (first: blood, second: tissue, third: biofilm) which must be taken into consideration when calculations try to predict the antibiotic concentrations in biofilms and thereby the probability of target attainment (PTA) for killing the biofilm. Treating biofilms with hyperbaric oxygen to wake up the dormant cells, destruction of the biofilm matrix, and the use of bacteriophage therapy in combination with antibiotics are promising possibilities which have shown proof of concept in in vitro experiments and in animal experiments.
Collapse
Affiliation(s)
- Niels Høiby
- Institute of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health Science, University of Copenhagen, DK-2200 Copenhagen, Denmark; (C.M.); (O.C.)
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Claus Moser
- Institute of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health Science, University of Copenhagen, DK-2200 Copenhagen, Denmark; (C.M.); (O.C.)
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Oana Ciofu
- Institute of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health Science, University of Copenhagen, DK-2200 Copenhagen, Denmark; (C.M.); (O.C.)
| |
Collapse
|
29
|
Awad R, Marchand S, Couet W, Nasser M, Buyck JM, Tewes F. Assessment of inhaled cationic antibiotics in an in vitro model of Pseudomonas aeruginosa lung biofilm. Microb Pathog 2024; 197:107020. [PMID: 39419459 DOI: 10.1016/j.micpath.2024.107020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES This study aimed to evaluate the efficacy of inhaled cationic antibiotics, including tobramycin (TOB) and colistin (CST), using an in vitro alginate bead model that simulates Pseudomonas aeruginosa lung biofilms. METHODS Bioluminescent P. aeruginosa were encapsulated within alginate beads and dispersed in either Mueller-Hinton broth (MHB) or artificial sputum medium (ASM). The impact of bead size and culture medium on TOB and CST efficacy was assessed by monitoring bioluminescence kinetics, followed by colony-forming unit (CFU/mL) measurements. Antibiotic efficacy was quantified using a Hill inhibitory model to analyze variations in CFU/mL in response to TOB and CST concentrations. RESULTS The TOB EC50 was found to be 8-fold higher when P. aeruginosa was encapsulated in larger beads (1200 μm) compared to smaller beads (60 μm). TOB efficacy further decreased twofold when larger beads were dispersed in ASM. In contrast, CST demonstrated superior efficacy, being four times more potent than TOB, with corresponding EC50 values of 20.5 ± 2.8 times MIC and 78.4 ± 10.2 times MIC, respectively. No change in MICs was observed for either antibiotic, even after exposing bacteria to 200 times the MIC. CONCLUSIONS This P. aeruginosa biofilm model highlights how alginate and mucus modulated the efficacy of TOB and CST, and suggested the superior efficacy of CST in eradicating pulmonary biofilms.
Collapse
Affiliation(s)
- Rana Awad
- Université de Poitiers, PHAR2, Inserm U1070, Poitiers, France
| | - Sandrine Marchand
- Université de Poitiers, PHAR2, Inserm U1070, Poitiers, France; CHU de Poitiers, Laboratoire de Toxicologie et de Pharmacocinétique, Poitiers, France
| | - William Couet
- Université de Poitiers, PHAR2, Inserm U1070, Poitiers, France; CHU de Poitiers, Laboratoire de Toxicologie et de Pharmacocinétique, Poitiers, France
| | | | - Julien M Buyck
- Université de Poitiers, PHAR2, Inserm U1070, Poitiers, France
| | - Frédéric Tewes
- Université de Poitiers, PHAR2, Inserm U1070, Poitiers, France.
| |
Collapse
|
30
|
Laffont C, Wechsler T, Kümmerli R. Interactions between Pseudomonas aeruginosa and six opportunistic pathogens cover a broad spectrum from mutualism to antagonism. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70015. [PMID: 39356147 PMCID: PMC11445780 DOI: 10.1111/1758-2229.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Bacterial infections often involve more than one pathogen. While it is well established that polymicrobial infections can impact disease outcomes, we know little about how pathogens interact and affect each other's behaviour and fitness. Here, we used a microscopy approach to explore interactions between Pseudomonas aeruginosa and six human opportunistic pathogens that often co-occur in polymicrobial infections: Acinetobacter baumannii, Burkholderia cenocepacia, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, and Staphylococcus aureus. When following growing microcolonies on agarose pads over time, we observed a broad spectrum of species-specific ecological interactions, ranging from mutualism to antagonism. For example, P. aeruginosa engaged in a mutually beneficial interaction with E. faecium but suffered from antagonism by E. coli. While we found little evidence for active directional growth towards or away from cohabitants, we observed that some pathogens increased growth in double layers in response to competition and that physical forces due to fast colony expansion had a major impact on fitness. Overall, our work provides an atlas of pathogen interactions, highlighting the diversity of potential species dynamics that may occur in polymicrobial infections. We discuss possible mechanisms driving pathogen interactions and offer predictions of how the different ecological interactions could affect virulence.
Collapse
Affiliation(s)
- Clémentine Laffont
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Tobias Wechsler
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| |
Collapse
|
31
|
Snell AP, Manias DA, Elbehery RR, Dunny GM, Willett JLE. Arginine impacts aggregation, biofilm formation, and antibiotic susceptibility in Enterococcus faecalis. FEMS MICROBES 2024; 5:xtae030. [PMID: 39524554 PMCID: PMC11549559 DOI: 10.1093/femsmc/xtae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Enterococcus faecalis is a commensal bacterium in the gastrointestinal (GI) tract of humans and other organisms. E. faecalis also causes infections in root canals, wounds, the urinary tract, and on heart valves. E. faecalis metabolizes arginine through the arginine deiminase pathway, which converts arginine to ornithine and releases ATP, ammonia, and CO2. E. faecalis arginine metabolism also affects virulence of other pathogens during co-culture. E. faecalis may encounter elevated levels of arginine in the GI tract or the oral cavity, where arginine is used as a dental therapeutic. Little is known about how E. faecalis responds to growth in arginine in the absence of other bacteria. To address this, we used RNAseq and additional assays to measure growth, gene expression, and biofilm formation in E. faecalis OG1RF grown in arginine. We demonstrate that arginine decreases E. faecalis biofilm production and causes widespread differential expression of genes related to metabolism, quorum sensing, and polysaccharide synthesis. Growth in arginine also increases aggregation of E. faecalis and promotes decreased susceptibility to the antibiotics ampicillin and ceftriaxone. This work provides a platform for understanding how the presence of arginine in biological niches affects E. faecalis physiology and virulence of surrounding microbes.
Collapse
Affiliation(s)
- Alex P Snell
- University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Dawn A Manias
- University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Reham R Elbehery
- University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Gary M Dunny
- University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Julia L E Willett
- University of Minnesota Medical School, Minneapolis, MN 55455, United States
| |
Collapse
|
32
|
Valverde-Pozo J, Paredes JM, García-Rubiño ME, Girón MD, Salto R, Alvarez-Pez JM, Talavera EM. Advanced Imaging Methodology in Bacterial Biofilms with a Fluorescent Enzymatic Sensor for pepN Activity. BIOSENSORS 2024; 14:424. [PMID: 39329799 PMCID: PMC11430670 DOI: 10.3390/bios14090424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024]
Abstract
This research explores the use of the pepN activity fluorescent sensor DCM-Ala in bacterial biofilms, emphasizing its significance due to the critical role of biofilms in various biological processes. Advanced imaging techniques were employed to visualize pepN activity, introducing a novel approach to examining biofilm maturity. We found that the overexpression of pepN increases the ability of E. coli to form biofilm. The findings demonstrate varying levels of pepN activity throughout biofilm development, suggesting potential applications in biofilm research and management. The results indicate that the fluorescent emission from this sensor could serve as a reliable indicator of biofilm maturity, and the imaging techniques developed could enhance our understanding and control of biofilm-related processes. This work highlights the importance of innovative methods in biofilm study and opens new avenues for utilizing chemical emissions in biofilm management.
Collapse
Affiliation(s)
- Javier Valverde-Pozo
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Jose M Paredes
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - María Eugenia García-Rubiño
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - María Dolores Girón
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Jose M Alvarez-Pez
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| | - Eva M Talavera
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Faculty of Pharmacy, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), University of Granada, C. U. Cartuja, 18071 Granada, Spain
| |
Collapse
|
33
|
Cometta S, Hutmacher DW, Chai L. In vitro models for studying implant-associated biofilms - A review from the perspective of bioengineering 3D microenvironments. Biomaterials 2024; 309:122578. [PMID: 38692146 DOI: 10.1016/j.biomaterials.2024.122578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
Biofilm research has grown exponentially over the last decades, arguably due to their contribution to hospital acquired infections when they form on foreign body surfaces such as catheters and implants. Yet, translation of the knowledge acquired in the laboratory to the clinic has been slow and/or often it is not attempted by research teams to walk the talk of what is defined as 'bench to bedside'. We therefore reviewed the biofilm literature to better understand this gap. Our search revealed substantial development with respect to adapting surfaces and media used in models to mimic the clinical settings, however many of the in vitro models were too simplistic, often discounting the composition and properties of the host microenvironment and overlooking the biofilm-implant-host interactions. Failure to capture the physiological growth conditions of biofilms in vivo results in major differences between lab-grown- and clinically-relevant biofilms, particularly with respect to phenotypic profiles, virulence, and antimicrobial resistance, and they essentially impede bench-to-bedside translatability. In this review, we describe the complexity of the biological processes at the biofilm-implant-host interfaces, discuss the prerequisite for the development and characterization of biofilm models that better mimic the clinical scenario, and propose an interdisciplinary outlook of how to bioengineer biofilms in vitro by converging tissue engineering concepts and tools.
Collapse
Affiliation(s)
- Silvia Cometta
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - Liraz Chai
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem, 91904, Israel; The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
34
|
De Padua JC, Tanaka T, Ueno K, Dela Cruz TEE, Ishihara A. Isolation of 2,2'-azoxybisbenzyl alcohol from Agaricus subrutilescens and its inhibitory activity against bacterial biofilm formation. Biosci Biotechnol Biochem 2024; 88:983-991. [PMID: 38925646 DOI: 10.1093/bbb/zbae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Virulence pathways in pathogenic bacteria are regulated by quorum sensing mechanisms, particularly biofilm formation through autoinducer (AI) production and sensing. In this study, the culture filtrate extracted from an edible mushroom, Agaricus subrutilescens, was fractionated to isolate a compound that inhibits biofilm formation. Four gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli, Proteus mirabilis, and Enterobacter cloacae) and two gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus) were used for the bioassay. The bioassay-guided chromatographic separations of the culture filtrate extract resulted in the isolation of the compound. Further, spectroscopic analyses revealed the identity of the compound as 2,2'-azoxybisbenzyl alcohol (ABA). The minimum inhibitory and sub-inhibitory concentrations of the compound were also determined. Azoxybisbenzyl alcohol was significantly effective in inhibiting biofilm formation in all tested bacteria, with half-maximal inhibitory concentrations of 3-11 µg/mL. Additionally, the bioactivity of ABA was confirmed through the bioassays for the inhibition of exopolysaccharide matrixes and AI activities.
Collapse
Affiliation(s)
- Jewel C De Padua
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Tomoya Tanaka
- Graduate School of Sustainability Sciences, Tottori University, Tottori, Japan
| | - Kotomi Ueno
- Department of Agricultural, Life, Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Thomas Edison E Dela Cruz
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Atsushi Ishihara
- Department of Agricultural, Life, Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
- Fungus/Mushroom Resource and Research Center, Faculty of Agriculture, Tottori, Japan
| |
Collapse
|
35
|
Gilmore A, Badham M, Rudisin W, Ashton N, Williams D. A Bead Biofilm Reactor for High-Throughput Growth and Translational Applications. Microorganisms 2024; 12:1588. [PMID: 39203430 PMCID: PMC11356137 DOI: 10.3390/microorganisms12081588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Bacteria in natural ecosystems such as soil, dirt, or debris preferentially reside in the biofilm phenotype. When a traumatic injury, such as an open fracture, occurs, these naturally dwelling biofilms and accompanying foreign material can contaminate the injury site. Given their high tolerance of systemic levels of antibiotics that may be administered prophylactically, biofilms may contribute to difficult-to-treat infections. In most animal models, planktonic bacteria are used as initial inocula to cause infection, and this might not accurately mimic clinically relevant contamination and infection scenarios. Further, few approaches and systems utilize the same biofilm and accompanying substrate throughout the experimental continuum. In this study, we designed a unique reactor to grow bacterial biofilms on up to 50 silica beads that modeled environmental wound contaminants. The data obtained indicated that the reactor system repeatably produced mature Staphylococcus aureus and Pseudomonas aeruginosa biofilms on the silica beads, with an average of 5.53 and 6.21 log10 colony-forming units per mm2, respectively. The bead substrates are easily manipulable for in vitro or in vivo applications, thus improving translatability. Taken together, the bead biofilm reactor presented herein may be a useful system for repeatably growing established biofilms on silica beads that could be used for susceptibility testing and as initial inocula in future animal models of trauma-related injuries.
Collapse
Affiliation(s)
- Annika Gilmore
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA (W.R.)
| | - Marissa Badham
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA (W.R.)
| | - Winston Rudisin
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA (W.R.)
| | - Nicholas Ashton
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA (W.R.)
| | - Dustin Williams
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84108, USA (W.R.)
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
36
|
Zhu X, Tang Q, Zhou X, Momeni MR. Antibiotic resistance and nanotechnology: A narrative review. Microb Pathog 2024; 193:106741. [PMID: 38871198 DOI: 10.1016/j.micpath.2024.106741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The rise of antibiotic resistance poses a significant threat to public health worldwide, leading researchers to explore novel solutions to combat this growing problem. Nanotechnology, which involves manipulating materials at the nanoscale, has emerged as a promising avenue for developing novel strategies to combat antibiotic resistance. This cutting-edge technology has gained momentum in the medical field by offering a new approach to combating infectious diseases. Nanomaterial-based therapies hold significant potential in treating difficult bacterial infections by circumventing established drug resistance mechanisms. Moreover, their small size and unique physical properties enable them to effectively target biofilms, which are commonly linked to resistance development. By leveraging these advantages, nanomaterials present a viable solution to enhance the effectiveness of existing antibiotics or even create entirely new antibacterial mechanisms. This review article explores the current landscape of antibiotic resistance and underscores the pivotal role that nanotechnology plays in augmenting the efficacy of traditional antibiotics. Furthermore, it addresses the challenges and opportunities within the realm of nanotechnology for combating antibiotic resistance, while also outlining future research directions in this critical area. Overall, this comprehensive review articulates the potential of nanotechnology in addressing the urgent public health concern of antibiotic resistance, highlighting its transformative capabilities in healthcare.
Collapse
Affiliation(s)
- Xunxian Zhu
- Huaqiao University Hospital, Quanzhou, Fujian, 362021, China.
| | - Qiuhua Tang
- Quanzhou First Hospital, Quanzhou, Fujian, 362000, China
| | - Xiaohang Zhou
- Mudanjiang Medical University, Mu Danjiang, Hei Longjiang, 157012, China
| | | |
Collapse
|
37
|
Şimşek E, Kim K, Lu J, Silver A, Luo N, Lee CT, You L. A 'rich-get-richer' mechanism drives patchy dynamics and resistance evolution in antibiotic-treated bacteria. Mol Syst Biol 2024; 20:880-897. [PMID: 38877321 PMCID: PMC11297297 DOI: 10.1038/s44320-024-00046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024] Open
Abstract
Bacteria in nature often form surface-attached communities that initially comprise distinct subpopulations, or patches. For pathogens, these patches can form at infection sites, persist during antibiotic treatment, and develop into mature biofilms. Evidence suggests that patches can emerge due to heterogeneity in the growth environment and bacterial seeding, as well as cell-cell signaling. However, it is unclear how these factors contribute to patch formation and how patch formation might affect bacterial survival and evolution. Here, we demonstrate that a 'rich-get-richer' mechanism drives patch formation in bacteria exhibiting collective survival (CS) during antibiotic treatment. Modeling predicts that the seeding heterogeneity of these bacteria is amplified by local CS and global resource competition, leading to patch formation. Increasing the dose of a non-eradicating antibiotic treatment increases the degree of patchiness. Experimentally, we first demonstrated the mechanism using engineered Escherichia coli and then demonstrated its applicability to a pathogen, Pseudomonas aeruginosa. We further showed that the formation of P. aeruginosa patches promoted the evolution of antibiotic resistance. Our work provides new insights into population dynamics and resistance evolution during surface-attached bacterial growth.
Collapse
Affiliation(s)
- Emrah Şimşek
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, 27708, USA
| | - Kyeri Kim
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, 27708, USA
| | - Jia Lu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, 27708, USA
| | - Anita Silver
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, 27708, USA
| | - Nan Luo
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Charlotte T Lee
- Center for Quantitative Biodesign, Duke University, Durham, NC, 27708, USA
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
- Center for Quantitative Biodesign, Duke University, Durham, NC, 27708, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27708, USA.
| |
Collapse
|
38
|
Seetaram M, N V, Subramanian A, Gopinathan A, Kv L, Chandran S, K T M, Ramakrishnan K. Role of Oral Veillonella Species in Predicting Surgical Site Infections After Maxillofacial Trauma: A Prospective Observational Study. Cureus 2024; 16:e66158. [PMID: 39238733 PMCID: PMC11375107 DOI: 10.7759/cureus.66158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/03/2024] [Indexed: 09/07/2024] Open
Abstract
INTRODUCTION There are comparatively fewer surgical site infections after craniofacial trauma than after trauma to the extremities, and the etiology is complex. Gram-negative facultative anaerobic bacteria Veillonella is a common commensal in the oral cavity and has been linked to osteomyelitis and surgical site infections in prosthetic joint infections. They serve as early biological indicators. AIMS/OBJECTIVES This study aims to assess the presence of Veillonella in patients presenting with maxillofacial trauma, to document the difference in colony count in patients requiring surgical intervention at different time intervals as against patients with surgical site infections, and to provide better hospital care and management so as to improve the standard of care with an attempt to prevent the possibility of postoperative surgical site infections. METHODOLOGY In this study, individuals with trauma/fractures of the maxillofacial region requiring surgical intervention at varied time spans, early, intermediate, and late, were included. After obtaining informed consent, the examination was done; the fracture type and site were noted, and a swab was taken on the day of admission, on the day of surgery, and on the day of discharge and given for microbiological evaluation. Findings were recorded. RESULTS The primary and secondary objectives of the study were established. The mean colony count in colony-forming units/milliliter for patients undergoing early surgical intervention, on the day of admission, was 2.01E+0.6. On the day of discharge, the mean colony count was 1.51E+0.6. In contrast, for patients with surgical site infection, on the day of admission, the mean was 6.5E+0.7, and on the day of discharge, the mean colony count reduced to 4.01E+0.6. The time-colony-forming unit graph showed a difference in the colony count of Veillonella in patients operated at different time intervals as against patients with surgical site infection and modified relation with a number of other oral commensals. The colony count in patients with osteomyelitis was found and compared. CONCLUSION There is a change in the colony count of Veillonella species and its relation to their commensals when intervened at different time intervals. Our study indicates that the estimation of Veillonella species and the colony count could aid in determining the possibility of a surgical site infection. This study also stresses on the appropriate reporting of maxillofacial trauma in cases of a poly-trauma for appropriate management.
Collapse
Affiliation(s)
- Mahima Seetaram
- Department of Oral and Maxillofacial Surgery, Sri Ramaswamy Memorial (SRM) Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| | - Vivek N
- Department of Oral and Maxillofacial Surgery, Sri Ramaswamy Memorial (SRM) Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| | - Abinaya Subramanian
- Department of Oral and Maxillofacial Surgery, Sri Ramaswamy Memorial (SRM) Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| | - Anusha Gopinathan
- Department of Microbiology, Sri Ramaswamy Memorial (SRM) Medical College Hospital and Research Centre, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| | - Leela Kv
- Department of Microbiology, Sri Ramaswamy Memorial (SRM) Medical College Hospital and Research Centre, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| | - Saravanan Chandran
- Department of Oral and Maxillofacial Surgery, Sri Ramaswamy Memorial (SRM) Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| | - Magesh K T
- Department of Oral Pathology and Microbiology, Sri Ramaswamy Memorial (SRM) Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| | - Karthik Ramakrishnan
- Department of Oral and Maxillofacial Surgery, Sri Ramaswamy Memorial (SRM) Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| |
Collapse
|
39
|
Wang DY, Su L, Poelstra K, Grainger DW, van der Mei HC, Shi L, Busscher HJ. Beyond surface modification strategies to control infections associated with implanted biomaterials and devices - Addressing the opportunities offered by nanotechnology. Biomaterials 2024; 308:122576. [PMID: 38640785 DOI: 10.1016/j.biomaterials.2024.122576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Biomaterial-associated infection (BAI) is considered a unique infection due to the presence of a biomaterial yielding frustrated immune-cells, ineffective in clearing local micro-organisms. The involvement of surface-adherent/surface-adapted micro-organisms in BAI, logically points to biomaterial surface-modifications for BAI-control. Biomaterial surface-modification is most suitable for prevention before adhering bacteria have grown into a mature biofilm, while BAI-treatment is virtually impossible through surface-modification. Hundreds of different surface-modifications have been proposed for BAI-control but few have passed clinical trials due to the statistical near-impossibility of benefit-demonstration. Yet, no biomaterial surface-modification forwarded, is clinically embraced. Collectively, this leads us to conclude that surface-modification is a dead-end road. Accepting that BAI is, like most human infections, due to surface-adherent biofilms (though not always to a foreign material), and regarding BAI as a common infection, opens a more-generally-applicable and therewith easier-to-validate road. Pre-clinical models have shown that stimuli-responsive nano-antimicrobials and antibiotic-loaded nanocarriers exhibit prolonged blood-circulation times and can respond to a biofilm's micro-environment to penetrate and accumulate within biofilms, prompt ROS-generation and synergistic killing with antibiotics of antibiotic-resistant pathogens without inducing further antimicrobial-resistance. Moreover, they can boost frustrated immune-cells around a biomaterial reducing the importance of this unique BAI-feature. Time to start exploring the nano-road for BAI-control.
Collapse
Affiliation(s)
- Da-Yuan Wang
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, the Netherlands; Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, PR China
| | - Linzhu Su
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, PR China
| | - Kees Poelstra
- Allegiant Institute - Nevada Spine Clinic. the Robotic Spine Institute of Las Vegas, Las Vegas, USA
| | - David W Grainger
- Departments of Biomedical Engineering, and of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, 84112-5820, USA
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, the Netherlands.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, PR China.
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, the Netherlands.
| |
Collapse
|
40
|
Talebpour C, Fani F, Laliberté-Riverin S, Vaidya R, Salimnia H, Alamdari H, Ouellette M. Long-Term Prevention of Arthroplasty Infections via Incorporation of Activated AgNbO 3 Nanoparticles in PMMA Bone Cement. ACS APPLIED BIO MATERIALS 2024; 7:4039-4050. [PMID: 38830835 DOI: 10.1021/acsabm.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
We investigated the possibility of loading PMMA bone cement with antimicrobial nanostructured AgNbO3 particles to counter biofilm formation at the cement-tissue interface. We found that a formulation containing (1-4)% AgNbO3 showed high antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa while not showing any toxicity against THP1 human cell lines. In addition, loading the particles did not impact the mechanical properties of the cement. The results thus obtained illustrate the potential of the approach to replace the current technique of mixing cement with conventional antibiotics, which is associated with shortcomings such as efficacy loss from antibiotic depletion.
Collapse
Affiliation(s)
- Cyrus Talebpour
- Department of Mining, Metallurgical and Materials Engineering, Universitė Laval, 1065, av. de la Médecine, Québec G1 V 0A6, Canada
| | - Fereshteh Fani
- Centre de recherche en infectiologie du CHU de Québec and Department of Microbiology and Immunology, Faculté de Medicine, Université Laval, 2705 Boul. Laurier, Québec G1V4G2, Canada
| | - Simon Laliberté-Riverin
- Department of Mining, Metallurgical and Materials Engineering, Universitė Laval, 1065, av. de la Médecine, Québec G1 V 0A6, Canada
| | - Rahul Vaidya
- School of Medicine, Wayne State University, 540 E, Canfield Avenue, Detroit, Michigan 48201, United States
| | - Hossein Salimnia
- Department of Pathology, Children's Hospital of Michigan, 3901 Beaubien, Detroit 48201, Michigan, United States
| | - Houshang Alamdari
- Department of Mining, Metallurgical and Materials Engineering, Universitė Laval, 1065, av. de la Médecine, Québec G1 V 0A6, Canada
| | - Marc Ouellette
- Centre de recherche en infectiologie du CHU de Québec and Department of Microbiology and Immunology, Faculté de Medicine, Université Laval, 2705 Boul. Laurier, Québec G1V4G2, Canada
| |
Collapse
|
41
|
Morris AJ, Yau YCW, DePas WH, Waters VJ. Lack of correlation between in vitro and within patient measures of P. aeruginosa biofilms in cystic fibrosis. Heliyon 2024; 10:e32424. [PMID: 38933957 PMCID: PMC11200346 DOI: 10.1016/j.heliyon.2024.e32424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Current in vitro biofilm modelling of the opportunistic pathogen, Pseudomonas aeruginosa (PA) in people with cystic fibrosis (PwCF) is limited in its ability to mimic the complexities of the cystic fibrosis (CF) lung environment. Recent adaptations of the Microbial Identification after Passive CLARITY Technique (MiPACT) in CF research have allowed for the direct imaging of PA biofilm spatial organization and structure in expectorated sputum. Here, we performed a comparative analysis of in vitro and within patient (ex vivo) measures of PA biofilms using sputa from new onset infected children with CF. MiPACT-fluorescent in situ hybridization (FISH) and fluorescent anti-Psl monoclonal antibody (mAb) staining was performed to directly visualize PA and Psl (exopolysaccharide in PA biofilm matrix) in 11 CF sputum specimens. Corresponding PA isolates, recovered from the same sputum samples, were grown as biofilms in a glass slide chamber model, then visualized by fluorescent live-cell and anti-Psl mAb staining. We observed that PA biovolume, aggregation and Psl antibody binding (normalized per PA biovolume) in CF sputum did not correlate with the in vitro model, although a trend towards significance in the biovolume relationship was observed with the addition of sputum supernatant to the in vitro model.
Collapse
Affiliation(s)
- Amanda J. Morris
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yvonne CW. Yau
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Microbiology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - William H. DePas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Valerie J. Waters
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Top Hartmann K, Lund Nielsen R, Mikkelsen FC, Aalbæk B, Lichtenberg M, Holm Jakobsen T, Bjarnsholt T, Kvich L, Ingmer H, Odgaard A, Elvang Jensen H, Kruse Jensen L. Bacterial micro-aggregates as inoculum in animal models of implant-associated infections. Biofilm 2024; 7:100200. [PMID: 38803605 PMCID: PMC11128829 DOI: 10.1016/j.bioflm.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Is it time to rethink the inoculum of animal models of implant-associated infections (IAI)? Traditionally, animal models of IAI are based on inoculation with metabolically active overnight cultures of planktonic bacteria or pre-grown surface-attached biofilms. However, such inoculums do not mimic the clinical initiation of IAI. Therefore, the present study aimed to develop a clinically relevant inoculum of low metabolic micro-aggregated bacteria. The porcine Staphylococcus aureus strain S54F9 was cultured in Tryptone Soya Broth (TSB) for seven days to facilitate the formation of low metabolic micro-aggregates. Subsequently, the aggregated culture underwent filtration using cell strainers of different pore sizes to separate micro-aggregates. Light microscopy was used to evaluate the aggregate formation and size in the different fractions, while isothermal microcalorimetry was used to disclose a low metabolic activity. The micro-aggregate fraction obtained with filter size 5-15 μm (actual measured mean size 32 μm) was used as inoculum in a porcine implant-associated osteomyelitis (IAO) model and compared to a standard overnight planktonic inoculum and a sham inoculum of 0.9 % saline. The micro-aggregate and planktonic inoculums caused IAO with the re-isolation of S. aureus from soft tissues, bones, and implants. However, compared to their planktonic counterpart, neither of the micro-aggregate inoculated animals showed signs of osteomyelitis, i.e., sequester, osteolysis, and pus at gross inspection. Furthermore, inoculation with low metabolic micro-aggregates resulted in a strong healing response with pronounced osteoid formation, comparable to sham animals. In conclusion, the formation and separation of low metabolic bacterial micro-aggregates into various size fractions is possible, however, planktonic bacteria were still seen in all size fractions. Inoculation with micro-aggregates caused a less-aggressive osteomyelitis i.e. combination of infected tissue and strong healing response. Therefore, the use of low metabolic micro-aggregates could be a relevant inoculum for animal models of less-aggressive and thereby slower developing IAI and add in to our understanding of the host-implant-bacteria interactions in slow-onset low-grade infections.
Collapse
Affiliation(s)
- Katrine Top Hartmann
- Department of Veterinary- and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg C, Denmark
| | - Regitze Lund Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Freja Cecilie Mikkelsen
- Department of Veterinary- and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg C, Denmark
| | - Bent Aalbæk
- Department of Veterinary- and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg C, Denmark
| | - Mads Lichtenberg
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Tim Holm Jakobsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Lasse Kvich
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary- and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg C, Denmark
| | - Anders Odgaard
- Department of Orthopedic Surgery, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns vej 6, 2100, Copenhagen, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary- and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg C, Denmark
| | - Louise Kruse Jensen
- Department of Veterinary- and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg C, Denmark
| |
Collapse
|
43
|
Kanwar K, Sharma D, Singh H, Pal M, Bandhu R, Azmi W. In vitro effects of alginate lyase SG4 + produced by Paenibacillus lautus alone and combined with antibiotics on biofilm formation by mucoid Pseudomonas aeruginosa. Braz J Microbiol 2024; 55:1189-1203. [PMID: 38705960 PMCID: PMC11153421 DOI: 10.1007/s42770-024-01334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Alginate is a major extra polymeric substance in the biofilm formed by mucoid Pseudomonas aeruginosa. It is the main proven perpetrator of lung infections in patients suffering from cystic fibrosis. Alginate lyases are very important in the treatment of cystic fibrosis. This study evaluated the role of standalone and in conjugation, effect of alginate lyase of SG4 + isolated from Paenibacillus lautus in enhancing in vitro bactericidal activity of gentamicin and amikacin on mucoid P. aeruginosa. Using Response Surface Methodology (RSM) alginate lyase SG4 + production was optimized in shake flask and there 8.49-fold enhancement in enzyme production. In fermenter, maximum growth (10.15 mg/ml) and alginate lyase (1.46 International Units) production, 1.71-fold was increased using Central Composite Design (CCD). Further, fermentation time was reduced from 48 to 20 h. To the best of our knowledge this is the first report in which CCD was used for fermenter studies to optimize alginate lyase production. The Km and Vmax of purified enzyme were found to be 2.7 mg/ml and 0.84 mol/ml-min, respectively. The half-life (t 1/2) of purified alginate lyase SG4 + at 37 °C was 180 min. Alginate lyase SG4 + in combination with gentamicin and amikacin eradiated 48.4- 52.3% and 58- 64.6%, alginate biofilm formed by P. aeruginosa strains, respectively. The study proves that alginate lyase SG4 + has excellent exopolysaccharide disintegrating ability and may be useful in development of potent therapeutic agent to treat P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Kriti Kanwar
- Department of Biotechnology, Himachal Pradesh University, Summerhill Shimla, H.P, 171005, India.
- Chandigarh Group of College, Landran, Kharar- Banur Highway, Sector 112, Greater Mohali, Panjab, 140307, India.
| | - Deepika Sharma
- Chandigarh Group of College, Landran, Kharar- Banur Highway, Sector 112, Greater Mohali, Panjab, 140307, India
| | - Harjodh Singh
- Chandigarh Group of College, Landran, Kharar- Banur Highway, Sector 112, Greater Mohali, Panjab, 140307, India
| | - Mohinder Pal
- Chandigarh Group of College, Landran, Kharar- Banur Highway, Sector 112, Greater Mohali, Panjab, 140307, India
| | - Rajneesh Bandhu
- Department of Biotechnology, Himachal Pradesh University, Summerhill Shimla, H.P, 171005, India
| | - Wamik Azmi
- Department of Biotechnology, Himachal Pradesh University, Summerhill Shimla, H.P, 171005, India.
| |
Collapse
|
44
|
Lazzari G, Cesa S, Lo Palo E. Clinical use of 0.1% polyhexanide and propylbetaine on acute and hard-to-heal wounds: a literature review. J Wound Care 2024; 33:cxl-cli. [PMID: 38850544 DOI: 10.12968/jowc.2019.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
OBJECTIVE To summarise the findings on the effect of the clinical use of 0.1% polyhexanide-propylbetaine (PHMB/betaine) solution/gel on acute and hard-to-heal (chronic) wound healing. METHOD A literature search was conducted in MEDLINE, CINAHL, Embase, Scopus and the CENTRAL Trials Registry of the Cochrane Collaboration. Paired reviewers conducted title and abstract screening and full-text screening to identify experimental, quasi-experimental and observational studies. Study quality and risk of bias were not formally evaluated. RESULTS A total of 17 studies met the eligibility criteria. The findings from 12 studies indicated that the use of 0.1% PHMB/betaine solution/gel had: a low risk of contact sensitivity; could help debridement during wound cleansing; aided effective wound bed preparation; reduced wound size, odour and exudate; improved pain control; reduced microbial load; and enhanced wound healing. The results of three studies indicated that both 0.1% PHMB and saline solution were effective in reducing bacterial load, while another showed that adding 0.1% PHMB to tie-over dressings had no effect on reducing bacterial loads in wounds. Another study concluded that disinfection and granulation of pressure ulcers with hydrobalance dressing with 0.3% PHMB was faster and more effective than using 0.1% PHMB/betaine. CONCLUSION The findings of this literature review showed that 0.1% PHMB/betaine solution/gel appeared to be useful and safe for wound cleansing, was effective in removing soft debris and slough from the wound bed, and created a wound environment optimal for healing. Although these actions cannot be attributed solely to this treatment modality, these results do highlight the unique action of this combined product. However, more robust studies are needed to confirm these results.
Collapse
Affiliation(s)
- Giuseppe Lazzari
- School of Nursing, UOS Formazione Universitaria, ASST Papa Giovanni XXIII - Università degli Studi di Milano Bicocca, Bergamo, Italy
| | - Simonetta Cesa
- Health and Social Care Directorate, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Emilia Lo Palo
- Ambulatory Wound Care Clinic, UOC Department of Healthcare and Social Professions, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
45
|
Rafiee Z, Rezaie M, Choi S. Combined electrical-electrochemical phenotypic profiling of antibiotic susceptibility of in vitro biofilm models. Analyst 2024; 149:3224-3235. [PMID: 38686667 DOI: 10.1039/d4an00393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
More than 65% of bacterial infections are caused by biofilms. However, standard biofilm susceptibility tests are not available for clinical use. All conventional biofilm models suffer from a long formation time and fail to mimic in vivo microbial biofilm conditions. Moreover, biofilms make it difficult to monitor the effectiveness of antibiotics. This work creates a powerful yet simple method to form a target biofilm and develops an innovative approach to monitoring the antibiotic's efficacy against a biofilm-associated infection. A paper-based culture platform can provide a new strategy for rapid microbial biofilm formation through capillary action. A combined electrical-electrochemical technique monitors bacterial metabolism rapidly and reliably by measuring microbial extracellular electron transfer (EET) and using electrochemical impedance spectroscopy (EIS) across a microbe-electrode interface. Three representative pathogens, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus, form their biofilms controllably within an hour. Within another hour their susceptibilities to three frontline antibiotics with different action modes (gentamicin, ciprofloxacin, and ceftazidime) are examined. Our antibiotic susceptibility testing (AST) technique provides a quantifiable minimum inhibitory concentration (MIC) of those antibiotics against the in vitro biofilm models and characterizes their action mechanisms. The results will have an important positive effect because they provide immediately actionable healthcare information at a reduced cost, revolutionizing public healthcare.
Collapse
Affiliation(s)
- Zahra Rafiee
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, New York, 13902, USA.
| | - Maryam Rezaie
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, New York, 13902, USA.
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, New York, 13902, USA.
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability, State University of New York at Binghamton, Binghamton, New York, 13902, USA
| |
Collapse
|
46
|
Bényei ÉB, Nazeer RR, Askenasy I, Mancini L, Ho PM, Sivarajan GAC, Swain JEV, Welch M. The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories. Adv Microb Physiol 2024; 85:259-323. [PMID: 39059822 DOI: 10.1016/bs.ampbs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).
Collapse
Affiliation(s)
| | | | - Isabel Askenasy
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Leonardo Mancini
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | - Jemima E V Swain
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom.
| |
Collapse
|
47
|
Bezstarosti H, Van Lieshout EMM, Van den Hurk MJB, Kortram K, Oprel P, Koch BCP, Croughs PD, Verhofstad MHJ. In Vitro Elution of Gentamicin from CERAMENT® G Has an Antimicrobial Effect on Bacteria With Various Levels of Gentamicin Resistance Found in Fracture-related Infection. Clin Orthop Relat Res 2024; 482:885-891. [PMID: 38289704 PMCID: PMC11008629 DOI: 10.1097/corr.0000000000002975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Fracture-related infection is a serious complication after trauma. CERAMENT® G combines dead-space management with local release of gentamicin in a single-stage procedure. Bacterial resistance against antibiotics is increasing. The local effect of CERAMENT® G on bacteria resistant to systemically administered gentamicin is unknown. QUESTIONS/PURPOSES (1) What is the in vitro elution pattern of gentamicin from CERAMENT® G using a full washout model? (2) What is the in vitro antimicrobial activity (zone of inhibition) of CERAMENT® G against bacterial isolates found in fracture-related infection with different susceptibility levels toward gentamicin? METHODS Elution of gentamicin from CERAMENT® G was determined in vitro over a period of 2 months. Elution experiments were performed in fivefold, with gentamicin being sampled in threefold at 19 different timepoints within 2 months. Antimicrobial activity was determined using the four most-frequently cultured bacterial species found in fracture-related infection: Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Enterobacter cloacae . For each of the species, four different isolates with a different susceptibility to gentamicin were used. According to the European Committee on Antimicrobial Susceptibility Testing, the susceptibility of each isolate was classified into four different groups: fully susceptible (minimum inhibitory concentration 0.064 to 4 mg/L), minimally resistant (minimum inhibitory concentration 4 to 16 mg/L), moderately resistant (minimum inhibitory concentration 8 to 96 mg/L), and highly resistant (minimum inhibitory concentration 24 to 1024 mg/L), depending on each organism. The antimicrobial activity of CERAMENT® G was determined according to the European Committee on Antimicrobial Susceptibility Testing disk protocol. The experiment was performed in fivefold for each isolate. The zone of inhibition was compared between each bacterial isolate and within each of the four separate species. Nonlinear regression statistics were calculated between the zone of interest and logarithmic minimum inhibitory concentration for each bacterial species. RESULTS After 24 hours, 95% of all available gentamicin was eluted, and gentamicin was still detectable after 2 months. CERAMENT® G showed antimicrobial activity against all bacterial species; only S taphylococcus aureus (with a minimum inhibitory concentration > 1024 mg/L) was not susceptible. The zone of interest of the different bacterial isolates was correlated with the logarithmic minimum inhibitory concentration. CONCLUSION CERAMENT® G offers a bone substitute capable of releasing high levels of gentamicin within a short period of time. This study shows that CERAMENT® G has antimicrobial activity against bacterial isolates that are resistant to gentamicin when systemically administered. This finding raises the question of whether European Committee on Antimicrobial Susceptibility Testing cutoff points for systemic application are useful for the use of local CERAMENT® G. Standardized experiments to determine local antibiotic antimicrobial activity in fracture-related infection treatment are needed to form guidelines for the use of local antibiotics and ultimately improve fracture-related infection treatment. CLINICAL RELEVANCE Local concentrations of gentamicin with CERAMENT® G are much higher than when systemically administered. It seems effective against certain bacterial strains that are not affected by systemically reachable concentrations of gentamicin. CERAMENT® G might still be effective when bacteria that are resistant to systemically administered concentrations of gentamicin are occulated from patients with fracture-related infection.
Collapse
Affiliation(s)
- Hans Bezstarosti
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Esther M. M. Van Lieshout
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maartje J. B. Van den Hurk
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kirsten Kortram
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Pim Oprel
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Birgit C. P. Koch
- Department of Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Peter D. Croughs
- Department of Medical Microbiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Michael H. J. Verhofstad
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
48
|
Crosby HA, Keim K, Kwiecinski JM, Langouët-Astrié CJ, Oshima K, LaRivière WB, Schmidt EP, Horswill AR. Host-derived protease promotes aggregation of Staphylococcus aureus by cleaving the surface protein SasG. mBio 2024; 15:e0348323. [PMID: 38511930 PMCID: PMC11005337 DOI: 10.1128/mbio.03483-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Staphylococcus aureus is one of the leading causes of hospital-acquired infections, many of which begin following attachment and accumulation on indwelling medical devices or diseased tissue. These infections are often linked to the establishment of biofilms, but another often overlooked key characteristic allowing S. aureus to establish persistent infection is the formation of planktonic aggregates. Such aggregates are physiologically similar to biofilms and protect pathogens from innate immune clearance and increase antibiotic tolerance. The cell-wall-associated protein SasG has been implicated in biofilm formation via mechanisms of intercellular aggregation but the mechanism in the context of disease is largely unknown. We have previously shown that the expression of cell-wall-anchored proteins involved in biofilm formation is controlled by the ArlRS-MgrA regulatory cascade. In this work, we demonstrate that the ArlRS two-component system controls aggregation, by repressing the expression of sasG by activation of the global regulator MgrA. We also demonstrate that SasG must be proteolytically processed by a non-staphylococcal protease to induce aggregation and that strains expressing functional full-length sasG aggregate significantly upon proteolysis by a mucosal-derived host protease found in human saliva. We used fractionation and N-terminal sequencing to demonstrate that human trypsin within saliva cleaves within the A domain of SasG to expose the B domain and induce aggregation. Finally, we demonstrated that SasG is involved in virulence during mouse lung infection. Together, our data point to SasG, its processing by host proteases, and SasG-driven aggregation as important elements of S. aureus adaptation to the host environment.IMPORTANCEHere, we demonstrate that the Staphylococcus aureus surface protein SasG is important for cell-cell aggregation in the presence of host proteases. We show that the ArlRS two-component regulatory system controls SasG levels through the cytoplasmic regulator MgrA. We identified human trypsin as the dominant protease triggering SasG-dependent aggregation and demonstrated that SasG is important for S. aureus lung infection. The discovery that host proteases can induce S. aureus aggregation contributes to our understanding of how this pathogen establishes persistent infections. The observations in this study demonstrate the need to strengthen our knowledge of S. aureus surface adhesin function and processing, regulation of adhesin expression, and the mechanisms that promote biofilm formation to develop strategies for preventing chronic infections.
Collapse
Affiliation(s)
- Heidi A. Crosby
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Klara Keim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jakub M. Kwiecinski
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Christophe J. Langouët-Astrié
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kaori Oshima
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wells B. LaRivière
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eric P. Schmidt
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
49
|
Seo S, Yang Q, Jeong S, Della Porta A, Kapoor H, Gibson DJ. A surfactant-based dressing can reduce the appearance of Pseudomonas aeruginosa pigments and uncover the dermal extracellular matrix in an ex vivo porcine skin wound model. Int Wound J 2024; 21:e14510. [PMID: 38148595 PMCID: PMC10958096 DOI: 10.1111/iwj.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/28/2023] Open
Abstract
From previous studies, we have shown that viable colony forming units of bacteria and bacterial biofilms are reduced after sequential treatment with a surfactant-based dressing. Here, we sought to test the impact on visible bacterial pigments and the ultrastructural impact following the sequential treatment of the same surfactant-based dressing. Mature Pseudomonas aeruginosa biofilms were grown on ex vivo porcine skin explants, and an imaging-based analysis was used to compare the skin with and without a concentrated surfactant. In explants naturally tinted by bacterial chromophores, wiping alone had no effect, while the use of a surfactant-based dressing reduced coloration. Similarly, daily wiping led to increased immunohistochemical staining for P. aeruginosa antigens, but not in the surfactant group. Confocal immunofluorescent imaging revealed limited bacterial penetration and coating of the dermis and loose pieces of sloughing material. Ultrastructural analysis confirmed that the biofilms were masking the extracellular matrix (ECM), but the surfactant could remove them, re-exposing the ECM. The masking of the ECM may provide another non-inflammatory explanation for delayed healing, as the ECM is no longer accessible for wound cell locomotion. The use of a poloxamer-based surfactant appears to be an effective way to remove bacterial chromophores and the biofilm coating the ECM fibres.
Collapse
Affiliation(s)
- Soojung Seo
- Department of OB/GYNInstitute for Wound Research, University of FloridaGainesvilleFloridaUSA
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabamaUSA
| | - Qingping Yang
- Department of OB/GYNInstitute for Wound Research, University of FloridaGainesvilleFloridaUSA
| | - Sunyoung Jeong
- Department of OB/GYNInstitute for Wound Research, University of FloridaGainesvilleFloridaUSA
| | - Alessandra Della Porta
- Department of OB/GYNInstitute for Wound Research, University of FloridaGainesvilleFloridaUSA
| | - Harris Kapoor
- Department of OB/GYNInstitute for Wound Research, University of FloridaGainesvilleFloridaUSA
| | - Daniel J. Gibson
- Department of OB/GYNInstitute for Wound Research, University of FloridaGainesvilleFloridaUSA
- Capstone College of NursingUniversity of AlabamaTuscaloosaAlabamaUSA
| |
Collapse
|
50
|
Toma TT, Wang Y, Gahlmann A, Acton ST. DeepSeeded: Volumetric Segmentation of Dense Cell Populations with a Cascade of Deep Neural Networks in Bacterial Biofilm Applications. EXPERT SYSTEMS WITH APPLICATIONS 2024; 238:122094. [PMID: 38646063 PMCID: PMC11027476 DOI: 10.1016/j.eswa.2023.122094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Accurate and automatic segmentation of individual cell instances in microscopy images is a vital step for quantifying the cellular attributes, which can subsequently lead to new discoveries in biomedical research. In recent years, data-driven deep learning techniques have shown promising results in this task. Despite the success of these techniques, many fail to accurately segment cells in microscopy images with high cell density and low signal-to-noise ratio. In this paper, we propose a novel 3D cell segmentation approach DeepSeeded, a cascaded deep learning architecture that estimates seeds for a classical seeded watershed segmentation. The cascaded architecture enhances the cell interior and border information using Euclidean distance transforms and detects the cell seeds by performing voxel-wise classification. The data-driven seed estimation process proposed here allows segmenting touching cell instances from a dense, intensity-inhomogeneous microscopy image volume. We demonstrate the performance of the proposed method in segmenting 3D microscopy images of a particularly dense cell population called bacterial biofilms. Experimental results on synthetic and two real biofilm datasets suggest that the proposed method leads to superior segmentation results when compared to state-of-the-art deep learning methods and a classical method.
Collapse
Affiliation(s)
- Tanjin Taher Toma
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, 22904, Virginia, USA
| | - Yibo Wang
- Department of Chemistry, University of Virginia, Charlottesville, 22904, Virginia, USA
| | - Andreas Gahlmann
- Department of Chemistry, University of Virginia, Charlottesville, 22904, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, 22903, Virginia, USA
| | - Scott T. Acton
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, 22904, Virginia, USA
| |
Collapse
|