1
|
Clegg T, Gross T. Cross-feeding creates tipping points in microbiome diversity. Proc Natl Acad Sci U S A 2025; 122:e2425603122. [PMID: 40327698 DOI: 10.1073/pnas.2425603122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
A key unresolved question in microbial ecology is how the extraordinary diversity of microbiomes emerges from the interactions among their many functionally distinct populations. This process is driven in part by the cross-feeding networks that help to structure these systems, in which consumers use resources to fuel their metabolism, creating by-products which can be used by others in the community. Understanding the effects of cross-feeding presents a major challenge, as it creates complex interdependencies between populations which can be hard to untangle. We address this problem using the tools of network science to develop a structural microbial community model. Using methods from percolation theory, we identify feasible community states for cross-feeding network structures in which the needs of consumers are met by metabolite production across the community. We identify tipping points at which small changes in structure can cause the catastrophic collapse of cross-feeding networks and abrupt declines in microbial community diversity. Our results are an example of a well-defined tipping point in a complex ecological system and provide insight into the fundamental processes shaping microbiomes and their robustness. We further demonstrate this by considering how network attacks affect community diversity and apply our results to show how the apparent difficulty in culturing the microbial diversity emerges as an inherent property of their cross-feeding networks.
Collapse
Affiliation(s)
- Tom Clegg
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg 26129, Germany
- Alfred Wegner institute, Bremerhaven 27570, Germany
| | - Thilo Gross
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg 26129, Germany
- Alfred Wegner institute, Bremerhaven 27570, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg 26111, Germany
| |
Collapse
|
2
|
Ghassemi Nedjad C, Bolteau M, Bourneuf L, Paulevé L, Frioux C. Seed2LP: seed inference in metabolic networks for reverse ecology applications. Bioinformatics 2025; 41:btaf140. [PMID: 40163742 PMCID: PMC12007882 DOI: 10.1093/bioinformatics/btaf140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
MOTIVATION A challenging problem in microbiology is to determine nutritional requirements of microorganisms and culture them, especially for the microbial dark matter detected solely with culture-independent methods. The latter foster an increasing amount of genomic sequences that can be explored with reverse ecology approaches to raise hypotheses on the corresponding populations. Building upon genome-scale metabolic networks (GSMNs) obtained from genome annotations, metabolic models predict contextualized phenotypes using nutrient information. RESULTS We developed the tool Seed2LP, addressing the inverse problem of predicting source nutrients, or seeds, from a GSMN and a metabolic objective. The originality of Seed2LP is its hybrid model, combining a scalable and discrete Boolean approximation of metabolic activity, with the numerically accurate flux balance analysis (FBA). Seed inference is highly customizable, with multiple search and solving modes, exploring the search space of external and internal metabolites combinations. Application to a benchmark of 107 curated GSMNs highlights the usefulness of a logic modelling method over a graph-based approach to predict seeds, and the relevance of hybrid solving to satisfy FBA constraints. Focusing on the dependency between metabolism and environment, Seed2LP is a computational support contributing to address the multifactorial challenge of culturing possibly uncultured microorganisms. AVAILABILITY AND IMPLEMENTATION Seed2LP is available on https://github.com/bioasp/seed2lp.
Collapse
Affiliation(s)
- Chabname Ghassemi Nedjad
- University of Bordeaux, CNRS, BordeauxINP, LaBRI, UMR 5800, Talence F-33400, France
- Inria, University of Bordeaux, INRAE, Talence F-33400, France
| | - Mathieu Bolteau
- Inria, University of Bordeaux, INRAE, Talence F-33400, France
- Nantes Université, Ecole Centrale Nantes, CNRS, LS2N, UMR 6004, Nantes F-44000, France
| | - Lucas Bourneuf
- Inria, Université de Rennes, CNRS, IRISA, UMR 6074, Rennes F-35000, France
- CHRU Brest, Université de Bretagne Occidentale, Brest F-29000, France
| | - Loïc Paulevé
- University of Bordeaux, CNRS, BordeauxINP, LaBRI, UMR 5800, Talence F-33400, France
| | - Clémence Frioux
- Inria, University of Bordeaux, INRAE, Talence F-33400, France
| |
Collapse
|
3
|
Zhao X, He S, Rui R, Hei J, He X, Wang S. Introduction of Panax notoginseng into pine forests significantly enhances the diversity, stochastic processes, and network complexity of nitrogen-fixing bacteria in the soil. Front Microbiol 2025; 16:1531875. [PMID: 39963494 PMCID: PMC11830724 DOI: 10.3389/fmicb.2025.1531875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Nitrogen-fixing bacteria (NFB) have a pivotal impact on the nitrogen cycle within agroforestry systems. The organic management of the Panax notoginseng (sanqi)-Pinus armandii agroforestry (SPA) system resulted in nitrogen deficiency because of the lack of application of chemical fertilizers. Therefore, assessing the variability in NFB due to the cultivation of sanqi in the SPA system becomes crucial. Methods The seasonal dynamics in the abundance, diversity, and community structure of NFB in the soil of monocropping pine (MP) and SPA systems were assessed using real-time quantitative polymerase chain reaction and high-throughput sequencing technology. Results and discussion Sanqi cultivation triggered a decrease in the abundance of NFB but increased α diversity. Additionally, significant differences in the community structure of NFB were noted between the MP and SPA systems. Moreover, the abundance of Bradyrhizobium and Azospirillum increased in the soil after sanqi was cultivated. Furthermore, the cultivation of sanqi broadened the ecological niche breadth of NFB and increased the stochasticity in its community structure assembly (i.e., dispersal limitation). Additionally, the SPA system increased the network complexity but not the stability of NFB. The structural equation model (SEM) revealed that pH directly impacted the network complexity and stability of NFB in the SPA system. Sanqi cultivation positively influences the community characteristics of NFB in the soil in the SPA system. Our study provides new insights into nitrogen cycling and utilization in the SPA system.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, China
| | - Shu He
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, China
| | - Rui Rui
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, China
| | - Jingying Hei
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, China
| | - Xiahong He
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, China
| | - Shu Wang
- Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Kunming, Yunnan, China
| |
Collapse
|
4
|
Li W, Wang B, Liu N, Shi X, Yang M, Liu CQ. Microbial regulation on refractory dissolved organic matter in inland waters. WATER RESEARCH 2024; 262:122100. [PMID: 39042969 DOI: 10.1016/j.watres.2024.122100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024]
Abstract
The production of refractory dissolved organic matter (RDOM) is complex and closely related to microbial consortia in aquatic ecosystems; however, it is still unclear how microorganisms regulate the production of RDOM and its molecular composition in inland waters. Therefore, we conducted a large-scale survey of inland waters and analyzed the optical and mass spectrometric characteristics of DOM, the microbial community and functional genes, as well as related environmental parameters, to understand the abovementioned issues. Here, the RDOM production was found mainly regulated by microbial (e.g., phylogeny and community assembly) rather than other environmental factors in inland waters. Biostatistical analyses and carbon isotopic evidence indicated that the successive microbial processing from labile DOM to RDOM (i.e., carboxyl-rich alicyclic molecules, CRAMs) was widely present in inland waters, involving the microbially mediated carbon skeleton turnover and heteroatom conversion. There was a significant empirical relationship between CRAMs and the ratio of Proteobacteria to Actinobacteria, highlighting the intraspecific interaction of bacteria more important than other microbial groups (i.e., archaea, eukaryotes, and fungi) for the RDOM production. This study demonstrated a fundamental role of microbial regulation in RDOM production within the inland waters, thereby facilitating future estimation of carbon sequestration potential in inland aquatic ecosystems.
Collapse
Affiliation(s)
- Wanzhu Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Baoli Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin, 300072, China.
| | - Na Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Xinjie Shi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Meiling Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin, 300072, China
| |
Collapse
|
5
|
Mbuya B, Plante S, Ammar F, Brault A, Labbé S. The Schizosaccharomyces pombe ornithine-N 5-oxygenase Sib2 interacts with the N 5-transacetylase Sib3 in the ferrichrome biosynthetic pathway. Front Microbiol 2024; 15:1467397. [PMID: 39328910 PMCID: PMC11424930 DOI: 10.3389/fmicb.2024.1467397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
The fission yeast Schizosaccharomyces pombe produces the hydroxamate-type siderophore ferrichrome (Fc). The biosynthesis of Fc requires the Fc synthase Sib1, the ornithine-N5-oxygenase Sib2, and the N5-hydroxyornithine-N5-transacetylase Sib3. In this study, we demonstrate the critical importance of the His248 residue of Sib3 in Fc production. Cells expressing a sib3H248A mutant allele fail to grow in iron-poor media without Fc supplementation. These sib3H248A mutant cells are consistently unable to promote Fc-dependent growth of Saccharomyces cerevisiae cells in cross-feeding experiments. Green fluorescent protein (GFP)-tagged wild-type Sib3 and mutant Sib3H248A exhibit a pancellular distribution. Coimmunoprecipitation assays revealed that both wild-type and Sib3H248A physically interact with Sib2. Further analysis identified a minimal C-terminal region from amino acids 290-334 of Sib3 that is required for interaction with Sib2. Deletion mapping analysis identified two regions of Sib2 as being required for its association with Sib3. The first region encompasses amino acids 1-135, and the second region corresponds to amino acids 281-358 of Sib2. Taken together, these results describe the first example of a physical interaction between an ornithine-N5-oxygenase and an N5-hydroxyornithine-N5-transacetylase controlling the biosynthesis of a hydroxamate-type siderophore.
Collapse
Affiliation(s)
- Berthy Mbuya
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Samuel Plante
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Farouk Ammar
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
6
|
Cunha-Ferreira IC, Vizzotto CS, Frederico TD, Peixoto J, Carvalho LS, Tótola MR, Krüger RH. Impact of Paenibacillus elgii supernatant on screening bacterial strains with potential for biotechnological applications. ENGINEERING MICROBIOLOGY 2024; 4:100163. [PMID: 39629112 PMCID: PMC11610968 DOI: 10.1016/j.engmic.2024.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 12/06/2024]
Abstract
The biotechnological industry faces a crucial demand for novel bioactive compounds, particularly antimicrobial agents, to address the rising challenge of bacterial resistance to current available antibiotics. Traditional strategies for cultivating naturally occurring microorganisms often limit the discovery of novel antimicrobial producers. This study presents a protocol for targeted selection of bacterial strains using the supernatant of Paenibacillus elgii, which produces abundant signal molecules and antimicrobial peptides. Soil samples were inoculated in these enriched culture media to selectively cultivate bacteria resistant to the supernatant, indicating their potential to produce similar compounds. The bacterial strains isolated through this method were assessed for their antibacterial activity. In addition, the functional annotation of the genome of one of these strains revealed several gene clusters of biotechnological interest. This study highlights the effectiveness of using this approach for selective cultivation of microorganisms with potential for biotechnological applications.
Collapse
Affiliation(s)
- I. C. Cunha-Ferreira
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - C. S. Vizzotto
- Laboratory of Environmental Sanitation, Department of Civil and Environmental Engineering, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - T. D. Frederico
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - J. Peixoto
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - L. S Carvalho
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| | - M. R. Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Brazil
| | - R. H. Krüger
- Laboratory of Enzymology, Department of Cellular Biology, University of Brasília (UNB), Brasília, 70910-900, Brazil
| |
Collapse
|
7
|
Scarinci G, Ariens JL, Angelidou G, Schmidt S, Glatter T, Paczia N, Sourjik V. Enhanced metabolic entanglement emerges during the evolution of an interkingdom microbial community. Nat Commun 2024; 15:7238. [PMID: 39174531 PMCID: PMC11341674 DOI: 10.1038/s41467-024-51702-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
While different stages of mutualism can be observed in natural communities, the dynamics and mechanisms underlying the gradual erosion of independence of the initially autonomous organisms are not yet fully understood. In this study, by conducting the laboratory evolution on an engineered microbial community, we reproduce and molecularly track the stepwise progression towards enhanced partner entanglement. We observe that the evolution of the community both strengthens the existing metabolic interactions and leads to the emergence of de novo interdependence between partners for nitrogen metabolism, which is a common feature of natural symbiotic interactions. Selection for enhanced metabolic entanglement during the community evolution repeatedly occurred indirectly, via pleiotropies and trade-offs within cellular regulatory networks, and with no evidence of group selection. The indirect positive selection of metabolic dependencies between microbial community members, which results from the direct selection of other coupled traits in the same regulatory network, may therefore be a common but underappreciated driving force guiding the evolution of natural mutualistic communities.
Collapse
Affiliation(s)
- Giovanni Scarinci
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Jan-Luca Ariens
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | | | - Sebastian Schmidt
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| |
Collapse
|
8
|
Chuang YC, Behringer MG, Patton G, Bird JT, Love CE, Dalia A, McKinlay JB. Bacterial cross-feeding can promote gene retention by lowering gene expression costs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608702. [PMID: 39229193 PMCID: PMC11370488 DOI: 10.1101/2024.08.19.608702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Gene loss is expected in microbial communities when the benefit of obtaining a biosynthetic precursor from a neighbor via cross-feeding outweighs the cost of retaining a biosynthetic gene. However, gene cost primarily comes from expression, and many biosynthetic genes are only expressed when needed. Thus, one can conversely expect cross-feeding to repress biosynthetic gene expression and promote gene retention by lowering gene cost. Here we examined long-term bacterial cocultures pairing Escherichia coli and Rhodopseudomonas palustris for evidence of gene loss or retention in response to cross-feeding of non-essential adenine. Although R. palustris continued to externalize adenine in long-term cultures, E. coli did not accumulate mutations in purine synthesis genes, even after 700 generations. E. coli purine synthesis gene expression was low in coculture, suggesting that gene repression removed selective pressure for gene loss. In support of this explanation, R. palustris also had low transcript levels for iron-scavenging siderophore genes in coculture, likely because E. coli facilitated iron acquisition by R. palustris. R. palustris siderophore gene mutations were correspondingly rare in long-term cocultures but were prevalent in monocultures where transcript levels were high. Our data suggests that cross-feeding does not always drive gene loss, but can instead promote gene retention by repressing costly expression.
Collapse
Affiliation(s)
- Ying-Chih Chuang
- Department of Biology, Indiana University, Bloomington, IN, USA
- Biochemistry Program, Indiana University, Bloomington, IN, USA
| | - Megan G. Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Gillian Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Crystal E. Love
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Ankur Dalia
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|
9
|
Gtari M, Maaoui R, Ghodhbane-Gtari F, Ben Slama K, Sbissi I. MAGs-centric crack: how long will, spore-positive Frankia and most Protofrankia, microsymbionts remain recalcitrant to axenic growth? Front Microbiol 2024; 15:1367490. [PMID: 39144212 PMCID: PMC11323853 DOI: 10.3389/fmicb.2024.1367490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
Nearly 50 years after the ground-breaking isolation of the primary Comptonia peregrina microsymbiont under axenic conditions, efforts to isolate a substantial number of Protofrankia and Frankia strains continue with enduring challenges and complexities. This study aimed to streamline genomic insights through comparative and predictive tools to extract traits crucial for isolating specific Frankia in axenic conditions. Pangenome analysis unveiled significant genetic diversity, suggesting untapped potential for cultivation strategies. Shared metabolic strategies in cellular components, central metabolic pathways, and resource acquisition traits offered promising avenues for cultivation. Ecological trait extraction indicated that most uncultured strains exhibit no apparent barriers to axenic growth. Despite ongoing challenges, potential caveats, and errors that could bias predictive analyses, this study provides a nuanced perspective. It highlights potential breakthroughs and guides refined cultivation strategies for these yet-uncultured strains. We advocate for tailored media formulations enriched with simple carbon sources in aerobic environments, with atmospheric nitrogen optionally sufficient to minimize contamination risks. Temperature adjustments should align with strain preferences-28-29°C for Frankia and 32-35°C for Protofrankia-while maintaining an alkaline pH. Given potential extended incubation periods (predicted doubling times ranging from 3.26 to 9.60 days, possibly up to 21.98 days), patience and rigorous contamination monitoring are crucial for optimizing cultivation conditions.
Collapse
Affiliation(s)
- Maher Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Radhi Maaoui
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Faten Ghodhbane-Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
- Higher Institute of Biotechnology Sidi Thabet, University of La Manouba, Tunisia
| | - Karim Ben Slama
- LR Bioresources, Environment, and Biotechnology (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Imed Sbissi
- LR Pastoral Ecology, Arid Regions Institute, University of Gabes, Medenine, Tunisia
| |
Collapse
|
10
|
Zhao B, Wang Y, Zhang J, Wang L, Basang W, Zhu Y, Gao Y. Development and assessment of an immobilized bacterial alliance that efficiently degrades tylosin in wastewater. PLoS One 2024; 19:e0304113. [PMID: 38820335 PMCID: PMC11142594 DOI: 10.1371/journal.pone.0304113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/06/2024] [Indexed: 06/02/2024] Open
Abstract
Microbial degradation of tylosin (TYL) is a safe and environmentally friendly technology for remediating environmental pollution. Kurthia gibsonii (TYL-A1) and Klebsiella pneumonia (TYL-B2) were isolated from wastewater; degradation efficiency of the two strains combined was significantly greater than either alone and resulted in degradation products that were less toxic than TYL. With Polyvinyl alcohol (PVA)-sodium alginate (SA)-activated carbon (AC) used to form a bacterial immobilization carrier, the immobilized bacterial alliance reached 95.9% degradation efficiency in 1 d and could be reused for four cycles, with > 93% degradation efficiency per cycle. In a wastewater application, the immobilized bacterial alliance degraded 67.0% TYL in 9 d. There were significant advantages for the immobilized bacterial alliance at pH 5 or 9, with 20 or 40 g/L NaCl, or with 10 or 50 mg/L doxycycline. In summary, in this study, a bacterial consortium with TYL degradation ability was constructed using PVA-SA-AC as an immobilized carrier, and the application effect was evaluated on farm wastewater with a view to providing application guidance in environmental remediation.
Collapse
Affiliation(s)
- Boyu Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Ye Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Jingyi Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
11
|
Souza LS, Solowiej-Wedderburn J, Bonforti A, Libby E. Modeling endosymbioses: Insights and hypotheses from theoretical approaches. PLoS Biol 2024; 22:e3002583. [PMID: 38598454 PMCID: PMC11006130 DOI: 10.1371/journal.pbio.3002583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
Endosymbiotic relationships are pervasive across diverse taxa of life, offering key avenues for eco-evolutionary dynamics. Although a variety of experimental and empirical frameworks have shed light on critical aspects of endosymbiosis, theoretical frameworks (mathematical models) are especially well-suited for certain tasks. Mathematical models can integrate multiple factors to determine the net outcome of endosymbiotic relationships, identify broad patterns that connect endosymbioses with other systems, simplify biological complexity, generate hypotheses for underlying mechanisms, evaluate different hypotheses, identify constraints that limit certain biological interactions, and open new lines of inquiry. This Essay highlights the utility of mathematical models in endosymbiosis research, particularly in generating relevant hypotheses. Despite their limitations, mathematical models can be used to address known unknowns and discover unknown unknowns.
Collapse
Affiliation(s)
- Lucas Santana Souza
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| | - Josephine Solowiej-Wedderburn
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| | - Adriano Bonforti
- Integrated Science Lab, Umeå University, Umeå, Sweden
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, Norrbyn, Sweden
| | - Eric Libby
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- Integrated Science Lab, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Hesse E, O’Brien S. Ecological dependencies and the illusion of cooperation in microbial communities. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001442. [PMID: 38385784 PMCID: PMC10924460 DOI: 10.1099/mic.0.001442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Ecological dependencies - where organisms rely on other organisms for survival - are a ubiquitous feature of life on earth. Multicellular hosts rely on symbionts to provide essential vitamins and amino acids. Legume plants similarly rely on nitrogen-fixing rhizobia to convert atmospheric nitrogen to ammonia. In some cases, dependencies can arise via loss-of-function mutations that allow one partner to benefit from the actions of another. It is common in microbiology to label ecological dependencies between species as cooperation - making it necessary to invoke cooperation-specific frameworks to explain the phenomenon. However, in many cases, such traits are not (at least initially) cooperative, because they are not selected for because of the benefits they confer on a partner species. In contrast, dependencies in microbial communities may originate from fitness benefits gained from genomic-streamlining (i.e. Black Queen Dynamics). Here, we outline how the Black Queen Hypothesis predicts the formation of metabolic dependencies via loss-of-function mutations in microbial communities, without needing to invoke any cooperation-specific explanations. Furthermore we outline how the Black Queen Hypothesis can act as a blueprint for true cooperation as well as discuss key outstanding questions in the field. The nature of interactions in microbial communities can predict the ability of natural communities to withstand and recover from disturbances. Hence, it is vital to gain a deeper understanding of the factors driving these dynamic interactions over evolutionary time.
Collapse
Affiliation(s)
- Elze Hesse
- College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Siobhán O’Brien
- Moyne Institute of Preventive Medicine, Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
13
|
Goldman AL, Fulk EM, Momper LM, Heider C, Mulligan J, Osburn M, Masiello CA, Silberg JJ. Microbial sensor variation across biogeochemical conditions in the terrestrial deep subsurface. mSystems 2024; 9:e0096623. [PMID: 38059636 PMCID: PMC10805038 DOI: 10.1128/msystems.00966-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
Microbes can be found in abundance many kilometers underground. While microbial metabolic capabilities have been examined across different geochemical settings, it remains unclear how changes in subsurface niches affect microbial needs to sense and respond to their environment. To address this question, we examined how microbial extracellular sensor systems vary with environmental conditions across metagenomes at different Deep Mine Microbial Observatory (DeMMO) subsurface sites. Because two-component systems (TCSs) directly sense extracellular conditions and convert this information into intracellular biochemical responses, we expected that this sensor family would vary across isolated oligotrophic subterranean environments that differ in abiotic and biotic conditions. TCSs were found at all six subsurface sites, the service water control, and the surface site, with an average of 0.88 sensor histidine kinases (HKs) per 100 genes across all sites. Abundance was greater in subsurface fracture fluids compared with surface-derived fluids, and candidate phyla radiation (CPR) bacteria presented the lowest HK frequencies. Measures of microbial diversity, such as the Shannon diversity index, revealed that HK abundance is inversely correlated with microbial diversity (r2 = 0.81). Among the geochemical parameters measured, HK frequency correlated most strongly with variance in dissolved organic carbon (r2 = 0.82). Taken together, these results implicate the abiotic and biotic properties of an ecological niche as drivers of sensor needs, and they suggest that microbes in environments with large fluctuations in organic nutrients (e.g., lacustrine, terrestrial, and coastal ecosystems) may require greater TCS diversity than ecosystems with low nutrients (e.g., open ocean).IMPORTANCEThe ability to detect extracellular environmental conditions is a fundamental property of all life forms. Because microbial two-component sensor systems convert information about extracellular conditions into biochemical information that controls their behaviors, we evaluated how two-component sensor systems evolved within the deep Earth across multiple sites where abiotic and biotic properties vary. We show that these sensor systems remain abundant in microbial consortia at all subterranean sampling sites and observe correlations between sensor system abundances and abiotic (dissolved organic carbon variation) and biotic (consortia diversity) properties. These results suggest that multiple environmental properties may drive sensor protein evolution and highlight the need for further studies of metagenomic and geochemical data in parallel to understand the drivers of microbial sensor evolution.
Collapse
Affiliation(s)
| | - Emily M. Fulk
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, Texas, USA
| | - Lily M. Momper
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois, USA
| | - Clinton Heider
- Rice University, Center for Research Computing, Houston, Texas, USA
| | - John Mulligan
- Rice University, Center for Research Computing, Houston, Texas, USA
| | - Magdalena Osburn
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois, USA
| | - Caroline A. Masiello
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
| | - Jonathan J. Silberg
- Department of Biosciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
14
|
Chuang YC, Haas NW, Pepin R, Behringer MG, Oda Y, LaSarre B, Harwood CS, McKinlay JB. Bacterial adenine cross-feeding stems from a purine salvage bottleneck. THE ISME JOURNAL 2024; 18:wrae034. [PMID: 38452196 PMCID: PMC10976475 DOI: 10.1093/ismejo/wrae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/19/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Diverse ecosystems host microbial relationships that are stabilized by nutrient cross-feeding. Cross-feeding can involve metabolites that should hold value for the producer. Externalization of such communally valuable metabolites is often unexpected and difficult to predict. Previously, we discovered purine externalization by Rhodopseudomonas palustris by its ability to rescue an Escherichia coli purine auxotroph. Here we found that an E. coli purine auxotroph can stably coexist with R. palustris due to purine cross-feeding. We identified the cross-fed purine as adenine. Adenine was externalized by R. palustris under diverse growth conditions. Computational modeling suggested that adenine externalization occurs via diffusion across the cytoplasmic membrane. RNAseq analysis led us to hypothesize that adenine accumulation and externalization stem from a salvage pathway bottleneck at the enzyme encoded by apt. Ectopic expression of apt eliminated adenine externalization, supporting our hypothesis. A comparison of 49 R. palustris strains suggested that purine externalization is relatively common, with 16 strains exhibiting the trait. Purine externalization was correlated with the genomic orientation of apt, but apt orientation alone could not always explain purine externalization. Our results provide a mechanistic understanding of how a communally valuable metabolite can participate in cross-feeding. Our findings also highlight the challenge in identifying genetic signatures for metabolite externalization.
Collapse
Affiliation(s)
- Ying-Chih Chuang
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
- Biochemistry Program, Indiana University, Bloomington, IN 47405, United States
| | - Nicholas W Haas
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Robert Pepin
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States
| | - Megan G Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, United States
| | - Yasuhiro Oda
- Department of Microbiology, University of Washington, Seattle, WA 98195, United States
| | - Breah LaSarre
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, United States
| | - Caroline S Harwood
- Department of Microbiology, University of Washington, Seattle, WA 98195, United States
| | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
15
|
Li Y, Chen Z, Wagg C, Castellano MJ, Zhang N, Ding W. Soil organic carbon loss decreases biodiversity but stimulates multitrophic interactions that promote belowground metabolism. GLOBAL CHANGE BIOLOGY 2024; 30:e17101. [PMID: 38273560 DOI: 10.1111/gcb.17101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/27/2024]
Abstract
Soil organic carbon (SOC) plays an essential role in mediating community structure and metabolic activities of belowground biota. Unraveling the evolution of belowground communities and their feedback mechanisms on SOC dynamics helps embed the ecology of soil microbiome into carbon cycling, which serves to improve biodiversity conservation and carbon management strategy under global change. Here, croplands with a SOC gradient were used to understand how belowground metabolisms and SOC decomposition were linked to the diversity, composition, and co-occurrence networks of belowground communities encompassing archaea, bacteria, fungi, protists, and invertebrates. As SOC decreased, the diversity of prokaryotes and eukaryotes also decreased, but their network complexity showed contrasting patterns: prokaryotes increased due to intensified niche overlap, while that of eukaryotes decreased possibly because of greater dispersal limitation owing to the breakdown of macroaggregates. Despite the decrease in biodiversity and SOC stocks, the belowground metabolic capacity was enhanced as indicated by increased enzyme activity and decreased enzymatic stoichiometric imbalance. This could, in turn, expedite carbon loss through respiration, particularly in the slow-cycling pool. The enhanced belowground metabolic capacity was dominantly driven by greater multitrophic network complexity and particularly negative (competitive and predator-prey) associations, which fostered the stability of the belowground metacommunity. Interestingly, soil abiotic conditions including pH, aeration, and nutrient stocks, exhibited a less significant role. Overall, this study reveals a greater need for soil C resources across multitrophic levels to maintain metabolic functionality as declining SOC results in biodiversity loss. Our researchers highlight the importance of integrating belowground biological processes into models of SOC turnover, to improve agroecosystem functioning and carbon management in face of intensifying anthropogenic land-use and climate change.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zengming Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Cameron Wagg
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, Canada
| | | | - Nan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Weixin Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
16
|
D'Andrea R, Khattar G, Koffel T, Frans VF, Bittleston LS, Cuellar-Gempeler C. Reciprocal inhibition and competitive hierarchy cause negative biodiversity-ecosystem function relationships. Ecol Lett 2024; 27:e14356. [PMID: 38193391 DOI: 10.1111/ele.14356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
The relationship between biodiversity and ecosystem function (BEF) captivates ecologists, but the factors responsible for the direction of this relationship remain unclear. While higher ecosystem functioning at higher biodiversity levels ('positive BEF') is not universal in nature, negative BEF relationships seem puzzlingly rare. Here, we develop a dynamical consumer-resource model inspired by microbial decomposer communities in pitcher plant leaves to investigate BEF. We manipulate microbial diversity via controlled colonization and measure their function as total ammonia production. We test how niche partitioning among bacteria and other ecological processes influence BEF in the leaves. We find that a negative BEF can emerge from reciprocal interspecific inhibition in ammonia production causing a negative complementarity effect, or from competitive hierarchies causing a negative selection effect. Absent these factors, a positive BEF was the typical outcome. Our findings provide a potential explanation for the rarity of negative BEF in empirical data.
Collapse
Affiliation(s)
- Rafael D'Andrea
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA
| | - Gabriel Khattar
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Thomas Koffel
- Laboratoire de Biométrie et Biologie Evolutive UMR5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France
| | - Veronica F Frans
- Department of Fisheries and Wildlife, Center for Systems Integration and Sustainability, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| | | | | |
Collapse
|
17
|
Peng L, Hoban J, Joffe J, Smith AH, Carpenter M, Marcelis T, Patel V, Lynn-Bell N, Oliver KM, Russell JA. Cryptic community structure and metabolic interactions among the heritable facultative symbionts of the pea aphid. J Evol Biol 2023; 36:1712-1730. [PMID: 37702036 DOI: 10.1111/jeb.14216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 09/14/2023]
Abstract
Most insects harbour influential, yet non-essential heritable microbes in their hemocoel. Communities of these symbionts exhibit low diversity. But their frequent multi-species nature raises intriguing questions on roles for symbiont-symbiont synergies in host adaptation, and on the stability of the symbiont communities, themselves. In this study, we build on knowledge of species-defined symbiont community structure across US populations of the pea aphid, Acyrthosiphon pisum. Through extensive symbiont genotyping, we show that pea aphids' microbiomes can be more precisely defined at the symbiont strain level, with strain variability shaping five out of nine previously reported co-infection trends. Field data provide a mixture of evidence for synergistic fitness effects and symbiont hitchhiking, revealing causes and consequences of these co-infection trends. To test whether within-host metabolic interactions predict common versus rare strain-defined communities, we leveraged the high relatedness of our dominant, community-defined symbiont strains vs. 12 pea aphid-derived Gammaproteobacteria with sequenced genomes. Genomic inference, using metabolic complementarity indices, revealed high potential for cooperation among one pair of symbionts-Serratia symbiotica and Rickettsiella viridis. Applying the expansion network algorithm, through additional use of pea aphid and obligate Buchnera symbiont genomes, Serratia and Rickettsiella emerged as the only symbiont community requiring both parties to expand holobiont metabolism. Through their joint expansion of the biotin biosynthesis pathway, these symbionts may span missing gaps, creating a multi-party mutualism within their nutrient-limited, phloem-feeding hosts. Recent, complementary gene inactivation, within the biotin pathways of Serratia and Rickettsiella, raises further questions on the origins of mutualisms and host-symbiont interdependencies.
Collapse
Affiliation(s)
- Linyao Peng
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jessica Hoban
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jonah Joffe
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Andrew H Smith
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Melissa Carpenter
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Tracy Marcelis
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Vilas Patel
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Nicole Lynn-Bell
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Kost C, Patil KR, Friedman J, Garcia SL, Ralser M. Metabolic exchanges are ubiquitous in natural microbial communities. Nat Microbiol 2023; 8:2244-2252. [PMID: 37996708 DOI: 10.1038/s41564-023-01511-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 09/11/2023] [Indexed: 11/25/2023]
Abstract
Microbial communities drive global biogeochemical cycles and shape the health of plants and animals-including humans. Their structure and function are determined by ecological and environmental interactions that govern the assembly, stability and evolution of microbial communities. A widely held view is that antagonistic interactions such as competition predominate in microbial communities and are ecologically more important than synergistic interactions-for example, mutualism or commensalism. Over the past decade, however, a more nuanced picture has emerged, wherein bacteria, archaea and fungi exist within interactive networks in which they exchange essential and non-essential metabolites. These metabolic interactions profoundly impact not only the physiology, ecology and evolution of the strains involved, but are also central to the functioning of many, if not all, microbiomes. Therefore, we advocate for a balanced view of microbiome ecology that encompasses both synergistic and antagonistic interactions as key forces driving the structure and dynamics within microbial communities.
Collapse
Affiliation(s)
- Christian Kost
- Osnabrück University, Department of Ecology, School of Biology/Chemistry, Osnabrück, Germany.
| | - Kiran Raosaheb Patil
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
| | - Jonathan Friedman
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Sarahi L Garcia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
| | - Markus Ralser
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany.
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
19
|
Micali G, Hockenberry AM, Dal Co A, Ackermann M. Minorities drive growth resumption in cross-feeding microbial communities. Proc Natl Acad Sci U S A 2023; 120:e2301398120. [PMID: 37903278 PMCID: PMC10636363 DOI: 10.1073/pnas.2301398120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/26/2023] [Indexed: 11/01/2023] Open
Abstract
Microbial communities are fundamental to life on Earth. Different strains within these communities are often connected by a highly connected metabolic network, where the growth of one strain depends on the metabolic activities of other community members. While distributed metabolic functions allow microbes to reduce costs and optimize metabolic pathways, they make them metabolically dependent. Here, we hypothesize that such dependencies can be detrimental in situations where the external conditions change rapidly, as they often do in natural environments. After a shift in external conditions, microbes need to remodel their metabolism, but they can only resume growth once partners on which they depend have also adapted to the new conditions. It is currently not well understood how microbial communities resolve this dilemma and how metabolic interactions are reestablished after an environmental shift. To address this question, we investigated the dynamical responses to environmental perturbation by microbial consortia with distributed anabolic functions. By measuring the regrowth times at the single-cell level in spatially structured communities, we found that metabolic dependencies lead to a growth delay after an environmental shift. However, a minority of cells-those in the immediate neighborhood of their metabolic partners-can regrow quickly and come to numerically dominate the community after the shift. The spatial arrangement of a microbial community is thus a key factor in determining the communities' ability to maintain metabolic interactions and growth in fluctuating conditions. Our results suggest that environmental fluctuations can limit the emergence of metabolic dependencies between microorganisms.
Collapse
Affiliation(s)
- Gabriele Micali
- Department of Environmental Systems Science, ETH Zürich, Zurich8092, Switzerland
- Department of Environmental Microbiology, Eawag, Dübendorf8600, Switzerland
| | - Alyson M. Hockenberry
- Department of Environmental Systems Science, ETH Zürich, Zurich8092, Switzerland
- Department of Environmental Microbiology, Eawag, Dübendorf8600, Switzerland
| | - Alma Dal Co
- Department of Environmental Systems Science, ETH Zürich, Zurich8092, Switzerland
- Department of Environmental Microbiology, Eawag, Dübendorf8600, Switzerland
| | - Martin Ackermann
- Department of Environmental Systems Science, ETH Zürich, Zurich8092, Switzerland
- Department of Environmental Microbiology, Eawag, Dübendorf8600, Switzerland
| |
Collapse
|
20
|
Chuang YC, Haas NW, Pepin R, Behringer M, Oda Y, LaSarre B, Harwood CS, McKinlay JB. A purine salvage bottleneck leads to bacterial adenine cross-feeding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562681. [PMID: 37904951 PMCID: PMC10614841 DOI: 10.1101/2023.10.17.562681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Diverse ecosystems host microbial relationships that are stabilized by nutrient cross-feeding. Cross-feeding can involve metabolites that should hold value for the producer. Externalization of such communally valuable metabolites is often unexpected and difficult to predict. Previously, we fortuitously discovered purine externalization by Rhodopseudomonas palustris by its ability to rescue growth of an Escherichia coli purine auxotroph. Here we found that an E. coli purine auxotroph can stably coexist with R. palustris due to purine cross-feeding. We identified the cross-fed purine as adenine. Adenine was externalized by R. palustris under diverse growth conditions. Computational models suggested that adenine externalization occurs via passive diffusion across the cytoplasmic membrane. RNAseq analysis led us to hypothesize that accumulation and externalization of adenine stems from an adenine salvage bottleneck at the enzyme encoded by apt. Ectopic expression of apt eliminated adenine externalization, supporting our hypothesis. A comparison of 49 R. palustris strains suggested that purine externalization is relatively common, with 15 of the strains exhibiting the trait. Purine externalization was correlated with the genomic orientation of apt orientation, but apt orientation alone could not explain adenine externalization in some strains. Our results provide a mechanistic understanding of how a communally valuable metabolite can participate in cross-feeding. Our findings also highlight the challenge in identifying genetic signatures for metabolite externalization.
Collapse
Affiliation(s)
- Ying-Chih Chuang
- Department of Biology, Indiana University, Bloomington, IN
- Biochemistry Program, Indiana University, Bloomington, IN
| | | | - Robert Pepin
- Department of Chemistry, Indiana University, Bloomington, IN
| | - Megan Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Yasuhiro Oda
- Department of Microbiology, University of Washington, Seattle, WA
| | - Breah LaSarre
- Department of Biology, Indiana University, Bloomington, IN
| | | | | |
Collapse
|
21
|
Béchade B, Cabuslay CS, Hu Y, Mendonca CM, Hassanpour B, Lin JY, Su Y, Fiers VJ, Anandarajan D, Lu R, Olson CJ, Duplais C, Rosen GL, Moreau CS, Aristilde L, Wertz JT, Russell JA. Physiological and evolutionary contexts of a new symbiotic species from the nitrogen-recycling gut community of turtle ants. THE ISME JOURNAL 2023; 17:1751-1764. [PMID: 37558860 PMCID: PMC10504363 DOI: 10.1038/s41396-023-01490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
While genome sequencing has expanded our knowledge of symbiosis, role assignment within multi-species microbiomes remains challenging due to genomic redundancy and the uncertainties of in vivo impacts. We address such questions, here, for a specialized nitrogen (N) recycling microbiome of turtle ants, describing a new genus and species of gut symbiont-Ischyrobacter davidsoniae (Betaproteobacteria: Burkholderiales: Alcaligenaceae)-and its in vivo physiological context. A re-analysis of amplicon sequencing data, with precisely assigned Ischyrobacter reads, revealed a seemingly ubiquitous distribution across the turtle ant genus Cephalotes, suggesting ≥50 million years since domestication. Through new genome sequencing, we also show that divergent I. davidsoniae lineages are conserved in their uricolytic and urea-generating capacities. With phylogenetically refined definitions of Ischyrobacter and separately domesticated Burkholderiales symbionts, our FISH microscopy revealed a distinct niche for I. davidsoniae, with dense populations at the anterior ileum. Being positioned at the site of host N-waste delivery, in vivo metatranscriptomics and metabolomics further implicate I. davidsoniae within a symbiont-autonomous N-recycling pathway. While encoding much of this pathway, I. davidsoniae expressed only a subset of the requisite steps in mature adult workers, including the penultimate step deriving urea from allantoate. The remaining steps were expressed by other specialized gut symbionts. Collectively, this assemblage converts inosine, made from midgut symbionts, into urea and ammonia in the hindgut. With urea supporting host amino acid budgets and cuticle synthesis, and with the ancient nature of other active N-recyclers discovered here, I. davidsoniae emerges as a central player in a conserved and impactful, multipartite symbiosis.
Collapse
Affiliation(s)
- Benoît Béchade
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA.
| | - Christian S Cabuslay
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Yi Hu
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, 100875, Beijing, China
| | - Caroll M Mendonca
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, 60208, USA
| | - Bahareh Hassanpour
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, 60208, USA
| | - Jonathan Y Lin
- Department of Biology, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546-4402, USA
| | - Yangzhou Su
- Department of Biology, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546-4402, USA
| | - Valerie J Fiers
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Dharman Anandarajan
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Richard Lu
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| | - Chandler J Olson
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
- Department of Biological Sciences, University of Alabama, 1325 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - Christophe Duplais
- Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| | - Gail L Rosen
- Ecological and Evolutionary Signal-Processing and Informatics Laboratory, Department of Electrical and Computer Engineering, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA
| | - Corrie S Moreau
- Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, 60208, USA
| | - John T Wertz
- Department of Biology, Calvin University, 1726 Knollcrest Circle SE, Grand Rapids, MI, 49546-4402, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA, 19104, USA
| |
Collapse
|
22
|
Heinze BM, Küsel K, Jehmlich N, von Bergen M, Taubert M. Metabolic versatility enables sulfur-oxidizers to dominate primary production in groundwater. WATER RESEARCH 2023; 244:120426. [PMID: 37597444 DOI: 10.1016/j.watres.2023.120426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/21/2023]
Abstract
High rates of CO2 fixation and the genetic potential of various groundwater microbes for autotrophic activity have shown that primary production is an important source of organic C in groundwater ecosystems. However, the contribution of specific chemolithoautotrophic groups such as S-oxidizing bacteria (SOB) to groundwater primary production and their adaptation strategies remain largely unknown. Here, we stimulated anoxic groundwater microcosms with reduced S and sampled the microbial community after 1, 3 and 6 weeks. Genome-resolved metaproteomics was combined with 50at-% 13CO2 stable isotope probing to follow the C flux through the microbial food web and infer traits expressed by active SOB in the groundwater microcosms. Already after 7 days, 90% of the total microbial biomass C in the microcosms was replaced by CO2-derived C, increasing to 97% at the end of incubation. Stable Isotope Cluster Analysis revealed active autotrophs, characterized by a uniform 13C-incorporation of 45% in their peptides, to dominate the microbial community throughout incubation. Mixo- and heterotrophs, characterized by 10 to 40% 13C-incorporation, utilized the primarily produced organic C. Interestingly, obligate autotrophs affiliated with Sulfuricella and Sulfuritalea contained traits enabling the storage of elemental S in globules to maintain primary production under energy limitation. Others related to Sulfurimonas seemed to rapidly utilize substrates for fast proliferation, and most autotrophs further maximized their energy yield via efficient denitrification and the potential for H2 oxidation. Mixotrophic SOB, belonging to Curvibacter or Polaromonas, enhanced metabolic flexibility by using organic compounds to satisfy their C requirements. Time series data spanning eight years further revealed that key taxa of our microcosms composed up to 15% of the microbial groundwater community, demonstrating their in-situ importance. This showed that SOB, by using different metabolic strategies, are able to account for high rates of primary production in groundwater, especially at sites limited to geogenic nutrient sources. The widespread presence of SOB with traits such as S storage, H2 oxidation, and organic C utilization in many aquatic habitats further suggested that metabolic versatility governs S-fueled primary production in the environment.
Collapse
Affiliation(s)
- Beatrix M Heinze
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, Jena 07743, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, Jena 07743, Germany; The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, UFZ, Permoserstr. 15, Leipzig 04318, Germany
| | - Martin von Bergen
- The German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany; Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, UFZ, Permoserstr. 15, Leipzig 04318, Germany; Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, University of Leipzig, Brüderstr. 32, Leipzig 04103, Germany
| | - Martin Taubert
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, Jena 07743, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
23
|
Abstract
The metabolism of a bacterial cell stretches beyond its boundaries, often connecting with the metabolism of other cells to form extended metabolic networks that stretch across communities, and even the globe. Among the least intuitive metabolic connections are those involving cross-feeding of canonically intracellular metabolites. How and why are these intracellular metabolites externalized? Are bacteria simply leaky? Here I consider what it means for a bacterium to be leaky, and I review mechanisms of metabolite externalization from the context of cross-feeding. Despite common claims, diffusion of most intracellular metabolites across a membrane is unlikely. Instead, passive and active transporters are likely involved, possibly purging excess metabolites as part of homeostasis. Re-acquisition of metabolites by a producer limits the opportunities for cross-feeding. However, a competitive recipient can stimulate metabolite externalization and initiate a positive-feedback loop of reciprocal cross-feeding.
Collapse
Affiliation(s)
- James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA;
| |
Collapse
|
24
|
Schultz J, Modolon F, Peixoto RS, Rosado AS. Shedding light on the composition of extreme microbial dark matter: alternative approaches for culturing extremophiles. Front Microbiol 2023; 14:1167718. [PMID: 37333658 PMCID: PMC10272570 DOI: 10.3389/fmicb.2023.1167718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
More than 20,000 species of prokaryotes (less than 1% of the estimated number of Earth's microbial species) have been described thus far. However, the vast majority of microbes that inhabit extreme environments remain uncultured and this group is termed "microbial dark matter." Little is known regarding the ecological functions and biotechnological potential of these underexplored extremophiles, thus representing a vast untapped and uncharacterized biological resource. Advances in microbial cultivation approaches are key for a detailed and comprehensive characterization of the roles of these microbes in shaping the environment and, ultimately, for their biotechnological exploitation, such as for extremophile-derived bioproducts (extremozymes, secondary metabolites, CRISPR Cas systems, and pigments, among others), astrobiology, and space exploration. Additional efforts to enhance culturable diversity are required due to the challenges imposed by extreme culturing and plating conditions. In this review, we summarize methods and technologies used to recover the microbial diversity of extreme environments, while discussing the advantages and disadvantages associated with each of these approaches. Additionally, this review describes alternative culturing strategies to retrieve novel taxa with their unknown genes, metabolisms, and ecological roles, with the ultimate goal of increasing the yields of more efficient bio-based products. This review thus summarizes the strategies used to unveil the hidden diversity of the microbiome of extreme environments and discusses the directions for future studies of microbial dark matter and its potential applications in biotechnology and astrobiology.
Collapse
Affiliation(s)
- Júnia Schultz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Flúvio Modolon
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Silva Peixoto
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexandre Soares Rosado
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
25
|
Kapinusova G, Lopez Marin MA, Uhlik O. Reaching unreachables: Obstacles and successes of microbial cultivation and their reasons. Front Microbiol 2023; 14:1089630. [PMID: 36960281 PMCID: PMC10027941 DOI: 10.3389/fmicb.2023.1089630] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
In terms of the number and diversity of living units, the prokaryotic empire is the most represented form of life on Earth, and yet it is still to a significant degree shrouded in darkness. This microbial "dark matter" hides a great deal of potential in terms of phylogenetically or metabolically diverse microorganisms, and thus it is important to acquire them in pure culture. However, do we know what microorganisms really need for their growth, and what the obstacles are to the cultivation of previously unidentified taxa? Here we review common and sometimes unexpected requirements of environmental microorganisms, especially soil-harbored bacteria, needed for their replication and cultivation. These requirements include resuscitation stimuli, physical and chemical factors aiding cultivation, growth factors, and co-cultivation in a laboratory and natural microbial neighborhood.
Collapse
Affiliation(s)
| | | | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
26
|
Pauli B, Ajmera S, Kost C. Determinants of synergistic cell-cell interactions in bacteria. Biol Chem 2023; 404:521-534. [PMID: 36859766 DOI: 10.1515/hsz-2022-0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023]
Abstract
Bacteria are ubiquitous and colonize virtually every conceivable habitat on earth. To achieve this, bacteria require different metabolites and biochemical capabilities. Rather than trying to produce all of the needed materials by themselves, bacteria have evolved a range of synergistic interactions, in which they exchange different commodities with other members of their local community. While it is widely acknowledged that synergistic interactions are key to the ecology of both individual bacteria and entire microbial communities, the factors determining their establishment remain poorly understood. Here we provide a comprehensive overview over our current knowledge on the determinants of positive cell-cell interactions among bacteria. Taking a holistic approach, we review the literature on the molecular mechanisms bacteria use to transfer commodities between bacterial cells and discuss to which extent these mechanisms favour or constrain the successful establishment of synergistic cell-cell interactions. In addition, we analyse how these different processes affect the specificity among interaction partners. By drawing together evidence from different disciplines that study the focal question on different levels of organisation, this work not only summarizes the state of the art in this exciting field of research, but also identifies new avenues for future research.
Collapse
Affiliation(s)
- Benedikt Pauli
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, D-49076 Osnabrück, Germany
| | - Shiksha Ajmera
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, D-49076 Osnabrück, Germany
| | - Christian Kost
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, D-49076 Osnabrück, Germany.,Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, Barbarastrasse 11, D-49076 Osnabrück, Germany
| |
Collapse
|
27
|
Zhao Y, Feng Y, Zhou J, Zhang K, Sun J, Wang L, Liu S. Potential bacterial isolation by dosing metabolites in cross-feedings. WATER RESEARCH 2023; 231:119589. [PMID: 36645941 DOI: 10.1016/j.watres.2023.119589] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Metabolic cross-feeding, in which species use metabolites of other members to promote their own growth, is vital for bacterial growth and survival. Thus, whether the unculturable bacteria can be isolated or purified from consortia by adding these essential metabolites remains elusive. In this study, mass spectrometry imaging vividly pictured symbionts supplied folate and gluconate to anammox bacteria to support their growth. After dosing folate and gluconate, the relative abundance and activity of anammox bacteria were substantially improved. Such enhancement is originated from the added folate and gluconate significantly eased metabolic burden of anammox bacteria as they no longer secreted the extracellular public goods to others for "resource exchange" during cross-feedings. On the other hand, the decreased supplement of extracellular "public goods" lead to the decay of symbionts with high demand for these metabolites in the consortia. This also deservedly increased the relative abundance of anammox bacteria. This study provides a new dimension to isolate specific functional bacteria based on metabolic cross-feedings.
Collapse
Affiliation(s)
- Yunpeng Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Jianhang Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Kuo Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Jingqi Sun
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Lina Wang
- CCCC SINOBIOWAY E&P CO.,LTD, Jinan 250000, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China.
| |
Collapse
|
28
|
Exploring the Interspecific Interactions and the Metabolome of the Soil Isolate Hylemonella gracilis. mSystems 2023; 8:e0057422. [PMID: 36537799 PMCID: PMC9948732 DOI: 10.1128/msystems.00574-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microbial community analysis of aquatic environments showed that an important component of its microbial diversity consists of bacteria with cell sizes of ~0.1 μm. Such small bacteria can show genomic reductions and metabolic dependencies with other bacteria. However, so far, no study has investigated if such bacteria exist in terrestrial environments like soil. Here, we isolated soil bacteria that passed through a 0.1-μm filter. The complete genome of one of the isolates was sequenced and the bacterium was identified as Hylemonella gracilis. A set of coculture assays with phylogenetically distant soil bacteria with different cell and genome sizes was performed. The coculture assays revealed that H. gracilis grows better when interacting with other soil bacteria like Paenibacillus sp. AD87 and Serratia plymuthica. Transcriptomics and metabolomics showed that H. gracilis was able to change gene expression, behavior, and biochemistry of the interacting bacteria without direct cell-cell contact. Our study indicates that in soil there are bacteria that can pass through a 0.1-μm filter. These bacteria may have been overlooked in previous research on soil microbial communities. Such small bacteria, exemplified here by H. gracilis, can induce transcriptional and metabolomic changes in other bacteria upon their interactions in soil. In vitro, the studied interspecific interactions allowed utilization of growth substrates that could not be utilized by monocultures, suggesting that biochemical interactions between substantially different sized soil bacteria may contribute to the symbiosis of soil bacterial communities. IMPORTANCE Analysis of aquatic microbial communities revealed that parts of its diversity consist of bacteria with cell sizes of ~0.1 μm. Such bacteria can show genomic reductions and metabolic dependencies with other bacteria. So far, no study investigated if such bacteria exist in terrestrial environments such as soil. Here, we show that such bacteria also exist in soil. The isolated bacteria were identified as Hylemonella gracilis. Coculture assays with phylogenetically different soil bacteria revealed that H. gracilis grows better when cocultured with other soil bacteria. Transcriptomics and metabolomics showed that H. gracilis was able to change gene expression, behavior, and biochemistry of the interacting bacteria without direct contact. Our study revealed that bacteria are present in soil that can pass through 0.1-μm filters. Such bacteria may have been overlooked in previous research on soil microbial communities and may contribute to the symbiosis of soil bacterial communities.
Collapse
|
29
|
Dinesh R, Sreena CP, Sheeja TE, Charles S, Srinivasan V, Sajith V, Subila KP, Haritha P. Metagenomics indicates abundance of biofilm related genes and horizontal transfer of multidrug resistant genes among bacterial communities in nano zinc oxide polluted soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160032. [PMID: 36370776 DOI: 10.1016/j.scitotenv.2022.160032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The unsafe and reckless disposal of metal oxide nanoparticles like ZnO (nZnO) into the soil could seriously impact bacterial behavioural responses and functions. Under such stress, biofilm formation is considered to be a robust mechanism for bacterial survival in soil. We examined the response of bacterial metagenomes in soils exposed to varying levels of Zn (50, 200, 500 and 1000 mg kg-1) as nano Zn oxide (nZnO) in terms of biofilm genesis and regulation and their co-occurrences with multidrug resistance genes (MDRGs) and mobile genetic elements (MGEs). The size-specific effects of nZnO were verified using its bulk counterpart (bZnO). Both nZnO and bZnO facilitated profusion of biofilm related genes (BGs) especially at higher Zn levels (500 and 1000 mg kg-1 Zn), though maximum abundance was registered at a comparatively lower level under nZnO. In general, nZnO favoured an enhancement of genes involved in exopolysaccharide biosynthesis and attachment, while bZnO favoured genes related to capsule formation, chemotaxis and biofilm dispersion. Co-occurrence network analysis revealed significant positive correlations between abundances of BGs, MDRGs and MGEs, indicating an enhanced probability for horizontal gene transfer of MDRGs in nZnO polluted soils.
Collapse
Affiliation(s)
- R Dinesh
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - C P Sreena
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - T E Sheeja
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India.
| | - Sona Charles
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - V Srinivasan
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - V Sajith
- National Institute of Technology, NIT Campus PO, Kozhikode, Kerala 673012, India
| | - K P Subila
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| | - P Haritha
- ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode, Kerala 673012, India
| |
Collapse
|
30
|
Li B, Liu X, Zhu D, Su H, Guo K, Sun G, Li X, Sun L. Crop diversity promotes the recovery of fungal communities in saline-alkali areas of the Western Songnen Plain. Front Microbiol 2023; 14:1091117. [PMID: 36819047 PMCID: PMC9930164 DOI: 10.3389/fmicb.2023.1091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Phytoremediation is an effective strategy for saline land restoration. In the Western Songnen Plain, northeast China, soil fungal community recovery for saline phytoremediation has not been well documented among different cropping patterns. In this study, we tested how rotation, mixture, and monoculture cropping patterns impact fungal communities in saline-alkali soils to assess the variability between cropping patterns. Methods The fungal communities of the soils of the different cropping types were determined using Illumina Miseq sequencing. Results Mixture and rotation promoted an increase in operational taxonomic unit (OTU) richness, and OTU richness in the mixture system decreased with increasing soil depth. A principal coordinate analysis (PCoA) showed that cropping patterns and soil depths influenced the structure of fungal communities, which may be due to the impact of soil chemistry. This was reflected by soil total nitrogen (TN) and electrical conductivity (EC) being the key factors driving OTU richness, while soil available potassium (AK) and total phosphorus (TP) were significantly correlated with the relative abundance of fungal dominant genus. The relative abundance of Leptosphaerulina, Alternaria, Myrothecium, Gibberella, and Tetracladium varied significantly between cropping patterns, and Leptosphaerulina was significantly associated with soil chemistry. Soil depth caused significant differences in the relative abundance of Fusarium in rotation and mixture soils, with Fusarium more commonly active at 0-15 cm deep soil. Null-model analysis revealed that the fungal community assembly of the mixture soils in 0-15 cm deep soil was dominated by deterministic processes, unlike the other two cropping patterns. Furthermore, fungal symbiotic networks were more complex in rotation and mixture than in monoculture soils, reflected in more nodes, more module hubs, and connectors. The fungal networks in rotation and mixture soils were more stable than in monoculture soils, and mixture networks were obviously more connected than rotations. FUNGuild showed that the relative proportion of saprotroph in rotation and mixture was significantly higher than that in monocultures. The highest proportion of pathotroph and symbiotroph was exhibited in rotation and mixture soils, respectively. Discussion Overall, mixture is superior to crop rotation and monocultures in restoring fungal communities of the saline-alkali soils of the Western Songnen Plain, northeast China.
Collapse
Affiliation(s)
- Bin Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Xiaoqian Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Dan Zhu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Heng Su
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Kaiwen Guo
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Guangyu Sun
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xin Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, China,School of Forestry, Northeast Forestry University, Harbin, China,*Correspondence: Xin Li, ✉
| | - Lei Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, China,Lei Sun, ✉
| |
Collapse
|
31
|
Zampieri G, Campanaro S, Angione C, Treu L. Metatranscriptomics-guided genome-scale metabolic modeling of microbial communities. CELL REPORTS METHODS 2023; 3:100383. [PMID: 36814842 PMCID: PMC9939383 DOI: 10.1016/j.crmeth.2022.100383] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/07/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
Multi-omics data integration via mechanistic models of metabolism is a scalable and flexible framework for exploring biological hypotheses in microbial systems. However, although most microorganisms are unculturable, such multi-omics modeling is limited to isolate microbes or simple synthetic communities. Here, we developed an approach for modeling microbial activity and interactions that leverages the reconstruction of metagenome-assembled genomes and associated genome-centric metatranscriptomes. At its core, we designed a method for condition-specific metabolic modeling of microbial communities through the integration of metatranscriptomic data. Using this approach, we explored the behavior of anaerobic digestion consortia driven by hydrogen availability and human gut microbiota dysbiosis associated with Crohn's disease, identifying condition-dependent amino acid requirements in archaeal species and a reduced short-chain fatty acid exchange network associated with disease, respectively. Our approach can be applied to complex microbial communities, allowing a mechanistic contextualization of multi-omics data on a metagenome scale.
Collapse
Affiliation(s)
- Guido Zampieri
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Stefano Campanaro
- Department of Biology, University of Padova, Padova 35121, Italy
- CRIBI Biotechnology Center, University of Padova, Padova 35121, Italy
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
- Centre for Digital Innovation, Teesside University, Middlesbrough TS1 3BX, UK
| | - Laura Treu
- Department of Biology, University of Padova, Padova 35121, Italy
| |
Collapse
|
32
|
Boza G, Barabás G, Scheuring I, Zachar I. Eco-evolutionary modelling of microbial syntrophy indicates the robustness of cross-feeding over cross-facilitation. Sci Rep 2023; 13:907. [PMID: 36650168 PMCID: PMC9845244 DOI: 10.1038/s41598-023-27421-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
Syntrophic cooperation among prokaryotes is ubiquitous and diverse. It relies on unilateral or mutual aid that may be both catalytic and metabolic in nature. Hypotheses of eukaryotic origins claim that mitochondrial endosymbiosis emerged from mutually beneficial syntrophy of archaeal and bacterial partners. However, there are no other examples of prokaryotic syntrophy leading to endosymbiosis. One potential reason is that when externalized products become public goods, they incite social conflict due to selfish mutants that may undermine any mutualistic interactions. To rigorously evaluate these arguments, here we construct a general mathematical framework of the ecology and evolution of different types of syntrophic partnerships. We do so both in a general microbial and in a eukaryogenetic context. Studying the case where partners cross-feed on each other's self-inhibiting waste, we show that cooperative partnerships will eventually dominate over selfish mutants. By contrast, systems where producers actively secrete enzymes that cross-facilitate their partners' resource consumption are not robust against cheaters over evolutionary time. We conclude that cross-facilitation is unlikely to provide an adequate syntrophic origin for endosymbiosis, but that cross-feeding mutualisms may indeed have played that role.
Collapse
Affiliation(s)
- G Boza
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary
- ASA Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- Centre for Social Sciences, Budapest, Hungary
| | - G Barabás
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary
- Division of Ecological and Environmental Modeling, Linköping University, Linköping, Sweden
| | - I Scheuring
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary
| | - I Zachar
- Institute of Evolution, MTA Centre for Ecological Research, Budapest, Hungary.
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary.
- Parmenides Foundation, Centre for the Conceptual Foundation of Science, Pullach Im Isartal, Germany.
| |
Collapse
|
33
|
Wang B, Ma B, Stirling E, He Z, Zhang H, Yan Q. Freshwater trophic status mediates microbial community assembly and interdomain network complexity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120690. [PMID: 36403871 DOI: 10.1016/j.envpol.2022.120690] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Freshwater microorganisms and their interactions are important drivers of nutrient cycling that are in turn affected by nutrient status, causing shifts in microbial community diversity, composition, and interactions. However, the impact of water trophic status on bacterial-archaeal interdomain interactions remains poorly understood. This study focused on the impact of trophic status, as characterized by trophic state index (TSI), on the interdomain interactions of freshwater microbial communities from 45 ponds in Hangzhou. Our results showed that the mesotrophic wetland bordering on lightly eutrophic (Hemu: TSI of 49; lightly eutrophic is defined as 50 ≤ TSI <60) harbored a much more complex bacterial-archaeal interdomain network, which showed significantly (P < 0.05) higher connectivity than the wetlands with lower (TSI of 38) or higher (TSI of 57) trophic levels. Notably, light eutrophication strengthened the network modules' negative associations with organic carbon through some network hubs, which could trigger carbon loss in wetlands. We also detected a non-linear response of interdomain network complexity to the increasing of nutrients with a turning point of approximately TSI 50. Quantitative estimates of community assembly processes and structural equation modelling analysis indicated that chlorophyll-a, total nitrogen, and total phosphorus could regulate interdomain network complexity (50% of the variation explanation rate) by driving microbial community assembly. This study demonstrates that microbial interdomain network complexity could be used as a bioindicator for ecological changes, which would helpful for improving ecological assessment of the freshwater eutrophication.
Collapse
Affiliation(s)
- Binhao Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Erinne Stirling
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China; Acid Sulfate Soils Centre, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China; College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
34
|
Du H, Pan J, Zou D, Huang Y, Liu Y, Li M. Microbial active functional modules derived from network analysis and metabolic interactions decipher the complex microbiome assembly in mangrove sediments. MICROBIOME 2022; 10:224. [PMID: 36510268 PMCID: PMC9746113 DOI: 10.1186/s40168-022-01421-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/09/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND The metabolic interactions of microbes significantly affect the assembly of microbial communities that play important roles in biogeochemical processes. However, most interspecies interactions between microorganisms in natural communities remain unknown, leading to a poor understanding of community assembly mechanisms. RESULTS Here, we used a genome-scale metabolic modeling-based approach to explore the potential interactions among bacteria and archaea in mangrove sediments. More than half of the assembled microbial species ([Formula: see text]) combined about 3000 pairwise metabolic interaction relationship with high potential. The examples of predicted interactions are consistent with the implications of studies based on microbial enrichment/culture, indicating the feasibility of our strategy for extracting diverse potential interactions from complex interspecies networks. Moreover, a substantial number of previously unknown microbial metabolic interactions were also predicted. We proposed a concept of microbial active functional module (mAFM), defined as a consortium constituted by a group of microbes possessing relatively high metabolic interactions via which they can actively realize certain dominant functions in element transformations. Based on the metabolic interactions and the transcript distribution of microorganisms, five mAFMs distributed in different layers of the sediments were identified. The whole group of mAFMs covered most of the principal pathways in the cycle of carbon, nitrogen, and sulfur, while each module possessed divergently dominant functions. According to thinctiis diston, we inferred that the mAFMs participated in the element cycles via their intra-cycle and the inter-exchange among them and the sediments. CONCLUSIONS The results of this study greatly expanded interaction potential of microbes in mangrove sediments, which could provide supports for prospective mutualistic system construction and microbial enrichment culture. Furthermore, the mAFMs can help to extract valuable microbial metabolic interactions from the whole community and to profile the functioning of the microbial community that promote biogeochemical cycling in mangrove sediments. Video Abstract.
Collapse
Affiliation(s)
- Huan Du
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Dayu Zou
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Yuhan Huang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| |
Collapse
|
35
|
Holland SI, Vázquez-Campos X, Ertan H, Edwards RJ, Manefield MJ, Lee M. Metaproteomics reveals methyltransferases implicated in dichloromethane and glycine betaine fermentation by ' Candidatus Formimonas warabiya' strain DCMF. Front Microbiol 2022; 13:1035247. [PMID: 36569084 PMCID: PMC9768040 DOI: 10.3389/fmicb.2022.1035247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Dichloromethane (DCM; CH2Cl2) is a widespread pollutant with anthropogenic and natural sources. Anaerobic DCM-dechlorinating bacteria use the Wood-Ljungdahl pathway, yet dechlorination reaction mechanisms remain unclear and the enzyme(s) responsible for carbon-chlorine bond cleavage have not been definitively identified. Of the three bacterial taxa known to carry out anaerobic dechlorination of DCM, 'Candidatus Formimonas warabiya' strain DCMF is the only organism that can also ferment non-chlorinated substrates, including quaternary amines (i.e., choline and glycine betaine) and methanol. Strain DCMF is present within enrichment culture DFE, which was derived from an organochlorine-contaminated aquifer. We utilized the metabolic versatility of strain DCMF to carry out comparative metaproteomics of cultures grown with DCM or glycine betaine. This revealed differential abundance of numerous proteins, including a methyltransferase gene cluster (the mec cassette) that was significantly more abundant during DCM degradation, as well as highly conserved amongst anaerobic DCM-degrading bacteria. This lends strong support to its involvement in DCM dechlorination. A putative glycine betaine methyltransferase was also discovered, adding to the limited knowledge about the fate of this widespread osmolyte in anoxic subsurface environments. Furthermore, the metagenome of enrichment culture DFE was assembled, resulting in five high quality and two low quality draft metagenome-assembled genomes. Metaproteogenomic analysis did not reveal any genes or proteins for utilization of DCM or glycine betaine in the cohabiting bacteria, supporting the previously held idea that they persist via necromass utilization.
Collapse
Affiliation(s)
- Sophie I. Holland
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Xabier Vázquez-Campos
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Haluk Ertan
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| | - Richard J. Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael J. Manefield
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Matthew Lee
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
36
|
Li K, Hayes F, Chadwick DR, Wang J, Zou J, Jones DL. Changes in microbial community composition drive the response of ecosystem multifunctionality to elevated ozone. ENVIRONMENTAL RESEARCH 2022; 214:114142. [PMID: 35995222 DOI: 10.1016/j.envres.2022.114142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Increasing tropospheric ozone poses a potential threat to both above- and belowground components of the terrestrial biosphere. Microorganisms are the main drivers of soil ecological processes, however, the link between soil microbial communities and ecological functions under elevated ozone remains poorly understood. In this study, we assessed the responses of three crop seedlings (i.e., soybean, maize, and wheat) growth and soil microbial communities to elevated ozone (40 ppb O3 above ambient air) in a pot experiment in the solardomes. Results showed that elevated ozone adversely affected ecosystem multifunctionality by reducing crop biomass, inhibiting soil extracellular enzyme activities, and altering nutrient availability. Elevated ozone increased bacterial and fungal co-occurrence network complexity, negatively correlated with ecosystem multifunctionality. Changes in the relative abundance of some specific bacteria and fungi were associated with multiple ecosystem functioning. In addition, elevated ozone significantly affected fungal community composition but not bacterial community composition and microbial alpha-diversity. Crop type played a key role in determining bacterial alpha-diversity and microbial community composition. In conclusion, our findings suggest that short-term elevated ozone could lead to a decrease in ecosystem multifunctionality associated with changes in the complexity of microbial networks in soils.
Collapse
Affiliation(s)
- Kejie Li
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Felicity Hayes
- UK Centre for Ecology and Hydrology, Environment Centre Wales, Bangor, Gwynedd, LL57 2UW, UK
| | - David R Chadwick
- School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Jinyang Wang
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Jianwen Zou
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| | - Davey L Jones
- School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, Gwynedd, LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| |
Collapse
|
37
|
Classifying Interactions in a Synthetic Bacterial Community Is Hindered by Inhibitory Growth Medium. mSystems 2022; 7:e0023922. [PMID: 36197097 PMCID: PMC9600862 DOI: 10.1128/msystems.00239-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Predicting the fate of a microbial community and its member species relies on understanding the nature of their interactions. However, designing simple assays that distinguish between interaction types can be challenging. Here, we performed spent medium assays based on the predictions of a mathematical model to decipher the interactions among four bacterial species: Agrobacterium tumefaciens, Comamonas testosteroni, Microbacterium saperdae, and Ochrobactrum anthropi. While most experimental results matched model predictions, the behavior of C. testosteroni did not: its lag phase was reduced in the pure spent media of A. tumefaciens and M. saperdae but prolonged again when we replenished our growth medium. Further experiments showed that the growth medium actually delayed the growth of C. testosteroni, leading us to suspect that A. tumefaciens and M. saperdae could alleviate this inhibitory effect. There was, however, no evidence supporting such "cross-detoxification," and instead, we identified metabolites secreted by A. tumefaciens and M. saperdae that were then consumed or "cross-fed" by C. testosteroni, shortening its lag phase. Our results highlight that even simple, defined growth media can have inhibitory effects on some species and that such negative effects need to be included in our models. Based on this, we present new guidelines to correctly distinguish between different interaction types such as cross-detoxification and cross-feeding. IMPORTANCE Communities of microbes colonize virtually every place on earth. Ultimately, we strive to predict and control how these communities behave, for example, if they reside in our guts and make us sick. But precise control is impossible unless we can identify exactly how their member species interact with one another. To find a systematic way to measure interactions, we started very simply with a small community of four bacterial species and carefully designed experiments based on a mathematical model. This first attempt accurately mapped out interactions for all species except one. By digging deeper, we understood that our method failed for that species as it was suffering in the growth medium that we chose. A revised model that considered that growth media can be harmful could then make more accurate predictions. What we have learned with these four species can now be applied to decipher interactions in larger communities.
Collapse
|
38
|
Mao H, Guo J, Zhou J, Shi J, Cui H, Shi R, Yao J, Fang X, Wang B, Yan F. Antimicrobial poly(ionic liquid)-induced bacterial nanotube formation and drug-resistance spread. Biomater Sci 2022; 10:6460-6471. [PMID: 36155673 DOI: 10.1039/d2bm01130a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial nanotubes are tubular membranous structures bulging from the cell surface that can connect neighboring bacteria for the exchange of intercellular substances. However, little is known about the formation and function of bacterial nanotubes under the stress of antimicrobial materials. Herein, an imidazolium-type cationic poly(ionic liquid) (PIL) and corresponding PIL membranes with antimicrobial properties were synthesized. The effects of these cationic polymers on the formation of bacterial nanotubes between Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) or Vibrio fischeri (V. fischeri), followed by intraspecies and interspecies exchange of antibiotic resistance genes (ARGs) were investigated. The results showed that bacteria tend to produce more nanotubes accompanied by drug-resistance trade, which can even make the ARGs of pathogens spread to the environmental microbes of V. fischeri. Given the unique antimicrobial sustainability toward bacteria after they acquire ARGs via bacterial nanotubes, antimicrobial PILs demonstrate bright prospects in the battle against resistant bacteria.
Collapse
Affiliation(s)
- Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan, University, Shanghai 200032, China.
| | - Jiangna Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jiamei Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jie Shi
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Hengqing Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Rongwei Shi
- School of Material and Chemical Engineering, Tongren University, Tongren 554300, Guizhou, China
| | - Jieran Yao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan, University, Shanghai 200032, China.
| | - Xia Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Bin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Feng Yan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
39
|
Morillo-Lopez V, Sjaarda A, Islam I, Borisy GG, Mark Welch JL. Corncob structures in dental plaque reveal microhabitat taxon specificity. MICROBIOME 2022; 10:145. [PMID: 36064650 PMCID: PMC9446765 DOI: 10.1186/s40168-022-01323-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 07/07/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND The human mouth is a natural laboratory for studying how bacterial communities differ across habitats. Different bacteria colonize different surfaces in the mouth-teeth, tongue dorsum, and keratinized and non-keratinized epithelia-despite the short physical distance between these habitats and their connection through saliva. We sought to determine whether more tightly defined microhabitats might have more tightly defined sets of resident bacteria. A microhabitat may be characterized, for example, as the space adjacent to a particular species of bacterium. Corncob structures of dental plaque, consisting of coccoid bacteria bound to filaments of Corynebacterium cells, present an opportunity to analyze the community structure of one such well-defined microhabitat within a complex natural biofilm. Here, we investigate by fluorescence in situ hybridization and spectral imaging the composition of the cocci decorating the filaments. RESULTS The range of taxa observed in corncobs was limited to a small subset of the taxa present in dental plaque. Among four major groups of dental plaque streptococci, two were the major constituents of corncobs, including one that was the most abundant Streptococcus species in corncobs despite being relatively rare in dental plaque overall. Images showed both Streptococcus types in corncobs in all individual donors, suggesting that the taxa have different ecological roles or that mechanisms exist for stabilizing the persistence of functionally redundant taxa in the population. Direct taxon-taxon interactions were observed not only between the Streptococcus cells and the central corncob filament but also between Streptococcus cells and the limited subset of other plaque bacteria detected in the corncobs, indicating species ensembles involving these taxa as well. CONCLUSIONS The spatial organization we observed in corncobs suggests that each of the microbial participants can interact with multiple, albeit limited, potential partners, a feature that may encourage the long-term stability of the community. Additionally, our results suggest the general principle that a precisely defined microhabitat will be inhabited by a small and well-defined set of microbial taxa. Thus, our results are important for understanding the structure and organizing principles of natural biofilms and lay the groundwork for future work to modulate and control biofilms for human health. Video Abstract.
Collapse
Affiliation(s)
- Viviana Morillo-Lopez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| | - Alexandra Sjaarda
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| | - Imon Islam
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543 USA
| | - Gary G. Borisy
- Present Address: Department of Microbiology, The Forsyth Institute, Cambridge, MA 02139 USA
| | - Jessica L. Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543 USA
- Present Address: Department of Microbiology, The Forsyth Institute, Cambridge, MA 02139 USA
| |
Collapse
|
40
|
Schultz J, Modolon F, Rosado AS, Voolstra CR, Sweet M, Peixoto RS. Methods and Strategies to Uncover Coral-Associated Microbial Dark Matter. mSystems 2022; 7:e0036722. [PMID: 35862824 PMCID: PMC9426423 DOI: 10.1128/msystems.00367-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The vast majority of environmental microbes have not yet been cultured, and most of the knowledge on coral-associated microbes (CAMs) has been generated from amplicon sequencing and metagenomes. However, exploring cultured CAMs is key for a detailed and comprehensive characterization of the roles of these microbes in shaping coral health and, ultimately, for their biotechnological use as, for example, coral probiotics and other natural products. Here, the strategies and technologies that have been used to access cultured CAMs are presented, while advantages and disadvantages associated with each of these strategies are discussed. We highlight the existing gaps and potential improvements in culture-dependent methodologies, indicating several possible alternatives (including culturomics and in situ diffusion devices) that could be applied to retrieve the CAM "dark matter" (i.e., the currently undescribed CAMs). This study provides the most comprehensive synthesis of the methodologies used to recover the cultured coral microbiome to date and draws suggestions for the development of the next generation of CAM culturomics.
Collapse
Affiliation(s)
- Júnia Schultz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Flúvio Modolon
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre S. Rosado
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, UK
| | - Raquel S. Peixoto
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
41
|
Giri S, Yousif G, Shitut S, Oña L, Kost C. Prevalent emergence of reciprocity among cross-feeding bacteria. ISME COMMUNICATIONS 2022; 2:71. [PMID: 37938764 PMCID: PMC9723789 DOI: 10.1038/s43705-022-00155-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 05/25/2023]
Abstract
Explaining the de novo evolution of obligate cooperative cross-feeding interactions among bacteria is a fundamental problem. A critical step during this process is the emergence of reciprocity among two interaction partners, because a mutually beneficial exchange of metabolic byproducts can subsequently favour the evolution of cooperative cross-feeding. However, so far, the propensity with which unidirectional cross-feeding interactions transition into bidirectional interactions remains unknown. To address this issue, we systematically cocultured four amino acid auxotrophic genotypes of two bacterial species with potential amino acid donors belonging to 25 different bacterial species. Surprisingly, the results of this experiment revealed that in around 40% of all cases analysed, both the auxotrophic recipient and the metabolically autonomous donor gained a significant growth advantage in coculture. Subsequent experiments clarified that the auxotrophy-causing mutation did not induce the growth-enhancing effect of recipients, but that it was rather due to a generally high propensity of different species to engage in synergistic metabolic interactions. Together, these findings show that reciprocity commonly emerges spontaneously in unidirectional cross-feeding interactions, thus paving the way for the evolution of even tighter metabolic interactions.
Collapse
Affiliation(s)
- Samir Giri
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany.
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, 49076, Osnabrück, Germany.
- Genome Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.
| | - Ghada Yousif
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, 49076, Osnabrück, Germany
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Shraddha Shitut
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, 49076, Osnabrück, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Leonardo Oña
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, 49076, Osnabrück, Germany
| | - Christian Kost
- Experimental Ecology and Evolution Research Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany.
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, 49076, Osnabrück, Germany.
| |
Collapse
|
42
|
Brault A, Mbuya B, Labbé S. Sib1, Sib2, and Sib3 proteins are required for ferrichrome-mediated cross-feeding interaction between Schizosaccharomyces pombe and Saccharomyces cerevisiae. Front Microbiol 2022; 13:962853. [PMID: 35928155 PMCID: PMC9344042 DOI: 10.3389/fmicb.2022.962853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
Although Saccharomyces cerevisiae is unable to produce siderophores, this fungal organism can assimilate iron bound to the hydroxamate-type siderophore ferrichrome (Fc) produced and secreted by other microbes. Fc can enter S. cerevisiae cells via Arn1. Unlike S. cerevisiae, Schizosaccharomyces pombe synthesizes and secretes Fc. The sib1+ and sib2+ genes encode, respectively, a Fc synthetase and an ornithine-N5-oxygenase, which are required for Fc production. When both genes were expressed in S. pombe, cross-feeding experiments revealed that S. cerevisiae fet3Δ arn1-4Δ cells expressing Arn1 could grow in the vicinity of S. pombe under low-iron conditions. In contrast, deletion of sib1+ and sib2+ produced a defect in the ability of S. pombe to keep S. cerevisiae cells alive when Fc is used as the sole source of iron. Further analysis identified a gene designated sib3+ that encodes an N5-transacetylase required for Fc production in S. pombe. The sib3Δ mutant strain exhibited a severe growth defect in iron-poor media, and it was unable to promote Fc-dependent growth of S. cerevisiae cells. Microscopic analyses of S. pombe cells expressing a functional Sib3-GFP protein revealed that Sib3 was localized throughout the cells, with a proportion of Sib3 being colocalized with Sib1 and Sib2 within the cytosol. Collectively, these results describe the first example of a one-way cross-feeding interaction, with S. pombe providing Fc that enables S. cerevisiae to grow when Fc is used as the sole source of iron.
Collapse
|
43
|
Gan H, Li X, Wang Y, Lü P, Ji N, Yao H, Li S, Guo L. Plants Play Stronger Effects on Soil Fungal than Bacterial Communities and Co-Occurrence Network Structures in a Subtropical Tree Diversity Experiment. Microbiol Spectr 2022; 10:e0013422. [PMID: 35475656 PMCID: PMC9241759 DOI: 10.1128/spectrum.00134-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/11/2022] [Indexed: 01/04/2023] Open
Abstract
Increasing biodiversity loss profoundly affects community structure and ecosystem functioning. However, the differences in community assembly and potential drivers of the co-occurrence network structure of soil fungi and bacteria in association with tree species richness gradients are poorly documented. Here, we examined soil fungal and bacterial communities in a Chinese subtropical tree species richness experiment (from 1 to 16 species) using amplicon sequencing targeting the internal transcribed spacer 2 and V4 hypervariable region of the rRNA genes, respectively. Tree species richness had no significant effect on the diversity of either fungi or bacteria. In addition to soil and spatial distance, tree species richness and composition had a significant effect on fungal community composition but not on bacterial community composition. In fungal rather than bacterial co-occurrence networks, the average degree, degree centralization, and clustering coefficient significantly decreased, but the modularity significantly increased with increasing tree species richness. Fungal co-occurrence network structure was influenced by tree species richness and community composition as well as the soil carbon: nitrogen ratio, but the bacterial co-occurrence network structure was affected by soil pH and spatial distance. This study demonstrates that the community assembly and potential drivers of the co-occurrence network structure of soil fungi and bacteria differ in the subtropical forest. IMPORTANCE Increasing biodiversity loss profoundly affects community structure and ecosystem functioning. Therefore, revealing the mechanisms associated with community assembly and co-occurrence network structure of microbes along plant species diversity gradients is very important for understanding biodiversity maintenance and community stability in response to plant diversity loss. Here, we compared the differences in community assembly and potential drivers of the co-occurrence network structure of soil fungi and bacteria in a subtropical tree diversity experiment. In addition to soil and spatial distance, plants are more strongly predictive of the community and co-occurrence network structure of fungi than those of bacteria. The study highlighted that plants play more important roles in shaping community assembly and interactions of fungi than of bacteria in the subtropical tree diversity experiment.
Collapse
Affiliation(s)
- Huiyun Gan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xingchun Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Pengpeng Lü
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Niuniu Ji
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- DOE Center for Advanced Bioenergy & Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hui Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shan Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Liangdong Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Liu Z, Yan Q, Jiang C, Li J, Jian H, Fan L, Zhang R, Xiao X, Meng D, Liu X, Wang J, Yin H. Growth rate determines prokaryote-provirus network modulated by temperature and host genetic traits. MICROBIOME 2022; 10:92. [PMID: 35701838 PMCID: PMC9195381 DOI: 10.1186/s40168-022-01288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Prokaryote-virus interactions play key roles in driving biogeochemical cycles. However, little is known about the drivers shaping their interaction network structures, especially from the host features. Here, we compiled 7656 species-level genomes in 39 prokaryotic phyla across environments globally and explored how their interaction specialization is constrained by host life history traits, such as growth rate. RESULTS We first reported that host growth rate indicated by the reverse of minimal doubling time was negatively related to interaction specialization for host in host-provirus network across various ecosystems and taxonomy groups. Such a negative linear growth rate-specialization relationship (GrSR) was dependent on host optimal growth temperature (OGT), and stronger toward the two gradient ends of OGT. For instance, prokaryotic species with an OGT ≥ 40 °C showed a stronger GrSR (Pearson's r = -0.525, P < 0.001). Significant GrSRs were observed with the presences of host genes in promoting the infection cycle at stages of adsorption, establishment, and viral release, but nonsignificant with the presence of immune systems, such as restriction-modification systems and CRISPR-Cas systems. Moreover, GrSR strength was increased with the presence of temperature-dependent lytic switches, which was also confirmed by mathematical modeling. CONCLUSIONS Together, our results advance our understanding of the interactions between prokaryotes and proviruses and highlight the importance of host growth rate in interaction specialization during lysogenization. Video Abstract.
Collapse
Affiliation(s)
- Zhenghua Liu
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410006, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410125, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, The Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, 361102, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Delong Meng
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410006, China
| | - Xueduan Liu
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410006, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Huaqun Yin
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410006, China.
| |
Collapse
|
45
|
Goyal A. Horizontal gene transfer drives the evolution of dependencies in bacteria. iScience 2022; 25:104312. [PMID: 35586069 PMCID: PMC9108730 DOI: 10.1016/j.isci.2022.104312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/17/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022] Open
Abstract
Many naturally occurring bacteria lead a lifestyle of metabolic dependency for crucial resources. We do not understand what factors drive bacteria toward this lifestyle and how. Here, we systematically show the crucial role of horizontal gene transfer (HGT) in dependency evolution in bacteria. Across 835 bacterial species, we map gene gain-loss dynamics on a deep evolutionary tree and assess the impact of HGT and gene loss on metabolic networks. Our analyses suggest that HGT-enabled gene gains can affect which genes are later lost. HGT typically adds new catabolic routes to bacterial metabolic networks, leading to new metabolic interactions between bacteria. We also find that gaining new routes can promote the loss of ancestral routes (”coupled gains and losses”, CGLs). Phylogenetic patterns indicate that both dependencies—mediated by CGLs and those purely by gene loss—are equally likely. Our results highlight HGT as an important driver of metabolic dependency evolution in bacteria. Metabolic dependencies are widespread across bacterial genomes New genes expand bacterial catabolism via the process of horizontal gene transfer During evolution, efficient pathways are gained, whereas redundant pathways are lost Gained pathways often depend on the metabolic byproducts of the surrounding community
Collapse
Affiliation(s)
- Akshit Goyal
- Physics of Living Systems, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
46
|
Zachar I, Boza G. The Evolution of Microbial Facilitation: Sociogenesis, Symbiogenesis, and Transition in Individuality. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.798045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Metabolic cooperation is widespread, and it seems to be a ubiquitous and easily evolvable interaction in the microbial domain. Mutual metabolic cooperation, like syntrophy, is thought to have a crucial role in stabilizing interactions and communities, for example biofilms. Furthermore, cooperation is expected to feed back positively to the community under higher-level selection. In certain cases, cooperation can lead to a transition in individuality, when freely reproducing, unrelated entities (genes, microbes, etc.) irreversibly integrate to form a new evolutionary unit. The textbook example is endosymbiosis, prevalent among eukaryotes but virtually lacking among prokaryotes. Concerning the ubiquity of syntrophic microbial communities, it is intriguing why evolution has not lead to more transitions in individuality in the microbial domain. We set out to distinguish syntrophy-specific aspects of major transitions, to investigate why a transition in individuality within a syntrophic pair or community is so rare. We review the field of metabolic communities to identify potential evolutionary trajectories that may lead to a transition. Community properties, like joint metabolic capacity, functional profile, guild composition, assembly and interaction patterns are important concepts that may not only persist stably but according to thought-provoking theories, may provide the heritable information at a higher level of selection. We explore these ideas, relating to concepts of multilevel selection and of informational replication, to assess their relevance in the debate whether microbial communities may inherit community-level information or not.
Collapse
|
47
|
Oña L, Kost C. Cooperation increases robustness to ecological disturbance in microbial cross-feeding networks. Ecol Lett 2022; 25:1410-1420. [PMID: 35384221 DOI: 10.1111/ele.14006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022]
Abstract
Microorganisms mainly exist within complex networks of ecological interactions. Given that the growth and survival of community members frequently depend on an obligate exchange of essential metabolites, it is generally unclear how such communities can persist despite the destabilising force of ecological disturbance. Here we address this issue using a population dynamics model. In contrast to previous work that suggests the potential for obligate interaction networks to emerge is limited, we find the opposite pattern: ecological disturbance favours both specific network topologies and cooperative cross-feeding among community members. These results establish environmental perturbations as a key driver shaping the architecture of microbial interaction networks.
Collapse
Affiliation(s)
- Leonardo Oña
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Christian Kost
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
48
|
Understanding Interaction Patterns within Deep-Sea Microbial Communities and Their Potential Applications. Mar Drugs 2022; 20:md20020108. [PMID: 35200637 PMCID: PMC8874374 DOI: 10.3390/md20020108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
Environmental microbes living in communities engage in complex interspecies interactions that are challenging to decipher. Nevertheless, the interactions provide the basis for shaping community structure and functioning, which is crucial for ecosystem service. In addition, microbial interactions facilitate specific adaptation and ecological evolution processes particularly essential for microbial communities dwelling in resource-limiting habitats, such as the deep oceans. Recent technological and knowledge advancements provide an opportunity for the study of interactions within complex microbial communities, such as those inhabiting deep-sea waters and sediments. The microbial interaction studies provide insights into developing new strategies for biotechnical applications. For example, cooperative microbial interactions drive the degradation of complex organic matter such as chitins and celluloses. Such microbiologically-driven biogeochemical processes stimulate creative designs in many applied sciences. Understanding the interaction processes and mechanisms provides the basis for the development of synthetic communities and consequently the achievement of specific community functions. Microbial community engineering has many application potentials, including the production of novel antibiotics, biofuels, and other valuable chemicals and biomaterials. It can also be developed into biotechniques for waste processing and environmental contaminant bioremediation. This review summarizes our current understanding of the microbial interaction mechanisms and emerging techniques for inferring interactions in deep-sea microbial communities, aiding in future biotechnological and therapeutic applications.
Collapse
|
49
|
He J, Zhang N, Muhammad A, Shen X, Sun C, Li Q, Hu Y, Shao Y. From surviving to thriving, the assembly processes of microbial communities in stone biodeterioration: A case study of the West Lake UNESCO World Heritage area in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150395. [PMID: 34818768 DOI: 10.1016/j.scitotenv.2021.150395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 05/11/2023]
Abstract
Serious concerns regarding stone biodeterioration have been raised due to the loss of aesthetic value and hidden dangers in stone cultural heritages and buildings. Stone biodeterioration involves a complex ecological interplay among organisms, however, the ecological mechanisms (deterministic or stochastic processes) that determine the microbial community on stone remain poorly understood. Here, using both amplicon and shotgun metagenomic sequencing approaches, we comprehensively investigated the biodiversity, assembly, and function of communities (including prokaryotes, fungi, microfauna, and plants) on various types of deteriorating limestone across different habitats in Feilaifeng. By generalizing classic ecological models to stone habitats, we further uncovered and quantified the mechanisms underlying microbial community assembly processes and microbial interactions within the biodeteriorated limestone. Community profiling revealed stable ecosystem functional potential despite high taxonomic variation across different biodeterioration types, suggesting non-random community assembly. Increased niche differentiation occurred in prokaryotes and fungi but not in microfauna and plant during biodeterioration. Certain microbial groups such as nitrifying archaea and bacteria showed wider niche breadth and likely contributing to the initiation, succession and expansion of stone biodeterioration. Consistently, prokaryotes were more strongly structured by selection-based deterministic processes, while micro-eukaryotes were more influenced by dispersal and drift-based stochastic processes. Importantly, microbial coexistence maintains network robustness within stone microbiotas, highlighting mutual cooperation among functional microorganisms. These results provide new insights into microbial community assembly mechanisms in stone ecosystems and may aid in the sustainable conservation of stone materials of interest.
Collapse
Affiliation(s)
- Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Nan Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqiang Shen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Qiang Li
- Laboratory of Cultural Relics Conservation Materials, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yulan Hu
- School of Art and Archaeology, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China; Key Laboratory for Molecular Animal Nutrition, Ministry of Education, China.
| |
Collapse
|
50
|
Galvez G, Ortega J, Fredericksen F, Aliaga-Tobar V, Parra V, Reyes-Jara A, Pizarro L, Latorre M. Co-occurrence Interaction Networks of Extremophile Species Living in a Copper Mining Tailing. Front Microbiol 2022; 12:791127. [PMID: 35069487 PMCID: PMC8773694 DOI: 10.3389/fmicb.2021.791127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Copper mining tailings are characterized by high concentrations of heavy metals and an acidic pH, conditions that require an extreme adaptation for any organism. Currently, several bacterial species have been isolated and characterized from mining environments; however, very little is known about the structure of microbial communities and how their members interact with each other under the extreme conditions where they live. This work generates a co-occurrence network, representing the bacterial soil community from the Cauquenes copper tailing, which is the largest copper waste deposit worldwide. A representative sampling of six zones from the Cauquenes tailing was carried out to determine pH, heavy metal concentration, total DNA extraction, and subsequent assignment of Operational Taxonomic Units (OTUs). According to the elemental concentrations and pH, the six zones could be grouped into two sectors: (1) the "new tailing," characterized by neutral pH and low concentration of elements, and (2) the "old tailing," having extremely low pH (~3.5) and a high concentration of heavy metals (mainly copper). Even though the abundance and diversity of species were low in both sectors, the Pseudomonadaceae and Flavobacteriaceae families were over-represented. Additionally, the OTU identifications allowed us to identify a series of bacterial species with diverse biotechnological potentials, such as copper bioleaching and drought stress alleviation in plants. Using the OTU information as a template, we generated co-occurrence networks for the old and new tailings. The resulting models revealed a rearrangement between the interactions of members living in the old and new tailings, and highlighted conserved bacterial drivers as key nodes, with positive interactions in the network of the old tailings, compared to the new tailings. These results provide insights into the structure of the soil bacterial communities growing under extreme environmental conditions in mines.
Collapse
Affiliation(s)
- Gabriel Galvez
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
| | - Jaime Ortega
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
| | - Fernanda Fredericksen
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
| | - Victor Aliaga-Tobar
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
| | - Valentina Parra
- Departamento de Bioquímica y Biología Molecular and Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Angélica Reyes-Jara
- Laboratorio de Microbiología y Probióticos, INTA, Universidad de Chile, Santiago, Chile
| | - Lorena Pizarro
- Laboratorio de Inmunidad Vegetal, Instituto de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, Rancagua, Chile
| | - Mauricio Latorre
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| |
Collapse
|