1
|
Wu Z, Lei X, Zhang Y, Wu S, Hou Z, Ma K, Pei H, Shang F, Xue T. The membrane protein DtpT plays an important role in biofilm formation and stress resistance in foodborne Staphylococcus aureus RMSA49. Food Res Int 2025; 208:116249. [PMID: 40263806 DOI: 10.1016/j.foodres.2025.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Staphylococcus aureus has been a major contributor to the contamination of dairy products and preserved foods due to its capacity for biofilm formation and strong resistance to environmental stress. The membrane transport protein di-and tripeptides transporter (DtpT) is the primary transporter of di- and tripeptides in S. aureus, yet its impact on biofilm formation and stress resistance in S. aureus has not been previously reported. Our study focused on the foodborne S. aureus strain RMSA49, revealing that mutation of the dtpT resulted in diminished biofilm formation ability and reduced tolerance to environmental stress (high temperature, dryness, oxidative stress, and salt stress). These findings highlight the significance of DtpT in both biofilm formation and response to environmental stress in foodborne S. aureus. Our study represents the first report demonstrating the crucial role of DtpT in biofilm formation and environmental tolerance in S. aureus, providing new avenues for future research on this protein while also identifying potential target genes for further investigation into S. aureus tolerance mechanisms during food processing and control of biofilm formation.
Collapse
Affiliation(s)
- Ziheng Wu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaolu Lei
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yunying Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Siyao Wu
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhiyuan Hou
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Kai Ma
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hao Pei
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
2
|
Jang BH, Jung SH, Kwon S, Park SJ, Kang JH. Red Blood Cell-Induced Bacterial Margination Improves Microbial Hemoadsorption on Engineered Cell-Depleted Thrombi, Restoring Severe Bacteremia in Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417498. [PMID: 40285645 DOI: 10.1002/advs.202417498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/14/2025] [Indexed: 04/29/2025]
Abstract
Extracorporeal hemoadsorption for treating bacteremia has exhibited limited success due to the lack of a clear strategy for effectively bringing bacterial cells into contact with the surface and universal bacteria-capturing substances. Here, a novel extracorporeal device is reported that can eliminate various intact bacteria from whole blood, employing microfluidic bacterial margination and engineered cell-depleted thrombus (CDT) presenting bacterial adhesin receptors. The critical strain rate of red blood cells (RBCs) (0.83 × 10-2) and the flow path height within about 300 µm required for RBC axial migration in the flows are found. The subsequent RBC-bacteria collisions induced bacterial margination, facilitating their effective capture on the CDT surface on the channel wall. Fibrinogen and fibronectin in CDT are found to primarily contribute to capturing various bacteria. The extracorporeal CDT filters (eCDTF), which integrate all these principles, demonstrate significant depletion of major antibiotic-resistant and human fecal bacteria from the whole blood in vitro. Remarkable reductions in bacterial load and inflammatory markers in the rats lethally infected with methicillin-resistant Staphylococcus aureus are further confirmed, resulting in the restoration from bacteremia following extracorporeal treatment. The demonstration may propose a new design principle for hemoadsorption devices and elucidate the limited success of conventional treatments.
Collapse
Affiliation(s)
- Bong Hwan Jang
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Su Hyun Jung
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Seyong Kwon
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Sung Jin Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Joo H Kang
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
3
|
Li Y, Zhou H, Gele T, Hu C, Liu C, Song W, Wei L, Song D, Jin M, Tang Y, Li Q, Jiang S, Yuan G, Su X. Helicid: A novel Anti-Staphylococcus aureus adjuvant. Biochimie 2025; 231:46-60. [PMID: 39681184 DOI: 10.1016/j.biochi.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/16/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Staphylocoagulase (Coa) plays a critical role in the pathogenicity of Staphylococcus aureus (S. aureus). The present study was undertaken to investigate the underlying mechanism which helicid (HEL) suppressed the virulence factor Coa, as well as to assess the synergistic inhibitory effects of HEL in conjunction with antibiotics, thereby establishing the potential of HEL as an antibacterial adjuvant. We employed coagulation and biofilm assays to comprehensively assess the inhibitory impact of HEL on S. aureus pathogenicity. The thermal shift assay demonstrated that HEL exerted a direct impact on the protein stability of Coa, evidenced by a 6 °C change in melting temperature (ΔTm) at a concentration of 100 μM. HEL binding to Coa proteins was further validated by molecular dynamics simulations and fluorescence quenching. Molecular docking and point mutation assays identified S23 and D112 as crucial binding sites for HEL and Coa. Furthermore, HEL has been observed to potentiate the bactericidal properties of ceftaroline fosamil (CEF-F), concurrently diminishing the resistance exhibited by S. aureus towards CEF-F, as demonstrated by antibiotic synergy tests and resistance induction assays. The combination of HEL and CEF-F effectively reduced the number of bacteria and improved the survival of both Galleria mellonella larvae and mice. Additionally, a significant decrease was observed in the levels of TNF-α, IL-6, and IFN-γ in mice broncho-alveolar lavage fluid (BALF). Ultimately, our findings confirmed that the direct binding of HEL to Coa could diminish the pathogenicity of S. aureus. Moreover, the combination with CEF-F substantially reduced the lethality associated with S. aureus-infected pneumonia and extended the efficacy of the antibiotic.
Collapse
Affiliation(s)
- Yufen Li
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Haofang Zhou
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Teri Gele
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chunjie Hu
- Proctology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Chang Liu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Lin Wei
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Danning Song
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengli Jin
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yating Tang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Qingjie Li
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Shuang Jiang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Gang Yuan
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xin Su
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
4
|
Dessenne C, Mariller C, Vidal O, Huvent I, Guerardel Y, Elass-Rochard E, Rossez Y. Glycan-mediated adhesion mechanisms in antibiotic-resistant bacteria. BBA ADVANCES 2025; 7:100156. [PMID: 40207210 PMCID: PMC11979486 DOI: 10.1016/j.bbadva.2025.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Bacterial adhesins play a central role in host-pathogen interactions, with many specifically targeting glycans to mediate bacterial colonization, influence infection dynamics, and evade host immune responses. In this review, we focus on bacterial pathogens identified by the World Health Organization as critical threats to public health and in urgent need of new treatments. We summarize glycoconjugate targets identified in the literature across 19 bacterial genera and species. This comprehensive review provides a foundation for the development of innovative therapeutic strategies to effectively combat these pathogens.
Collapse
Affiliation(s)
- Clara Dessenne
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Christophe Mariller
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Olivier Vidal
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Isabelle Huvent
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yann Guerardel
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Elisabeth Elass-Rochard
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
5
|
Bonsaglia ECR, Rossi BF, Possebon FS, Silva NCC, Gonçalves JL, Castilho IG, Fernandes Junior A, dos Santos MV, Rall VLM. In Vitro Adhesion and Invasion Rates of Staphylococcus aureus Isolated from Mastitic Cows Are Modulated by the agr System and MSCRAMM Genes. Vet Sci 2025; 12:270. [PMID: 40267004 PMCID: PMC11945600 DOI: 10.3390/vetsci12030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 04/25/2025] Open
Abstract
Mastitis, an inflammatory condition of the udder, can be caused by the entry of Staphylococcus aureus, whose adhesion to the mammary epithelial cells is influenced by virulence factors such as microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) and the accessory gene regulator (agr) system. Our goal was to determine the adhesion and invasion rates of S. aureus isolates from clinical (mild and moderate) and subclinical mastitis and to assess the impact of MSCRAMM genes and agr types on disease severity. Clinical isolates predominantly carried agrII (p < 0.0083) and multiple MSCRAMM genes, correlating with high adhesion capacity but reduced invasion capacity regardless of clinical severity. Remarkably, subclinical isolates, mainly agr-negative (85.7%), showed increased cellular invasion (p < 0.0001), possibly due to reduced expression of agr-mediated virulence factors. These findings contribute to the understanding of the pathogen-host dynamics in bovine mastitis and highlight the importance of both MSCRAMMs and the agr system in modulating disease severity. These insights can inform targeted interventions for mastitis prevention and treatment.
Collapse
Affiliation(s)
- Erika Carolina Romão Bonsaglia
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Pirassununga 13635-900, Brazil;
| | - Bruna Fernanda Rossi
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University, Botucatu 18618-691, Brazil; (B.F.R.); (I.G.C.); (A.F.J.); (V.L.M.R.)
| | - Fabio Sossai Possebon
- Department of Animal Production and Preventive Veterinary Medicine, Sao Paulo State University, Botucatu 18618-691, Brazil;
- Institute of Biotechnology, Sao Paulo State University (UNESP), Botucatu 18618-691, Brazil
| | - Nathalia Cristina Cirone Silva
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, Brazil;
| | - Juliano Leonel Gonçalves
- Bacteriology, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, Lansing, MI 48910, USA;
| | - Ivana Giovannetti Castilho
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University, Botucatu 18618-691, Brazil; (B.F.R.); (I.G.C.); (A.F.J.); (V.L.M.R.)
| | - Ary Fernandes Junior
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University, Botucatu 18618-691, Brazil; (B.F.R.); (I.G.C.); (A.F.J.); (V.L.M.R.)
| | - Marcos Veiga dos Santos
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Pirassununga 13635-900, Brazil;
| | - Vera Lúcia Mores Rall
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University, Botucatu 18618-691, Brazil; (B.F.R.); (I.G.C.); (A.F.J.); (V.L.M.R.)
| |
Collapse
|
6
|
Xu XX, Tian Y, Pu Y, Che B, Luo H, Liu Y, Liu YJ, Jing G. Bacterial Swimming and Accumulation on Endothelial Cell Surfaces. J Phys Chem B 2025; 129:2647-2655. [PMID: 39983743 DOI: 10.1021/acs.jpcb.4c08666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Flagellar-driven locomotion plays a critical role in the bacterial attachment and colonization of surfaces, contributing to the risks of contamination and infection. Extensive efforts to uncover the underlying principles governing bacterial motility near surfaces have relied on idealized assumptions about surrounding artificial surfaces. However, in the context of living systems, the role of cells from tissues and organs becomes increasingly critical, particularly in bacterial swimming and adhesion, yet it remains poorly understood. Here, we propose using biological surfaces composed of vascular endothelial cells to experimentally investigate bacterial motion and interaction behaviors. Our results reveal that bacterial trapping observed on inorganic surfaces is counteractively manifested with reduced radii of circular motion on cellular surfaces. Additionally, two distinct modes of bacterial adhesion were identified: tight and loose adhesion. Interestingly, the presence of living cells enhances bacterial surface enrichment, and imposed flow intensifies this accumulation via a bias-swimming effect. These results surprisingly indicate that physical effects remain the dominant factor regulating bacterial motility and accumulation at the single-cell-layer level in vitro, bridging the gap between simplified hydrodynamic mechanisms and complex biological surfaces with relevance to biofilm formation and bacterial contamination.
Collapse
Affiliation(s)
- Xin-Xin Xu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yangguang Tian
- School of Physics, Northwest University, Xi'an 710127, China
| | - Yuhe Pu
- School of Physics, Northwest University, Xi'an 710127, China
| | - Bingchen Che
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Hao Luo
- School of Physics, Northwest University, Xi'an 710127, China
| | - Yanan Liu
- School of Physics, Northwest University, Xi'an 710127, China
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Guangyin Jing
- School of Physics, Northwest University, Xi'an 710127, China
| |
Collapse
|
7
|
Flores C, Rohn JL. Bacterial adhesion strategies and countermeasures in urinary tract infection. Nat Microbiol 2025; 10:627-645. [PMID: 39929975 DOI: 10.1038/s41564-025-01926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/07/2025] [Indexed: 03/06/2025]
Abstract
Urinary tract infections (UTIs) are compounded by antimicrobial resistance, which increases the risk of UTI recurrence and antibiotic treatment failure. This also intensifies the burden of disease upon healthcare systems worldwide, and of morbidity and mortality. Uropathogen adhesion is a critical step in the pathogenic process, as has been mainly shown for Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus agalactiae, Proteus, Enterococcus and Staphylococcus species. Although many bacterial adhesion molecules from these uropathogens have been described, our understanding of their contributions to UTIs is limited. Here we explore knowledge gaps in the UTI field, as we discuss the broader repertoire of uropathogen adhesins, including their role beyond initial attachment and the counter-responses of the host immune system. Finally, we describe the development of therapeutic approaches that target uropathogenic adhesion strategies and provide potential alternatives to antibiotics.
Collapse
Affiliation(s)
- Carlos Flores
- Biozentrum, University of Basel, Basel, Switzerland.
| | - Jennifer L Rohn
- Centre for Urological Biology, Division of Medicine, University College London, London, UK.
| |
Collapse
|
8
|
Galeva AV, Zhao D, Syutkin AS, Topilina MY, Shchyogolev SY, Pavlova EY, Selivanova OM, Kireev II, Surin AK, Burygin GL, Liu J, Xiang H, Pyatibratov MG. Tat-fimbriae ("tafi"): An unusual type of haloarchaeal surface structure depending on the twin-arginine translocation pathway. iScience 2025; 28:111793. [PMID: 39949959 PMCID: PMC11821415 DOI: 10.1016/j.isci.2025.111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/13/2023] [Accepted: 01/09/2025] [Indexed: 02/16/2025] Open
Abstract
The surface structures of archaeal cells, many of which exist at high temperatures, high salinity, and non-physiological pH, are key factors for their adaptation to extreme living conditions. In the haloarchaeon Haloarcula hispanica, we have discovered a thin filamentous surface appendage called tat-fimbriae ("tafi"), which were identified to be composed of three protein subunits, TafA, TafC, and TafE, among which TafA is the major fimbrial subunit. Molecular genetic evidence demonstrates TafA was transported through the twin-arginine translocation pathway (Tat-pathway). Based on protein structure prediction (including AlphaFold 3), tafi exhibits a linear structure: TafC at the tip, TafE acting as an adapter, TafA forming the core filament, and they link the fourth subunit TafF, anchoring tafi to the cell wall. To our knowledge, this is the first case that the Tat-pathway has been linked to the secretion of protein subunits forming prokaryotic filamentous structures.
Collapse
Affiliation(s)
- Anna V. Galeva
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Alexey S. Syutkin
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Marina Yu Topilina
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Sergei Yu Shchyogolev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov 410049, Russia
| | - Elena Yu Pavlova
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Olga M. Selivanova
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| | - Igor I. Kireev
- A.N. Belozersky Institute of Physico-chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gori 1, Bldg 40, Moscow 119234, Russia
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
- Branch of the Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, Moscow Region 142290, Russia
- State Research Center for Applied Microbiology & Biotechnology, Obolensk, Serpukhov District, Moscow Region 142279, Russia
| | - Gennady L. Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov 410049, Russia
- Vavilov Saratov State Agrarian University, 1 Teatralnaya Ploshchad, Saratov 410012, Russia
| | - Jingfang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Mikhail G. Pyatibratov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya st. 4, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
9
|
Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, Costa FB, Nakazato G, Casagrande R, Verri WA. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens 2025; 14:185. [PMID: 40005560 PMCID: PMC11858194 DOI: 10.3390/pathogens14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium of significant clinical importance, known for its versatility and ability to cause a wide array of infections, such as osteoarticular, pulmonary, cardiovascular, device-related, and hospital-acquired infections. This review describes the most recent evidence of the pathogenic potential of S. aureus, which is commonly part of the human microbiota but can lead to severe infections. The prevalence of pathogenic S. aureus in hospital and community settings contributes to substantial morbidity and mortality, particularly in individuals with compromised immune systems. The immunopathogenesis of S. aureus infections involves intricate interactions with the host immune and non-immune cells, characterized by various virulence factors that facilitate adherence, invasion, and evasion of the host's defenses. This review highlights the complexity of S. aureus infections, ranging from mild to life-threatening conditions, and underscores the growing public health concern posed by multidrug-resistant strains, including methicillin-resistant S. aureus (MRSA). This article aims to provide an updated perspective on S. aureus-related infections, highlighting the main diseases linked to this pathogen, how the different cell types, virulence factors, and signaling molecules are involved in the immunopathogenesis, and the future perspectives to overcome the current challenges to treat the affected individuals.
Collapse
Affiliation(s)
- Fernanda S. Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Jhonatan Macedo Ribeiro
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Fernanda Barbosa Costa
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| |
Collapse
|
10
|
Huang LZY, Penman R, Kariuki R, Vaillant PHA, Gharehgozlo S, Shaw ZL, Truong VK, Vongsvivut J, Elbourne A, Caruso RA. Graveyard effects of antimicrobial nanostructured titanium over prolonged exposure to drug resistant bacteria and fungi. NANOSCALE 2025; 17:3170-3188. [PMID: 39713977 DOI: 10.1039/d4nr03238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Innovations in nanostructured surfaces have found a practical place in the medical area with use in implant materials for post-operative infection prevention. These textured surfaces should be dual purpose: (1) bactericidal on contact and (2) resistant to biofilm formation over prolonged periods. Here, hydrothermally etched titanium surfaces were tested against two highly antimicrobial resistant microbial species, methicillin-resistant Staphylococcus aureus and Candida albicans. Two surface types - unmodified titanium and nanostructured titanium - were incubated in a suspension of each microbial strain for 1 day and 7 days. Surface topography and cross-sectional information of the microbial cells adhered to the surfaces, along with biomass volume and live/dead rate, showed that while nanostructured titanium was able to kill microbes after 1 day of exposure, after 7 days, the rate of death becomes negligible when compared to the unmodified titanium. This suggests that as biofilms mature on a nanostructured surface, the cells that have lysed conceal the nanostructures and prime the surface for planktonic cells to adhere, decreasing the possibility of structure-induced lysis. Synchrotron macro-attenuated total reflection Fourier transform infrared (macro ATR-FTIR) micro-spectroscopy was used to elucidate the biochemical changes occurring following exposure to differing surface texture and incubation duration, providing further understanding into the effects of surface morphology on the biochemical molecules (lipids, proteins and polysaccharides) in an evolving and growing microbial colony.
Collapse
Affiliation(s)
- Louisa Z Y Huang
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Rowan Penman
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Rashad Kariuki
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Pierre H A Vaillant
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Soroosh Gharehgozlo
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Z L Shaw
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Vi Khanh Truong
- Healthcare Engineering Innovation Group, Department of Biomedical Engineering & Biotechnology, College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO - Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Aaron Elbourne
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Rachel A Caruso
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
11
|
Gao S, Li X, Han B. Bacterial and bacterial derivatives-based drug delivery systems: a novel approach for treating central nervous system disorders. Expert Opin Drug Deliv 2025; 22:163-180. [PMID: 39688950 DOI: 10.1080/17425247.2024.2444364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/19/2024]
Abstract
INTRODUCTION Bacteria and their derivatives show great potential as drug delivery systems due to their unique chemotaxis, biocompatibility, and targeting abilities. In CNS disease treatment, bacterial carriers can cross the blood-brain barrier (BBB) and deliver drugs precisely, overcoming limitations of traditional methods. Advances in genetic engineering, synthetic biology, and nanotechnology have transformed these systems into multifunctional platforms for personalized CNS treatment. AREAS COVERED This review examines the latest research on bacterial carriers for treating ischemic brain injury, neurodegenerative diseases, and gliomas. Bacteria efficiently cross the blood-brain barrier via active targeting, endocytosis, paracellular transport, and the nose-to-brain route for precise drug delivery. Various bacterial drug delivery systems, such as OMVs and bacterial ghosts, are explored for their design and application. Databases were searched in Google Scholar for the period up to December 2024. EXPERT OPINION Future developments in bacterial drug delivery will rely on AI-driven design and high-throughput engineering, enhancing treatment precision. Personalized medicine will further optimize bacterial carriers for individual patients, but challenges such as biosafety, immune rejection, and scalability must be addressed. As multimodal diagnostic and therapeutic strategies advance, bacterial carriers are expected to play a central role in CNS disease treatment, offering novel precision medicine solutions.
Collapse
Affiliation(s)
- Shizhu Gao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| | - Xin Li
- Orthopedic Medical Center, 2nd hospital of Jilin University, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
12
|
Abdraimova NK, Shitikov EA, Bespiatykh DA, Gorodnichev RB, Klimina KM, Veselovsky VA, Boldyreva DI, Bogdanova AS, Klinov DV, Kornienko MA. Response of Staphylococcus aureus to combination of virulent bacteriophage vB_SauM-515A1 and linezolid. Front Microbiol 2024; 15:1519312. [PMID: 39760077 PMCID: PMC11695419 DOI: 10.3389/fmicb.2024.1519312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
The combined use of lytic bacteriophages with antibiotics is currently being explored as a strategy to enhance the effectiveness of infectious disease therapies, including those caused by Staphylococcus aureus. In this study, we investigated the synergistic potential of bacteriophage vB_SauM-515A1 (Herelleviridae family) and the first-line antibiotic linezolid against the methicillin-resistant S. aureus strain SA0413Rev. A checkerboard assay revealed a significant synergistic effect against planktonic cells (FIC = 0.225): a combination of 1/8 MIC of linezolid and 0.01 MOI of the bacteriophage completely inhibited bacterial growth. However, the impact on biofilm-associated cells depended on the treatment sequence. Sequential administration resulted in antagonism, while simultaneous application demonstrated a synergistic effect, as confirmed through scanning electron microscopy. Transcriptomic analysis of S. aureus SA0413Rev under the combined influence of linezolid (1/4 MIC) and bacteriophage vB_SauM-515A1 (10 MOI) predominantly reflected changes associated with productive bacteriophage infection, including alterations in nucleotide metabolism, activation of prophage regions, and virulence factors. Furthermore, both agents affected energy and carbon metabolism. These findings contribute to the development of combination therapy approaches for infections caused by S. aureus and highlight the importance of optimizing treatment conditions for maximal therapeutic efficacy.
Collapse
Affiliation(s)
- Narina K. Abdraimova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Egor A. Shitikov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Dmitry A. Bespiatykh
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Roman B. Gorodnichev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ksenia M. Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Vladimir A. Veselovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daria I. Boldyreva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Alexandra S. Bogdanova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - Dmitry V. Klinov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Dolgoprudny, Russia
| | - Maria A. Kornienko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
13
|
Sivori F, Cavallo I, Truglio M, De Maio F, Sanguinetti M, Fabrizio G, Licursi V, Francalancia M, Fraticelli F, La Greca I, Lucantoni F, Camera E, Mariano M, Ascenzioni F, Cristaudo A, Pimpinelli F, Di Domenico EG. Staphylococcus aureus colonizing the skin microbiota of adults with severe atopic dermatitis exhibits genomic diversity and convergence in biofilm traits. Biofilm 2024; 8:100222. [PMID: 39381779 PMCID: PMC11460521 DOI: 10.1016/j.bioflm.2024.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder exacerbated by Staphylococcus aureus colonization. The specific factors that drive S. aureus overgrowth and persistence in AD remain poorly understood. This study analyzed skin barrier functions and microbiome diversity in lesional (LE) and non-lesional (NL) forearm sites of individuals with severe AD compared to healthy control subjects (HS). Notable differences were found in transepidermal water loss, stratum corneum hydration, and microbiome composition. Cutibacterium was more prevalent in HS, while S. aureus and S. lugdunensis were predominantly found in AD LE skin. The results highlighted that microbial balance depends on inter-species competition. Specifically, network analysis at the genus level demonstrated that overall bacterial correlations were higher in HS, indicating a more stable microbial community. Notably, network analysis at the species level revealed that S. aureus engaged in competitive interactions in NL and LE but not in HS. Whole-genome sequencing (WGS) showed considerable genetic diversity among S. aureus strains from AD. Despite this variability, the isolates exhibited convergence in key phenotypic traits such as adhesion and biofilm formation, which are crucial for microbial persistence. These common phenotypes suggest an adaptive evolution, driven by competition in the AD skin microenvironment, of S. aureus and underscoring the interplay between genetic diversity and phenotypic convergence in microbial adaptation.
Collapse
Affiliation(s)
- Francesca Sivori
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Truglio
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCSS, Rome, Italy
| | - Giorgia Fabrizio
- Department of Biology and Biotechnology “C. Darwin” Sapienza University of Rome, Rome, Italy
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology, National Research Council of Italy, Rome, Italy
| | - Massimo Francalancia
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Fulvia Fraticelli
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Ilenia La Greca
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Federica Lucantoni
- Department of Biology and Biotechnology “C. Darwin” Sapienza University of Rome, Rome, Italy
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Maria Mariano
- Clinical Dermatology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology “C. Darwin” Sapienza University of Rome, Rome, Italy
| | - Antonio Cristaudo
- Clinical Dermatology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enea Gino Di Domenico
- Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
14
|
Landman F, Jamin C, de Haan A, Witteveen S, Bos J, van der Heide HGJ, Schouls LM, Hendrickx APA. Genomic surveillance of multidrug-resistant organisms based on long-read sequencing. Genome Med 2024; 16:137. [PMID: 39587617 PMCID: PMC11587635 DOI: 10.1186/s13073-024-01412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Multidrug-resistant organisms (MDRO) pose a significant threat to public health worldwide. The ability to identify antimicrobial resistance determinants, to assess changes in molecular types, and to detect transmission are essential for surveillance and infection prevention of MDRO. Molecular characterization based on long-read sequencing has emerged as a promising alternative to short-read sequencing. The aim of this study was to characterize MDRO for surveillance and transmission studies based on long-read sequencing only. METHODS Genomic DNA of 356 MDRO was automatically extracted using the Maxwell-RSC48. The MDRO included 106 Klebsiella pneumoniae isolates, 85 Escherichia coli, 15 Enterobacter cloacae complex, 10 Citrobacter freundii, 34 Pseudomonas aeruginosa, 16 Acinetobacter baumannii, and 69 methicillin-resistant Staphylococcus aureus (MRSA), of which 24 were from an outbreak. MDRO were sequenced using both short-read (Illumina NextSeq 550) and long-read (Nanopore Rapid Barcoding Kit-24-V14, R10.4.1) whole-genome sequencing (WGS). Basecalling was performed for two distinct models using Dorado-0.3.2 duplex mode. Long-read data was assembled using Flye, Canu, Miniasm, Unicycler, Necat, Raven, and Redbean assemblers. Long-read WGS data with > 40 × coverage was used for multi-locus sequence typing (MLST), whole-genome MLST (wgMLST), whole-genome single-nucleotide polymorphisms (wgSNP), in silico multiple locus variable-number of tandem repeat analysis (iMLVA) for MRSA, and identification of resistance genes (ABRicate). RESULTS Comparison of wgMLST profiles based on long-read and short-read WGS data revealed > 95% of wgMLST profiles within the species-specific cluster cut-off, except for P. aeruginosa. The wgMLST profiles obtained by long-read and short-read WGS differed only one to nine wgMLST alleles or SNPs for K. pneumoniae, E. coli, E. cloacae complex, C. freundii, A. baumannii complex, and MRSA. For P. aeruginosa, differences were up to 27 wgMLST alleles between long-read and short-read wgMLST and 0-10 SNPs. MLST sequence types and iMLVA types were concordant between long-read and short-read WGS data and conventional MLVA typing. Antimicrobial resistance genes were detected in long-read sequencing data with high sensitivity/specificity (92-100%/99-100%). Long-read sequencing enabled analysis of an MRSA outbreak. CONCLUSIONS We demonstrate that molecular characterization of automatically extracted DNA followed by long-read sequencing is as accurate compared to short-read sequencing and suitable for typing and outbreak analysis as part of genomic surveillance of MDRO. However, the analysis of P. aeruginosa requires further improvement which may be obtained by other basecalling algorithms. The low implementation costs and rapid library preparation for long-read sequencing of MDRO extends its applicability to resource-constrained settings and low-income countries worldwide.
Collapse
Affiliation(s)
- Fabian Landman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Casper Jamin
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Angela de Haan
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sandra Witteveen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jeroen Bos
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Han G J van der Heide
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Leo M Schouls
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Antoni P A Hendrickx
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|
15
|
Xu H, Feng Y, Du Y, Han Y, Duan X, Jiang Y, Su L, Liu X, Qin S, He K, Huang J. Bacterial-host adhesion dominated by collagen subtypes remodelled by osmotic pressure. NPJ Biofilms Microbiomes 2024; 10:124. [PMID: 39532878 PMCID: PMC11557999 DOI: 10.1038/s41522-024-00600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Environmental osmolarity plays a crucial role in regulating the functions and behaviors of both host cells and pathogens. However, it remains unclear whether and how environmental osmotic stimuli modulate bacterial‒host interfacial adhesion. Using single-cell force spectroscopy, we revealed that the interfacial adhesion force depended nonlinearly on the osmotic prestimulation of host cells but not bacteria. Quantitatively, the adhesion force increased dramatically from 25.98 nN under isotonic conditions to 112.45 or 93.10 nN after the host cells were treated with the hypotonic or hypertonic solution. There was a strong correlation between the adhesion force and the number of host cells harboring adherent/internalized bacteria. We further revealed that enhanced overexpression levels of collagen XV and II were responsible for the increases in interfacial adhesion under hypotonic and hypertonic conditions, respectively. This work provides new opportunities for developing host-directed antibacterial strategies related to interfacial adhesion from a mechanobiological perspective.
Collapse
Affiliation(s)
- Hongwei Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Yuting Feng
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiming Han
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Ying Jiang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
- Nanchang Innovation Institute of Peking University, Nanchang, China
| | - Liya Su
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, Inner Mongolia, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Fifth Central Hospital of Tianjin, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People's Hospital, Huangnan Prefecture, Qinghai Province, China
| | - Siying Qin
- School of Life Sciences, Peking University, Beijing, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.
| |
Collapse
|
16
|
Myrenås M, Pedersen K, Windahl U. Genomic Analyses of Methicillin-Resistant Staphylococcus pseudintermedius from Companion Animals Reveal Changing Clonal Populations, Multidrug Resistance, and Virulence. Antibiotics (Basel) 2024; 13:962. [PMID: 39452228 PMCID: PMC11505346 DOI: 10.3390/antibiotics13100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Staphylococcus pseudintermedius is part of the normal microbiota in dogs. Since 2006, an increase in multidrug-resistant clones of methicillin-resistant S. pseudintermedius has been reported, as well as zoonotic transmission. Longitudinal investigations into clonal population structures, antibiotic resistance patterns, and the presence of resistance and virulence genes are important tools for gaining knowledge of the mechanisms behind the emergence of such clones. METHODS We investigated 87% of all non-repetitive MRSP isolates from dogs and cats in Sweden over a ten-year period (n = 356). All isolates were subjected to staphylococcal chromosomal cassette mec identification, whole-genome sequencing, multi-locus sequence typing, and analyses of genomic relatedness, as well as investigation of phenotypical resistance patterns and the presence of antibiotic resistance genes and virulence genes. RESULTS A considerable increase over time in the number of clonal lineages present was observed, indicating genomic diversification, and four clones became dominant: ST71, ST258, ST265, and ST551. In total, 96% of the isolates were multidrug-resistant. Statistically significant differences in resistance to several antibiotic classes between the four dominant clones were present. All isolates carried several virulence genes encoding factors associated with attachment, colonization, toxin synthesis, quorum sensing, antibiotic resistance, and immune evasion.
Collapse
Affiliation(s)
- Mattias Myrenås
- Swedish Veterinary Agency, Ulls väg 2b, SE-75189 Uppsala, Sweden
| | - Karl Pedersen
- Department of Animal and Veterinary Science, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark;
| | - Ulrika Windahl
- Swedish Veterinary Agency, Ulls väg 2b, SE-75189 Uppsala, Sweden
| |
Collapse
|
17
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
18
|
Crepin DM, Chavignon M, Verhoeven PO, Laurent F, Josse J, Butin M. Staphylococcus capitis: insights into epidemiology, virulence, and antimicrobial resistance of a clinically relevant bacterial species. Clin Microbiol Rev 2024; 37:e0011823. [PMID: 38899876 PMCID: PMC11391707 DOI: 10.1128/cmr.00118-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYStaphylococcus capitis is divided into two subspecies, S. capitis subsp. ureolyticus (renamed urealyticus in 1992; ATCC 49326) and S. capitis subsp. capitis (ATCC 27840), and fits with the archetype of clinically relevant coagulase-negative staphylococci (CoNS). S. capitis is a commensal bacterium of the skin in humans, which must be considered an opportunistic pathogen of interest particularly as soon as it is identified in a clinically relevant specimen from an immunocompromised patient. Several studies have highlighted the potential determinants underlying S. capitis pathogenicity, resistance profiles, and virulence factors. In addition, mobile genetic element acquisitions and mutations contribute to S. capitis genome adaptation to its environment. Over the past decades, antibiotic resistance has been identified for S. capitis in almost all the families of the currently available antibiotics and is related to the emergence of multidrug-resistant clones of high clinical significance. The present review summarizes the current knowledge concerning the taxonomic position of S. capitis among staphylococci, the involvement of this species in human colonization and diseases, the virulence factors supporting its pathogenicity, and the phenotypic and genomic antimicrobial resistance profiles of this species.
Collapse
Affiliation(s)
- Deborah M Crepin
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marie Chavignon
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Paul O Verhoeven
- CIRI, Centre International de Recherche en Infectiologie, GIMAP Team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Faculté de Médecine, Université Jean Monnet, St-Etienne, France
- Service des agents infectieux et d'hygiène, Centre Hospitalier Universitaire de St-Etienne, St-Etienne, France
| | - Frédéric Laurent
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Josse
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marine Butin
- CIRI, Centre International de Recherche en Infectiologie, Staphylococcal pathogenesis team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR 5308, Ecole Normale Supérieure de Lyon, Lyon, France
- Service de Néonatologie et Réanimation Néonatale, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
19
|
Rimal B, Chang JD, Liu C, Kim H, Aderotoye O, Zechmann B, Kim SJ. Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy of Staphylococcus aureus Biofilms. ACS OMEGA 2024; 9:37610-37620. [PMID: 39281927 PMCID: PMC11391442 DOI: 10.1021/acsomega.4c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 09/18/2024]
Abstract
Understanding the dynamics of biofilm formation and its elemental composition is crucial for developing effective strategies against biofilm-associated infections. In this study, we employed scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) to investigate the morphological changes and elemental compositions of Staphylococcus aureus biofilms. SEM images revealed distinct stages of biofilm development, from initial aggregation to the formation of mature and aged biofilms. EDS analysis consistently showed elevated levels of sodium (Na), oxygen (O), and phosphorus (P) in the biofilm matrix, indicating its high negative charge and the presence of anionic biopolymers. The incorporation of extracellular DNA (eDNA) into the biofilm matrix, leading to significant retention of sodium ions, underscored the importance of electrostatic interactions in biofilm formation and stability. Our findings highlight the potential of EDS analysis in quantifying elemental compositions and elucidating the role of anionic biopolymers in biofilm development.
Collapse
Affiliation(s)
- Binayak Rimal
- Institute of Biomedical Studies, Baylor University, Waco, Texas 76798, United States
| | - James D Chang
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Chengyin Liu
- Department of Chemistry, Howard University, Washington, District of Columbia 20059, United States
| | - Haley Kim
- Department of Chemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Oluwatobi Aderotoye
- Department of Chemistry, Howard University, Washington, District of Columbia 20059, United States
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, Texas 76798, United States
| | - Sung Joon Kim
- Department of Chemistry, Howard University, Washington, District of Columbia 20059, United States
| |
Collapse
|
20
|
Solís N, Pérez C, Ramírez M, Castro J, Rodríguez C. Clinical presentation and microbiological characteristics of community-acquired Staphylococcus aureus bacteraemia at a tertiary hospital in Costa Rica. J Med Microbiol 2024; 73. [PMID: 39234813 DOI: 10.1099/jmm.0.001883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Introduction. Staphylococcus aureus is a leading agent in community-acquired bacteraemia (CAB) and has been linked to elevated mortality rates and methicillin resistance in Costa Rica.Gap statement and aim. To update and enhance previous data obtained in this country, we analysed the clinical manifestations of 54 S. aureus CAB cases in a tertiary hospital and delineated the sequence types (STs), virulome, and resistome of the implicated isolates.Methodology. Clinical information was retrieved from patient files. Antibiotic susceptibility profiles were obtained with disc diffusion and automated phenotypic tests. Genomic data were exploited to type the isolates and for detection of resistance and virulence genes.Results. Primary infections predominantly manifested as bone and joint infections, followed by skin and soft tissue infections. Alarmingly, 70% of patients continued to exhibit positive haemocultures beyond 48 h of treatment modification, with nearly a quarter requiring mechanical ventilation or developing septic shock. The 30-day mortality rate reached an alarming 40%. More than 60% of the patients were found to have received suboptimal or inappropriate antibiotic treatment, and there was an alarming tendency towards the overuse of third-generation cephalosporins as empirical treatment. Laboratory tests indicated elevated creatinine levels, leukocytosis, and bandaemia within the first 24 h of hospitalization. However, most showed improvement after 48 h. The isolates were categorized into 13 STs, with a predominance of representatives from the clonal complexes CC72 (ST72), CC8 (ST8), CC5 (ST5, ST6), and CC1 (ST188). Twenty-four isolates tested positive for mecA, with ST72 strains accounting for 20. In addition, we detected genes conferring acquired resistance to aminoglycosides, MLSB antibiotics, trimethoprim/sulfamethoxazole, and mutations for fluoroquinolone resistance in the isolate collection. Genes associated with biofilm formation, capsule synthesis, and exotoxin production were prevalent, in contrast to the infrequent detection of enterotoxins or exfoliative toxin genes.Conclusions. Our findings broaden our understanding of S. aureus infections in a largely understudied region and can enhance patient management and treatment strategies.
Collapse
Affiliation(s)
- Natalia Solís
- Department of Haematology, Hospital San Juan de Dios, San José, Costa Rica
| | - Cristian Pérez
- Clinical Laboratory, Hospital Nacional de Niños, San José, Costa Rica
| | - Manuel Ramírez
- Department of Infectious Diseases, Hospital San Juan de Dios, San José, Costa Rica
| | - José Castro
- Department of Biostatistics, Caja Costarricense del Seguro Social, San José, Costa Rica
| | - César Rodríguez
- Faculty of Microbiology and Research Center for Tropical Diseases (CIET), Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
21
|
Hetsa BA, Asante J, Mbanga J, Ismail A, Abia ALK, Amoako DG, Essack SY. Genomic Characterization of Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus Implicated in Bloodstream Infections, KwaZulu-Natal, South Africa: A Pilot Study. Antibiotics (Basel) 2024; 13:796. [PMID: 39334971 PMCID: PMC11429224 DOI: 10.3390/antibiotics13090796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen and a leading cause of bloodstream infections, with its capacity to acquire antibiotic resistance genes posing significant treatment challenges. This pilot study characterizes the genomic profiles of S. aureus isolates from patients with bloodstream infections in KwaZulu-Natal, South Africa, to gain insights into their resistance mechanisms, virulence factors, and clonal and phylogenetic relationships. Six multidrug-resistant (MDR) S. aureus isolates, comprising three methicillin-resistant S. aureus (MRSA) and three methicillin-susceptible S. aureus (MSSA), underwent whole genome sequencing and bioinformatics analysis. These isolates carried a range of resistance genes, including blaZ, aac(6')-aph(2″), ant(9)-Ia, ant(6)-Ia, and fosB. The mecA gene, which confers methicillin resistance, was detected only in MRSA strains. The isolates exhibited six distinct spa types (t9475, t355, t045, t1265, t1257, and t7888) and varied in virulence gene profiles. Panton-Valentine leukocidin (Luk-PV) was found in one MSSA isolate. Two SCCmec types, IVd(2B) and I(1B), were identified, and the isolates were classified into four multilocus sequence types (MLSTs), with ST5 (n = 3) being the most common. These sequence types clustered into two clonal complexes, CC5 and CC8. Notably, two MRSA clones were identified: ST5-CC5-t045-SCCmec_I(1B) and the human-associated endemic clone ST612-CC8-t1257-SCCmec_IVd(2B). Phylogenomic analysis revealed clustering by MLST, indicating strong genetic relationships within clonal complexes. These findings highlight the value of genomic surveillance in guiding targeted interventions to reduce treatment failures and mortality.
Collapse
Affiliation(s)
- Bakoena A. Hetsa
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (J.A.); (J.M.); (A.L.K.A.); (D.G.A.); (S.Y.E.)
| | - Jonathan Asante
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (J.A.); (J.M.); (A.L.K.A.); (D.G.A.); (S.Y.E.)
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Joshua Mbanga
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (J.A.); (J.M.); (A.L.K.A.); (D.G.A.); (S.Y.E.)
- Department of Applied Biology & Biochemistry, National University of Science and Technology, Corner Cecil Avenue & Gwanda Road, Bulawayo 263, Zimbabwe
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg 2193, South Africa;
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Akebe L. K. Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (J.A.); (J.M.); (A.L.K.A.); (D.G.A.); (S.Y.E.)
| | - Daniel G. Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (J.A.); (J.M.); (A.L.K.A.); (D.G.A.); (S.Y.E.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sabiha Y. Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (J.A.); (J.M.); (A.L.K.A.); (D.G.A.); (S.Y.E.)
- School of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
22
|
Liu D, Bhunia AK. Anchorless Bacterial Moonlighting Metabolic Enzymes Modulate the Immune System and Contribute to Pathogenesis. ACS Infect Dis 2024; 10:2551-2566. [PMID: 39066728 DOI: 10.1021/acsinfecdis.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Moonlighting proteins (MPs), characterized by their ability to perform multiple physiologically unrelated functions without alterations to their primary structures, represent a fascinating class of biomolecules with significant implications for host-pathogen interactions. This Review highlights the emerging importance of metabolic moonlighting proteins (MetMPs) in bacterial pathogenesis, focusing on their non-canonical secretion and unconventional surface anchoring mechanisms. Despite lacking typical signal peptides and anchoring motifs, MetMPs such as acetaldehyde alcohol dehydrogenase (AdhE) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are secreted and localized to the bacterial surface under stress conditions, facilitating host colonization and immune evasion. The secretion of MetMPs, often observed during conditions such as resource scarcity or infection, suggests a complex regulation akin to the overexpression of heat shock proteins in response to environmental stresses. This Review proposes two potential pathways for MetMP secretion: membrane damage-induced permeability and co-transportation with traditionally secreted proteins, highlighting a remarkable bacterial adaptability. Biophysically, surface anchoring of MetMPs is driven by electrostatic interactions, bypassing the need for conventional anchoring sequences. This mechanism is exemplified by the interaction between the bifunctional enzyme AdhE (known as Listeria adhesion protein, LAP) and the internalin B (InlB) in Listeria monocytogenes, which is mediated by charged residues facilitating adhesion to host tissues. Furthermore, MetMPs play critical roles in iron homeostasis, immune modulation, and evasion, underscoring their multifaceted roles in bacterial pathogenicity. The intricate dynamics of MetMP secretion and anchoring underline the need for further research to unravel the molecular mechanisms underpinning these processes, offering potential new targets for therapeutic intervention against bacterial infections.
Collapse
Affiliation(s)
- Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
23
|
Yousuf B, Pasha R, Pineault N, Ramirez-Arcos S. Modulation of Staphylococcus aureus gene expression during proliferation in platelet concentrates with focus on virulence and platelet functionality. PLoS One 2024; 19:e0307920. [PMID: 39052660 PMCID: PMC11271859 DOI: 10.1371/journal.pone.0307920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Staphylococcus aureus is a well-documented bacterial contaminant in platelet concentrates (PCs), a blood component used to treat patients with platelet deficiencies. This bacterium can evade routine PC culture screening and cause septic transfusion reactions. Here, we investigated the gene expression modulation within the PC niche versus trypticase soy media (TSB) of S. aureus CBS2016-05, a strain isolated from a septic reaction, in comparison to PS/BAC/317/16/W, a strain identified during PC screening. RNA-seq analysis revealed upregulation of the capsule biosynthesis operon (capA-H), surface adhesion factors (sasADF), clumping factor A (clfA), protein A (spa), and anaerobic metabolism genes (pflAB, nrdDG) in CBS2016-05 when grown in PCs versus TSB, implying its enhanced pathogenicity in this milieu, in contrast to the PS/BAC/317/16/W strain. Furthermore, we investigated the impact of S. aureus CBS2016-05 on platelet functionality in spiked PCs versus non-spiked PC units. Flow cytometry analyses revealed a significant decrease in glycoprotein (GP) IIb (CD41) and GPIbα (CD42b) expression, alongside increased P-selectin (CD62P) and phosphatidylserine (annexin V) expression in spiked PCs compared to non-spiked PCs (p = 0.01). Moreover, spiked PCs exhibited a drastic reduction in MitoTrack Red FM and Calcein AM positive platelets (87.3% vs. 29.4%, p = 0.0001 and 95.4% vs. 24.7%, p = 0.0001) in a bacterial cell density manner. These results indicated that S. aureus CBS2016-05 triggers platelet activation and apoptosis, and compromises mitochondrial functionality and platelet viability, in contaminated PCs. Furthermore, this study enhanced our understanding of the effects of platelet-bacteria interactions in the unique PC niche, highlighting S. aureus increased pathogenicity and deleterious effect on platelet functionality in a strain specific manner. Our novel insights serve as a platform to improve PC transfusion safety.
Collapse
Affiliation(s)
- Basit Yousuf
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Roya Pasha
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Canada
| | - Nicolas Pineault
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Sandra Ramirez-Arcos
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
24
|
Fernandez‐Calvo A, Reifs A, Saa L, Cortajarena AL, De Sancho D, Perez‐Jimenez R. The strongest protein binder is surprisingly labile. Protein Sci 2024; 33:e5030. [PMID: 38864696 PMCID: PMC11168069 DOI: 10.1002/pro.5030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
Bacterial adhesins are cell-surface proteins that anchor to the cell wall of the host. The first stage of infection involves the specific attachment to fibrinogen (Fg), a protein found in human blood. This attachment allows bacteria to colonize tissues causing diseases such as endocarditis. The study of this family of proteins is hence essential to develop new strategies to fight bacterial infections. In the case of the Gram-positive bacterium Staphylococcus aureus, there exists a class of adhesins known as microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Here, we focus on one of them, the clumping factor A (ClfA), which has been found to bind Fg through the dock-lock-latch mechanism. Interestingly, it has recently been discovered that MSCRAMM proteins employ a catch-bond to withstand forces exceeding 2 nN, making this type of interaction as mechanically strong as a covalent bond. However, it is not known whether this strength is an evolved feature characteristic of the bacterial protein or is typical only of the interaction with its partner. Here, we combine single-molecule force spectroscopy, biophysical binding assays, and molecular simulations to study the intrinsic mechanical strength of ClfA. We find that despite the extremely high forces required to break its interactions with Fg, ClfA is not by itself particularly strong. Integrating the results from both theory and experiments we dissect contributions to the mechanical stability of this protein.
Collapse
Affiliation(s)
- Alba Fernandez‐Calvo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA)DerioBizkaiaSpain
| | - Antonio Reifs
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA)DerioBizkaiaSpain
| | - Laura Saa
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA)Donostia‐San SebastiánSpain
| | - Aitziber L. Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA)Donostia‐San SebastiánSpain
- Ikerbasque Foundation for ScienceBilbaoSpain
| | - David De Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, University of the Basque Country (UPV/EHU)San SebastianSpain
- Donostia International Physics Center (DIPC)San SebastianSpain
| | - Raul Perez‐Jimenez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA)DerioBizkaiaSpain
- Ikerbasque Foundation for ScienceBilbaoSpain
| |
Collapse
|
25
|
Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024; 48:fuae019. [PMID: 39003250 PMCID: PMC11308195 DOI: 10.1093/femsre/fuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/15/2024] Open
Abstract
The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Collapse
Affiliation(s)
- Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
- Department of Biology, University of Oregon, Eugene, OR 97403, United States
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
26
|
Silva V, Silva A, Barbero R, Romero M, del Campo R, Caniça M, Cordeiro R, Igrejas G, Poeta P. Resistome, Virulome, and Clonal Variation in Methicillin-Resistant Staphylococcus aureus (MRSA) in Healthy Swine Populations: A Cross-Sectional Study. Genes (Basel) 2024; 15:532. [PMID: 38790161 PMCID: PMC11121583 DOI: 10.3390/genes15050532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
This cross-sectional study investigates the methicillin-resistant Staphylococcus aureus (MRSA): its prevalence, antimicrobial resistance, and molecular characteristics in healthy swine populations in central Portugal. A total of 213 samples were collected from pigs on twelve farms, and MRSA prevalence was assessed using selective agar plates and confirmed via molecular methods. Antimicrobial susceptibility testing and whole genome sequencing (WGS) were performed to characterize resistance profiles and genetic determinants. Among the 107 MRSA-positive samples (83.1% prevalence), fattening pigs and breeding sows exhibited notably high carriage rates. The genome of 20 isolates revealed the predominance of the ST398 clonal complex, with diverse spa types identified. Antimicrobial susceptibility testing demonstrated resistance to multiple antimicrobial agents, including penicillin, cefoxitin, and tetracycline. WGS analysis identified a diverse array of resistance genes, highlighting the genetic basis of antimicrobial resistance. Moreover, virulence gene profiling revealed the presence of genes associated with pathogenicity. These findings underscore the significant prevalence of MRSA in swine populations and emphasize the need for enhanced surveillance and control measures to mitigate zoonotic transmission risks. Implementation of prudent antimicrobial use practices and targeted intervention strategies is essential to reducing MRSA prevalence and safeguarding public health. Continued research efforts are warranted to elucidate transmission dynamics and virulence potential, ultimately ensuring food safety and public health protection.
Collapse
Affiliation(s)
- Vanessa Silva
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Adriana Silva
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Raquel Barbero
- Department of Microbiology, University Hospital Ramón y Cajal and IRYCIS, 28034 Madrid, Spain (M.R.); (R.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28034 Madrid, Spain
| | - Mario Romero
- Department of Microbiology, University Hospital Ramón y Cajal and IRYCIS, 28034 Madrid, Spain (M.R.); (R.d.C.)
| | - Rosa del Campo
- Department of Microbiology, University Hospital Ramón y Cajal and IRYCIS, 28034 Madrid, Spain (M.R.); (R.d.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28034 Madrid, Spain
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Rui Cordeiro
- Intergados, SA, Av. de Olivença, S/N, 2870-108 Montijo, Portugal
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Patricia Poeta
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Caparica, Portugal
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
27
|
Song M, Tang Q, Ding Y, Tan P, Zhang Y, Wang T, Zhou C, Xu S, Lyu M, Bai Y, Ma X. Staphylococcus aureus and biofilms: transmission, threats, and promising strategies in animal husbandry. J Anim Sci Biotechnol 2024; 15:44. [PMID: 38475886 PMCID: PMC10936095 DOI: 10.1186/s40104-024-01007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/03/2024] [Indexed: 03/14/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and exacerbates S. aureus infection by allowing the bacteria to adhere to pathological areas and livestock product surfaces, thus triggering animal health crises and safety issues with livestock products. To solve this problem, in this review, we provide a brief overview of the harm caused by S. aureus and its biofilms on livestock and animal byproducts (meat and dairy products). We also describe the ways in which S. aureus spreads in animals and the threats it poses to the livestock industry. The processes and molecular mechanisms involved in biofilm formation are then explained. Finally, we discuss strategies for the removal and eradication of S. aureus and biofilms in animal husbandry, including the use of antimicrobial peptides, plant extracts, nanoparticles, phages, and antibodies. These strategies to reduce the spread of S. aureus in animal husbandry help maintain livestock health and improve productivity to ensure the ecologically sustainable development of animal husbandry and the safety of livestock products.
Collapse
Affiliation(s)
- Mengda Song
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qi Tang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yakun Ding
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yucheng Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tao Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chenlong Zhou
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shenrui Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mengwei Lyu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yueyu Bai
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xi Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
28
|
Hamushan M, Yu J, Jiang F, Wang B, Li M, Hu Y, Wang J, Wu Q, Tang J, Han P, Shen H. Adaptive evolution of the Clf-Sdr subfamily contributes to Staphylococcus aureus musculoskeletal infection: Evidence from comparative genomics. Microbiol Res 2024; 278:127502. [PMID: 37832395 DOI: 10.1016/j.micres.2023.127502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Persistent Staphylococcus aureus infections of the musculoskeletal system are a challenge in clinical practice. Although extensive studies on the genotypic changes in S. aureus in soft tissue and blood system infections have been conducted, little is known about how S. aureus adapts to the microenvironment of the musculoskeletal system. Here, we used comparative genomics to analyze the isolates from patients with an S. aureus infection of the musculoskeletal system. We observed that mutations in the Clf-Sdr subfamily proteins frequently occurred during persistent infections. Furthermore, these mutations were primarily located in the non-active site (R region), rather than in the active site (A region). Mechanistically, the clfA/B mutation enhanced the S. aureus biofilm formation ability through the binding to fibrinogen and intercellular adhesion. Complementation studies using the USA300-ΔMSCRAMMs strains clfA and clfB revealed that mutations in both the A and R regions could enhance their corresponding function. The results of protein structure prediction and ligand-binding simulations suggest that these mutations influence the protein structure and ligand binding. In conclusion, our study suggests that the Clf-Sdr subfamily mutations may be one of the mechanisms contributing to persistent S. aureus infections of the musculoskeletal system.
Collapse
Affiliation(s)
- Musha Hamushan
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinlong Yu
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Jiang
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Boyong Wang
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhang Li
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Hu
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianqiang Wang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Wu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Pei Han
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hao Shen
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
29
|
Houtak G, Bouras G, Nepal R, Shaghayegh G, Cooksley C, Psaltis AJ, Wormald PJ, Vreugde S. The intra-host evolutionary landscape and pathoadaptation of persistent Staphylococcus aureus in chronic rhinosinusitis. Microb Genom 2023; 9:001128. [PMID: 38010322 PMCID: PMC10711304 DOI: 10.1099/mgen.0.001128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a common chronic sinonasal mucosal inflammation associated with Staphylococcus aureus biofilm and relapsing infections. This study aimed to determine rates of S. aureus persistence and pathoadaptation in CRS patients by investigating the genomic relatedness and antibiotic resistance/tolerance in longitudinally collected S. aureus clinical isolates. A total of 68 S. aureus paired isolates (34 pairs) were sourced from 34 CRS patients at least 6 months apart. Isolates were grown into 48 h biofilms and tested for tolerance to antibiotics. A hybrid sequencing strategy was used to obtain high-quality reference-grade assemblies of all isolates. Single nucleotide variants (SNV) divergence in the core genome and sequence type clustering were used to analyse the relatedness of the isolate pairs. Single nucleotide and structural genome variations, plasmid similarity, and plasmid copy numbers between pairs were examined. Our analysis revealed that 41 % (14/34 pairs) of S. aureus isolates were persistent, while 59 % (20/34 pairs) were non-persistent. Persistent isolates showed episode-specific mutational changes over time with a bias towards events in genes involved in adhesion to the host and mobile genetic elements such as plasmids, prophages, and insertion sequences. Furthermore, a significant increase in the copy number of conserved plasmids of persistent strains was observed. This was accompanied by a significant increase in biofilm tolerance against all tested antibiotics, which was linked to a significant increase in biofilm biomass over time, indicating a potential biofilm pathoadaptive process in persistent isolates. In conclusion, our study provides important insights into the mutational changes during S. aureus persistence in CRS patients highlighting potential pathoadaptive mechanisms in S. aureus persistent isolates culminating in increased biofilm biomass.
Collapse
Affiliation(s)
- Ghais Houtak
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Roshan Nepal
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Gohar Shaghayegh
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Clare Cooksley
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- The Department of Surgery - Otolaryngology Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
30
|
Myckatyn TM, Duran Ramirez JM, Walker JN, Hanson BM. Management of Biofilm with Breast Implant Surgery. Plast Reconstr Surg 2023; 152:919e-942e. [PMID: 37871028 DOI: 10.1097/prs.0000000000010791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
LEARNING OBJECTIVES After studying this article, the participant should be able to: 1. Understand how bacteria negatively impact aesthetic and reconstructive breast implants. 2. Understand how bacteria infect breast implants. 3. Understand the evidence associated with common implant infection-prevention strategies, and their limitations. 4. Understand why implementation of bacteria-mitigation strategies such as antibiotic administration or "no-touch" techniques may not indefinitely prevent breast implant infection. SUMMARY Bacterial infection of aesthetic and reconstructive breast implants is a common and expensive problem. Subacute infections or chronic capsular contractures leading to device explantation are the most commonly documented sequelae. Although bench and translational research underscores the complexities of implant-associated infection, high-quality studies with adequate power, control groups, and duration of follow-up are lacking. Common strategies to minimize infections use antibiotics-administered systemically, in the breast implant pocket, or by directly bathing the implant before insertion-to limit bacterial contamination. Limiting contact between the implant and skin or breast parenchyma represents an additional common strategy. The clinical prevention of breast implant infection is challenged by the clean-contaminated nature of breast parenchyma, and the variable behavior of not only specific bacterial species but also their strains. These factors impact bacterial virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Terence M Myckatyn
- From the Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine
| | | | - Jennifer N Walker
- Department of Microbiology and Molecular Genetics
- Center for Infectious Diseases, Department of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston
| | - Blake M Hanson
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School
- Center for Infectious Diseases, Department of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston
| |
Collapse
|
31
|
Yue Y, Chen K, Sun C, Ahmed S, Ojha SC. Antimicrobial peptidase lysostaphin at subinhibitory concentrations modulates staphylococcal adherence, biofilm formation, and toxin production. BMC Microbiol 2023; 23:311. [PMID: 37884887 PMCID: PMC10601153 DOI: 10.1186/s12866-023-03052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND The ability of antimicrobial agents to affect microbial adherence to eukaryotic cell surfaces is a promising antivirulence strategy for combating the global threat of antimicrobial resistance. Inadequate use of antimicrobials has led to widespread instances of suboptimal antibiotic concentrations around infection sites. Therefore, we aimed to examine the varying effect of an antimicrobial peptidase lysostaphin (APLss) on staphylococcal adherence to host cells, biofilm biomass formation, and toxin production as a probable method for mitigating staphylococcal virulence. RESULTS Initially, soluble expression in E. coli and subsequent purification by immobilized-Ni2+ affinity chromatography (IMAC) enabled us to successfully produce a large quantity of highly pure ~ 28-kDa His-tagged mature APLss. The purified protein exhibited potent inhibitory effects against both methicillin-sensitive and methicillin-resistant staphylococcal strains, with minimal inhibitory concentrations (MICs) ranging from 1 to 2 µg/mL, and ultrastructural analysis revealed that APLss-induced concentration-specific changes in the morphological architecture of staphylococcal surface membranes. Furthermore, spectrophotometric and fluorescence microscopy revealed that incubating staphylococcal strains with sub-MIC and MIC of APLss significantly inhibited staphylococcal adherence to human vaginal epithelial cells and biofilm biomass formation. Ultimately, transcriptional investigations revealed that APLss inhibited the expression of agrA (quorum sensing effector) and other virulence genes related to toxin synthesis. CONCLUSIONS Overall, APLss dose-dependently inhibited adhesion to host cell surfaces and staphylococcal-associated virulence factors, warranting further investigation as a potential anti-staphylococcal agent with an antiadhesive mechanism of action using in vivo models of staphylococcal toxic shock syndrome.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, China
| | - Ke Chen
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Southwest Medical University, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Changfeng Sun
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Southwest Medical University, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Sarfraz Ahmed
- Wellman Centre for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114, USA
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Southwest Medical University, Jiangyang District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
32
|
Zhou X, Wells MJ, Gordon VD. Incorporation of collagen into Pseudomonas aeruginosa and Staphylococcus aureus biofilms impedes phagocytosis by neutrophils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564018. [PMID: 37961328 PMCID: PMC10634824 DOI: 10.1101/2023.10.25.564018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Biofilms are communities of microbes embedded in a matrix of extracellular polymeric substances (EPS). Matrix components can be produced by biofilm organisms and can also originate from the environment and then be incorporated into the biofilm. For example, we have recently shown that collagen, a host-produced protein that is abundant in many different infection sites, can be taken up into the biofilm matrix, altering biofilm mechanics. The biofilm matrix protects bacteria from clearance by the immune system, and some of that protection likely arises from the mechanical properties of the biofilm. Pseudomonas aeruginosa and Staphylococcus aureus are common human pathogens notable for forming biofilm infections in anatomical sites rich in collagen. Here, we show that the incorporation of Type I collagen into P. aeruginosa and S. aureus biofilms significantly hinders phagocytosis of biofilm bacteria by human neutrophils. However, enzymatic treatment with collagenase, which breaks down collagen, can partly or entirely negate the protective effect of collagen and restore the ability of neutrophils to engulf biofilm bacteria. From these findings, we suggest that enzymatic degradation of host materials may be a potential way to compromise biofilm infections and enhance the efficacy of the host immune response without promoting antibiotic resistance. Such an approach might be beneficial both in cases where the infecting species is known and also in cases wherein biofilm components are not readily known, such as multispecies infections or infections by unknown species.
Collapse
Affiliation(s)
- Xuening Zhou
- Center for Nonlinear Dynamics, The University of Texas at Austin, 2515 Speedway, Stop C1610, Austin, Texas 78712-11993, USA
- Interdisciplinary Life Sciences Graduate Program, Norman Hackerman Building, 100 East 24th St., NHB 4500, Austin, Texas 78712, USA
| | - Marilyn J Wells
- Center for Nonlinear Dynamics, The University of Texas at Austin, 2515 Speedway, Stop C1610, Austin, Texas 78712-11993, USA
- Department of Physics, The University of Texas at Austin, 2515 Speedway, C1600, Austin, Texas 78712-1192, USA
| | - Vernita D Gordon
- Center for Nonlinear Dynamics, The University of Texas at Austin, 2515 Speedway, Stop C1610, Austin, Texas 78712-11993, USA
- Interdisciplinary Life Sciences Graduate Program, Norman Hackerman Building, 100 East 24th St., NHB 4500, Austin, Texas 78712, USA
- Department of Physics, The University of Texas at Austin, 2515 Speedway, C1600, Austin, Texas 78712-1192, USA
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Neural Molecular Science Building, 2506 Speedway, Stop A5000, Austin, Texas 78712, USA
| |
Collapse
|
33
|
Cheung GYC, Otto M. Virulence Mechanisms of Staphylococcal Animal Pathogens. Int J Mol Sci 2023; 24:14587. [PMID: 37834035 PMCID: PMC10572719 DOI: 10.3390/ijms241914587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Staphylococci are major causes of infections in mammals. Mammals are colonized by diverse staphylococcal species, often with moderate to strong host specificity, and colonization is a common source of infection. Staphylococcal infections of animals not only are of major importance for animal well-being but have considerable economic consequences, such as in the case of staphylococcal mastitis, which costs billions of dollars annually. Furthermore, pet animals can be temporary carriers of strains infectious to humans. Moreover, antimicrobial resistance is a great concern in livestock infections, as there is considerable antibiotic overuse, and resistant strains can be transferred to humans. With the number of working antibiotics continuously becoming smaller due to the concomitant spread of resistant strains, alternative approaches, such as anti-virulence, are increasingly being investigated to treat staphylococcal infections. For this, understanding the virulence mechanisms of animal staphylococcal pathogens is crucial. While many virulence factors have similar functions in humans as animals, there are increasingly frequent reports of host-specific virulence factors and mechanisms. Furthermore, we are only beginning to understand virulence mechanisms in animal-specific staphylococcal pathogens. This review gives an overview of animal infections caused by staphylococci and our knowledge about the virulence mechanisms involved.
Collapse
Affiliation(s)
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20814, USA;
| |
Collapse
|
34
|
Kovařovic V, Finstrlová A, Sedláček I, Petráš P, Švec P, Mašlaňová I, Neumann-Schaal M, Šedo O, Botka T, Staňková E, Doškař J, Pantůček R. Staphylococcus brunensis sp. nov. isolated from human clinical specimens with a staphylococcal cassette chromosome-related genomic island outside of the rlmH gene bearing the ccrDE recombinase gene complex. Microbiol Spectr 2023; 11:e0134223. [PMID: 37712674 PMCID: PMC10581047 DOI: 10.1128/spectrum.01342-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 09/16/2023] Open
Abstract
Novel species of coagulase-negative staphylococci, which could serve as reservoirs of virulence and antimicrobial resistance factors for opportunistic pathogens from the genus Staphylococcus, are recognized in human and animal specimens due to advances in diagnostic techniques. Here, we used whole-genome sequencing, extensive biotyping, MALDI-TOF mass spectrometry, and chemotaxonomy to characterize five coagulase-negative strains from the Staphylococcus haemolyticus phylogenetic clade obtained from human ear swabs, wounds, and bile. Based on the results of polyphasic taxonomy, we propose the species Staphylococcus brunensis sp. nov. (type strain NRL/St 16/872T = CCM 9024T = LMG 31872T = DSM 111349T). The genomic analysis revealed numerous variable genomic elements, including staphylococcal cassette chromosome (SCC), prophages, plasmids, and a unique 18.8 kb-long genomic island SbCIccrDE integrated into the ribosomal protein L7 serine acetyltransferase gene rimL. SbCIccrDE has a cassette chromosome recombinase (ccr) gene complex with a typical structure found in SCCs. Based on nucleotide and amino acid identity to other known ccr genes and the distinct integration site that differs from the canonical methyltransferase gene rlmH exploited by SCCs, we classified the ccr genes as novel variants, ccrDE. The comparative genomic analysis of SbCIccrDE with related islands shows that they can accumulate virulence and antimicrobial resistance factors creating novel resistance elements, which reflects the evolution of SCC. The spread of these resistance islands into established pathogens such as Staphylococcus aureus would pose a great threat to the healthcare system. IMPORTANCE The coagulase-negative staphylococci are important opportunistic human pathogens, which cause bloodstream and foreign body infections, mainly in immunocompromised patients. The mobile elements, primarily the staphylococcal cassette chromosome mec, which confers resistance to methicillin, are the key to the successful dissemination of staphylococci into healthcare and community settings. Here, we present a novel species of the Staphylococcus genus isolated from human clinical material. The detailed analysis of its genome revealed a previously undescribed genomic island, which is closely related to the staphylococcal cassette chromosome and has the potential to accumulate and spread virulence and resistance determinants. The island harbors a set of conserved genes required for its mobilization, which we recognized as novel cassette chromosome recombinase genes ccrDE. Similar islands were revealed not only in the genomes of coagulase-negative staphylococci but also in S. aureus. The comparative genomic study contributes substantially to the understanding of the evolution and pathogenesis of staphylococci.
Collapse
Affiliation(s)
- Vojtěch Kovařovic
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Adéla Finstrlová
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Petráš
- Reference Laboratory for Staphylococci, National Institute of Public Health, Praha, Czech Republic
| | - Pavel Švec
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivana Mašlaňová
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tibor Botka
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Doškař
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
35
|
Perry EK, Tan MW. Bacterial biofilms in the human body: prevalence and impacts on health and disease. Front Cell Infect Microbiol 2023; 13:1237164. [PMID: 37712058 PMCID: PMC10499362 DOI: 10.3389/fcimb.2023.1237164] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Bacterial biofilms can be found in most environments on our planet, and the human body is no exception. Consisting of microbial cells encased in a matrix of extracellular polymers, biofilms enable bacteria to sequester themselves in favorable niches, while also increasing their ability to resist numerous stresses and survive under hostile circumstances. In recent decades, biofilms have increasingly been recognized as a major contributor to the pathogenesis of chronic infections. However, biofilms also occur in or on certain tissues in healthy individuals, and their constituent species are not restricted to canonical pathogens. In this review, we discuss the evidence for where, when, and what types of biofilms occur in the human body, as well as the diverse ways in which they can impact host health under homeostatic and dysbiotic states.
Collapse
Affiliation(s)
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech, South San Francisco, CA, United States
| |
Collapse
|
36
|
Reva O, Messina E, La Cono V, Crisafi F, Smedile F, La Spada G, Marturano L, Selivanova EA, Rohde M, Krupovic M, Yakimov MM. Functional diversity of nanohaloarchaea within xylan-degrading consortia. Front Microbiol 2023; 14:1182464. [PMID: 37323909 PMCID: PMC10266531 DOI: 10.3389/fmicb.2023.1182464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Extremely halophilic representatives of the phylum Candidatus Nanohaloarchaeota (members of the DPANN superphyla) are obligately associated with extremely halophilic archaea of the phylum Halobacteriota (according to the GTDB taxonomy). Using culture-independent molecular techniques, their presence in various hypersaline ecosystems around the world has been confirmed over the past decade. However, the vast majority of nanohaloarchaea remain uncultivated, and thus their metabolic capabilities and ecophysiology are currently poorly understood. Using the (meta)genomic, transcriptomic, and DNA methylome platforms, the metabolism and functional prediction of the ecophysiology of two novel extremely halophilic symbiotic nanohaloarchaea (Ca. Nanohalococcus occultus and Ca. Nanohalovita haloferacivicina) stably cultivated in the laboratory as members of a xylose-degrading binary culture with a haloarchaeal host, Haloferax lucentense, was determined. Like all known DPANN superphylum nanoorganisms, these new sugar-fermenting nanohaloarchaea lack many fundamental biosynthetic repertoires, making them exclusively dependent on their respective host for survival. In addition, given the cultivability of the new nanohaloarchaea, we managed to discover many unique features in these new organisms that have never been observed in nano-sized archaea both within the phylum Ca. Nanohaloarchaeota and the entire superphylum DPANN. This includes the analysis of the expression of organism-specific non-coding regulatory (nc)RNAs (with an elucidation of their 2D-secondary structures) as well as profiling of DNA methylation. While some ncRNA molecules have been predicted with high confidence as RNAs of an archaeal signal recognition particle involved in delaying protein translation, others resemble the structure of ribosome-associated ncRNAs, although none belong to any known family. Moreover, the new nanohaloarchaea have very complex cellular defense mechanisms. In addition to the defense mechanism provided by the type II restriction-modification system, consisting of Dcm-like DNA methyltransferase and Mrr restriction endonuclease, Ca. Nanohalococcus encodes an active type I-D CRISPR/Cas system, containing 77 spacers divided into two loci. Despite their diminutive genomes and as part of their host interaction mechanism, the genomes of new nanohaloarchaea do encode giant surface proteins, and one of them (9,409 amino acids long) is the largest protein of any sequenced nanohaloarchaea and the largest protein ever discovered in cultivated archaea.
Collapse
Affiliation(s)
- Oleg Reva
- Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | | | - Violetta La Cono
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, ISP-CNR, Messina, Italy
| | - Francesca Crisafi
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, ISP-CNR, Messina, Italy
| | - Francesco Smedile
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, ISP-CNR, Messina, Italy
| | - Gina La Spada
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, ISP-CNR, Messina, Italy
| | - Laura Marturano
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, ISP-CNR, Messina, Italy
| | - Elena A. Selivanova
- Institute for Cellular and Intracellular Symbiosis, Ural Branch, Russian Academy of Sciences, Orenburg, Russia
| | - Manfred Rohde
- Central Facility for Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Michail M. Yakimov
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, ISP-CNR, Messina, Italy
| |
Collapse
|
37
|
de Moura GS, de Carvalho E, Ramos Sanchez EM, Sellera FP, Marques MFS, Heinemann MB, De Vliegher S, Souza FN, Mota RA. Emergence of livestock-associated Mammaliicoccus sciuri ST71 co-harbouring mecA and mecC genes in Brazil. Vet Microbiol 2023; 283:109792. [PMID: 37269712 DOI: 10.1016/j.vetmic.2023.109792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
The discovery and tracking of antimicrobial resistance genes are essential for understanding the evolution of bacterial resistance and restraining its dispersion. Mammaliicoccus sciuri (formerly Staphylococcus sciuri) is the most probable evolutionary repository of the mecA gene, that later disseminated to S. aureus. In this study, we describe the first double mecA/mecC homologue-positive non-aureus staphylococci and mammaliicocci (NASM) from the American continent, also representing the first report of mecC-positive NASM in Brazil. Two clonally related methicillin-resistant M. sciuri strains co-carrying mecA and mecC genes were isolated from the teat skin swab and milk sample collected from an ewe's left udder half. Both M. sciuri strains belonged to the sequence type (ST) 71. Besides mecA and mecC genes, the M. sciuri strains carried broad resistomes for clinically important antimicrobial agents, including β-lactams, tetracyclines, lincosamide, streptogramin, streptomycin, and aminoglycosides. Virulome analysis showed the presence of the clumping factor B (clfB), ATP-dependent protease ClpP (ClpP) and serine-aspartate repeat proteins (sdrC and sdrE) virulence-associated genes. Phylogenomic analysis revealed that these M. sciuri strains are part of a globally disseminated branch, associated with farm and companion animals and even with food. Our findings suggest that M. sciuri is likely to emerge as a pathogen of global interest, carrying a broad repertoire of antimicrobial resistance genes with a remarkable co-presence of mecA and mecC genes. Finally, we strongly encourage to monitor M. sciuri under the One Health umbrella since this bacterial species is spreading at the human-animal-environment interface.
Collapse
Affiliation(s)
- Guilherme S de Moura
- Laboratório de Doenças Infecciosas, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | | | - Eduardo M Ramos Sanchez
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal da Paraíba, Areia, Brazil; Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Departamento de Salud Publica, Facultad de Ciencias de La Salud, Universidad Nacional Torino Rodriguez de Mendonza de Amazonas, Chachapoyas, Peru
| | - Fábio P Sellera
- Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil; Programa de Pós-Graduação em Medicina Veterinária no Ambiente Litorâneo, Universidade Metropolitana de Santos, Santos, Brazil
| | - Michele F S Marques
- Laboratório de Doenças Infecciosas, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Recife, Brazil; Departamento de Ciência Animal, Universidade Federal da Paraíba, Areia, Brazil
| | - Marcos B Heinemann
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Sarne De Vliegher
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Fernando N Souza
- Programa de Pós-Graduação em Ciência Animal, Universidade Federal da Paraíba, Areia, Brazil; Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil; M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Rinaldo A Mota
- Laboratório de Doenças Infecciosas, Departamento de Medicina Veterinária, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|
38
|
Alabbosh KF, Zmantar T, Bazaid AS, Snoussi M, Noumi E. Antibiotics Resistance and Adhesive Properties of Clinical Staphylococcus aureus Isolated from Wound Infections. Microorganisms 2023; 11:1353. [PMID: 37317326 DOI: 10.3390/microorganisms11051353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a ubiquitous pathogen responsible for several severe infections. This study aimed to investigate the adhesive properties and antibiotic resistance among clinical S. aureus isolated from Hail Hospital Province, Kingdom of Saudi Arabia (KSA), using molecular approaches. This study was conducted according to the ethical committee at Hail's guidelines on twenty-four S. aureus isolates. A polymerase chain reaction (PCR) was performed to identify genes encoding the β-lactamase resistance (blaZ), methicillin resistance (mecA), fluoroquinolone resistance (norA), nitric oxide reductase (norB), fibronectin (fnbA and fnbB), clumping factor (clfA) and intracellular adhesion factors (icaA and icaD). This qualitative study tested adhesion based on exopolysaccharide production on Congo red agar (CRA) medium and biofilm formation on polystyrene by S. aureus strains. Among 24 isolates, the cna and blaz were the most prevalent (70.8%), followed by norB (54.1%), clfA (50.0%), norA (41.6%), mecA and fnbB (37.5%) and fnbA (33.3%). The presence of icaA/icaD genes was demonstrated in almost all tested strains in comparison to the reference strain, S. aureus ATCC 43300. The phenotypic study of adhesion showed that all tested strains had moderate biofilm-forming capacity on polystyrene and represented different morphotypes on a CRA medium. Five strains among the twenty-four harbored the four genes of resistance to antibiotics (mecA, norA, norB and blaz). Considering the genes of adhesion (cna, clfA, fnbA and fnbB), these genes were present in 25% of the tested isolates. Regarding the adhesive properties, the clinical isolates of S. aureus formed biofilm on polystyrene, and only one strain (S17) produced exopolysaccharides on Congo red agar. All these results contribute to an understanding that the pathogenesis of clinical S. aureus isolates is due to their antibiotic resistance and adhesion to medical material.
Collapse
Affiliation(s)
| | - Tarek Zmantar
- Laboratory of Analysis, Treatment, Valorization of Environmental, and Product Pollutants, Faculty of Pharmacy of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Abdulrahman S Bazaid
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail 55476, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Emira Noumi
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| |
Collapse
|
39
|
Martínez A, Stashenko EE, Sáez RT, Zafra G, Ortiz C. Effect of Essential Oil from Lippia origanoides on the Transcriptional Expression of Genes Related to Quorum Sensing, Biofilm Formation, and Virulence of Escherichia coli and Staphylococcus aureus. Antibiotics (Basel) 2023; 12:antibiotics12050845. [PMID: 37237748 DOI: 10.3390/antibiotics12050845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Microbial infections resistant to conventional antibiotics constitute one of the most important causes of mortality in the world. In some bacterial species, such as Escherichia coli and Staphylococcus aureus pathogens, biofilm formation can favor their antimicrobial resistance. These biofilm-forming bacteria produce a compact and protective matrix, allowing their adherence and colonization to different surfaces, and contributing to resistance, recurrence, and chronicity of the infections. Therefore, different therapeutic alternatives have been investigated to interrupt both cellular communication routes and biofilm formation. Among these, essential oils (EO) from Lippia origanoides thymol-carvacrol II chemotype (LOTC II) plants have demonstrated biological activity against different biofilm-forming pathogenic bacteria. In this work, we determined the effect of LOTC II EO on the expression of genes associated with quorum sensing (QS) communication, biofilm formation, and virulence of E. coli ATCC 25922 and S. aureus ATCC 29213. This EO was found to have high efficacy against biofilm formation, decreasing-by negative regulation-the expression of genes involved in motility (fimH), adherence and cellular aggregation (csgD), and exopolysaccharide production (pgaC) in E. coli. In addition, this effect was also determined in S. aureus where the L. origanoides EO diminished the expression of genes involved in QS communication (agrA), production of exopolysaccharides by PIA/PNG (icaA), synthesis of alpha hemolysin (hla), transcriptional regulators of the production of extracellular toxins (RNA III), QS and biofilm formation transcriptional regulators (sarA) and global regulators of biofilm formation (rbf and aur). Positive regulation was observed on the expression of genes encoding inhibitors of biofilm formation (e.g., sdiA and ariR). These findings suggest that LOTCII EO can affect biological pathways associated with QS communication, biofilm formation, and virulence of E. coli and S. aureus at subinhibitory concentrations and could be a promising candidate as a natural antibacterial alternative to conventional antibiotics.
Collapse
Affiliation(s)
- Andrés Martínez
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Microbiología, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Elena E Stashenko
- Escuela de Química, Centro de Cromatografía y Espectrometría de Masas (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Rodrigo Torres Sáez
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Microbiología, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - German Zafra
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Microbiología, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Claudia Ortiz
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Microbiología, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| |
Collapse
|
40
|
Staats A, Burback PW, Casillas-Ituarte NN, Li D, Hostetler MR, Sullivan A, Horswill AR, Lower SK, Stoodley P. In Vitro Staphylococcal Aggregate Morphology and Protection from Antibiotics Are Dependent on Distinct Mechanisms Arising from Postsurgical Joint Components and Fluid Motion. J Bacteriol 2023; 205:e0045122. [PMID: 36951588 PMCID: PMC10127631 DOI: 10.1128/jb.00451-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/13/2023] [Indexed: 03/24/2023] Open
Abstract
Considerable progress has been made toward elucidating the mechanism of Staphylococcus aureus aggregation in synovial fluid. In this study, aggregate morphology was assessed following incubation under several simulated postsurgical joint conditions. Using fluorescently labeled synovial fluid polymers, we show that aggregation occurs through two distinct mechanisms: (i) direct bridging between S. aureus cells and host fibrinogen and (ii) an entropy-driven depletion mechanism facilitated by hyaluronic acid and albumin. By screening surface adhesin-deficient mutants (clfA, clfB, fnbB, and fnbA), we identified the primary genetic determinant of aggregation in synovial fluid to be clumping factor A. To characterize this bridging interaction, we employed an atomic force microscopy-based approach to quantify the binding affinity of either wild-type S. aureus or the adhesin mutant to immobilized fibrinogen. Surprisingly, we found there to be cell-to-cell variability in the binding strength of the bacteria for immobilized fibrinogen. Superhigh-resolution microscopy imaging revealed that fibrinogen binding to the cell wall is heterogeneously distributed at both the single cell and population levels. Finally, we assessed the antibiotic tolerance of various aggregate morphologies arising from newly deciphered mechanisms of polymer-mediated synovial fluid-induced aggregation. The formation of macroscopic aggregates under shear was highly tolerant of gentamicin, while smaller aggregates, formed under static conditions, were susceptible. We hypothesize that aggregate formation in the joint cavity, in combination with shear, is mediated by both polymer-mediated aggregation mechanisms, with depletion forces enhancing the stability of essential bridging interactions. IMPORTANCE The formation of a bacterial biofilm in the postsurgical joint environment significantly complicates the resolution of an infection. To form a resilient biofilm, incoming bacteria must first survive the initial invasion of the joint space. We previously found that synovial fluid induces the formation of Staphylococcus aureus aggregates, which may provide rapid protection during the early stages of infection. The state of the host joint environment, including the presence of fluid flow and fluctuating abundance of synovial fluid polymers, determines the rate and size of aggregate formation. By expanding on our knowledge of the mechanism and pathogenic implications of synovial fluid-induced aggregation, we hope to contribute insights for the development of novel methods of prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Amelia Staats
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Peter W. Burback
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Nadia N. Casillas-Ituarte
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, USA
- School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| | - Daniel Li
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | | - Anne Sullivan
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Steven K. Lower
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Department of Mechanical Engineering, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
41
|
Lipke PN, Ragonis-Bachar P. Sticking to the Subject: Multifunctionality in Microbial Adhesins. J Fungi (Basel) 2023; 9:jof9040419. [PMID: 37108873 PMCID: PMC10144551 DOI: 10.3390/jof9040419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Bacterial and fungal adhesins mediate microbial aggregation, biofilm formation, and adhesion to host. We divide these proteins into two major classes: professional adhesins and moonlighting adhesins that have a non-adhesive activity that is evolutionarily conserved. A fundamental difference between the two classes is the dissociation rate. Whereas moonlighters, including cytoplasmic enzymes and chaperones, can bind with high affinity, they usually dissociate quickly. Professional adhesins often have unusually long dissociation rates: minutes or hours. Each adhesin has at least three activities: cell surface association, binding to a ligand or adhesive partner protein, and as a microbial surface pattern for host recognition. We briefly discuss Bacillus subtilis TasA, pilin adhesins, gram positive MSCRAMMs, and yeast mating adhesins, lectins and flocculins, and Candida Awp and Als families. For these professional adhesins, multiple activities include binding to diverse ligands and binding partners, assembly into molecular complexes, maintenance of cell wall integrity, signaling for cellular differentiation in biofilms and in mating, surface amyloid formation, and anchorage of moonlighting adhesins. We summarize the structural features that lead to these diverse activities. We conclude that adhesins resemble other proteins with multiple activities, but they have unique structural features to facilitate multifunctionality.
Collapse
Affiliation(s)
- Peter N. Lipke
- Biology Department, Brooklyn College of the City University of New York, Brooklyn, NY 11215, USA
- Correspondence:
| | - Peleg Ragonis-Bachar
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
42
|
Alorabi M, Ejaz U, Khoso BK, Uddin F, Mahmoud SF, Sohail M, Youssef M. Detection of Genes Encoding Microbial Surface Component Recognizing Adhesive Matrix Molecules in Methicillin-Resistant Staphylococcus aureus Isolated from Pyoderma Patients. Genes (Basel) 2023; 14:genes14040783. [PMID: 37107541 PMCID: PMC10137381 DOI: 10.3390/genes14040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Pyoderma is a common skin infection predominantly caused by Staphylococcus aureus. In addition to methicillin resistance, this pathogen is resistant to many other antibiotics, which ultimately limits the available treatment options. Therefore, the present study aimed to compare the antibiotic-resistance pattern, to detect the mecA gene and the genes encoding microbial surface component recognizing adhesive matrix molecules (MSCRAMMs) in S. aureus isolates. A total of 116 strains were isolated from patients suffering with pyoderma. Disk diffusion assay was opted to perform antimicrobial susceptibility testing of the isolates. Out of the isolates tested, 23-42.2% strains appeared susceptible to benzylpenicillin, cefoxitin, ciprofloxacin and erythromycin. While linezolid was found to be the most effective anti-staphylococcal drug, followed by rifampin, chloramphenicol, clindamycin, gentamicin and ceftaroline. Out of 116 isolates, 73 (62.93%) were methicillin-resistant S. aureus (MRSA). Statistically significant (p ≤ 0.05) differences in antibiotic resistance patterns between MRSA and methicillin-susceptible S. aureus (MSSA) were found. A significant association of resistance to ceftaroline, rifampin, tetracycline, ciprofloxacin, clindamycin, trimethoprim-sulfamethoxazole and chloramphenicol was found in MRSA. However, no significant difference was observed between MRSA and MSSA for resistance against gentamicin, erythromycin or linezolid. All cefoxitin-resistant S. aureus, nonetheless, were positive for the mecA gene. femA was found in all the MRSA isolates. Among other virulence markers, bbp and fnbB were found in all the isolates, while can (98.3%), clfA and fnbA (99.1%) were present predominately in MRSA. Thus, this study offers an understanding of antibiotic resistance MSCRAMMs, mecA, and femA gene patterns in locally isolated strains of S. aureus.
Collapse
Affiliation(s)
- Mohammed Alorabi
- Department of Biotechnology, College of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Uroosa Ejaz
- Department of Biosciences, Faculty of Life Sciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Karachi 75600, Pakistan
| | - Bahram Khan Khoso
- Department of Dermatology, Jinnah Sindh Medical University, Karachi 75510, Pakistan
| | - Fakhur Uddin
- Department of Microbiology, Basic Medical Sciences Institute (BMSI), Jinnah Postgraduate Medical Centre (JPMC), Karachi 75510, Pakistan
| | - Samy F Mahmoud
- Department of Biotechnology, College of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Mona Youssef
- Department of Hepatology, Gastroenterology and Infectious Diseases, Benha Teaching Hospital, Benha 13518, Egypt
| |
Collapse
|
43
|
Yan X, Xu Y, Shen C, Chen D. Inactivation of Staphylococcus aureus by Levulinic Acid Plus Sodium Dodecyl Sulfate and their Antibacterial Mechanisms on S. aureus Biofilms by Transcriptomic Analysis. J Food Prot 2023; 86:100050. [PMID: 36916557 DOI: 10.1016/j.jfp.2023.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023]
Abstract
The combination of levulinic acid (LVA) and sodium dodecyl sulfate (SDS) in recent years has shown a considerable potential to use as an antimicrobial intervention. The objectives of this study were to evaluate the antimicrobial efficacy of the combination against Staphylococcus aureus in both planktonic and biofilm states and to investigate the transcriptional changes in S. aureus biofilms coincubated with sublethal concentrations of LVA and/or SDS. The minimum inhibitory concentrations (MICs) of LVA and SDS determined by the microdilution method were 3.125 and 0.039 mg/mL, respectively. An additive bacteriostatic interaction (fractional inhibitory concentration index = 1) between the two compounds was observed by the checkerboard assay, whereas a synergistic bactericidal activity was displayed by the time-kill assay. The biomass and viable cells in the biofilms were reduced by both antimicrobials either alone or in combination in a dose-dependent manner. Transcriptomics indicated that more differentially expressed (DE) genes were observed in the biofilm treated with SDS (103 up- and 205 downregulated DE genes) and LVA + SDS (187 up and 162 down) than that coincubated with LVA (34 up and 32 down). The SDS and LVA + SDS treatments mainly affected the expression of genes responsible for cell surface proteins, virulence factors, adhesins, and capsular polysaccharides. Both the antibiofilm assay and the transcriptomics indicated that SDS, not LVA, was the major chemical contributing to the antibacterial efficacy of the combination. This study reveals the behavioral responses and protective mechanisms of S. aureus to LVA and SDS applied individually or in combination.
Collapse
Affiliation(s)
- Xiaoxue Yan
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, 400715, China
| | - Yiwei Xu
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, 400715, China
| | - Cangliang Shen
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Dong Chen
- College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, 400715, China.
| |
Collapse
|
44
|
Merghni A, Hamdi H, Ben Abdallah M, Al-Hasawi ZM, Al-Quwaie DA, Abid-Essefi S. Detection of Methicillin-Resistant Staphylococcus aureus among Foodborne Pathogenic Strains and Assessment of Their Adhesion Ability and Cytotoxic Effects in HCT-116 Cells. Foods 2023; 12:foods12050974. [PMID: 36900491 PMCID: PMC10001405 DOI: 10.3390/foods12050974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Staphylococcus aureus is one of the high-threat pathogens equipped with a repertoire of virulence factors making it responsible for many infections in humans, including foodborne diseases. The present study aims to characterize antibiotic resistance and virulence factors in foodborne S. aureus isolates, and to investigate their cytotoxic effects in human intestinal cells (HCT-116). Our results revealed methicillin resistance phenotypes (MRSA) along with the detection of mecA gene (20%) among tested foodborne S. aureus strains. Furthermore, 40% of tested isolates showed a strong ability for adhesion and biofilm formation. A high rate of exoenzymes production by tested bacteria was also registered. Additionally, treatment with S. aureus extracts leads to a significant decrease in HCT-116 cell viability, accompanied by a reduction in the mitochondrial membrane potential (MMP), as a result of reactive oxygen species (ROS) generation. Thereby, S. aureus food poisoning remains daunting and needs particular concern to prevent foodborne illness.
Collapse
Affiliation(s)
- Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
- Correspondence:
| | - Hiba Hamdi
- Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Faculty of Dental Medicine, University of Monastir, Monastir 5000, Tunisia
| | - Marwa Ben Abdallah
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Zaki M. Al-Hasawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Diana A. Al-Quwaie
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, LR01SE17, Faculty of Dental Medicine, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
45
|
A Sequalae of Lineage Divergence in Staphylococcus aureus from Community-Acquired Patterns in Youth to Hospital-Associated Profiles in Seniors Implied Age-Specific Host-Selection from a Common Ancestor. Diagnostics (Basel) 2023; 13:diagnostics13050819. [PMID: 36899963 PMCID: PMC10001379 DOI: 10.3390/diagnostics13050819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
The rapidly changing epidemiology of Staphylococcus aureus and evolution of strains with enhanced virulence is a significant issue in global healthcare. Hospital-associated methicillin-resistant S. aureus (HA-MRSA) lineages are being completely replaced by community-associated S. aureus (CA-MRSA) in many regions. Surveillance programs tracing the reservoirs and sources of infections are needed. Using molecular diagnostics, antibiograms, and patient demographics, we have examined the distributions of S. aureus in Ha'il hospitals. Out of 274 S. aureus isolates recovered from clinical specimens, 181 (66%, n = 181) were MRSA, some with HA-MRSA patterns across 26 antimicrobials with almost full resistances to all beta-lactams, while the majority were highly susceptible to all non-beta-lactams, indicating the CA-MRSA type. The rest of isolates (34%, n = 93) were methicillin-susceptible, penicillin-resistant MSSA lineages (90%). The MRSA in men was over 56% among total MRSA (n = 181) isolates and 37% of overall isolates (n = 102 of 274) compared to MSSA in total isolates (17.5%, n = 48), respectively. However, these were 28.4% (n = 78) and 12.4% (n = 34) for MRSA and MSSA infections in women, respectively. MRSA rates per age groups of 0-20, 21-50, and >50 years of age were 15% (n = 42), 17% (n = 48), and 32% (n = 89), respectively. However, MSSA in the same age groups were 13% (n = 35), 9% (n = 25), and 8% (n = 22). Interestingly, MRSA increased proportional to age, while MSSA concomitantly decreased, implying dominance of the latter ancestors early in life and then gradual replacement by MRSA. The dominance and seriousness of MRSA despite enormous efforts in place is potentially for the increased use of beta-lactams known to enhance virulence. The Intriguing prevalence of the CA-MRSA patterns in young otherwise healthy individuals replaced by MRSA later in seniors and the dominance of penicillin-resistant MSSA phenotypes imply three types of host- and age-specific evolutionary lineages. Thus, the decreasing MSSA trend by age with concomitant increase and sub-clonal differentiation into HA-MRSA in seniors and CA-MRSA in young and otherwise healthy patients strongly support the notion of subclinal emergences from a resident penicillin-resistant MSSA ancestor. Future vertical studies should focus on the surveillance of invasive CA-MRSA rates and phenotypes.
Collapse
|
46
|
Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat Rev Microbiol 2023; 21:97-111. [PMID: 36042296 PMCID: PMC9903335 DOI: 10.1038/s41579-022-00780-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 01/20/2023]
Abstract
The coagulase-negative bacterium Staphylococcus epidermidis is a member of the human skin microbiota. S. epidermidis is not merely a passive resident on skin but actively primes the cutaneous immune response, maintains skin homeostasis and prevents opportunistic pathogens from causing disease via colonization resistance. However, it is now appreciated that S. epidermidis and its interactions with the host exist on a spectrum of potential pathogenicity derived from its high strain-level heterogeneity. S. epidermidis is the most common cause of implant-associated infections and is a canonical opportunistic biofilm former. Additional emerging evidence suggests that some strains of S. epidermidis may contribute to the pathogenesis of common skin diseases. Here, we highlight new developments in our understanding of S. epidermidis strain diversity, skin colonization dynamics and its multifaceted interactions with the host and other members of the skin microbiota.
Collapse
|
47
|
Francis D, Bhairaddy A, Joy A, Hari GV, Francis A. Secretory proteins in the orchestration of microbial virulence: The curious case of Staphylococcus aureus. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:271-350. [PMID: 36707204 DOI: 10.1016/bs.apcsb.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microbial virulence showcases an excellent model for adaptive changes that enable an organism to survive and proliferate in a hostile environment and exploit host resources to its own benefit. In Staphylococcus aureus, an opportunistic pathogen of the human host, known for the diversity of the disease conditions it inflicts and the rapid evolution of antibiotic resistance, virulence is a consequence of having a highly plastic genome that is amenable to quick reprogramming and the ability to express a diverse arsenal of virulence factors. Virulence factors that are secreted to the host milieu effectively manipulate the host conditions to favor bacterial survival and growth. They assist in colonization, nutrient acquisition, immune evasion, and systemic spread. The structural and functional characteristics of the secreted virulence proteins have been shaped to assist S. aureus in thriving and disseminating effectively within the host environment and exploiting the host resources to its best benefit. With the aim of highlighting the importance of secreted virulence proteins in bacterial virulence, the present chapter provides a comprehensive account of the role of the major secreted proteins of S. aureus in orchestrating its virulence in the human host.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | | | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
48
|
Melo MCR, Gomes DEB, Bernardi RC. Molecular Origins of Force-Dependent Protein Complex Stabilization during Bacterial Infections. J Am Chem Soc 2023; 145:70-77. [PMID: 36455202 DOI: 10.1021/jacs.2c07674] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The unbinding pathway of a protein complex can vary significantly depending on biochemical and mechanical factors. Under mechanical stress, a complex may dissociate through a mechanism different from that used in simple thermal dissociation, leading to different dissociation rates under shear force and thermal dissociation. This is a well-known phenomenon studied in biomechanics whose molecular and atomic details are still elusive. A particularly interesting case is the complex formed by bacterial adhesins with their human peptide target. These protein interactions have a force resilience equivalent to those of covalent bonds, an order of magnitude stronger than the widely used streptavidin:biotin complex, while having an ordinary affinity, much lower than that of streptavidin:biotin. Here, in an in silico single-molecule force spectroscopy approach, we use molecular dynamics simulations to investigate the dissociation mechanism of adhesin/peptide complexes. We show how the Staphylococcus epidermidis adhesin SdrG uses a catch-bond mechanism to increase complex stability with increasing mechanical stress. While allowing for thermal dissociation in a low-force regime, an entirely different mechanical dissociation path emerges in a high-force regime, revealing an intricate mechanism that does not depend on the peptide's amino acid sequence. Using a dynamic network analysis approach, we identified key amino acid contacts that describe the mechanics of this complex, revealing differences in dynamics that hinder thermal dissociation and establish the mechanical dissociation path. We then validate the information content of the selected amino acid contacts using their dynamics to successfully predict the rupture forces for this complex through a machine learning model.
Collapse
Affiliation(s)
- Marcelo C R Melo
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Diego E B Gomes
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Rafael C Bernardi
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
49
|
Tuon FF, Suss PH, Telles JP, Dantas LR, Borges NH, Ribeiro VST. Antimicrobial Treatment of Staphylococcus aureus Biofilms. Antibiotics (Basel) 2023; 12:87. [PMID: 36671287 PMCID: PMC9854895 DOI: 10.3390/antibiotics12010087] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a microorganism frequently associated with implant-related infections, owing to its ability to produce biofilms. These infections are difficult to treat because antimicrobials must cross the biofilm to effectively inhibit bacterial growth. Although some antibiotics can penetrate the biofilm and reduce the bacterial load, it is important to understand that the results of routine sensitivity tests are not always valid for interpreting the activity of different drugs. In this review, a broad discussion on the genes involved in biofilm formation, quorum sensing, and antimicrobial activity in monotherapy and combination therapy is presented that should benefit researchers engaged in optimizing the treatment of infections associated with S. aureus biofilms.
Collapse
Affiliation(s)
- Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Paula Hansen Suss
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Joao Paulo Telles
- AC Camargo Cancer Center, Infectious Diseases Department, São Paulo 01525-001, São Paulo, Brazil
| | - Leticia Ramos Dantas
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Nícolas Henrique Borges
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Victoria Stadler Tasca Ribeiro
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| |
Collapse
|
50
|
Lee SM, Keum HL, Sul WJ. Bacterial Crosstalk via Antimicrobial Peptides on the Human Skin: Therapeutics from a Sustainable Perspective. J Microbiol 2023; 61:1-11. [PMID: 36719618 DOI: 10.1007/s12275-022-00002-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 02/01/2023]
Abstract
The skin's epidermis is an essential barrier as the first guard against invading pathogens, and physical protector from external injury. The skin microbiome, which consists of numerous bacteria, fungi, viruses, and archaea on the epidermis, play a key role in skin homeostasis. Antibiotics are a fast-acting and effective treatment method, however, antibiotic use is a nuisance that can disrupt skin homeostasis by eradicating beneficial bacteria along with the intended pathogens and cause antibiotic-resistant bacteria spread. Increased numbers of antimicrobial peptides (AMPs) derived from humans and bacteria have been reported, and their roles have been well defined. Recently, modulation of the skin microbiome with AMPs rather than artificially synthesized antibiotics has attracted the attention of researchers as many antibiotic-resistant strains make treatment mediation difficult in the context of ecological problems. Herein, we discuss the overall insights into the skin microbiome, including its regulation by different AMPs, as well as their composition and role in health and disease.
Collapse
Affiliation(s)
- Seon Mi Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hye Lim Keum
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|