1
|
Ford T. Microbial Ecotoxicology-40 Years on. Life (Basel) 2025; 15:514. [PMID: 40283069 PMCID: PMC12028737 DOI: 10.3390/life15040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
Although ecotoxicology was emerging as a field through the 1970s, the incorporation of microbial indicators into the framework has been slower to evolve. The exploration of microbes as sensitive toxicity tests began in the late 70s and early 80s (with the emergence of Microtox® and other simple tests). However, the applications have been limited, beyond water and wastewater screening. This opinion piece reflects my own perspective on the field-from my early excitement in the 1990s for its possibilities, to a sense of frustration at the slow pace of new development and applications in the field-despite the surge of "omics" options. While microbiology still fails to lead the field of ecotoxicology, the potential remains.
Collapse
Affiliation(s)
- Tim Ford
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854-5125, USA
| |
Collapse
|
2
|
Gallart M, Dow L, Nowak V, Belt K, Sabburg R, Gardiner DM, Thatcher LF. Multi-omic investigation identifies key antifungal biochemistry during fermentation of a Streptomyces biological control agent. Microbiol Res 2025; 292:128032. [PMID: 39721340 DOI: 10.1016/j.micres.2024.128032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
The use of multi-omic approaches has significantly advanced the exploration of microbial traits, leading to the discovery of new bioactive compounds and their mechanisms of action. Streptomyces sp. MH71 is known for its antifungal properties with potential for use in crop protection. Using genomic, transcriptomic, and metabolomic analyses, the antifungal metabolic capacity of Streptomyces sp. MH71 was investigated. After 96 hours of liquid fermentation, cell-free spent media showed inhibitory activity against the fungal phytopathogen Verticillium dahliae, with the lowest IC50 value being 0.11 % (v/v) after 144 h. Through whole-genome sequencing, we obtained a near-complete genome of 11 Mb with a G+C content of 71 % for Streptomyces sp. MH71. Genome mining identified 50 putative biosynthetic gene clusters, six of which produced known antimicrobial compounds. To link antifungal activity with candidate biosynthetic pathways, a transcriptomic approach was applied to understand antifungal induction in MH71 cells during the observed increase in antifungal activity. This approach revealed 2774 genes that exhibited differential expression, with significant upregulation of genes involved in biosynthesis of secondary metabolites during the stationary growth phase. Metabolomic analyses using LC-MS and GC-MS of secreted compounds identified a cocktail of potent antifungal metabolites, including volatiles with antifungal activity. By combining genome mining, bioactivity data, transcriptomics, and metabolomics, we describe in detail the gene expression and metabolite products driving antifungal activity during microbial fermentation.
Collapse
Affiliation(s)
- Marta Gallart
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Acton, ACT, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Advanced Engineering Biology Future Science Platform, Acton, ACT, Australia.
| | - Lachlan Dow
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Acton, ACT, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia
| | - Vincent Nowak
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Acton, ACT, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Advanced Engineering Biology Future Science Platform, Acton, ACT, Australia
| | - Katharina Belt
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Acton, ACT, Australia
| | - Rosalie Sabburg
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Acton, ACT, Australia
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Acton, ACT, Australia
| | - Louise F Thatcher
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Acton, ACT, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Advanced Engineering Biology Future Science Platform, Acton, ACT, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia
| |
Collapse
|
3
|
Batty CA, Pearson VK, Olsson-Francis K, Morgan G. Volatile organic compounds (VOCs) in terrestrial extreme environments: implications for life detection beyond Earth. Nat Prod Rep 2025; 42:93-112. [PMID: 39431456 DOI: 10.1039/d4np00037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Covering: 1961 to 2024Discovering and identifying unique natural products/biosignatures (signatures that can be used as evidence for past or present life) that are abundant, and complex enough that they indicate robust evidence of life is a multifaceted process. One distinct category of biosignatures being explored is organic compounds. A subdivision of these compounds not yet readily investigated are volatile organic compound (VOCs). When assessing these VOCs as a group (volatilome) a fingerprint of all VOCs within an environment allows the complex patterns in metabolic data to be unravelled. As a technique already successfully applied to many biological and ecological fields, this paper explores how analysis of volatilomes in terrestrial extreme environments could be used to enhance processes (such as metabolomics and metagenomics) already utilised in life detection beyond Earth. By overcoming some of the complexities of collecting VOCs in remote field sites, a variety of lab based analytical equipment and techniques can then be utilised. Researching volatilomics in astrobiology requires time to characterise the patterns of VOCs. They must then be differentiated from abiotic (non-living) signals within extreme environments similar to those found on other planetary bodies (analogue sites) or in lab-based simulated environments or microcosms. Such an effort is critical for understanding data returned from past or upcoming missions, but it requires a step change in approach which explores the volatilome as a vital additional tool to current 'Omics techniques.
Collapse
Affiliation(s)
- Claire A Batty
- The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | | | | - Geraint Morgan
- The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| |
Collapse
|
4
|
Salinas-García MÁ, Fernbach J, Rinnan R, Priemé A. Extreme smells-microbial production of volatile organic compounds at the limits of life. FEMS Microbiol Rev 2025; 49:fuaf004. [PMID: 39880796 PMCID: PMC11837334 DOI: 10.1093/femsre/fuaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 01/31/2025] Open
Abstract
Microbial volatile organic compounds (MVOCs) are diverse molecules produced by microorganisms, ranging from mere waste byproducts to important signalling molecules. While the interest in MVOCs has been increasing steadily, there is a significant gap in our knowledge of MVOCs in extreme environments with e.g. extreme temperatures or acidity. Microorganisms in these conditions are subjected to additional stress compared to their counterparts in moderate environments and in many cases have evolved unique adaptations, including the production of specialized MVOCs. This review highlights the diversity of MVOCs identified in extreme environments or produced by isolated extremophiles. Furthermore, we explore potential applications already investigated and discuss broader implications for biotechnology, environmental biology, and astrobiology.
Collapse
Affiliation(s)
- Miguel Ángel Salinas-García
- Centre for Exolife Sciences (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen, Denmark
- Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Jonas Fernbach
- Centre for Exolife Sciences (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen, Denmark
| | - Riikka Rinnan
- Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Anders Priemé
- Centre for Exolife Sciences (CELS), Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5, DK-1350 Copenhagen, Denmark
- Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Kemmler E, Lemfack MC, Goede A, Gallo K, Toguem ST, Ahmed W, Millberg I, Preissner S, Piechulla B, Preissner R. mVOC 4.0: a database of microbial volatiles. Nucleic Acids Res 2025; 53:D1692-D1696. [PMID: 39475188 PMCID: PMC11701663 DOI: 10.1093/nar/gkae961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 01/18/2025] Open
Abstract
Metabolomic microbiome research has become an important topic for understanding agricultural, ecological as well as health correlations. Only the determination of both the non-volatile and the volatile organic compound (mVOC) production by microorganisms allows a holistic view for understanding the complete potential of metabolomes and metabolic capabilities of bacteria. In the recent past, more and more bacterial headspaces and culture media were analyzed, leading to an accumulation of about 3500 mVOCs in the updated mVOC 4.0 database, including compounds synthesized by the newly discovered non-canonical terpene pathway. Approximately 10% of all mVOCs can be assigned with a biological function, some mVOCs have the potential to impact agriculture in the future (e.g. eco-friendly pesticides) or animal and human health care. mVOC 4.0 offers various options for exploring extensively annotated mVOC data from different perspectives, including improved mass spectrometry matching. The mVOC 4.0 database includes literature searches with additional relevant keywords, making it the most up-to-date and comprehensive publicly available mVOC platform at: http://bioinformatics.charite.de/mvoc.
Collapse
Affiliation(s)
- Emanuel Kemmler
- Institute for Physiology & Science-IT, Charité – University Medicine Berlin, 10115 Berlin, Germany
| | - Marie Chantal Lemfack
- Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Andrean Goede
- Institute for Physiology & Science-IT, Charité – University Medicine Berlin, 10115 Berlin, Germany
| | - Kathleen Gallo
- Institute for Physiology & Science-IT, Charité – University Medicine Berlin, 10115 Berlin, Germany
| | - Serge M T Toguem
- Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Waqar Ahmed
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Iris Millberg
- Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Saskia Preissner
- Institute for Physiology & Science-IT, Charité – University Medicine Berlin, 10115 Berlin, Germany
| | - Birgit Piechulla
- Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Robert Preissner
- Institute for Physiology & Science-IT, Charité – University Medicine Berlin, 10115 Berlin, Germany
| |
Collapse
|
6
|
Underwood TR, Bourg IC, Rosso KM. Mineral-associated organic matter is heterogeneous and structured by hydrophobic, charged, and polar interactions. Proc Natl Acad Sci U S A 2024; 121:e2413216121. [PMID: 39514311 PMCID: PMC11573572 DOI: 10.1073/pnas.2413216121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/22/2024] [Indexed: 11/16/2024] Open
Abstract
The formation of mineral-associated organic matter (MAOM) is a key phenomenon that may explain the slow turnover rates of carbon in soil organic matter (SOM). Despite this, important details pertaining to the structure and dynamics of MAOM remain unknown. In the present study, we use replica-exchange molecular dynamics simulations to gain insight into the structure of MAOM on the surface of prototypical phyllosilicate clay and Fe-oxide minerals, montmorillonite and goethite, fine-grained minerals that strongly impact soil carbon dynamics in temperate and tropical regions, respectively. We examine the impact of aqueous chemistry through the presence of either Na[Formula: see text] or Ca[Formula: see text] charge balancing counterions. Our results are consistent with the hypothesized multilayer sorption ("onion-skin") model of MAOM and help to explain previous observations regarding the patchy distribution of SOM on mineral surfaces. In particular, the SOM coatings are partial and laterally heterogeneous, and water retains extensive access to mineral surfaces even when significant SOM sorption occurs. Low molecular weight neutral SOM molecules ([Formula: see text]200 Da) infrequently interact with the mineral surfaces nor their sorbed organic matter coatings and are increasingly labile with decreasing molecular weight. This observation is inconsistent with a central feature of the predominant soil continuum model of SOM and suggests that further iterations of the conceptual model may be required.
Collapse
Affiliation(s)
- Thomas R Underwood
- Physical and Chemical Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544
| | - Ian C Bourg
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544
- High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544
| | - Kevin M Rosso
- Physical and Chemical Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352
| |
Collapse
|
7
|
Ledford SM, Meredith LK. Volatile Organic Compound Metabolism on Early Earth. J Mol Evol 2024; 92:605-617. [PMID: 39017923 PMCID: PMC11458752 DOI: 10.1007/s00239-024-10184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Biogenic volatile organic compounds (VOCs) constitute a significant portion of gas-phase metabolites in modern ecosystems and have unique roles in moderating atmospheric oxidative capacity, solar radiation balance, and aerosol formation. It has been theorized that VOCs may account for observed geological and evolutionary phenomena during the Archaean, but the direct contribution of biology to early non-methane VOC cycling remains unexplored. Here, we provide an assessment of all potential VOCs metabolized by the last universal common ancestor (LUCA). We identify enzyme functions linked to LUCA orthologous protein groups across eight literature sources and estimate the volatility of all associated substrates to identify ancient volatile metabolites. We hone in on volatile metabolites with confirmed modern emissions that exist in conserved metabolic pathways and produce a curated list of the most likely LUCA VOCs. We introduce volatile organic metabolites associated with early life and discuss their potential influence on early carbon cycling and atmospheric chemistry.
Collapse
Affiliation(s)
- S Marshall Ledford
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA.
| | - Laura K Meredith
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
8
|
Cossey HL, Kaminsky HAW, Ulrich AC. Effects of pressure on the biogeochemical and geotechnical behavior of treated oil sands tailings in a pit lake scenario. CHEMOSPHERE 2024; 365:143395. [PMID: 39313078 DOI: 10.1016/j.chemosphere.2024.143395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Reclamation options for oil sands fluid fine tailings (FFT) are limited due to its challenging geotechnical properties, which include high water and clay contents and low shear strength. A feasible reclamation option for tailings with these properties is water capped FFT deposits (pit lakes). A relatively new proposal is to deposit FFT that has been treated with alum and polyacrylamide in pit lakes. Though over 65 Mm3 of alum/polyacrylamide treated FFT has been deposited to date, there is limited publicly available information on the biogeochemical and geotechnical behavior of this treated FFT. Further, the effects of pressure from overlying tailings on microbial activity and biogeochemical cycling in oil sands tailings has not been previously investigated. Twelve 5.5 L columns were designed to mimic alum/polyacrylamide treated FFT deposited beneath a water cap. A 2x2 factorial design was used to apply pressure and hydrocarbon amendments to the tailings. Pressure (0.3-5.1 kPa) was applied incrementally and columns were monitored for 360 d. Pressure significantly enhanced consolidation and microbial activity in treated FFT. Columns with pressure generated significantly more CH4(g) and CO2(g) and had significant increases in dissolved organic carbon and chemical oxygen demand in the FFT and water caps. The enhanced microbial activity in columns with pressure indicates that pressure increased the solubility of microbial substrates and metabolites in the tailings, thereby increasing the bioavailability of these compounds. Ammonium generation was significantly higher in columns with pressure, suggesting that microorganisms utilized polyacrylamide and/or N2 fixation as a nitrogen source to meet enhanced nutrient demands. Pressure also impacted microbial community structure, shifting methanogenic communities from hydrogenotrophic methanogens to predominately acetoclastic methanogens. This study also revealed the importance of sulfur cycling in treated FFT. Extensive sulfate reduction occurred in all columns, generating dissolved sulfides and H2S(g), and this was accelerated by hydrocarbon amendments.
Collapse
Affiliation(s)
- Heidi L Cossey
- Department of Civil & Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Heather A W Kaminsky
- Centre for Energy and Environmental Sustainability, Northern Alberta Institute of Technology, Edmonton, Alberta, T5G 0Y2, Canada
| | - Ania C Ulrich
- Department of Civil & Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
9
|
Dell'Olio A, Rubert J, Capozzi V, Tonezzer M, Betta E, Fogliano V, Biasioli F. Non-invasive VOCs detection to monitor the gut microbiota metabolism in-vitro. Sci Rep 2024; 14:15842. [PMID: 38982163 PMCID: PMC11233675 DOI: 10.1038/s41598-024-66303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
This work implemented a non-invasive volatile organic compounds (VOCs) monitoring approach to study how food components are metabolised by the gut microbiota in-vitro. The fermentability of a model food matrix rich in dietary fibre (oat bran), and a pure prebiotic (inulin), added to a minimal gut medium was compared by looking at global changes in the volatilome. The substrates were incubated with a stabilised human faecal inoculum over a 24-h period, and VOCs were monitored without interfering with biological processes. The fermentation was performed in nitrogen-filled vials, with controlled temperature, and tracked by automated headspace-solid-phase microextraction coupled with gas chromatography-mass spectrometry. To understand the molecular patterns over time, we applied a multivariate longitudinal statistical framework: repeated measurements-ANOVA simultaneous component analysis. The methodology was able to discriminate the studied groups by looking at VOCs temporal profiles. The volatilome showed a time-dependency that was more distinct after 12 h. Short to medium-chain fatty acids showed increased peak intensities, mainly for oat bran and for inulin, but with different kinetics. At the same time, alcohols, aldehydes, and esters showed distinct trends with discriminatory power. The proposed approach can be applied to study the intertwined pathways of gut microbiota food components interaction in-vitro.
Collapse
Affiliation(s)
- Andrea Dell'Olio
- Food Quality and Design, Wageningen University & Research, 6708 WG, Wageningen, Netherlands
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy
| | - Josep Rubert
- Food Quality and Design, Wageningen University & Research, 6708 WG, Wageningen, Netherlands
| | - Vittorio Capozzi
- Institute of Food Production Sciences, National Research Council, 71121, Foggia, Italy
| | - Matteo Tonezzer
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy
- Department of Chemical and Geological Sciences, University of Cagliari, 09042, Monserrato , Italy
| | - Emanuela Betta
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy
| | - Vincenzo Fogliano
- Food Quality and Design, Wageningen University & Research, 6708 WG, Wageningen, Netherlands
| | - Franco Biasioli
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy.
| |
Collapse
|
10
|
Bratman GN, Bembibre C, Daily GC, Doty RL, Hummel T, Jacobs LF, Kahn PH, Lashus C, Majid A, Miller JD, Oleszkiewicz A, Olvera-Alvarez H, Parma V, Riederer AM, Sieber NL, Williams J, Xiao J, Yu CP, Spengler JD. Nature and human well-being: The olfactory pathway. SCIENCE ADVANCES 2024; 10:eadn3028. [PMID: 38748806 PMCID: PMC11809653 DOI: 10.1126/sciadv.adn3028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/12/2024] [Indexed: 07/04/2024]
Abstract
The world is undergoing massive atmospheric and ecological change, driving unprecedented challenges to human well-being. Olfaction is a key sensory system through which these impacts occur. The sense of smell influences quality of and satisfaction with life, emotion, emotion regulation, cognitive function, social interactions, dietary choices, stress, and depressive symptoms. Exposures via the olfactory pathway can also lead to (anti-)inflammatory outcomes. Increased understanding is needed regarding the ways in which odorants generated by nature (i.e., natural olfactory environments) affect human well-being. With perspectives from a range of health, social, and natural sciences, we provide an overview of this unique sensory system, four consensus statements regarding olfaction and the environment, and a conceptual framework that integrates the olfactory pathway into an understanding of the effects of natural environments on human well-being. We then discuss how this framework can contribute to better accounting of the impacts of policy and land-use decision-making on natural olfactory environments and, in turn, on planetary health.
Collapse
Affiliation(s)
- Gregory N. Bratman
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Cecilia Bembibre
- Institute for Sustainable Heritage, University College London, London, UK
| | - Gretchen C. Daily
- Natural Capital Project, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Woods Institute, Stanford University, Stanford, CA 94305, USA
| | - Richard L. Doty
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Hummel
- Interdisciplinary Center Smell and Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lucia F. Jacobs
- Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Peter H. Kahn
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Connor Lashus
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Asifa Majid
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | - Anna Oleszkiewicz
- Interdisciplinary Center Smell and Taste, Department of Otorhinolaryngology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Institute of Psychology, University of Wroclaw, Wrocław, Poland
| | | | | | - Anne M. Riederer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nancy Long Sieber
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Jonathan Williams
- Air Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
| | - Jieling Xiao
- College of Architecture, Birmingham City University, Birmingham, UK
| | - Chia-Pin Yu
- School of Forestry and Resource Conservation, National Taiwan University, Taiwan
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Taiwan
| | - John D. Spengler
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
11
|
Nealon NJ, Worcester CR, Boyer SM, Haberecht HB, Ryan EP. Metabolite profiling and bioactivity guided fractionation of Lactobacillaceae and rice bran postbiotics for antimicrobial-resistant Salmonella Typhimurium growth suppression. Front Microbiol 2024; 15:1362266. [PMID: 38659978 PMCID: PMC11040457 DOI: 10.3389/fmicb.2024.1362266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/12/2024] [Indexed: 04/26/2024] Open
Abstract
Probiotic-fermented supplements (postbiotics) are becoming increasingly explored for their activity against antibiotic-resistant enteropathogens. Prebiotics are often incorporated into postbiotics to enhance their efficacy, but due to strain differences in probiotic activity, postbiotic antimicrobial effects are poorly understood. To improve postbiotic antimicrobial efficacy, we investigated and compared metabolite profiles of postbiotics prepared with three lactic acid bacteria strains (L. fermentum, L. paracasei, and L. rhamnosus) cultured with and without rice bran, a globally abundant, rich source of prebiotics. At their minimum inhibitory dose, L. fermentum and L. paracasei postbiotics + rice bran suppressed S. Typhimurium growth 42-55% more versus their respective probiotic-alone postbiotics. The global, non-targeted metabolome of these postbiotics identified 109 metabolites increased in L. fermentum and L. paracasei rice bran postbiotics, including 49 amino acids, 20 lipids, and 12 phytochemicals metabolites. To identify key metabolite contributors to postbiotic antimicrobial activity, bioactivity-guided fractionation was applied to L. fermentum and L. paracasei rice bran-fermented postbiotics. Fractionation resulted in four L. fermentum and seven L. paracasei fractions capable of suppressing S. Typhimurium growth more effectively versus the negative control. These fractions were enriched in 15 metabolites that were significantly increased in the global metabolome of postbiotics prepared with rice bran versus postbiotic alone. These metabolites included imidazole propionate (enriched in L. fermentum + rice bran, 1.61-fold increase; L. paracasei + rice bran 1.28-fold increase), dihydroferulate (L. fermentum + rice bran, 5.18-fold increase), and linoleate (L. fermentum + rice bran, 1.82-fold increase; L. paracasei + rice bran, 3.19-fold increase), suggesting that they may be key metabolite drivers of S. Typhimurium growth suppression. Here, we show distinct mechanisms by which postbiotics prepared with lactic acid bacteria and rice bran produce metabolites with antimicrobial activity capable of suppressing S. Typhimurium growth. Probiotic strain differences contributing to postbiotic antimicrobial activity attract attention as adjunctive treatments against pathogens.
Collapse
Affiliation(s)
- Nora Jean Nealon
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Colette R. Worcester
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Shea M. Boyer
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Hannah B. Haberecht
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
12
|
Cuervo L, Méndez C, Olano C, Malmierca MG. Volatilome: Smells like microbial spirit. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:1-43. [PMID: 38763526 DOI: 10.1016/bs.aambs.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
In recent years, the study of volatile compounds has sparked interest due to their implications in signaling and the enormous variety of bioactive properties attributed to them. Despite the absence of analysis methods standardization, there are a multitude of tools and databases that allow the identification and quantification of volatile compounds. These compounds are chemically heterogeneous and their diverse properties are exploited by various fields such as cosmetics, the food industry, agriculture and medicine, some of which will be discussed here. In virtue of volatile compounds being ubiquitous and fast chemical messengers, these molecules mediate a large number of interspecific and intraspecific interactions, which are key at an ecological level to maintaining the balance and correct functioning of ecosystems. This review briefly summarized the role of volatile compounds in inter- and intra-specific relationships as well as industrial applications associated with the use of these compounds that is emerging as a promising field of study.
Collapse
Affiliation(s)
- Lorena Cuervo
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Carmen Méndez
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Carlos Olano
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Mónica G Malmierca
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain.
| |
Collapse
|
13
|
Srikamwang C, onsa NE, Sunanta P, Sangta J, Chanway CP, Thanakkasaranee S, Sommano SR. Role of Microbial Volatile Organic Compounds in Promoting Plant Growth and Disease Resistance in Horticultural Production. PLANT SIGNALING & BEHAVIOR 2023; 18:2227440. [PMID: 37366146 PMCID: PMC10730190 DOI: 10.1080/15592324.2023.2227440] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Microbial volatile organic compounds (MVOCs) are a diverse group of volatile organic compounds that microorganisms may produce and release into the environment. These compounds have both positive and negative effects on plants, as they have been shown to be effective at mitigating stresses and functioning as immune stimulants. Furthermore, MVOCs modulate plant growth and systemic plant resistance, while also serving as attractants or repellents for insects and other stressors that pose threats to plants. Considering the economic value of strawberries as one of the most popular and consumed fruits worldwide, harnessing the benefits of MVOCs becomes particularly significant. MVOCs offer cost-effective and efficient solutions for disease control and pest management in horticultural production, as they can be utilized at low concentrations. This paper provides a comprehensive review of the current knowledge on microorganisms that contribute to the production of beneficial volatile organic compounds for enhancing disease resistance in fruit products, with a specific emphasis on broad horticultural production. The review also identifies research gaps and highlights the functions of MVOCs in horticulture, along with the different types of MVOCs that impact plant disease resistance in strawberry production. By offering a novel perspective on the application and utilization of volatile organic compounds in sustainable horticulture, this review presents an innovative approach to maximizing the efficiency of horticultural production through the use of natural products.
Collapse
Affiliation(s)
- Chonlada Srikamwang
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttacha Eva onsa
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Science, Chiang Mai University, Chiang Mai, Thailand
| | - Piyachat Sunanta
- Department of Plant and Soil Science, Chiang Mai University, Chiang Mai, Thailand
- Postharvest Technology Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Sangta
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Christopher P. Chanway
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, Canada
| | - Sarinthip Thanakkasaranee
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro Industry, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
14
|
Meredith LK, Ledford SM, Riemer K, Geffre P, Graves K, Honeker LK, LeBauer D, Tfaily MM, Krechmer J. Automating methods for estimating metabolite volatility. Front Microbiol 2023; 14:1267234. [PMID: 38163064 PMCID: PMC10755872 DOI: 10.3389/fmicb.2023.1267234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
The volatility of metabolites can influence their biological roles and inform optimal methods for their detection. Yet, volatility information is not readily available for the large number of described metabolites, limiting the exploration of volatility as a fundamental trait of metabolites. Here, we adapted methods to estimate vapor pressure from the functional group composition of individual molecules (SIMPOL.1) to predict the gas-phase partitioning of compounds in different environments. We implemented these methods in a new open pipeline called volcalc that uses chemoinformatic tools to automate these volatility estimates for all metabolites in an extensive and continuously updated pathway database: the Kyoto Encyclopedia of Genes and Genomes (KEGG) that connects metabolites, organisms, and reactions. We first benchmark the automated pipeline against a manually curated data set and show that the same category of volatility (e.g., nonvolatile, low, moderate, high) is predicted for 93% of compounds. We then demonstrate how volcalc might be used to generate and test hypotheses about the role of volatility in biological systems and organisms. Specifically, we estimate that 3.4 and 26.6% of compounds in KEGG have high volatility depending on the environment (soil vs. clean atmosphere, respectively) and that a core set of volatiles is shared among all domains of life (30%) with the largest proportion of kingdom-specific volatiles identified in bacteria. With volcalc, we lay a foundation for uncovering the role of the volatilome using an approach that is easily integrated with other bioinformatic pipelines and can be continually refined to consider additional dimensions to volatility. The volcalc package is an accessible tool to help design and test hypotheses on volatile metabolites and their unique roles in biological systems.
Collapse
Affiliation(s)
- Laura K. Meredith
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, United States
- BIO5 Institute, University of Arizona, Tucson, AZ, United States
| | - S. Marshall Ledford
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States
| | - Kristina Riemer
- Arizona Experiment Station, University of Arizona, Tucson, AZ, United States
| | - Parker Geffre
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, United States
| | - Kelsey Graves
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | - Linnea K. Honeker
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, United States
- BIO5 Institute, University of Arizona, Tucson, AZ, United States
| | - David LeBauer
- Arizona Experiment Station, University of Arizona, Tucson, AZ, United States
| | - Malak M. Tfaily
- BIO5 Institute, University of Arizona, Tucson, AZ, United States
- Department of Environmental Science, University of Arizona, Tucson, AZ, United States
| | | |
Collapse
|
15
|
Watson SB, Jüttner F. Isopropylthiol emission by bloom-forming Microcystis: Biochemistry, ecophysiology and semiochemistry of a volatile organosulfur compound. HARMFUL ALGAE 2023; 130:102527. [PMID: 38061818 DOI: 10.1016/j.hal.2023.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/22/2023] [Accepted: 10/15/2023] [Indexed: 12/18/2023]
Abstract
Microcystis species not only produce toxic cyanobacterial blooms, but can be a significant source of taste and odour. Previous studies have associated foul-smelling volatile organic sulfur compounds (VOSCs) with Microcystis blooms, but have largely attributed these compounds to bacterial bloom decomposition. However, earlier reports of the production of isopropylthio compounds by several Microcystis strains suggests that these cyanobacteria may themselves be a source of these VOSCs. Sulphur compounds have been shown to play important semiochemical roles in algal cell protection and grazer interactions in marine systems, but little is known about the production and chemical ecology of freshwater cyanobacterial VOSCs. To address this knowledge gap, we undertook the first detailed investigation of the biochemistry, ecophysiology and semiochemistry of these compounds and their production by Microcystis, and tested the hypothesis that they act as multifunctional semiochemicals in processes related to cell protection and grazer defence. Using short-term incubations and an adapted headspace-GC-MS technique, we investigated VOSC production by axenic and non-axenic strains, and verified that isopropylthio compounds are in fact produced by these cyanobacteria, identifying 5 isopropyl moiety-containing VOSCs (isopropylthiol (ISH), isopropylmethyl sulfide, isopropyl methyl disulfide, diisopropyl disulfide (ISSI) and diisopropyl trisulfide) as well as methanethiol in three strains. Further studies with the axenic strain Microcystis PCC 7806 using different light regimes, metabolic inhibitors (sodium azide, DCMU), the antioxidant enzyme catalase and stable labelled precursors (hydrogencarbonate, acetates and sulfate) demonstrated that ISH is a true exo-metabolite, synthesized via the acetate pathway. It is actively produced and continuously excreted by the cyanobacteria during growth, with minimal internal storage or post-lysis catalytic generation. The molar ratios of the redox pair ISH/ISSI are not directly involved in the photosynthetic and respiratory electron transport chains, but dependant on the redox state of the cell - likely mediated by reactive oxygen species (ROS), as shown by a marked effect of catalase. These results, along with toxicological and behavioural assays using the two aquatic invertebrates Thamnocephalus platyurus and Daphnia magna indicate that ISH plays multiple important physiological and ecological roles. It acts as an effective antioxidant against high ROS levels, as often experienced in surface blooms, it elicits avoidance-related behavioural responses in grazer communities and at high levels, it can be toxic to some invertebrates.
Collapse
Affiliation(s)
- Susan B Watson
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada.
| | - Friedrich Jüttner
- Limnological Station, University of Zürich, Seestrasse 187, CH-8802 Kilchberg, Switzerland
| |
Collapse
|
16
|
Dow L, Gallart M, Ramarajan M, Law SR, Thatcher LF. Streptomyces and their specialised metabolites for phytopathogen control - comparative in vitro and in planta metabolic approaches. FRONTIERS IN PLANT SCIENCE 2023; 14:1151912. [PMID: 37389291 PMCID: PMC10301723 DOI: 10.3389/fpls.2023.1151912] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
In the search for new crop protection microbial biocontrol agents, isolates from the genus Streptomyces are commonly found with promising attributes. Streptomyces are natural soil dwellers and have evolved as plant symbionts producing specialised metabolites with antibiotic and antifungal activities. Streptomyces biocontrol strains can effectively suppress plant pathogens via direct antimicrobial activity, but also induce plant resistance through indirect biosynthetic pathways. The investigation of factors stimulating the production and release of Streptomyces bioactive compounds is commonly conducted in vitro, between Streptomyces sp. and a plant pathogen. However, recent research is starting to shed light on the behaviour of these biocontrol agents in planta, where the biotic and abiotic conditions share little similarity to those of controlled laboratory conditions. With a focus on specialised metabolites, this review details (i) the various methods by which Streptomyces biocontrol agents employ specialised metabolites as an additional line of defence against plant pathogens, (ii) the signals shared in the tripartite system of plant, pathogen and biocontrol agent, and (iii) an outlook on new approaches to expedite the identification and ecological understanding of these metabolites under a crop protection lens.
Collapse
Affiliation(s)
- Lachlan Dow
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia
| | - Marta Gallart
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Advanced Engineering Biology Future Science Platform, Acton, ACT, Australia
| | - Margaret Ramarajan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
| | - Simon R. Law
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia
| | - Louise F. Thatcher
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Advanced Engineering Biology Future Science Platform, Acton, ACT, Australia
| |
Collapse
|
17
|
Perfume Guns: Potential of Yeast Volatile Organic Compounds in the Biological Control of Mycotoxin-Producing Fungi. Toxins (Basel) 2023; 15:toxins15010045. [PMID: 36668865 PMCID: PMC9866025 DOI: 10.3390/toxins15010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Pathogenic fungi in the genera Alternaria, Aspergillus, Botrytis, Fusarium, Geotrichum, Gloeosporium, Monilinia, Mucor, Penicillium, and Rhizopus are the most common cause of pre- and postharvest diseases of fruit, vegetable, root and grain commodities. Some species are also able to produce mycotoxins, secondary metabolites having toxic effects on human and non-human animals upon ingestion of contaminated food and feed. Synthetic fungicides still represent the most common tool to control these pathogens. However, long-term application of fungicides has led to unacceptable pollution and may favour the selection of fungicide-resistant mutants. Microbial biocontrol agents may reduce the incidence of toxigenic fungi through a wide array of mechanisms, including competition for the ecological niche, antibiosis, mycoparasitism, and the induction of resistance in the host plant tissues. In recent years, the emission of volatile organic compounds (VOCs) has been proposed as a key mechanism of biocontrol. Their bioactivity and the absence of residues make the use of microbial VOCs a sustainable and effective alternative to synthetic fungicides in the management of postharvest pathogens, particularly in airtight environments. In this review, we will focus on the possibility of applying yeast VOCs in the biocontrol of mycotoxigenic fungi affecting stored food and feed.
Collapse
|
18
|
de Carvalho LC, de Almeida Junior A, Ribeiro FS, Angolini CFF. Unveiling Microbial Chemical Interactions Based on Metabolomics Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:51-70. [PMID: 37843805 DOI: 10.1007/978-3-031-41741-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Microorganisms are ubiquitous in diverse habitats and studying their chemical interactions with the environment and comprehend its complex relations with both hosts and environment, are crucial for the development of strategies to control microbial diseases. This chapter discusses the importance of studying microorganisms with agricultural benefits, using specialized metabolites as examples. Herein we highlight the challenges and opportunities in utilizing microorganisms as alternatives to synthetic pesticides and fertilizers in agriculture. Genome-guided investigations and improved analytical methodologies are necessary to characterize diverse and complex biomolecules produced by microorganisms. Predicting and isolating bioproducts based on genetic information have become a focus for researchers, aided by tools like antiSMASH, BiG-SCAPE, PRISM, and others. However, translating genomic data into practical applications can be complex. Therefore, integrating genomics, transcriptomics, and metabolomics enhances chemical characterization, aiding in discovering new metabolic pathways and specialized metabolites. Additionally, elicitation is one promising strategy to enhance beneficial metabolite production. Finally, identify and characterize microbial secondary metabolites remain challenging due to their low production, complex chemical structure characterization and different environmental factors necessary for metabolite in vitro production.
Collapse
Affiliation(s)
- Laís Castro de Carvalho
- Mass Spectrometry and Chemical Ecology Laboratory (MC-CELL), Center for Natural and Human Sciences, University of ABC (UFABC), São Paulo, Brazil
| | - Arnaldo de Almeida Junior
- Mass Spectrometry and Chemical Ecology Laboratory (MC-CELL), Center for Natural and Human Sciences, University of ABC (UFABC), São Paulo, Brazil
| | - Fernanda Silva Ribeiro
- Mass Spectrometry and Chemical Ecology Laboratory (MC-CELL), Center for Natural and Human Sciences, University of ABC (UFABC), São Paulo, Brazil
| | - Célio Fernando Figueiredo Angolini
- Mass Spectrometry and Chemical Ecology Laboratory (MC-CELL), Center for Natural and Human Sciences, University of ABC (UFABC), São Paulo, Brazil.
| |
Collapse
|
19
|
Plaas HE, Paerl RW, Baumann K, Karl C, Popendorf KJ, Barnard MA, Chang NY, Curtis NP, Huang H, Mathieson OL, Sanchez J, Maizel DJ, Bartenfelder AN, Braddy JS, Hall NS, Rossignol KL, Sloup R, Paerl HW. Harmful cyanobacterial aerosolization dynamics in the airshed of a eutrophic estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158383. [PMID: 36057302 DOI: 10.1016/j.scitotenv.2022.158383] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
In addition to obvious negative effects on water quality in eutrophic aquatic ecosystems, recent work suggests that cyanobacterial harmful algal blooms (CHABs) also impact air quality via emissions carrying cyanobacterial cells and cyanotoxins. However, the environmental controls on CHAB-derived aerosol and its potential public health impacts remain largely unknown. Accordingly, the aims of this study were to 1) investigate the occurrence of microcystins (MC) and putatively toxic cyanobacterial communities in particulate matter ≤ 2.5 μm in diameter (PM2.5), 2) elucidate environmental conditions promoting their aerosolization, and 3) identify associations between CHABs and PM2.5 concentrations in the airshed of the Chowan River-Albemarle Sound, an oligohaline, eutrophic estuary in eastern North Carolina, USA. In summer 2020, during peak CHAB season, continuous PM2.5 samples and interval water samples were collected at two distinctive sites for targeted analyses of cyanobacterial community composition and MC concentration. Supporting air and water quality measurements were made in parallel to contextualize findings and permit statistical analyses of environmental factors driving changes in CHAB-derived aerosol. MC concentrations were low throughout the study, but a CHAB dominated by Dolichospermum occurred from late June to early August. Several aquatic CHAB genera recovered from Chowan River surface water were identified in PM2.5 during multiple time points, including Anabaena, Aphanizomenon, Dolichospermum, Microcystis, and Pseudanabaena. Cyanobacterial enrichment in PM2.5 was indistinctive between subspecies, but at one site during the early bloom, we observed the simultaneous enrichment of several cyanobacterial genera in PM2.5. In association with the CHAB, the median PM2.5 mass concentration increased to 8.97 μg m-3 (IQR = 5.15), significantly above the non-bloom background of 5.35 μg m-3 (IQR = 3.70) (W = 1835, p < 0.001). Results underscore the need for highly resolved temporal measurements to conclusively investigate the role that CHABs play in regional air quality and respiratory health risk.
Collapse
Affiliation(s)
- Haley E Plaas
- UNC-Chapel Hill, Earth, Marine, and Environmental Sciences, Institute of Marine Sciences, 3431 Arendell St., Morehead City, NC 28577, United States of America; UNC-Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, 135 Dauer Dr., Chapel Hill, NC 27599, United States of America.
| | - Ryan W Paerl
- North Carolina State University, Department of Marine, Earth, and Atmospheric Sciences, Jordan Hall, 2800 Faucette Dr., Raleigh, NC 27607, United States of America
| | - Karsten Baumann
- UNC-Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, 135 Dauer Dr., Chapel Hill, NC 27599, United States of America
| | - Colleen Karl
- Chowan Edenton Environmental Group, PO Box 271, Tyner, NC 27980, United States of America
| | - Kimberly J Popendorf
- University of Miami, Rosenstiel School of Marine & Atmospheric Science, 4600 Rickenbacker Cswy, Miami, FL 33149, United States of America
| | - Malcolm A Barnard
- UNC-Chapel Hill, Earth, Marine, and Environmental Sciences, Institute of Marine Sciences, 3431 Arendell St., Morehead City, NC 28577, United States of America
| | - Naomi Y Chang
- UNC-Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, 135 Dauer Dr., Chapel Hill, NC 27599, United States of America
| | - Nathaniel P Curtis
- North Carolina State University, Department of Marine, Earth, and Atmospheric Sciences, Jordan Hall, 2800 Faucette Dr., Raleigh, NC 27607, United States of America
| | - Hwa Huang
- North Carolina State University, Department of Marine, Earth, and Atmospheric Sciences, Jordan Hall, 2800 Faucette Dr., Raleigh, NC 27607, United States of America
| | - Olivia L Mathieson
- North Carolina State University, Department of Marine, Earth, and Atmospheric Sciences, Jordan Hall, 2800 Faucette Dr., Raleigh, NC 27607, United States of America
| | - Joel Sanchez
- North Carolina State University, Department of Marine, Earth, and Atmospheric Sciences, Jordan Hall, 2800 Faucette Dr., Raleigh, NC 27607, United States of America
| | - Daniela J Maizel
- University of Miami, Rosenstiel School of Marine & Atmospheric Science, 4600 Rickenbacker Cswy, Miami, FL 33149, United States of America
| | - Amy N Bartenfelder
- UNC-Chapel Hill, Earth, Marine, and Environmental Sciences, Institute of Marine Sciences, 3431 Arendell St., Morehead City, NC 28577, United States of America
| | - Jeremy S Braddy
- UNC-Chapel Hill, Earth, Marine, and Environmental Sciences, Institute of Marine Sciences, 3431 Arendell St., Morehead City, NC 28577, United States of America
| | - Nathan S Hall
- UNC-Chapel Hill, Earth, Marine, and Environmental Sciences, Institute of Marine Sciences, 3431 Arendell St., Morehead City, NC 28577, United States of America
| | - Karen L Rossignol
- UNC-Chapel Hill, Earth, Marine, and Environmental Sciences, Institute of Marine Sciences, 3431 Arendell St., Morehead City, NC 28577, United States of America
| | - Randolph Sloup
- UNC-Chapel Hill, Earth, Marine, and Environmental Sciences, Institute of Marine Sciences, 3431 Arendell St., Morehead City, NC 28577, United States of America
| | - Hans W Paerl
- UNC-Chapel Hill, Earth, Marine, and Environmental Sciences, Institute of Marine Sciences, 3431 Arendell St., Morehead City, NC 28577, United States of America; UNC-Chapel Hill, Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, 135 Dauer Dr., Chapel Hill, NC 27599, United States of America
| |
Collapse
|
20
|
Cuervo L, Méndez C, Salas JA, Olano C, Malmierca MG. Volatile Compounds in Actinomycete Communities: A New Tool for Biosynthetic Gene Cluster Activation, Cooperative Growth Promotion, and Drug Discovery. Cells 2022; 11:3510. [PMID: 36359906 PMCID: PMC9655753 DOI: 10.3390/cells11213510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 07/30/2023] Open
Abstract
The increasing appearance of multiresistant pathogens, as well as emerging diseases, has highlighted the need for new strategies to discover natural compounds that can be used as therapeutic alternatives, especially in the genus Streptomyces, which is one of the largest producers of bioactive metabolites. In recent years, the study of volatile compounds (VOCs) has raised interest because of the variety of their biological properties in addition to their involvement in cell communication. In this work, we analyze the implications of VOCs as mediating molecules capable of inducing the activation of biosynthetic pathways of bioactive compounds in surrounding Actinomycetes. For this purpose, several strains of Streptomyces were co-cultured in chamber devices that allowed VOC exchange while avoiding physical contact. In several of those strains, secondary metabolism was activated by VOCs emitted by companion strains, resulting in increased antibiotic production and synthesis of new VOCs. This study shows a novel strategy to exploit the metabolic potential of Actinomycetes as well as emphasizes the importance of studying the interactions between different microorganisms sharing the same ecological niche.
Collapse
Affiliation(s)
- Lorena Cuervo
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Carmen Méndez
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - José A. Salas
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Carlos Olano
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Mónica G. Malmierca
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
21
|
Akcaalan R, Devesa-Garriga R, Dietrich A, Steinhaus M, Dunkel A, Mall V, Manganelli M, Scardala S, Testai E, Codd GA, Kozisek F, Antonopoulou M, Ribeiro ARL, Sampaio MJ, Hiskia A, Triantis TM, Dionysiou DD, Puma GL, Lawton L, Edwards C, Andersen HR, Fatta-Kassinos D, Karaolia P, Combès A, Panksep K, Zervou SK, Albay M, Köker L, Chernova E, Iliakopoulou S, Varga E, Visser PM, Gialleli AI, Zengin Z, Deftereos N, Miskaki P, Christophoridis C, Paraskevopoulou A, Lin TF, Zamyadi A, Dimova G, Kaloudis T. Water taste and odor (T&O): Challenges, gaps and solutions from a perspective of the WaterTOP network. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|