1
|
Dawood DH, Anwar MM. Recent advances in the therapeutic insights of thiazole scaffolds as acetylcholinesterase inhibitors. Eur J Med Chem 2025; 287:117331. [PMID: 39938408 DOI: 10.1016/j.ejmech.2025.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
Suppression of the acetylcholinesterase (AChE) enzyme is a prevalent strategy for curing diverse mental disorders, including Alzheimer's disease (AD) and the chronic autoimmune disease Myasthenia gravis. Acetylcholinesterase inhibitors promote cholinergic transmission via blocking AChE, which is implicated in the degradation and deficiency of acetylcholine. Various studies proved that the lack of cholinergic neurons in the central nervous system is the substantial reason for the behavioral abnormalities and cognitive retogradation that distinguish mental diseases such as dementia and AD. Moreover, thiazole scaffolds have emerged as prominent pharmacophores in drug discovery owing to their numerous outstanding therapeutic efficacy, comprising anti-acetylcholinesterase efficacy. This review presents various thiazole-based AChE inhibitors in the recent decade. In addition, the various interactions of thiazole derivatives within the active pocket of AChE have been highlighted. Also, structure-activity relationship (SAR) has been discussed.
Collapse
Affiliation(s)
- Dina H Dawood
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza, p.o.box 12622, Egypt.
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
2
|
Kumar N, Kumar P, Baitha R, Singh DK, Reddy KS. Integrative biomonitoring in Litopenaeus vannamei: Metal analysis and biochemical markers. MARINE POLLUTION BULLETIN 2025; 212:117544. [PMID: 39813880 DOI: 10.1016/j.marpolbul.2025.117544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Contaminants are a major cause of seafood export rejections in foreign markets and have significantly impacted consumer health. This investigation addresses the issues of metal contamination and biochemical markers in Litopenaeus vannamei from East Midnapore, West Bengal, India. The analyzed metals included vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), silver (Ag), gallium (Ga), germanium (Ge), arsenic (As), selenium (Se), strontium (Sr), tin (Sn), cadmium (Cd), mercury (Hg), and lead (Pb), using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Samples were collected from the muscle and hepatopancreas of L. vannamei, as well as from soil sediments and water at 19 sampling sites. The trace element levels detected were within the safety limits recommended by national and international regulatory agencies. A risk assessment, based on the Total Hazard Quotient (THQ) and cancer risk factors, indicated that L. vannamei cultured in this region is safe for human consumption. Additionally, oxidative enzymes such as catalase, superoxide dismutase, and glutathione s-transferase were measured as biomarkers. Other biochemical markers, including lipid peroxidation and acetylcholinesterase activity, were also assessed. Enzymes such as alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and malate dehydrogenase were identified as key biochemical indicators of pollution in this study. In conclusion, the findings suggest that the consumption of L. vannamei from East Midnapore is safe according to FAO/WHO guidelines. The study also highlights the utility of biochemical markers as reliable indicators of pollution in open water systems.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115, India.
| | - Paritosh Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115, India
| | - Raju Baitha
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal 700120, India
| | - Dilip Kumar Singh
- ICAR-Central Institute of Fisheries Education, Kolkata Centre, Kolkata, West Bengal 700091, India
| | - Kotha Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115, India
| |
Collapse
|
3
|
Zhu Y, Hu Z, Liu Y, Yan T, Liu L, Wang Y, Bai B. AChE activity self-breathing control mechanisms regulated by H 2S n and GSH: Persulfidation and glutathionylation on sulfhydryl after disulfide bonds cleavage. Int J Biol Macromol 2024; 259:129117. [PMID: 38211930 DOI: 10.1016/j.ijbiomac.2023.129117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024]
Abstract
Hydrogen sulfide (H2S), or dihydrogen sulfane (H2Sn), acts as a signal molecule through the beneficial mechanism of persulfidation, known as the post-translational transformation of cysteine residues to persulfides. We previously reported that Glutathione (GSH) could regulate enzyme activity through S-desulfurization or glutathionylation of residues to generate protein-SG or protein-SSG, releasing H2S. However, little is known about the mechanisms by which H2Sn and GSH affect the disulfide bonds. In this study, we provide direct evidences that H2Sn and GSH modify the sulfhydryl group on Cys272, which forms disulfide bonds in acetylcholinesterase (AChE), to generate Cys-SSH and Cys-SSG, respectively. Glutathionylation of disulfide is a two-step reaction based on nucleophilic substitution, in which the first CS bond is broken, then the SS bond is broken to release H2S. H2Sn and GSH controlled self-breathing motion in enzyme catalysis by disconnecting specific disulfide bonds and modifying cysteine residues, thereby regulating AChE activity. Here, we elucidated H2Sn and GSH mechanisms on disulfide in the AChE system and proposed a self-breathing control theory induced by H2Sn and GSH. These theoretical findings shed light on the biological functions of H2Sn and GSH on sulfhydryl and disulfide bonds and enrich the theory of enzyme activity regulation.
Collapse
Affiliation(s)
- Yanwen Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhaoliang Hu
- Department of Surgical Oncology, First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Yunen Liu
- Shenyang Medical College, Shenyang 110034, China
| | - Tingcai Yan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Ling Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanqun Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Bing Bai
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
4
|
Mu C, Gao M, Xu W, Sun X, Chen T, Xu H, Qiu H. Mechanisms of microRNA-132 in central neurodegenerative diseases: A comprehensive review. Biomed Pharmacother 2024; 170:116029. [PMID: 38128185 DOI: 10.1016/j.biopha.2023.116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
MicroRNA-132 (miR-132) is a highly conserved molecule that plays a crucial regulatory role in central nervous system (CNS) disorders. The expression levels of miR-132 exhibit variability in various neurological disorders and have been closely linked to disease onset and progression. The expression level of miR-132 in the CNS is regulated by a diverse range of stimuli and signaling pathways, including neuronal migration and integration, dendritic outgrowth, and complexity, synaptogenesis, synaptic plasticity, as well as inflammation and apoptosis activation. The aberrant expression of miR-132 in various central neurodegenerative diseases has garnered widespread attention. Clinical studies have revealed altered miR-132 expression levels in both chronic and acute CNS diseases, positioning miR-132 as a potential biomarker or therapeutic target. An in-depth exploration of miR-132 holds the promise of enhancing our understanding of the mechanisms underlying CNS diseases, thereby offering novel insights and strategies for disease diagnosis and treatment. It is anticipated that this review will assist researchers in recognizing the potential value of miR-132 and in generating innovative ideas for clinical trials related to CNS degenerative diseases.
Collapse
Affiliation(s)
- Chenxi Mu
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Meng Gao
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Weijing Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China
| | - Xun Sun
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Tianhao Chen
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Hongbin Qiu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
5
|
Wiklund AKE, Guo X, Gorokhova E. Cardiotoxic and neurobehavioral effects of sucralose and acesulfame in Daphnia: Toward understanding ecological impacts of artificial sweeteners. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109733. [PMID: 37619954 DOI: 10.1016/j.cbpc.2023.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Artificial sweeteners are widely used in food and pharmaceuticals, but their stability and persistence raise concerns about their impact on aquatic life. Although standard toxicity tests do not reveal lethal effects, recent studies suggest a potential neurotoxic mode of action. Using environmentally relevant concentrations, we assessed the effects of sucralose and acesulfame, common sugar substitutes, on Daphnia magna focusing on biochemical (acetylcholinesterase activity; AChE), physiological (heart rate), and behavioural (swimming) endpoints. We found dose-dependent increases in AChE and inhibitory effects on heart rate and behaviour for both substances. Moreover, acesulfame induced a biphasic response in AChE activity, inhibiting it at lower concentrations and stimulating at higher ones. For all endpoints, the EC50 values were lower for acesulfame than for sucralose. Additionally, the relationship between acetylcholinesterase and heart rate differed depending on the substance, suggesting possible differences in the mode of action between sucralose and acesulfame. All observed EC50 values were at μg/l levels, i.e., within the levels reported for wastewater, with adverse effects observed at as low as 0.1 μg acesulfame /l. Our findings emphasise the need to re-evaluate risk assessment thresholds for artificial sweeteners and provide evidence for the neurotoxic effects of artificial sweeteners in the environment, informing international regulatory standards.
Collapse
Affiliation(s)
| | - Xueli Guo
- Department of Environmental Science, Stockholm University, SE 10691 Stockholm, Sweden
| | - Elena Gorokhova
- Department of Environmental Science, Stockholm University, SE 10691 Stockholm, Sweden.
| |
Collapse
|
6
|
Pérez-Aguilar B, Marquardt JU, Muñoz-Delgado E, López-Durán RM, Gutiérrez-Ruiz MC, Gomez-Quiroz LE, Gómez-Olivares JL. Changes in the Acetylcholinesterase Enzymatic Activity in Tumor Development and Progression. Cancers (Basel) 2023; 15:4629. [PMID: 37760598 PMCID: PMC10526250 DOI: 10.3390/cancers15184629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Acetylcholinesterase is a well-known protein because of the relevance of its enzymatic activity in the hydrolysis of acetylcholine in nerve transmission. In addition to the catalytic action, it exerts non-catalytic functions; one is associated with apoptosis, in which acetylcholinesterase could significantly impact the survival and aggressiveness observed in cancer. The participation of AChE as part of the apoptosome could explain the role in tumors, since a lower AChE content would increase cell survival due to poor apoptosome assembly. Likewise, the high Ach content caused by the reduction in enzymatic activity could induce cell survival mediated by the overactivation of acetylcholine receptors (AChR) that activate anti-apoptotic pathways. On the other hand, in tumors in which high enzymatic activity has been observed, AChE could be playing a different role in the aggressiveness of cancer; in this review, we propose that AChE could have a pro-inflammatory role, since the high enzyme content would cause a decrease in ACh, which has also been shown to have anti-inflammatory properties, as discussed in this review. In this review, we analyze the changes that the enzyme could display in different tumors and consider the different levels of regulation that the acetylcholinesterase undergoes in the control of epigenetic changes in the mRNA expression and changes in the enzymatic activity and its molecular forms. We focused on explaining the relationship between acetylcholinesterase expression and its activity in the biology of various tumors. We present up-to-date knowledge regarding this fascinating enzyme that is positioned as a remarkable target for cancer treatment.
Collapse
Affiliation(s)
- Benjamín Pérez-Aguilar
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico; (B.P.-A.); (M.C.G.-R.)
- Department of Medicine I, University of Lübeck, 23562 Lübeck, Germany;
| | - Jens U. Marquardt
- Department of Medicine I, University of Lübeck, 23562 Lübeck, Germany;
| | | | - Rosa María López-Durán
- Laboratorio de Biomembranas, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico;
| | - María Concepción Gutiérrez-Ruiz
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico; (B.P.-A.); (M.C.G.-R.)
| | - Luis E. Gomez-Quiroz
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico; (B.P.-A.); (M.C.G.-R.)
| | - José Luis Gómez-Olivares
- Laboratorio de Biomembranas, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico;
| |
Collapse
|
7
|
Stringer JM, Alesi LR, Winship AL, Hutt KJ. Beyond apoptosis: evidence of other regulated cell death pathways in the ovary throughout development and life. Hum Reprod Update 2023; 29:434-456. [PMID: 36857094 PMCID: PMC10320496 DOI: 10.1093/humupd/dmad005] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Regulated cell death is a fundamental component of numerous physiological processes; spanning from organogenesis in utero, to normal cell turnover during adulthood, as well as the elimination of infected or damaged cells throughout life. Quality control through regulation of cell death pathways is particularly important in the germline, which is responsible for the generation of offspring. Women are born with their entire supply of germ cells, housed in functional units known as follicles. Follicles contain an oocyte, as well as specialized somatic granulosa cells essential for oocyte survival. Follicle loss-via regulated cell death-occurs throughout follicle development and life, and can be accelerated following exposure to various environmental and lifestyle factors. It is thought that the elimination of damaged follicles is necessary to ensure that only the best quality oocytes are available for reproduction. OBJECTIVE AND RATIONALE Understanding the precise factors involved in triggering and executing follicle death is crucial to uncovering how follicle endowment is initially determined, as well as how follicle number is maintained throughout puberty, reproductive life, and ovarian ageing in women. Apoptosis is established as essential for ovarian homeostasis at all stages of development and life. However, involvement of other cell death pathways in the ovary is less established. This review aims to summarize the most recent literature on cell death regulators in the ovary, with a particular focus on non-apoptotic pathways and their functions throughout the discrete stages of ovarian development and reproductive life. SEARCH METHODS Comprehensive literature searches were carried out using PubMed and Google Scholar for human, animal, and cellular studies published until August 2022 using the following search terms: oogenesis, follicle formation, follicle atresia, oocyte loss, oocyte apoptosis, regulated cell death in the ovary, non-apoptotic cell death in the ovary, premature ovarian insufficiency, primordial follicles, oocyte quality control, granulosa cell death, autophagy in the ovary, autophagy in oocytes, necroptosis in the ovary, necroptosis in oocytes, pyroptosis in the ovary, pyroptosis in oocytes, parthanatos in the ovary, and parthanatos in oocytes. OUTCOMES Numerous regulated cell death pathways operate in mammalian cells, including apoptosis, autophagic cell death, necroptosis, and pyroptosis. However, our understanding of the distinct cell death mediators in each ovarian cell type and follicle class across the different stages of life remains the source of ongoing investigation. Here, we highlight recent evidence for the contribution of non-apoptotic pathways to ovarian development and function. In particular, we discuss the involvement of autophagy during follicle formation and the role of autophagic cell death, necroptosis, pyroptosis, and parthanatos during follicle atresia, particularly in response to physiological stressors (e.g. oxidative stress). WIDER IMPLICATIONS Improved knowledge of the roles of each regulated cell death pathway in the ovary is vital for understanding ovarian development, as well as maintenance of ovarian function throughout the lifespan. This information is pertinent not only to our understanding of endocrine health, reproductive health, and fertility in women but also to enable identification of novel fertility preservation targets.
Collapse
Affiliation(s)
- Jessica M Stringer
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lauren R Alesi
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Amy L Winship
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Karla J Hutt
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
8
|
Dzhafarova AM, Saidov MB, Klichkhanov NK. The Time Profile of the Effects of Moderate Hypothermia on Synaptic Acetylcholinesterase in Rat Brain. Bull Exp Biol Med 2023; 175:191-195. [PMID: 37462806 DOI: 10.1007/s10517-023-05833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 07/28/2023]
Abstract
Hypothermia in homeotherms significantly affects the neurotransmitter systems of the brain, including the cholinergic system. The function of the brain cholinergic system during prolonged moderate hypothermia is not known yet. We studied the effects of moderate hypothermia of various durations on the activity and kinetic parameters of synaptic acetylcholinesterase in rat brain. Immediately after body temperature decrease to 30°C, the efficiency of synaptic acetylcholinesterase catalysis significantly increases due to changes in both the maximum rate of reaction (Vmax; the rate of reaction when the enzyme is saturated with substrate) and Michaelis constant (Km). However, in the dynamics of prolonged hypothermia (1-3 h), it decreases to a level of intact animals, which was associated with normalization of the kinetic parameters of the enzyme. The detected changes in the kinetic parameters of the enzyme are compensatory and can be associated with both its reversible post-translational modifications and changes in the annular lipids.
Collapse
Affiliation(s)
- A M Dzhafarova
- Dagestan State University, Makhachkala, Republic of Dagestan, Russia.
| | - M B Saidov
- Dagestan State University, Makhachkala, Republic of Dagestan, Russia
| | - N K Klichkhanov
- Dagestan State University, Makhachkala, Republic of Dagestan, Russia
| |
Collapse
|
9
|
Possible Interaction between ZnS Nanoparticles and Phosphonates on Mediterranean Clams Ruditapes decussatus. Molecules 2023; 28:molecules28062460. [PMID: 36985432 PMCID: PMC10059899 DOI: 10.3390/molecules28062460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
This study aims to evaluate the toxicity of ZnS nanoparticles (ZnS NP50 = 50 µg/L and ZnS NP100 = 100 µg/L) and diethyl (3-cyano-1-hydroxy-2-methyl-1-phenylpropyl)phosphonate or P (P50 = 50 µg/L and P100 = 100 µg/L) in the clams Ruditapes decussatus using chemical and biochemical approaches. The results demonstrated that clams accumulate ZnS NPs and other metallic elements following exposure. Moreover, ZnS NPs and P separately lead to ROS overproduction, while a mixture of both contaminants has no effect. In addition, data showed that exposure to P100 resulted in increased levels of oxidative stress enzyme activities catalase (CAT) in the gills and digestive glands. A similar trend was also observed in the digestive glands of clams treated with ZnS100. In contrast, CAT activity was decreased in the gills at the same concentration. Exposure to ZnS100 and P100 separately leads to a decrease in acetylcholinesterase (AChE) levels in both gills and digestive glands. Thus, AChE and CAT after co-exposure to an environmental mixture of nanoparticles (ZnS100) and phosphonate (P100) did not show any differences between treated and non-treated clams. The outcome of this work certifies the use of biomarkers and chemical assay when estimating the effects of phosphonate and nanoparticles as part of an ecotoxicological assessment program. An exceptional focus was given to the interaction between ZnS NPs and P. The antioxidant activity of P has been demonstrated to have an additive effect on metal accumulation and antagonistic agents against oxidative stress in clams treated with ZnS NPs.
Collapse
|
10
|
Presenilin 1 Modulates Acetylcholinesterase Trafficking and Maturation. Int J Mol Sci 2023; 24:ijms24021437. [PMID: 36674948 PMCID: PMC9864477 DOI: 10.3390/ijms24021437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
In Alzheimer's disease (AD), the reduction in acetylcholinesterase (AChE) enzymatic activity is not paralleled with changes in its protein levels, suggesting the presence of a considerable enzymatically inactive pool in the brain. In the present study, we validated previous findings, and, since inactive forms could result from post-translational modifications, we analyzed the glycosylation of AChE by lectin binding in brain samples from sporadic and familial AD (sAD and fAD). Most of the enzymatically active AChE was bound to lectins Canavalia ensiformis (Con A) and Lens culinaris agglutinin (LCA) that recognize terminal mannoses, whereas Western blot assays showed a very low percentage of AChE protein being recognized by the lectin. This indicates that active and inactive forms of AChE vary in their glycosylation pattern, particularly in the presence of terminal mannoses in active ones. Moreover, sAD subjects showed reduced binding to terminal mannoses compared to non-demented controls, while, for fAD patients that carry mutations in the PSEN1 gene, the binding was higher. The role of presenilin-1 (PS1) in modulating AChE glycosylation was then studied in a cellular model that overexpresses PS1 (CHO-PS1). In CHO-PS1 cells, binding to LCA indicates that AChE displays more terminal mannoses in oligosaccharides with a fucosylated core. Immunocytochemical assays also demonstrated increased presence of AChE in the trans-Golgi. Moreover, AChE enzymatic activity was higher in plasmatic membrane of CHO-PS1 cells. Thus, our results indicate that PS1 modulates trafficking and maturation of AChE in Golgi regions favoring the presence of active forms in the membrane.
Collapse
|
11
|
Gok M, Madrer N, Zorbaz T, Bennett ER, Greenberg D, Bennett DA, Soreq H. Altered levels of variant cholinesterase transcripts contribute to the imbalanced cholinergic signaling in Alzheimer's and Parkinson's disease. Front Mol Neurosci 2022; 15:941467. [PMID: 36117917 PMCID: PMC9479005 DOI: 10.3389/fnmol.2022.941467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Acetylcholinesterase and butyrylcholinesterase (AChE and BChE) are involved in modulating cholinergic signaling, but their roles in Alzheimer's and Parkinson's diseases (AD and PD) remain unclear. We identified a higher frequency of the functionally impaired BCHE-K variant (rs1803274) in AD and PD compared to controls and lower than in the GTEx dataset of healthy individuals (n = 651); in comparison, the prevalence of the 5'-UTR (rs1126680) and intron 2 (rs55781031) single-nucleotide polymorphisms (SNPs) of BCHE and ACHE's 3'-UTR (rs17228616) which disrupt AChE mRNA targeting by miR-608 remained unchanged. qPCR validations confirmed lower levels of the dominant splice variant encoding the "synaptic" membrane-bound ACHE-S in human post-mortem superior temporal gyrus samples from AD and in substantia nigra (but not amygdala) samples from PD patients (n = 79, n = 67) compared to controls, potentially reflecting region-specific loss of cholinergic neurons. In contradistinction, the non-dominant "readthrough" AChE-R mRNA variant encoding for soluble AChE was elevated (p < 0.05) in the AD superior temporal gyrus and the PD amygdala, but not in the neuron-deprived substantia nigra. Elevated levels of BChE (p < 0.001) were seen in AD superior temporal gyrus. Finally, all three ACHE splice variants, AChE-S, AChE-R, and N-extended AChE, were elevated in cholinergic-differentiated human neuroblastoma cells, with exposure to the oxidative stress agent paraquat strongly downregulating AChE-S and BChE, inverse to their upregulation under exposure to the antioxidant simvastatin. The multi-leveled changes in cholinesterase balance highlight the role of post-transcriptional regulation in neurodegeneration. (235).
Collapse
Affiliation(s)
- Muslum Gok
- Department of Biochemistry, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nimrod Madrer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamara Zorbaz
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Estelle R. Bennett
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Greenberg
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David A. Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Hermona Soreq
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
12
|
Işık M, Beydemir Ş. AChE mRNA expression as a possible novel biomarker for the diagnosis of coronary artery disease and Alzheimer's disease, and its association with oxidative stress. Arch Physiol Biochem 2022; 128:352-359. [PMID: 31726885 DOI: 10.1080/13813455.2019.1683584] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Oxidative metabolic reactions and their by products have played a role in coronary artery disease (CAD) and Alzheimer's disease (AD) pathogenesis. This study was carried out on 28 patients with AD, 21 patients with CAD, and 28 healthy as control. Oxidative stress biomarkers and acetylcholinesterase (AChE) activity were assayed in plasma. mRNA expression of AChE was investigated in leukocytes of patients with CAD and AD. Thus, Alzheimer's and coronary artery patients were observed that the protein carbonyl levels and mRNA expression of AChE were increased (p<.05, p<.01, respectively). The plasma total thiol levels were decreased compared to the control group (p<.05). There was a significant relationship between amyloid β (Aβ) accumulation and oxidative stress, cholinergic gene expression. AChE gene expression and protein oxidation were increased in patients with AD and CAD. These results suggest that increased release of AChE from cells produces neurotoxic β-amyloid plaques and may cause neurodegenerative diseases.
Collapse
Affiliation(s)
- Mesut Işık
- Department of Pharmacy Services, Vocational School of Health Services, Harran University, Şanlıurfa, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
13
|
Klichkhanov NK, Dzhafarova AM. Effect of Mild Hypothermia on the Catalytic Characteristics of Synaptic Acetylcholinesterase during Subtotal Global Cerebral Ischemia in Rats. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421030077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Walczak-Nowicka ŁJ, Herbet M. Acetylcholinesterase Inhibitors in the Treatment of Neurodegenerative Diseases and the Role of Acetylcholinesterase in their Pathogenesis. Int J Mol Sci 2021; 22:9290. [PMID: 34502198 PMCID: PMC8430571 DOI: 10.3390/ijms22179290] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Acetylcholinesterase (AChE) plays an important role in the pathogenesis of neurodegenerative diseases by influencing the inflammatory response, apoptosis, oxidative stress and aggregation of pathological proteins. There is a search for new compounds that can prevent the occurrence of neurodegenerative diseases and slow down their course. The aim of this review is to present the role of AChE in the pathomechanism of neurodegenerative diseases. In addition, this review aims to reveal the benefits of using AChE inhibitors to treat these diseases. The selected new AChE inhibitors were also assessed in terms of their potential use in the described disease entities. Designing and searching for new drugs targeting AChE may in the future allow the discovery of therapies that will be effective in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8bStreet, 20-090 Lublin, Poland;
| |
Collapse
|
15
|
Ren P, Lu L, Cai S, Chen J, Lin W, Han F. Alternative Splicing: A New Cause and Potential Therapeutic Target in Autoimmune Disease. Front Immunol 2021; 12:713540. [PMID: 34484216 PMCID: PMC8416054 DOI: 10.3389/fimmu.2021.713540] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS) is a complex coordinated transcriptional regulatory mechanism. It affects nearly 95% of all protein-coding genes and occurs in nearly all human organs. Aberrant alternative splicing can lead to various neurological diseases and cancers and is responsible for aging, infection, inflammation, immune and metabolic disorders, and so on. Though aberrant alternative splicing events and their regulatory mechanisms are widely recognized, the association between autoimmune disease and alternative splicing has not been extensively examined. Autoimmune diseases are characterized by the loss of tolerance of the immune system towards self-antigens and organ-specific or systemic inflammation and subsequent tissue damage. In the present review, we summarized the most recent reports on splicing events that occur in the immunopathogenesis of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) and attempted to clarify the role that splicing events play in regulating autoimmune disease progression. We also identified the changes that occur in splicing factor expression. The foregoing information might improve our understanding of autoimmune diseases and help develop new diagnostic and therapeutic tools for them.
Collapse
Affiliation(s)
- Pingping Ren
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Luying Lu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Shasha Cai
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Nephrology, The First People’s Hospital of Wenling, Taizhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University of Medicine, Hangzhou, China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China
- Institute of Nephropathy, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Abstract
The enzyme acetylcholinesterase (AChE) is a serine hydrolase whose primary function is to degrade acetylcholine (ACh) and terminate neurotransmission. Apart from its role in synaptic transmission, AChE has several "non-classical" functions in non-neuronal cells. AChE is involved in cellular growth, apoptosis, drug resistance pathways, response to stress signals and inflammation. The observation that the functional activity of AChE is altered in human tumors (relative to adjacent matched normal tissue) has raised several intriguing questions about its role in the pathophysiology of human cancers. Published reports show that AChE is a vital regulator of oncogenic signaling pathways involving proliferation, differentiation, cell-cell adhesion, migration, invasion and metastasis of primary tumors. The objective of this book chapter is to provide a comprehensive overview of the contributions of the AChE-signaling pathway in the growth of progression of human cancers. The AChE isoforms, AChE-T, AChE-R and AChE-S are robustly expressed in human cancer cell lines as well in human tumors (isolated from patients). Traditionally, AChE-modulators have been used in the clinic for treatment of neurodegenerative disorders. Emerging studies reveal that these drugs could be repurposed for the treatment of human cancers. The discovery of potent, selective AChE ligands will provide new knowledge about AChE-regulatory pathways in human cancers and foster the hope of novel therapies for this disease.
Collapse
Affiliation(s)
- Stephen D Richbart
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Justin C Merritt
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Nicholas A Nolan
- West Virginia University Medical School, Morgantown, WV, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States.
| |
Collapse
|
17
|
The multiple biological roles of the cholinesterases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 162:41-56. [PMID: 33307019 DOI: 10.1016/j.pbiomolbio.2020.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
It is tacitly assumed that the biological role of acetylcholinesterase is termination of synaptic transmission at cholinergic synapses. However, together with its structural homolog, butyrylcholinesterase, it is widely distributed both within and outside the nervous system, and, in many cases, the role of both enzymes remains obscure. The transient appearance of the cholinesterases in embryonic tissues is especially enigmatic. The two enzymes' extra-synaptic roles, which are known as 'non-classical' roles, are the topic of this review. Strong evidence has been presented that AChE and BChE play morphogenetic roles in a variety of eukaryotic systems, and they do so either by acting as adhesion proteins, or as trophic factors. As trophic factors, one mode of action is to directly regulate morphogenesis, such as neurite outgrowth, by poorly understood mechanisms. The other mode is by regulating levels of acetylcholine, which acts as the direct trophic factor. Alternate substrates have been sought for the cholinesterases. Quite recently, it was shown that levels of the aggression hormone, ghrelin, which also controls appetite, are regulated by butyrylcholinesterase. The rapid hydrolysis of acetylcholine by acetylcholinesterase generates high local proton concentrations. The possible biophysical and biological consequences of this effect are discussed. The biological significance of the acetylcholinesterases secreted by parasitic nematodes is reviewed, and, finally, the involvement of acetylcholinesterase in apoptosis is considered.
Collapse
|
18
|
Characterization of the rat Acetylcholinesterase readthrough (AChE-R) splice variant: Implications for toxicological studies. Biochem Biophys Res Commun 2020; 532:528-534. [PMID: 32896378 DOI: 10.1016/j.bbrc.2020.08.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 11/23/2022]
Abstract
Exposure to chemicals and other environmental stressors can differentially impact the expression of Acetylcholinesterase (AChE) splice variants. Surprisingly, despite the widespread use of the rat model in toxicological studies and the wealth of literature on this important biomarker of neurotoxicity, AChE coding exons and splice variants are not yet fully annotated in this species. To address this knowledge gap, a short problematic region of the rat AChE genomic DNA present in GenBank was first re-sequenced. This revised genomic sequence was then aligned to rat AChE RefSeq mRNA and compared to orthologous mammalian sequences, in order to map the coding exon and intron boundaries of the rat AChE gene. Based on these bioinformatics analyses, a sequence was predicted for the yet-unannotated rat Acetylcholinesterase readthrough (AChE-R) splice variant. PCR primers designed to specifically amplify rat AChE-R were used to confirm its expression in rat PC12 cells. Compared to the canonical AChE-S splice variant, AChE-R was expressed at much lower levels but presented distinct regulation patterns in PC12 cells and rat primary cerebral granule cells (CGCs) following exposure to Chlorpyrifos (a well-known neurotoxic organophosphate pesticide). Taken together, these observations point to the evolutionary conservation of the AChE-R splicing event between rodents and human and to the distinct regulation of AChE splice variants in response to toxicological challenges.
Collapse
|
19
|
Cortés‐Gómez M, Llorens‐Álvarez E, Alom J, del Ser T, Avila J, Sáez‐Valero J, García‐Ayllón M. Tau phosphorylation by glycogen synthase kinase 3β modulates enzyme acetylcholinesterase expression. J Neurochem 2020; 157:2091-2105. [PMID: 32955735 PMCID: PMC8359467 DOI: 10.1111/jnc.15189] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
Abstract
In Alzheimer's disease (AD), the enzyme acetylcholinesterase (AChE) co‐localizes with hyperphosphorylated tau (P‐tau) within neurofibrillary tangles. Having demonstrated that AChE expression is increased in the transgenic mouse model of tau Tg‐VLW, here we examined whether modulating phosphorylated tau levels by over‐expressing wild‐type human tau and glycogen synthase kinase‐3β (GSK3β) influences AChE expression. In SH‐SY5Y neuroblastoma cells expressing higher levels of P‐tau, AChE activity and protein increased by (20% ± 2%) and (440% ± 150%), respectively. Western blots and qPCR assays showed that this increment mostly corresponded to the cholinergic ACHE‐T variant, for which the protein and transcript levels increased ~60% and ~23%, respectively. Moreover, in SH‐SY5Y cells differentiated into neurons by exposure to retinoic acid (10 µM), over‐expression of GSK3β and tau provokes an imbalance in cholinergic activity with a decrease in the neurotransmitter acetylcholine in the cell (45 ± 10%). Finally, we obtained cerebrospinal fluid (CSF) from AD patients enrolled on a clinical trial of tideglusib, an irreversible GSK3β inhibitor. In CSF of patients that received a placebo, there was an increase in AChE activity (35 ± 16%) respect to basal levels, probably because of their treatment with AChE inhibitors. However, this increase was not observed in tideglusib‐treated patients. Moreover, CSF levels of P‐tau at the beginning measured by commercially ELISA kits correlated with AChE activity. In conclusion, this study shows that P‐tau can modulate AChE expression and it suggests that AChE may possibly increase in the initial phases of AD.
Collapse
Affiliation(s)
- María‐Ángeles Cortés‐Gómez
- Hospital General Universitario de ElcheFISABIOUnidad de InvestigaciónElcheSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández‐CSICSant Joan d’AlacantSpain
| | - Esther Llorens‐Álvarez
- Hospital General Universitario de ElcheFISABIOUnidad de InvestigaciónElcheSpain
- Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández‐CSICSant Joan d’AlacantSpain
| | - Jordi Alom
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Servicio de NeurologíaHospital General Universitario de ElcheFISABIOElcheSpain
| | - Teodoro del Ser
- Alzheimer’s Disease Investigation Research UnitCIEN FoundationQueen Sofia Foundation Alzheimer Research CenterMadridSpain
| | - Jesús Avila
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of Molecular NeuropathologyCentro de Biología Molecular 'Severo Ochoa'CBMSOCSIC‐UAMMadridSpain
| | - Javier Sáez‐Valero
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández‐CSICSant Joan d’AlacantSpain
| | - María‐Salud García‐Ayllón
- Hospital General Universitario de ElcheFISABIOUnidad de InvestigaciónElcheSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández‐CSICSant Joan d’AlacantSpain
| |
Collapse
|
20
|
Moshitzky G, Shoham S, Madrer N, Husain AM, Greenberg DS, Yirmiya R, Ben-Shaul Y, Soreq H. Cholinergic Stress Signals Accompany MicroRNA-Associated Stereotypic Behavior and Glutamatergic Neuromodulation in the Prefrontal Cortex. Biomolecules 2020; 10:E848. [PMID: 32503154 PMCID: PMC7355890 DOI: 10.3390/biom10060848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Stereotypic behavior (SB) is common in emotional stress-involved psychiatric disorders and is often attributed to glutamatergic impairments, but the underlying molecular mechanisms are unknown. Given the neuro-modulatory role of acetylcholine, we sought behavioral-transcriptomic links in SB using TgR transgenic mice with impaired cholinergic transmission due to over-expression of the stress-inducible soluble 'readthrough' acetylcholinesterase-R splice variant AChE-R. TgR mice showed impaired organization of behavior, performance errors in a serial maze test, escape-like locomotion, intensified reaction to pilocarpine and reduced rearing in unfamiliar situations. Small-RNA sequencing revealed 36 differentially expressed (DE) microRNAs in TgR mice hippocampi, 8 of which target more than 5 cholinergic transcripts. Moreover, compared to FVB/N mice, TgR prefrontal cortices displayed individually variable changes in over 400 DE mRNA transcripts, primarily acetylcholine and glutamate-related. Furthermore, TgR brains presented c-fos over-expression in motor behavior-regulating brain regions and immune-labeled AChE-R excess in the basal ganglia, limbic brain nuclei and the brain stem, indicating a link with the observed behavioral phenotypes. Our findings demonstrate association of stress-induced SB to previously unknown microRNA-mediated perturbations of cholinergic/glutamatergic networks and underscore new therapeutic strategies for correcting stereotypic behaviors.
Collapse
Affiliation(s)
- Gilli Moshitzky
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| | - Shai Shoham
- Herzog Medical Center, Givat Shaul, P.O. Box 3900, Jerusalem 9103702, Israel;
| | - Nimrod Madrer
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| | - Amir Mouhammed Husain
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| | - David S. Greenberg
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| | - Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, The Institute of Medical Research Israel-Canada, Jerusalem 9112102, Israel;
| | - Hermona Soreq
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| |
Collapse
|
21
|
Madrer N, Soreq H. Cholino-ncRNAs modulate sex-specific- and age-related acetylcholine signals. FEBS Lett 2020; 594:2185-2198. [PMID: 32330292 PMCID: PMC7496432 DOI: 10.1002/1873-3468.13789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Acetylcholine (ACh) signaling orchestrates mammalian movement, mental capacities, and inflammation. Dysregulated ACh signaling associates with many human mental disorders and neurodegeneration in an individual‐, sex‐, and tissue‐related manner. Moreover, aged patients under anticholinergic therapy show increased risk of dementia, but the underlying molecular mechanisms are incompletely understood. Here, we report that certain cholinergic‐targeting noncoding RNAs, named Cholino‐noncoding RNAs (ncRNAs), can modulate ACh signaling, agonistically or antagonistically, via distinct direct and indirect mechanisms and at different timescales. Cholino‐ncRNAs include both small microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). The former may attenuate translation and/or induce destruction of target mRNAs that code for either ACh‐signaling proteins or transcription factors controlling the expression of cholinergic genes. lncRNAs may block miRNAs via ‘sponging’ events or by competitive binding to the cholinergic target mRNAs. Also, single nucleotide polymorphisms in either Cholino‐ncRNAs or in their recognition sites in the ACh‐signaling associated genes may modify ACh signaling‐regulated processes. Taken together, both inherited and acquired changes in the function of Cholino‐ncRNAs impact ACh‐related deficiencies, opening new venues for individual, sex‐related, and age‐specific oriented research, diagnosis, and therapeutics.
Collapse
Affiliation(s)
- Nimrod Madrer
- The Life Sciences Institute and the Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Israel
| | - Hermona Soreq
- The Life Sciences Institute and the Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
22
|
Yang FW, Wang H, Wang C, Chi GN. Upregulation of acetylcholinesterase caused by downregulation of microRNA-132 is responsible for the development of dementia after ischemic stroke. J Cell Biochem 2019; 121:135-141. [PMID: 31578769 DOI: 10.1002/jcb.28985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/12/2019] [Indexed: 11/11/2022]
Abstract
MicroRNA-132 (miR-132) has been shown to participate in many diseases. This study aimed to understand the correlation between the level of miR-132 and the severity of dementia post-ischemic stroke. An online tool (www.mirdb.org) was used to find the miR-132 binding site in acetylcholinesterase (ACHE) 3'-untranslated region (UTR), followed by a luciferase reporter assay to validate ACHE as a miR-132 target. A similar relationship between miR-132 and ACHE was also established in cerebrospinal fluid samples collected from human subjects. A negative correlation was established between ACHE and miR-132 by measuring the relative luciferase activity. Meanwhile, Western blot analysis and real-time polymerase chain reaction were also conducted to compare the levels of ACHE messenger RNA and protein between two groups (dementia positive, n = 26 and dementia negative, n = 26) or among cells treated with miR-132 mimics, ACHE small interfering RNA, and miR-132 inhibitors. As shown in the results, miR-132 can reduce the expression of ACHE. Further experiments were also carried out to study the effect of miR-132 and ACHE on cell viability and apoptosis, and the results demonstrated that miR-132 enhanced cell viability while suppressing apoptosis. In addition, ACHE reduced cell viability while promoting apoptosis. miR-132 targeted ACHE and suppressed its expression. Additionally, miR-132 and ACHE have been shown to affect the cell viability and apoptosis in the central nervous system.
Collapse
Affiliation(s)
- Fu-Wei Yang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Hao Wang
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen Wang
- Department of Neurosurgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Guo-Nan Chi
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
23
|
Liao Z, Jaular LM, Soueidi E, Jouve M, Muth DC, Schøyen TH, Seale T, Haughey NJ, Ostrowski M, Théry C, Witwer KW. Acetylcholinesterase is not a generic marker of extracellular vesicles. J Extracell Vesicles 2019; 8:1628592. [PMID: 31303981 PMCID: PMC6609367 DOI: 10.1080/20013078.2019.1628592] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 05/21/2019] [Accepted: 06/04/2019] [Indexed: 02/08/2023] Open
Abstract
Acetylcholinesterase (AChE) activity is found in abundance in reticulocytes and neurons and was developed as a marker of reticulocyte EVs in the 1970s. Easily, quickly, and cheaply assayed, AChE activity has more recently been proposed as a generic marker for small extracellular vesicles (sEV) or exosomes, and as a negative marker of HIV-1 virions. To evaluate these proposed uses of AChE activity, we examined data from different EV and virus isolation methods using T-lymphocytic (H9, PM1 and Jurkat) and promonocytic (U937) cell lines grown in culture conditions that differed by serum content. When EVs were isolated by differential ultracentrifugation, no correlation between AChE activity and particle count was observed. AChE activity was detected in non-conditioned medium when serum was added, and most of this activity resided in soluble fractions and could not be pelleted by centrifugation. The serum-derived pelletable AChE protein was not completely eliminated from culture medium by overnight ultracentrifugation; however, a serum "extra-depletion" protocol, in which a portion of the supernatant was left undisturbed during harvesting, achieved near-complete depletion. In conditioned medium also, only small percentages of AChE activity could be pelleted together with particles. Furthermore, no consistent enrichment of AChE activity in sEV fractions was observed. Little if any AChE activity is produced by the cells we examined, and this activity was mainly present in non-vesicular structures, as shown by electron microscopy. Size-exclusion chromatography and iodixanol gradient separation showed that AChE activity overlaps only minimally with EV-enriched fractions. AChE activity likely betrays exposure to blood products and not EV abundance, echoing the MISEV 2014 and 2018 guidelines and other publications. Additional experiments may be merited to validate these results for other cell types and biological fluids other than blood.
Collapse
Affiliation(s)
- Zhaohao Liao
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Estelle Soueidi
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Mabel Jouve
- Institut Curie, Génétique et biologie du développement, PSL Research University, CNRS UMR3215, Paris, France
| | - Dillon C. Muth
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tine H. Schøyen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tessa Seale
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norman J. Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matias Ostrowski
- Instituto INBIRS, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Clotilde Théry
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Kumar N, Krishnani KK, Singh NP. Oxidative and Cellular Metabolic Stress of Fish: An Appealing Tool for Biomonitoring of Metal Contamination in the Kolkata Wetland, a Ramsar Site. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 76:469-482. [PMID: 30607445 DOI: 10.1007/s00244-018-00587-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
The present study delineate the various biochemical and histopathological tool to evaluate as strong biomarker in the field condition for detection of the least and maximize level of pollution and contamination. We have collected Labeo rohita from 13 different sites from East Kolkata wetland to determine biochemical and histopathological status to analyse metal contamination in the significant biological hot spot EKW. The biochemical marker as antioxidative status, i.e., catalase, superoxide dismutase (SOD), and glutathione-S-transferase (GST) in liver and gill, were remarkably higher (p < 0.01) at some of the sampling sites, but catalase in brain, SOD in kidney, GST in brain and kidney, and neurotransmitter as acetylcholine esterase (AChE) in brain were not significant (p > 0.05) among the sampling sites. The glycolytic enzymes, such as lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) in liver, gill, and muscle, and protein metabolic enzymes, such as alanine amino transferase (ALT) and aspartate amino transferase (AST) in liver, gill, muscle, and kidney, were noticeably higher (p < 0.01) at some of the sampling sites. The histopathology of the liver and gill were altered at different sampling sites, such as blood congestion, leucocyte infiltration with parenchymal vacuolisation, nucleus with blood vessels, hepatocytes granular degeneration, haemorrhage, karyorrhexis, shrink nucleus, and pyknotic nuclei in liver. In the gill, structural changes, such as complete destruction and shortening of secondary gill lamellae, blood vessel in gill arch, curling of secondary gill lamellae, aneurism in gill lamellae, and neoplasia, were observed. Most of the metals were found within the safe limit all along the 13 sampling sites, indicating that fishes are safe for the consumption. Based on our finding, we could recommend that a rational application of biochemical profiles, such as oxidative and metabolic stress parameters, including histopathology to be used as biomarkers for biomonitoring the metal contamination in the aquatic environment.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India.
| | - K K Krishnani
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, India
| | | |
Collapse
|
25
|
Friedman JR, Richbart SD, Merritt JC, Brown KC, Nolan NA, Akers AT, Lau JK, Robateau ZR, Miles SL, Dasgupta P. Acetylcholine signaling system in progression of lung cancers. Pharmacol Ther 2019; 194:222-254. [PMID: 30291908 PMCID: PMC6348061 DOI: 10.1016/j.pharmthera.2018.10.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neurotransmitter acetylcholine (ACh) acts as an autocrine growth factor for human lung cancer. Several lines of evidence show that lung cancer cells express all of the proteins required for the uptake of choline (choline transporter 1, choline transporter-like proteins) synthesis of ACh (choline acetyltransferase, carnitine acetyltransferase), transport of ACh (vesicular acetylcholine transport, OCTs, OCTNs) and degradation of ACh (acetylcholinesterase, butyrylcholinesterase). The released ACh binds back to nicotinic (nAChRs) and muscarinic receptors on lung cancer cells to accelerate their proliferation, migration and invasion. Out of all components of the cholinergic pathway, the nAChR-signaling has been studied the most intensely. The reason for this trend is due to genome-wide data studies showing that nicotinic receptor subtypes are involved in lung cancer risk, the relationship between cigarette smoke and lung cancer risk as well as the rising popularity of electronic cigarettes considered by many as a "safe" alternative to smoking. There are a small number of articles which review the contribution of the other cholinergic proteins in the pathophysiology of lung cancer. The primary objective of this review article is to discuss the function of the acetylcholine-signaling proteins in the progression of lung cancer. The investigation of the role of cholinergic network in lung cancer will pave the way to novel molecular targets and drugs in this lethal malignancy.
Collapse
Affiliation(s)
- Jamie R Friedman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Nicholas A Nolan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Austin T Akers
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Jamie K Lau
- Biology Department, Center for the Sciences, Box 6931, Radford University, Radford, Virginia 24142
| | - Zachary R Robateau
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755.
| |
Collapse
|
26
|
Rodrigues FS, de Zorzi VN, Funghetto MP, Haupental F, Cardoso AS, Marchesan S, Cardoso AM, Schinger MRC, Machado AK, da Cruz IBM, Duarte MMMF, Xavier LL, Furian AF, Oliveira MS, Santos ARS, Royes LFF, Fighera MR. Involvement of the Cholinergic Parameters and Glial Cells in Learning Delay Induced by Glutaric Acid: Protection by N-Acetylcysteine. Mol Neurobiol 2018; 56:4945-4959. [PMID: 30421167 DOI: 10.1007/s12035-018-1395-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/11/2018] [Indexed: 12/18/2022]
Abstract
Dysfunction of basal ganglia neurons is a characteristic of glutaric acidemia type I (GA-I), an autosomal recessive inherited neurometabolic disease characterized by deficiency of glutaryl-CoA dehydrogenase (GCDH) and accumulation of glutaric acid (GA). The affected patients present clinical manifestations such as motor dysfunction and memory impairment followed by extensive striatal neurodegeneration. Knowing that there is relevant striatal dysfunction in GA-I, the purpose of the present study was to verify the performance of young rats chronically injected with GA in working and procedural memory test, and whether N-acetylcysteine (NAC) would protect against impairment induced by GA. Rat pups were injected with GA (5 μmol g body weight-1, subcutaneously; twice per day; from the 5th to the 28th day of life) and were supplemented with NAC (150 mg/kg/day; intragastric gavage; for the same period). We found that GA injection caused delay procedural learning; increase of cytokine concentration, oxidative markers, and caspase levels; decrease of antioxidant defenses; and alteration of acetylcholinesterase (AChE) activity. Interestingly, we found an increase in glial cell immunoreactivity and decrease in the immunoreactivity of nuclear factor-erythroid 2-related factor 2 (Nrf2), nicotinic acetylcholine receptor subunit alpha 7 (α7nAChR), and neuronal nuclei (NeuN) in the striatum. Indeed, NAC administration improved the cognitive performance, ROS production, neuroinflammation, and caspase activation induced by GA. NAC did not prevent neuronal death, however protected against alterations induced by GA on Iba-1 and GFAP immunoreactivities and AChE activity. Then, this study suggests possible therapeutic strategies that could help in GA-I treatment and the importance of the striatum in the learning tasks.
Collapse
Affiliation(s)
- Fernanda Silva Rodrigues
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Centro de Ciências Biológicas, Laboratório de Neurobiologia da Dor e Inflamação, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Viviane Nogueira de Zorzi
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Marla Parizzi Funghetto
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Haupental
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alexandra Seide Cardoso
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Andréia M Cardoso
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Maria Rosa C Schinger
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Alencar Kolinski Machado
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Marta Maria Medeiros Frescura Duarte
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Léder L Xavier
- Faculdade de Biociências, Laboratório Central de Microscopia e Microanálise, Departamento de Ciências Fisiológica, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| | - Ana Flavia Furian
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Mauro Schneider Oliveira
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Adair Roberto Soares Santos
- Centro de Ciências Biológicas, Laboratório de Neurobiologia da Dor e Inflamação, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Luiz Fernando Freire Royes
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Michele Rechia Fighera
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Laboratório de Neuropsiquiatria Experimental e Clínico, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
- Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
- Centro de Ciências da Saúde Programa de Pós-Graduação em Farmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
27
|
Ullah I, Sun W, Tang L, Feng J. Roles of Smads Family and Alternative Splicing Variants of Smad4 in Different Cancers. J Cancer 2018; 9:4018-4028. [PMID: 30410607 PMCID: PMC6218760 DOI: 10.7150/jca.20906] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Transforming Growth Factor β (TGF-β) is one of the most common secretory proteins which are recognized by membrane receptors joined to transcription regulatory factor. TGF-β signals are transduced by the Smads family that regulate differentiation, proliferation, early growth, apoptosis, homeostasis, and tumor development. Functional study of TGF-β signaling pathway and Smads role is vital for certain diseases such as cancer. Alternative splicing produces a diverse range of protein isoforms with unique function and the ability to react differently with various pharmaceutical products. This review organizes to describe the general study of Smads family, the process of alternative splicing, the general aspect of alternative splicing of Smad4 in cancer and the possible use of spliceoforms for the diagnosis and therapeutic purpose. The main aim and objective of this article are to highlight some particular mechanisms involving in alternatives splicing of cancer and also to demonstrate new evidence about alternative splicing in different steps given cancer initiation and progression.
Collapse
Affiliation(s)
- Irfan Ullah
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Weichao Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
28
|
New cholinesterase inhibitors for Alzheimer's disease: Structure activity relationship, kinetics and molecular docking studies of 1–butanoyl–3–arylthiourea derivatives. Int J Biol Macromol 2018; 116:144-150. [DOI: 10.1016/j.ijbiomac.2018.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/30/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022]
|
29
|
Heinrich R, Hertz R, Zemel E, Mann I, Brenner L, Massarweh A, Berlin S, Perlman I. ATF3 Regulates the Expression of AChE During Stress. Front Mol Neurosci 2018; 11:88. [PMID: 29681794 PMCID: PMC5897425 DOI: 10.3389/fnmol.2018.00088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022] Open
Abstract
Acetylcholinesterase (AChE) expresses in non-cholinergic cells, but its role(s) there remain unknown. We have previously attributed a pro-apoptotic role for AChE in stressed retinal photoreceptors, though by unknown mechanism. Here, we examined its promoter only to find that it includes a binding sequence for the activating transcription factor 3 (ATF3); a prototypical mediator of apoptosis. This suggests that expression of AChE could be regulated by ATF3 in the retina. Indeed, ATF3 binds the AChE-promoter to down-regulate its expressions in vitro. Strikingly, retinas of “blinded” mice display hallmarks of apoptosis, almost exclusively in the outer nuclear layer (ONL); coinciding with elevated levels of AChE and absence of ATF3. A mirror image is observed in the inner nuclear layer (INL), namely prominent levels of ATF3 and lack of AChE as well as lack of apoptosis. We conclude that segregated patterns of expressions of ATF3 reflect its ability to repress apoptosis in different layers of the retina—a novel mechanism behind apoptosis.
Collapse
Affiliation(s)
- Ronit Heinrich
- Department of Neuroscience, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and The Rappaport Institute, Haifa, Israel
| | - Rivka Hertz
- Department of Neuroscience, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and The Rappaport Institute, Haifa, Israel
| | - Esther Zemel
- Department of Neuroscience, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and The Rappaport Institute, Haifa, Israel
| | - Irit Mann
- Department of Neuroscience, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and The Rappaport Institute, Haifa, Israel
| | - Liat Brenner
- Department of Neuroscience, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and The Rappaport Institute, Haifa, Israel
| | - Amir Massarweh
- Department of Neuroscience, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and The Rappaport Institute, Haifa, Israel
| | - Shai Berlin
- Department of Neuroscience, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and The Rappaport Institute, Haifa, Israel
| | - Ido Perlman
- Department of Neuroscience, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and The Rappaport Institute, Haifa, Israel
| |
Collapse
|
30
|
Campanari ML, Navarrete F, Ginsberg SD, Manzanares J, Sáez-Valero J, García-Ayllón MS. Increased Expression of Readthrough Acetylcholinesterase Variants in the Brains of Alzheimer's Disease Patients. J Alzheimers Dis 2018; 53:831-41. [PMID: 27258420 DOI: 10.3233/jad-160220] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is characterized by a decrease in the enzymatic activity of the enzyme acetylcholinesterase (AChE). AChE is expressed as multiple splice variants, which may serve both cholinergic degradative functions and non-cholinergic functions unrelated with their capacity to hydrolyze acetylcholine. We have recently demonstrated that a prominent pool of enzymatically inactive AChE protein exists in the AD brain. In this study, we analyzed protein and transcript levels of individual AChE variants in human frontal cortex from AD patients by western blot analysis using specific anti-AChE antibodies and by quantitative real-time PCR (qRT-PCR). We found similar protein and mRNA levels of the major cholinergic "tailed"-variant (AChE-T) and the anchoring subunit, proline-rich membrane anchor (PRiMA-1) in frontal cortex obtained from AD patients and non-demented controls. Interestingly, we found an increase in the protein and transcript levels of the non-cholinergic "readthrough" AChE (AChE-R) variants in AD patients compared to controls. Similar increases were detected by western blot using an antibody raised against the specific N-terminal domain, exclusive of alternative N-extended variants of AChE (N-AChE). In accordance with a subset of AChE-R monomers that display amphiphilic properties that are upregulated in the AD brain, we demonstrate that the increase of N-AChE species is due, at least in part, to N-AChE-R variants. In conclusion, we demonstrate selective alterations in specific AChE variants in AD cortex, with no correlation in enzymatic activity. Therefore, differential expression of AChE variants in AD may reflect changes in the pathophysiological role of AChE, independent of cholinergic impairment or its role in degrading acetylcholine.
Collapse
Affiliation(s)
- Maria-Letizia Campanari
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Francisco Navarrete
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Departments of Psychiatry and Neuroscience & Physiology, New York University Langone Medical Center, Orangeburg, NY, USA
| | - Jorge Manzanares
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Unidad de Investigación, Hospital General Universitario de Elche, FISABIO, Elche, Spain
| |
Collapse
|
31
|
Nazim M, Masuda A, Rahman MA, Nasrin F, Takeda JI, Ohe K, Ohkawara B, Ito M, Ohno K. Competitive regulation of alternative splicing and alternative polyadenylation by hnRNP H and CstF64 determines acetylcholinesterase isoforms. Nucleic Acids Res 2017; 45:1455-1468. [PMID: 28180311 PMCID: PMC5388418 DOI: 10.1093/nar/gkw823] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/11/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022] Open
Abstract
Acetylcholinesterase (AChE), encoded by the ACHE gene, hydrolyzes the neurotransmitter acetylcholine to terminate synaptic transmission. Alternative splicing close to the 3΄ end generates three distinct isoforms of AChET, AChEH and AChER. We found that hnRNP H binds to two specific G-runs in exon 5a of human ACHE and activates the distal alternative 3΄ splice site (ss) between exons 5a and 5b to generate AChET. Specific effect of hnRNP H was corroborated by siRNA-mediated knockdown and artificial tethering of hnRNP H. Furthermore, hnRNP H competes for binding of CstF64 to the overlapping binding sites in exon 5a, and suppresses the selection of a cryptic polyadenylation site (PAS), which additionally ensures transcription of the distal 3΄ ss required for the generation of AChET. Expression levels of hnRNP H were positively correlated with the proportions of the AChET isoform in three different cell lines. HnRNP H thus critically generates AChET by enhancing the distal 3΄ ss and by suppressing the cryptic PAS. Global analysis of CLIP-seq and RNA-seq also revealed that hnRNP H competitively regulates alternative 3΄ ss and alternative PAS in other genes. We propose that hnRNP H is an essential factor that competitively regulates alternative splicing and alternative polyadenylation.
Collapse
Affiliation(s)
- Mohammad Nazim
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mohammad Alinoor Rahman
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Farhana Nasrin
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kenji Ohe
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
32
|
Hermant P, Bosc D, Piveteau C, Gealageas R, Lam B, Ronco C, Roignant M, Tolojanahary H, Jean L, Renard PY, Lemdani M, Bourotte M, Herledan A, Bedart C, Biela A, Leroux F, Deprez B, Deprez-Poulain R. Controlling Plasma Stability of Hydroxamic Acids: A MedChem Toolbox. J Med Chem 2017; 60:9067-9089. [DOI: 10.1021/acs.jmedchem.7b01444] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Paul Hermant
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Damien Bosc
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Catherine Piveteau
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Ronan Gealageas
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - BaoVy Lam
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Cyril Ronco
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Matthieu Roignant
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Hasina Tolojanahary
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Ludovic Jean
- Normandie Université, COBRA, UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, F-76821 Mont-Saint-Aignan Cedex, France
| | - Pierre-Yves Renard
- Normandie Université, COBRA, UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, F-76821 Mont-Saint-Aignan Cedex, France
| | - Mohamed Lemdani
- Univ. Lille, EA
2694, Santé Publique: Épidémiologie et Qualité
des Soins, F-59000 Lille, France
| | - Marilyne Bourotte
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Adrien Herledan
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Corentin Bedart
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Alexandre Biela
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Florence Leroux
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Benoit Deprez
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
| | - Rebecca Deprez-Poulain
- Univ. Lille Nord
de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules
for Living Systems, F-59000 Lille, France
- Institut Universitaire de France, F-75231, Paris, France
| |
Collapse
|
33
|
Golime R, Palit M, Acharya J, Dubey DK. Neuroprotective Effects of Galantamine on Nerve Agent-Induced Neuroglial and Biochemical Changes. Neurotox Res 2017; 33:738-748. [DOI: 10.1007/s12640-017-9815-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
|
34
|
Haviv R, Oz E, Soreq H. The Stress-Responding miR-132-3p Shows Evolutionarily Conserved Pathway Interactions. Cell Mol Neurobiol 2017; 38:141-153. [PMID: 28667373 PMCID: PMC5775983 DOI: 10.1007/s10571-017-0515-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA chains that can each interact with the 3′-untranslated region of multiple target transcripts in various organisms, humans included. MiRNAs tune entire biological pathways, spanning stress reactions, by regulating the stability and/or translation of their targets. MiRNA genes are often subject to co-evolutionary changes together with their target transcripts, which may be reflected by differences between paralog mouse and primate miRNA/mRNA pairs. However, whether such evolution occurred in stress-related miRNAs remained largely unknown. Here, we report that the stress-induced evolutionarily conserved miR-132-3p, its target transcripts and its regulated pathways provide an intriguing example to exceptionally robust conservation. Mice and human miR-132-3p share six experimentally validated targets and 18 predicted targets with a common miRNA response element. Enrichment analysis and mining in-house and web-available experimental data identified co-regulation by miR-132 in mice and humans of stress-related, inflammatory, metabolic, and neuronal growth pathways. Our findings demonstrate pan-mammalian preservation of miR-132′s neuronal roles, and call for further exploring the corresponding stress-related implications.
Collapse
Affiliation(s)
- Rotem Haviv
- Department of Biological Chemistry, The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401, Jerusalem, Israel
| | - Eden Oz
- Department of Biological Chemistry, The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401, Jerusalem, Israel
| | - Hermona Soreq
- Department of Biological Chemistry, The Silberman Institute of Life Sciences and the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401, Jerusalem, Israel.
| |
Collapse
|
35
|
Garcimartín A, López-Oliva ME, González MP, Sánchez-Muniz FJ, Benedí J. Hydrogen peroxide modifies both activity and isoforms of acetylcholinesterase in human neuroblastoma SH-SY5Y cells. Redox Biol 2017; 12:719-726. [PMID: 28411556 PMCID: PMC5390663 DOI: 10.1016/j.redox.2017.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/12/2017] [Accepted: 04/02/2017] [Indexed: 12/04/2022] Open
Abstract
The involvement of cholinergic system and the reactive oxygen species (ROS) in the pathogenesis of some degenerative diseases has been widely reported; however, the specific impact of hydrogen peroxide (H2O2) on the acetylcholinesterase (AChE) activity as well as AChE isoform levels has not been clearly established. Hence, the purpose of present study is to clarify whether H2O2 alters these parameters. Human neuroblastoma SH-SY5Y cells were treated with H2O2 (1–1000 µM) for 24 h and AChE activity and AChE and cytochrome c levels were evaluated. AChE activity was strongly increased from 1 µM to 1000 µM of H2O2. The results of the kinetic study showed that H2O2 affected Vmax but not Km; and also that H2O2 changed the sigmoid kinetic observed in control samples to hyperbolic kinetic. Thus, results suggest that H2O2 acts as an allosteric activators. In addition, H2O2, (100–1000 µM) reduced the total AChE content and modified its isoform profile (mainly 50-, 70-, and 132-kDa)·H2O2 from 100 µM to 1000 µM induced cytochrome c release confirming cell death by apoptosis. All these results together suggest: a) the involvement of oxidative stress in the imbalance of AChE; and b) treatment with antioxidant agents may be a suitable strategy to protect cholinergic system alterations promoted by oxidative stress. H2O2 impact on AChE structure from SH-SY5Y cells, acting as an allosteric effector. H2O2 decreased AChE levels and changed AChE isoform profile from SH-SY5Y cells. Oxidative stress could promote disturbances in cholinergic system.
Collapse
Affiliation(s)
- Alba Garcimartín
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| | - M Elvira López-Oliva
- Sección Departamental de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - M Pilar González
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco J Sánchez-Muniz
- Departamento de Nutrición y Bromatología I, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Juana Benedí
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
36
|
Salazar PB, de Athayde Moncorvo Collado A, Canal-Martínez V, Minahk CJ. Differential inhibition of human erythrocyte acetylcholinesterase by polyphenols epigallocatechin-3-gallate and resveratrol. Relevance of the membrane-bound form. Biofactors 2017; 43:73-81. [PMID: 27591048 DOI: 10.1002/biof.1322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 01/20/2023]
Abstract
The activity of acetylcholinesterase (AChE) from human erythrocytes was tested in the presence of the phenolic compounds resveratrol and epigallocatechin-3-gallate (EGCG). Even though the stilbene barely changed this enzymatic activity, EGCG did inhibit AChE. Importantly, it preferentially acted on the membrane-bound enzyme rather than on its soluble form. Actually, it was shown that this flavonoid may bind to the red blood cell membrane surface, which may improve the interaction between EGCG and AChE. Therefore, caution should be taken when screening AChE inhibitors. In fact, testing compounds with the soluble form of the enzyme may underestimate the activity of some of these potential inhibitors, hence it would be advisable not to use them as a sole model system for screening. Moreover, erythrocyte AChE is proposed as a good model for these enzymatic assays. © 2016 BioFactors, 43(1):73-81, 2017.
Collapse
Affiliation(s)
- Paula B Salazar
- Instituto Superior de Investigaciones Biológicas (CONICET-UNT) and Instituto de Química Biológica ''Dr. Bernabe Bloj'', Facultad de Bioquímica, Química y Farmacia (UNT), Tucumán, Argentina
| | - Alejandro de Athayde Moncorvo Collado
- Instituto Superior de Investigaciones Biológicas (CONICET-UNT) and Instituto de Química Biológica ''Dr. Bernabe Bloj'', Facultad de Bioquímica, Química y Farmacia (UNT), Tucumán, Argentina
| | - Verónica Canal-Martínez
- Instituto Superior de Investigaciones Biológicas (CONICET-UNT) and Instituto de Química Biológica ''Dr. Bernabe Bloj'', Facultad de Bioquímica, Química y Farmacia (UNT), Tucumán, Argentina
| | - Carlos J Minahk
- Instituto Superior de Investigaciones Biológicas (CONICET-UNT) and Instituto de Química Biológica ''Dr. Bernabe Bloj'', Facultad de Bioquímica, Química y Farmacia (UNT), Tucumán, Argentina
| |
Collapse
|
37
|
Zarei MH, Soodi M, Qasemian-Lemraski M, Jafarzadeh E, Taha MF. Study of the chlorpyrifos neurotoxicity using neural differentiation of adipose tissue-derived stem cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:1510-1519. [PMID: 26018426 DOI: 10.1002/tox.22155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
Chlorpyrifos (CPF) is the most commonly used organophosphorus insecticide which causes neurodevelopmental toxicity. So far, animals have been used as ideal models for neurotoxicity studies, but working with animals is very expensive, laborious, and ethically challenging. This has encouraged researchers to seek alternatives. During recent years, several studies have reported successful differentiation of embryonic and adult stem cells to neurons. This has provided an excellent model for neurotoxicologic studies. In this study, neural differentiation of mouse adipose tissue-derived stem cells (ADSCs) was used as an in vitro model for investigation of CPF neurotoxicity. For this purpose, mouse ADSCs were cultured in a medium containing knockout serum replacement and were treated with different concentrations of CPF at several stages of differentiation. Cytotoxic effect of CPF and the expression of neuron-specific genes and proteins were studied in the differentiating ADSCs. Furthermore, the activity of acetylcholinesterase was assessed by Ellman assay at different stages of differentiation. This study showed that up to 500 μM CPF did not alter viability of the undifferentiated ADSCs, whereas viability of the differentiating cells decreased with 500 μM CPF. CPF upregulated the expression of some neuron-specific genes and seemed to decrease the number of β-tubulin III and MAP2 proteins-expressing cells. There was no detectable acetylcholine esterase activity in differentiated ADSCs. In summary, it was shown that CPF treatment can decrease the viability of ADSC-derived neurons and dysregulate the expression of some neuronal markers through acetylcholinesterase-independent mechanisms. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1510-1519, 2016.
Collapse
Affiliation(s)
- Mohammad Hadi Zarei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maliheh Soodi
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Qasemian-Lemraski
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Emad Jafarzadeh
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Fakhr Taha
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
38
|
Montenegro MF, Cabezas-Herrera J, Campoy FJ, Muñoz-Delgado E, Vidal CJ. Lipid rafts of mouse liver contain nonextended and extended acetylcholinesterase variants along with M3 muscarinic receptors. FASEB J 2016; 31:544-555. [PMID: 28148778 DOI: 10.1096/fj.201600609r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022]
Abstract
The observation of acetylcholinesterase (AChE) type H (AChEH), which is the predominant AChE variant in visceral organs and immune cells, in lipid rafts of muscle supports functional reasons for the raft targeting of glypiated AChEH The search for these reasons revealed that liver AChE activity is mostly confined to rafts and that the liver is able to make N-extended AChE variants and target them to rafts. These results prompted us to test whether AChE and muscarinic receptors existed in the same raft. Isolation of flotillin-2-rich raft fractions by their buoyancy in sucrose gradients, followed by immunoadsorption and matrix-assisted laser desorption ionization-time of flight-mass spectrometry application, gave the following results: 1) most hepatic AChE activity emanates from AChE-H mRNA, and its product, glypiated AChEH, accumulates in rafts; 2) N-extended N-AChE readthrough variant, nonglypiated N-AChEH, and N-AChE tailed variant were all identified in liver rafts; and 3) M3 AChRs were observed in rafts, and coprecipitation of raft-confined N-AChE and M3 receptors by using anti-M3 antibodies showed that enzyme and receptor reside in the same raft unit. A raft domain that harbors tightly packed muscarinic receptor and AChE may represent a molecular device that, by means of which, the intensity and duration of cholinergic inputs are regulated.-Montenegro, M. F., Cabezas-Herrera, J., Campoy, F. J., Muñoz-Delgado, E., Vidal, C. J. Lipid rafts of mouse liver contain nonextended and extended acetylcholinesterase variants along with M3 muscarinic receptors.
Collapse
Affiliation(s)
- María Fernanda Montenegro
- Departamento de Bioquímica y Biología Molecular-A, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain; and
| | - Juan Cabezas-Herrera
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - F Javier Campoy
- Departamento de Bioquímica y Biología Molecular-A, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain; and
| | - Encarnación Muñoz-Delgado
- Departamento de Bioquímica y Biología Molecular-A, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain; and
| | - Cecilio J Vidal
- Departamento de Bioquímica y Biología Molecular-A, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain; and
| |
Collapse
|
39
|
Hollins SL, Cairns MJ. MicroRNA: Small RNA mediators of the brains genomic response to environmental stress. Prog Neurobiol 2016; 143:61-81. [PMID: 27317386 DOI: 10.1016/j.pneurobio.2016.06.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/24/2016] [Accepted: 06/11/2016] [Indexed: 01/09/2023]
Abstract
The developmental processes that establish the synaptic architecture of the brain while retaining capacity for activity-dependent remodeling, are complex and involve a combination of genetic and epigenetic influences. Dysregulation of these processes can lead to problems with neural circuitry which manifest in humans as a range of neurodevelopmental syndromes, such as schizophrenia, bipolar disorder and fragile X mental retardation. Recent studies suggest that prenatal, postnatal and intergenerational environmental factors play an important role in the aetiology of stress-related psychopathology. A number of these disorders have been shown to display epigenetic changes in the postmortem brain that reflect early life experience. These changes affect the regulation of gene expression though chromatin remodeling (transcriptional) and post-transcriptional influences, especially small noncoding microRNA (miRNA). These dynamic and influential molecules appear to play an important function in both brain development and its adaption to stress. In this review, we examine the role of miRNA in mediating the brain's response to both prenatal and postnatal environmental perturbations and explore how stress- induced alterations in miRNA expression can regulate the stress response via modulation of the immune system. Given the close relationship between environmental stress, miRNA, and brain development/function, we assert that miRNA hold a significant position at the molecular crossroads between neural development and adaptations to environmental stress. A greater understanding of the dynamics that mediate an individual's predisposition to stress-induced neuropathology has major human health benefits and is an important area of research.
Collapse
Affiliation(s)
- Sharon L Hollins
- School of Biomedical Sciences and Pharmacy and the Hunter Medical Research Institute, the University of Newcastle, Callaghan, NSW 2308, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy and the Hunter Medical Research Institute, the University of Newcastle, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
40
|
Gururajan A, Clarke G, Dinan TG, Cryan JF. Molecular biomarkers of depression. Neurosci Biobehav Rev 2016; 64:101-33. [DOI: 10.1016/j.neubiorev.2016.02.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/11/2016] [Accepted: 02/12/2016] [Indexed: 12/22/2022]
|
41
|
Campoy FJ, Vidal CJ, Muñoz-Delgado E, Montenegro MF, Cabezas-Herrera J, Nieto-Cerón S. Cholinergic system and cell proliferation. Chem Biol Interact 2016; 259:257-265. [PMID: 27083142 DOI: 10.1016/j.cbi.2016.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/31/2022]
Abstract
The cholinergic system, comprising acetylcholine, the proteins responsible for acetylcholine synthesis and release, acetylcholine receptors and cholinesterases, is expressed by most human cell types. Acetylcholine is a neurotransmitter, but also a local signalling molecule which regulates basic cell functions, and cholinergic responses are involved in cell proliferation and apoptosis. So, activation of nicotinic and muscarinic receptors has a proliferative and anti-apoptotic effect in many cells. The content of choline acetyltransferase, acetylcholine receptors and cholinesterases is altered in many tumours, and cholinesterase content correlates with patient survival in some cancers. During apoptosis, acetylcholinesterase is induced and appears in the nuclei. Acetylcholinesterase participates in the regulation of cell proliferation and apoptosis through hydrolysis of acetylcholine and by other catalytic and non catalytic mechanisms, in a variant-specific manner. This review gathers information on the role of cholinergic system and specially acetylcholinesterase in cell proliferation and apoptosis.
Collapse
Affiliation(s)
- F J Campoy
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain.
| | - C J Vidal
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain
| | - E Muñoz-Delgado
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain
| | - M F Montenegro
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain
| | - J Cabezas-Herrera
- Molecular Therapy and Biomarker Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, E-30120 El Palmar, Murcia, Spain
| | - S Nieto-Cerón
- Molecular Therapy and Biomarker Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, E-30120 El Palmar, Murcia, Spain
| |
Collapse
|
42
|
Thangaraj G, Manakov V, Cucu A, Fournier C, Layer PG. Inflammatory effects of TNFα are counteracted by X-ray irradiation and AChE inhibition in mouse micromass cultures. Chem Biol Interact 2016; 259:313-318. [PMID: 27019294 DOI: 10.1016/j.cbi.2016.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/12/2016] [Accepted: 03/21/2016] [Indexed: 01/17/2023]
Abstract
As a means to analyze anti-inflammatory effects by radiation and/or by cholinergic mechanisms, we found that cultured primary human osteoblasts express most cholinergic components. After X-ray irradiation, their level of acetylcholinesterase (AChE) was strongly elevated. As a 3D model, we cultured mesenchymal stem cells isolated from E11 mouse embryos as micromass nodules, and differentiated them into chondro- and osteoblasts. They were stimulated by 5 or 10 ng/ml of the inflammatory cytokine TNF-α to mimic an inflammatory condition in vitro, before exposure to 2 Gy X-rays. Effects on chondro- and osteoblasts of TNF-α, of X-rays, or both were analysed by Alcian Blue, or Alizarin Red staining, respectively. Acetylcholinesterase (AChE) activity was visualized histochemically. The results showed that treatment with TNF-α affected cartilage and bone formation in vitro, while X-rays reversed the effects of TNF-α. After irradiation, both AChE and alkaline phosphatase (ALP) activities, a marker for bone mineralization, were raised, suggesting that X-rays stimulated cholinergic mechanisms during calcification. Notably, the TNFα-effects on cultures were also counterbalanced after AChE activity was blocked by BW284c51. These findings suggest a complex crosstalk between radiation, cholinergic and inflammatory mechanisms, which could have wide significances, e.g. for understanding rheumatoid arthritis.
Collapse
Affiliation(s)
- Gopenath Thangaraj
- Technische Universität Darmstadt, Developmental Biology & Neurogenetics, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Vadim Manakov
- Technische Universität Darmstadt, Developmental Biology & Neurogenetics, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Aljona Cucu
- GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Planckstrasse 1, D-64291 Darmstadt-Wixhausen, Germany
| | - Claudia Fournier
- GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Planckstrasse 1, D-64291 Darmstadt-Wixhausen, Germany
| | - Paul G Layer
- Technische Universität Darmstadt, Developmental Biology & Neurogenetics, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany.
| |
Collapse
|
43
|
Rodrigues AF, Biasibetti H, Zanotto BS, Sanches EF, Pierozan P, Schmitz F, Parisi MM, Barbé‐Tuana F, Netto CA, Wyse AT. Intracerebroventricular
d
‐galactose administration impairs memory and alters activity and expression of acetylcholinesterase in the rat. Int J Dev Neurosci 2016; 50:1-6. [DOI: 10.1016/j.ijdevneu.2016.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/16/2022] Open
Affiliation(s)
- André Felipe Rodrigues
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Helena Biasibetti
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Bruna Stela Zanotto
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Eduardo Farias Sanches
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Paula Pierozan
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Felipe Schmitz
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Mariana Migliorini Parisi
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Florencia Barbé‐Tuana
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Carlos Alexandre Netto
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| | - Angela T.S. Wyse
- Programa de Pós‐Graduação em Ciências Biológicas: Bioquímica, Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulRua Ramiro Barcelos, 2600‐AnexoCEP 90035‐003Porto AlegreRSBrazil
| |
Collapse
|
44
|
Liu F, Li Y, Jiang R, Nie C, Zeng Z, Zhao N, Huang C, Shao Q, Ding C, Qing C, Xia L, Zeng E, Qian K. miR-132 inhibits lipopolysaccharide-induced inflammation in alveolar macrophages by the cholinergic anti-inflammatory pathway. Exp Lung Res 2016; 41:261-9. [PMID: 26052826 DOI: 10.3109/01902148.2015.1004206] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Although microRNA-132 (miR-132) has been shown to be involved in the inflammatory regulation, its role in sepsis-induced lung injury is unknown. We hypothesized that miR-132 attenuated lipopolysaccharide (LPS)-induced inflammation of alveolar macrophages by targeting acetylcholinesterase (AChE) and enhancing the acetylcholine (ACh)-mediated cholinergic anti-inflammatory response. METHODS The LPS-treated rat alveolar macrophage cell line NR8383 was used as the inflammatory model. To assess the effect of miR-132, alveolar macrophages were transfected with miR-132 mimic or inhibitor. RESULTS We found that miR-132 was upregulated in LPS-stimulated alveolar macrophages. Induction of AChE mRNA showed an inverse pattern with respect to AChE protein and activity, suggesting posttranscriptional regulation of AChE. Utilizing miR-132 mimic transfection, we found that overexpression of miR-132 enhanced the ACh-mediated cholinergic anti-inflammatory reaction by targeting AChE mRNA in LPS-treated alveolar macrophages. Blockage of miR-132 using miR-132 inhibitor reversed the Ach action upon LPS-induced release of inflammatory mediators and reduction in AchE protein/activity. Moreover, in the presence of ACh, upregulation of miR-132 suppressed LPS-induced nuclear translocation of NF-κB and production of STAT3 and phosphorylated STAT3, while downregulation of miR-132 enhanced the nuclear translocation of NF-κB. CONCLUSION We propose that miR-132 functions as a negative regulator of the inflammatory response in alveolar macrophages by potentiating the cholinergic anti-inflammatory pathway, and represents a potential therapeutic leverage point in modulating inflammatory responses.
Collapse
Affiliation(s)
- Fen Liu
- 1Department of Critical Care Medicine, the First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi , China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
García-Gómez BE, Fernández-Gómez FJ, Muñoz-Delgado E, Buée L, Blum D, Vidal CJ. MRNA Levels of ACh-Related Enzymes in the Hippocampus of THY-Tau22 Mouse: A Model of Human Tauopathy with No Signs of Motor Disturbance. J Mol Neurosci 2015; 58:411-5. [PMID: 26697857 DOI: 10.1007/s12031-015-0699-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/03/2015] [Indexed: 12/12/2022]
Abstract
The microtubule-associated protein Tau tends to form aggregates in neurodegenerative disorders referred to as tauopathies. The tauopathy model transgenic (Tg) THY-Tau22 (Tau22) mouse shows disturbed septo-hippocampal transmission, memory deficits and no signs of motor dysfunction. The reports showing a hippocampal downregulation of choline acetyltransferase (ChAT) in SAMP8 mice, a model of aging, and an upregulation of acetylcholinesterase (AChE) in Tg-VLW mice, a model of FTDP17 tauopathy, may lead to think that the supply of ACh to the hippocampus can be threatened as aging or Tau pathology progress. The above was tested by comparing the mRNA levels for ACh-related enzymes in hippocampi of wild-type (wt) and Tau22 mice at ages when the neuropathological signs are debuting (3-4 months), moderate (6-7 months) and extensive (>9 months). Age-matched Tau22 and wt mice hippocampi displayed similar ChAT, AChE-T, butyrylcholinesterase (BChE) and a proline-rich membrane anchor (PRiMA) mRNA levels, any change most likely arising from ACh homeostasis. The unchanged hippocampal levels of AChE-T mRNA and enzyme activity observed in Tau22 mice, expressing G272V-P301S hTau, differed from the increase in AChE-T mRNA and activity observed in Tg-VLW mice, expressing G272V-P301L-R406W hTau. The difference supports the idea that AChE upregulation may proceed or not depending on the particular Tau mutation, which would dictate Tau folding, the accessibility/affinity to kinases and phosphatases, and P-Tau aggregation with itself and protein partners, transcription factors included.
Collapse
Affiliation(s)
- Beatriz E García-Gómez
- Departamento de Bioquímica y Biología Molecular-A, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Francisco J Fernández-Gómez
- INSERM U837 Alzheimer and Tauopathies, Institute of Predictive Medicine and Therapeutic Research, Université Lille Nord de France, Lille, France
| | - Encarnación Muñoz-Delgado
- Departamento de Bioquímica y Biología Molecular-A, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Luc Buée
- INSERM U837 Alzheimer and Tauopathies, Institute of Predictive Medicine and Therapeutic Research, Université Lille Nord de France, Lille, France
| | - David Blum
- INSERM U837 Alzheimer and Tauopathies, Institute of Predictive Medicine and Therapeutic Research, Université Lille Nord de France, Lille, France
| | - Cecilio J Vidal
- Departamento de Bioquímica y Biología Molecular-A, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain. .,Departamento de Bioquímica y Biología Molecular-A, Edificio de Veterinaria, Universidad de Murcia, Apdo. 4021, E-30071, Espinardo, Murcia, Spain.
| |
Collapse
|
46
|
Valbonesi P, Franzellitti S, Bersani F, Contin A, Fabbri E. Activity and expression of acetylcholinesterase in PC12 cells exposed to intermittent 1.8 GHz 217-GSM mobile phone signal. Int J Radiat Biol 2015; 92:1-10. [PMID: 26630175 DOI: 10.3109/09553002.2016.1114188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Due to its role in learning, memory and in many neurodegenerative diseases, acetylcholinesterase (AChE) represents an interesting endpoint to assess possible targets of exposure to radiofrequency electromagnetic fields (RF-EMF) generated by mobile phones. We investigated possible alterations of enzymatic activity, gene and protein expression of AChE in neuronal-like cells exposed to a 1.8 GHz Global System for Mobile Communication (GSM) modulated signal (217-GSM). MATERIALS AND METHODS Rat PC12 cells were exposed for 24 h to 1.8 GHz 217-GSM signal. Specific adsorption rate (SAR) was 2 W/kg. AChE enzyme activity was assessed spectrophotometrically by Ellman's method, mRNA expression level was evaluated by real time polymerase chain reaction, and protein expression was assessed by Western blotting. RESULTS AChE enzymatic activity increased of 1.4-fold in PC12 cells exposed to 217-GSM signal for 24 h, whilst AChE transcriptional or translational pathways were not affected. CONCLUSION Our results provide the first evidence of effects on AChE activity after in vitro exposure of mammalian cells to the RF-EMF generated by GSM mobile phones, at the SAR value 2 W/kg. The obtained evidence promotes further investigations on AChE as a possible target of RF-EMF and confirm the ability of 1.8 GHz 217-GSM signal to induce biological effects in different mammalian cells.
Collapse
Affiliation(s)
- Paola Valbonesi
- a Interdepartmental Centre for Environmental Science Research, University of Bologna , Campus of Ravenna , Italy ;,b Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy
| | - Silvia Franzellitti
- a Interdepartmental Centre for Environmental Science Research, University of Bologna , Campus of Ravenna , Italy ;,b Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy
| | | | - Andrea Contin
- a Interdepartmental Centre for Environmental Science Research, University of Bologna , Campus of Ravenna , Italy ;,c Department of Physics , University of Bologna , Bologna , Italy
| | - Elena Fabbri
- a Interdepartmental Centre for Environmental Science Research, University of Bologna , Campus of Ravenna , Italy ;,b Department of Biological, Geological and Environmental Sciences , University of Bologna , Bologna , Italy
| |
Collapse
|
47
|
Checks and balances on cholinergic signaling in brain and body function. Trends Neurosci 2015; 38:448-58. [DOI: 10.1016/j.tins.2015.05.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/19/2015] [Accepted: 05/25/2015] [Indexed: 02/07/2023]
|
48
|
Atsmon J, Brill-Almon E, Nadri-Shay C, Chertkoff R, Alon S, Shaikevich D, Volokhov I, Haim KY, Bartfeld D, Shulman A, Ruderfer I, Ben-Moshe T, Shilovitzky O, Soreq H, Shaaltiel Y. Preclinical and first-in-human evaluation of PRX-105, a PEGylated, plant-derived, recombinant human acetylcholinesterase-R. Toxicol Appl Pharmacol 2015; 287:202-9. [PMID: 26051873 DOI: 10.1016/j.taap.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 12/18/2022]
Abstract
PRX-105 is a plant-derived recombinant version of the human 'read-through' acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50nmol/kg PRX-105, 2min before being exposed to 1.33×LD50 and 1.5×LD50 of toxin and 10min after exposure to 1.5×LD50 survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t½) in mice was 994 (±173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t½ in humans was substantially longer than in mice (average 26.7h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation.
Collapse
Affiliation(s)
- Jacob Atsmon
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | - Sari Alon
- Protalix Biotherapeutics, Science Park, Carmiel, Israel
| | - Dimitri Shaikevich
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Inna Volokhov
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Kirsten Y Haim
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | - Avidor Shulman
- Protalix Biotherapeutics, Science Park, Carmiel, Israel.
| | - Ilya Ruderfer
- Protalix Biotherapeutics, Science Park, Carmiel, Israel
| | | | | | - Hermona Soreq
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
49
|
Memory formation and retention are affected in adult miR-132/212 knockout mice. Behav Brain Res 2015; 287:15-26. [PMID: 25813747 DOI: 10.1016/j.bbr.2015.03.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 01/16/2023]
Abstract
The miR-132/212 family is thought to play an important role in neural function and plasticity, while its misregulation has been observed in various neurodegenerative disorders. In this study, we analyzed 6-month-old miR-132/212 knockout mice in a battery of cognitive and non-cognitive behavioral tests. No significant changes were observed in reflexes and basic sensorimotor functions as determined by the SHIRPA primary screen. Accordingly, miR-132/212 knockout mice did not differ from wild-type controls in general locomotor activity in an open-field test. Furthermore, no significant changes of anxiety were measured in an elevated plus maze task. However, the mutant mice showed retention phase defects in a novel object recognition test and in the T-water maze. Moreover, the learning and probe phases in the Barnes maze were clearly altered in knockout mice when compared to controls. Finally, changes in BDNF, CREB, and MeCP2 were identified in the miR-132/212-deficient mice, providing a potential mechanism for promoting memory loss. Taken together, these results further strengthen the role of miR-132/212 in memory formation and retention, and shed light on the potential consequences of its deregulation in neurodegenerative diseases.
Collapse
|
50
|
Readthrough acetylcholinesterase (AChE-R) and regulated necrosis: pharmacological targets for the regulation of ovarian functions? Cell Death Dis 2015; 6:e1685. [PMID: 25766324 PMCID: PMC4385929 DOI: 10.1038/cddis.2015.51] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/24/2022]
Abstract
Proliferation, differentiation and death of ovarian cells ensure orderly functioning of the female gonad during the reproductive phase, which ultimately ends with menopause in women. These processes are regulated by several mechanisms, including local signaling via neurotransmitters. Previous studies showed that ovarian non-neuronal endocrine cells produce acetylcholine (ACh), which likely acts as a trophic factor within the ovarian follicle and the corpus luteum via muscarinic ACh receptors. How its actions are restricted was unknown. We identified enzymatically active acetylcholinesterase (AChE) in human ovarian follicular fluid as a product of human granulosa cells. AChE breaks down ACh and thereby attenuates its trophic functions. Blockage of AChE by huperzine A increased the trophic actions as seen in granulosa cells studies. Among ovarian AChE variants, the readthrough isoform AChE-R was identified, which has further, non-enzymatic roles. AChE-R was found in follicular fluid, granulosa and theca cells, as well as luteal cells, implying that such functions occur in vivo. A synthetic AChE-R peptide (ARP) was used to explore such actions and induced in primary, cultured human granulosa cells a caspase-independent form of cell death with a distinct balloon-like morphology and the release of lactate dehydrogenase. The RIPK1 inhibitor necrostatin-1 and the MLKL-blocker necrosulfonamide significantly reduced this form of cell death. Thus a novel non-enzymatic function of AChE-R is to stimulate RIPK1/MLKL-dependent regulated necrosis (necroptosis). The latter complements a cholinergic system in the ovary, which determines life and death of ovarian cells. Necroptosis likely occurs in the primate ovary, as granulosa and luteal cells were immunopositive for phospho-MLKL, and hence necroptosis may contribute to follicular atresia and luteolysis. The results suggest that interference with the enzymatic activities of AChE and/or interference with necroptosis may be novel approaches to influence ovarian functions.
Collapse
|