1
|
Jiao Z, Gao T, Wang X, Wang A, Ma Y, Feng L, Gao L, Gou L, Zhang W, Biglari N, Boxer EE, Steuernagel L, Ding X, Yu Z, Li M, Gao M, Hao M, Zhou H, Cao X, Li S, Jiang T, Qi J, Jia X, Feng Z, Ren B, Chen Y, Shi X, Wang D, Wang X, Han L, Liang Y, Qian L, Jin C, Huang J, Deng W, Wang C, Li E, Hu Y, Tao Z, Li H, Yu X, Xu M, Chang HC, Zhang Y, Xu H, Yan J, Li A, Luo Q, Stoop R, Sternson SM, Brüning JC, Anderson DJ, Poo MM, Sun Y, Xu S, Gong H, Sun YG, Xu X. Projectome-based characterization of hypothalamic peptidergic neurons in male mice. Nat Neurosci 2025; 28:1073-1088. [PMID: 40140607 DOI: 10.1038/s41593-025-01919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 02/07/2025] [Indexed: 03/28/2025]
Abstract
The hypothalamus coordinately regulates physiological homeostasis and innate behaviors, yet the detailed arrangement of hypothalamic axons remains unclear. Here we mapped the whole-brain projections of over 7,000 hypothalamic neurons expressing distinct neuropeptides in male mice, identifying 2 main classes and 31 types using single-neuron projectome analysis. These classes/types exhibited regionally biased soma distribution and specific neuropeptide enrichment. Notably, many projectome types extended long-range axon collaterals to distinct brain regions, allowing single axons to co-regulate multiple targets. We uncovered topographic organization of certain peptidergic axons at specific targets, along with diverse single-neuron projectome patterns in Orexin, Agrp and Pomc populations. Furthermore, hypothalamic peptidergic neurons showed correlated innervation of subdomains in the periaqueductal gray and organized into modular subnetworks within the hypothalamus, providing a structural basis for coordinated outputs. This dataset highlights the complexity of hypothalamic axonal projections and lays a foundation for future investigation of the circuit mechanisms underlying hypothalamic functions.
Collapse
Affiliation(s)
- Zhuolei Jiao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Taosha Gao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaofei Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ao Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yawen Ma
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Li Feng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Le Gao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lingfeng Gou
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wen Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Nasim Biglari
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Policlinic for Endocrinology, Diabetology and Preventive Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| | - Emma E Boxer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Lukas Steuernagel
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Policlinic for Endocrinology, Diabetology and Preventive Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| | - Xiaojing Ding
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zixian Yu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingjuan Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengtong Gao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Mingkun Hao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Hua Zhou
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xuanzi Cao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shuaishuai Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Jiamei Qi
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Xueyan Jia
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Zhao Feng
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Biyu Ren
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxue Shi
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Dan Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xinran Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Luyao Han
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yikai Liang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Liuqin Qian
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chenxi Jin
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiawen Huang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Deng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Congcong Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - E Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yue Hu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zi Tao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Humingzhu Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiang Yu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences and Peking University McGovern Institute, Peking University, Beijing, China
| | - Min Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Hung-Chun Chang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yifeng Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Huatai Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jun Yan
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Anan Li
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | - Qingming Luo
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Ron Stoop
- Department of Psychiatry, Center for Psychiatric Neuroscience, Lausanne University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Scott M Sternson
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Policlinic for Endocrinology, Diabetology and Preventive Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), Cologne, Germany
| | - David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Mu-Ming Poo
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Shengjing Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China.
| | - Yan-Gang Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Xiaohong Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Centanino V, Fortunato G, Bueti D. The neural link between stimulus duration and spatial location in the human visual hierarchy. Nat Commun 2024; 15:10720. [PMID: 39730326 PMCID: PMC11681071 DOI: 10.1038/s41467-024-54336-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/07/2024] [Indexed: 12/29/2024] Open
Abstract
Integrating spatial and temporal information is essential for our sensory experience. While psychophysical evidence suggests spatial dependencies in duration perception, few studies have directly tested the neural link between temporal and spatial processing. Using ultra-high-field functional MRI and neuronal-based modeling, we investigated how and where the processing and the representation of a visual stimulus duration is linked to that of its spatial location. Our results show a transition in duration coding: from monotonic and spatially-dependent in early visual cortex to unimodal and spatially-invariant in frontal cortex. Along the dorsal visual stream, particularly in the intraparietal sulcus (IPS), neuronal populations show common selective responses to both spatial and temporal information. In the IPS, spatial and temporal topographic organizations are also linked, although duration maps are smaller, less clustered, and more variable across participants. These findings help identify the mechanisms underlying human perception of visual duration and characterize the functional link between time and space processing, highlighting the importance of their interactions in shaping brain responses.
Collapse
Affiliation(s)
| | | | - Domenica Bueti
- International School for Advanced Studies (SISSA), Trieste, Italy.
| |
Collapse
|
3
|
Bayley T, Hedwig B. Tonotopic Ca 2+ dynamics and sound processing in auditory interneurons of the bush-cricket Mecopoda elongata. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:353-369. [PMID: 37222786 PMCID: PMC11106180 DOI: 10.1007/s00359-023-01638-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/25/2023]
Abstract
Two auditory neurons, TN-1 and ON-1, in the bush-cricket, Mecopoda elongata, have large dendritic arborisations which receive excitatory synaptic inputs from tonotopically organised axonal terminals of auditory afferents in the prothoracic ganglion. By combining intracellular microelectrode recording with calcium imaging we demonstrate that the dendrites of both neurons show a clear Ca2+ signal in response to broad-frequency species-specific chirps. Due to the organisation of the afferents frequency specific auditory activation should lead to local Ca2+ increases in their dendrites. In response to 20 ms sound pulses the dendrites of both neurons showed tonotopically organised Ca2+ increases. In ON-1 we found no evidence for a tonotopic organisation of the Ca2+ signal related to axonal spike activity or for a Ca2+ response related to contralateral inhibition. The tonotopic organisation of the afferents may facilitate frequency-specific adaptation in these auditory neurons through localised Ca2+ increases in their dendrites. By combining 10 and 40 kHz test pulses and adaptation series, we provide evidence for frequency-specific adaptation in TN-1 and ON-1. By reversible deactivating of the auditory afferents and removing contralateral inhibition, we show that in ON-1 spike activity and Ca2+ responses increased but frequency-specific adaptation was not evident.
Collapse
Affiliation(s)
- T Bayley
- Department of Zoology, Cambridge, CB22 3EJ, UK
| | - B Hedwig
- Department of Zoology, Cambridge, CB22 3EJ, UK.
| |
Collapse
|
4
|
Eichler K, Hampel S, Alejandro-García A, Calle-Schuler SA, Santana-Cruz A, Kmecova L, Blagburn JM, Hoopfer ED, Seeds AM. Somatotopic organization among parallel sensory pathways that promote a grooming sequence in Drosophila. eLife 2024; 12:RP87602. [PMID: 38634460 PMCID: PMC11026096 DOI: 10.7554/elife.87602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered that Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on the Drosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming.
Collapse
Affiliation(s)
- Katharina Eichler
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences CampusSan JuanPuerto Rico
| | - Stefanie Hampel
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences CampusSan JuanPuerto Rico
| | - Adrián Alejandro-García
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences CampusSan JuanPuerto Rico
| | - Steven A Calle-Schuler
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences CampusSan JuanPuerto Rico
| | - Alexis Santana-Cruz
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences CampusSan JuanPuerto Rico
| | - Lucia Kmecova
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences CampusSan JuanPuerto Rico
| | - Jonathan M Blagburn
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences CampusSan JuanPuerto Rico
| | - Eric D Hoopfer
- Neuroscience Program, Carleton CollegeNorthfieldUnited States
| | - Andrew M Seeds
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences CampusSan JuanPuerto Rico
| |
Collapse
|
5
|
Bailey NW, Fulcher BD, Caldwell B, Hill AT, Fitzgibbon B, van Dijk H, Fitzgerald PB. Uncovering a stability signature of brain dynamics associated with meditation experience using massive time-series feature extraction. Neural Netw 2024; 171:171-185. [PMID: 38091761 DOI: 10.1016/j.neunet.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/29/2024]
Abstract
Previous research has examined resting electroencephalographic (EEG) data to explore brain activity related to meditation. However, previous research has mostly examined power in different frequency bands. The practical objective of this study was to comprehensively test whether other types of time-series analysis methods are better suited to characterize brain activity related to meditation. To achieve this, we compared >7000 time-series features of the EEG signal to comprehensively characterize brain activity differences in meditators, using many measures that are novel in meditation research. Eyes-closed resting-state EEG data from 49 meditators and 46 non-meditators was decomposed into the top eight principal components (PCs). We extracted 7381 time-series features from each PC and each participant and used them to train classification algorithms to identify meditators. Highly differentiating individual features from successful classifiers were analysed in detail. Only the third PC (which had a central-parietal maximum) showed above-chance classification accuracy (67 %, pFDR = 0.007), for which 405 features significantly distinguished meditators (all pFDR < 0.05). Top-performing features indicated that meditators exhibited more consistent statistical properties across shorter subsegments of their EEG time-series (higher stationarity) and displayed an altered distributional shape of values about the mean. By contrast, classifiers trained with traditional band-power measures did not distinguish the groups (pFDR > 0.05). Our novel analysis approach suggests the key signatures of meditators' brain activity are higher temporal stability and a distribution of time-series values suggestive of longer, larger, or more frequent non-outlying voltage deviations from the mean within the third PC of their EEG data. The higher temporal stability observed in this EEG component might underpin the higher attentional stability associated with meditation. The novel time-series properties identified here have considerable potential for future exploration in meditation research and the analysis of neural dynamics more broadly.
Collapse
Affiliation(s)
- Neil W Bailey
- Monarch Research Institute, Monarch Mental Health Group, Sydney, NSW, Australia; School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia; Central Clinical School, Department of Psychiatry, Monash University, Victoria, Australia.
| | - Ben D Fulcher
- School of Physics, University of Sydney, Camperdown, NSW, Australia
| | - Bridget Caldwell
- Monarch Research Institute, Monarch Mental Health Group, Sydney, NSW, Australia
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria, Australia
| | - Bernadette Fitzgibbon
- Monarch Research Institute, Monarch Mental Health Group, Sydney, NSW, Australia; School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia; Central Clinical School, Department of Psychiatry, Monash University, Victoria, Australia
| | - Hanneke van Dijk
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Kingdom of the Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, University Maastricht, Maastricht, the Kingdom of the Netherlands
| | - Paul B Fitzgerald
- Monarch Research Institute, Monarch Mental Health Group, Sydney, NSW, Australia; School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
6
|
Eichler K, Hampel S, Alejandro-García A, Calle-Schuler SA, Santana-Cruz A, Kmecova L, Blagburn JM, Hoopfer ED, Seeds AM. Somatotopic organization among parallel sensory pathways that promote a grooming sequence in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.11.528119. [PMID: 36798384 PMCID: PMC9934617 DOI: 10.1101/2023.02.11.528119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered that Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on the Drosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming.
Collapse
Affiliation(s)
- Katharina Eichler
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
- Contributed equally
| | - Stefanie Hampel
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
- Contributed equally
| | - Adrián Alejandro-García
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
- Contributed equally
| | - Steven A Calle-Schuler
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Alexis Santana-Cruz
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Lucia Kmecova
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
- Neuroscience Program, Carleton College, Northfield, Minnesota
- Contributed equally
| | - Jonathan M Blagburn
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| | - Eric D Hoopfer
- Neuroscience Program, Carleton College, Northfield, Minnesota
| | - Andrew M Seeds
- Institute of Neurobiology, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
7
|
Protopapa F, Kulashekhar S, Hayashi MJ, Kanai R, Bueti D. Effective connectivity in a duration selective cortico-cerebellar network. Sci Rep 2023; 13:20674. [PMID: 38001253 PMCID: PMC10673930 DOI: 10.1038/s41598-023-47954-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
How the human brain represents millisecond unit of time is far from clear. A recent neuroimaging study revealed the existence in the human premotor cortex of a topographic representation of time i.e., neuronal units selectively responsive to specific durations and topographically organized on the cortical surface. By using high resolution functional Magnetic Resonance Images here, we go beyond this previous work, showing duration preferences across a wide network of cortical and subcortical brain areas: from cerebellum to primary visual, parietal, premotor and prefrontal cortices. Most importantly, we identify the effective connectivity structure between these different brain areas and their duration selective neural units. The results highlight the role of the cerebellum as the network hub and that of medial premotor cortex as the final stage of duration recognition. Interestingly, when a specific duration is presented, only the communication strength between the units selective to that specific duration and to the neighboring durations is affected. These findings link for the first time, duration preferences within single brain region with connectivity dynamics between regions, suggesting a communication mode that is partially duration specific.
Collapse
Affiliation(s)
| | | | - Masamichi J Hayashi
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Ryota Kanai
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
- Araya, Inc., Tokyo, Japan
| | - Domenica Bueti
- International School for Advanced Studies (SISSA), Trieste, Italy.
| |
Collapse
|
8
|
Yang Y, Booth V, Zochowski M. Acetylcholine facilitates localized synaptic potentiation and location specific feature binding. Front Neural Circuits 2023; 17:1239096. [PMID: 38033788 PMCID: PMC10684311 DOI: 10.3389/fncir.2023.1239096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
Forebrain acetylcholine (ACh) signaling has been shown to drive attention and learning. Recent experimental evidence of spatially and temporally constrained cholinergic signaling has sparked interest to investigate how it facilitates stimulus-induced learning. We use biophysical excitatory-inhibitory (E-I) multi-module neural network models to show that external stimuli and ACh signaling can mediate spatially constrained synaptic potentiation patterns. The effects of ACh on neural excitability are simulated by varying the conductance of a muscarinic receptor-regulated hyperpolarizing slow K+ current (m-current). Each network module consists of an E-I network with local excitatory connectivity and global inhibitory connectivity. The modules are interconnected with plastic excitatory synaptic connections, that change via a spike-timing-dependent plasticity (STDP) rule. Our results indicate that spatially constrained ACh release influences the information flow represented by network dynamics resulting in selective reorganization of inter-module interactions. Moreover the information flow depends on the level of synchrony in the network. For highly synchronous networks, the more excitable module leads firing in the less excitable one resulting in strengthening of the outgoing connections from the former and weakening of its incoming synapses. For networks with more noisy firing patterns, activity in high ACh regions is prone to induce feedback firing of synchronous volleys and thus strengthening of the incoming synapses to the more excitable region and weakening of outgoing synapses. Overall, these results suggest that spatially and directionally specific plasticity patterns, as are presumed necessary for feature binding, can be mediated by spatially constrained ACh release.
Collapse
Affiliation(s)
- Yihao Yang
- Department of Physics, University of Michigan, Ann Arbor, MI, United States
| | - Victoria Booth
- Departments of Mathematics and Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Michal Zochowski
- Department of Physics and Biophysics Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Jiang L, Peng Y, He R, Yang Q, Yi C, Li Y, Zhu B, Si Y, Zhang T, Biswal BB, Yao D, Xiong L, Li F, Xu P. Transcriptomic and Macroscopic Architectures of Multimodal Covariance Network Reveal Molecular-Structural-Functional Co-alterations. RESEARCH (WASHINGTON, D.C.) 2023; 6:0171. [PMID: 37303601 PMCID: PMC10249784 DOI: 10.34133/research.0171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
Human cognition is usually underpinned by intrinsic structure and functional neural co-activation in spatially distributed brain regions. Owing to lacking an effective approach to quantifying the covarying of structure and functional responses, how the structural-functional circuits interact and how genes encode the relationships, to deepen our knowledge of human cognition and disease, are still unclear. Here, we propose a multimodal covariance network (MCN) construction approach to capture interregional covarying of the structural skeleton and transient functional activities for a single individual. We further explored the potential association between brain-wide gene expression patterns and structural-functional covarying in individuals involved in a gambling task and individuals with major depression disorder (MDD), adopting multimodal data from a publicly available human brain transcriptomic atlas and 2 independent cohorts. MCN analysis showed a replicable cortical structural-functional fine map in healthy individuals, and the expression of cognition- and disease phenotype-related genes was found to be spatially correlated with the corresponding MCN differences. Further analysis of cell type-specific signature genes suggests that the excitatory and inhibitory neuron transcriptomic changes could account for most of the observed correlation with task-evoked MCN differences. In contrast, changes in MCN of MDD patients were enriched for biological processes related to synapse function and neuroinflammation in astrocytes, microglia, and neurons, suggesting its promising application in developing targeted therapies for MDD patients. Collectively, these findings confirmed the correlations of MCN-related differences with brain-wide gene expression patterns, which captured genetically validated structural-functional differences at the cellular level in specific cognitive processes and psychiatric patients.
Collapse
Affiliation(s)
- Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yueheng Peng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Runyang He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qingqing Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chanlin Yi
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuqin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bin Zhu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yajing Si
- School of Psychology,
Xinxiang Medical University, Xinxiang 453003, China
| | - Tao Zhang
- School of Science,
Xihua University, Chengdu 610039, China
| | - Bharat B. Biswal
- Department of Biomedical Engineering,
New Jersey Institute of Technology, Newark, NJ, USA
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Electrical Engineering,
Zhengzhou University, Zhengzhou 450001, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
| | - Lan Xiong
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology,
University of Macau, Macau, China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation,
University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Life Science and Technology, Center for Information in BioMedicine,
University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, 610041 Chengdu, China
- Rehabilitation Center,
Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
10
|
Tomar M, Beros J, Meloni B, Rodger J. Interactions between Guidance Cues and Neuronal Activity: Therapeutic Insights from Mouse Models. Int J Mol Sci 2023; 24:ijms24086966. [PMID: 37108129 PMCID: PMC10138948 DOI: 10.3390/ijms24086966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Topographic mapping of neural circuits is fundamental in shaping the structural and functional organization of brain regions. This developmentally important process is crucial not only for the representation of different sensory inputs but also for their integration. Disruption of topographic organization has been associated with several neurodevelopmental disorders. The aim of this review is to highlight the mechanisms involved in creating and refining such well-defined maps in the brain with a focus on the Eph and ephrin families of axon guidance cues. We first describe the transgenic models where ephrin-A expression has been manipulated to understand the role of these guidance cues in defining topography in various sensory systems. We further describe the behavioral consequences of lacking ephrin-A guidance cues in these animal models. These studies have given us unexpected insight into how neuronal activity is equally important in refining neural circuits in different brain regions. We conclude the review by discussing studies that have used treatments such as repetitive transcranial magnetic stimulation (rTMS) to manipulate activity in the brain to compensate for the lack of guidance cues in ephrin-knockout animal models. We describe how rTMS could have therapeutic relevance in neurodevelopmental disorders with disrupted brain organization.
Collapse
Affiliation(s)
- Maitri Tomar
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Jamie Beros
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Bruno Meloni
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| |
Collapse
|
11
|
Thivierge JP, Giraud É, Lynn M. Toward a Brain-Inspired Theory of Artificial Learning. Cognit Comput 2023. [DOI: 10.1007/s12559-023-10121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
O'Rawe JF, Leung HC. Topographic organization of the human caudate functional connectivity and age-related changes with resting-state fMRI. Front Syst Neurosci 2022; 16:966433. [PMID: 36211593 PMCID: PMC9543452 DOI: 10.3389/fnsys.2022.966433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
The striatum is postulated to play a central role in gating cortical processing during goal-oriented behavior. While many human neuroimaging studies have treated the striatum as an undivided whole or several homogeneous compartments, some recent studies showed that its circuitry is topographically organized and has more complex relations with the cortical networks than previously assumed. Here, we took a gradient functional connectivity mapping approach that utilizes the entire anatomical space of the caudate nucleus to examine the organization of its functional relationship with the rest of the brain and how its topographic mapping changes with age. We defined the topography of the caudate functional connectivity using three publicly available resting-state fMRI datasets. We replicated and extended previous findings. First, we found two stable gradients of caudate connectivity patterns along its medial-lateral (M-L) and anterior-posterior (A-P) axes, supporting findings from previous tract-tracing studies of non-human primates that there are at least two main organizational principles within the caudate nucleus. Second, unlike previous emphasis of the A-P topology, we showed that the differential connectivity patterns along the M-L gradient of caudate are more clearly organized with the large-scale neural networks; such that brain networks associated with internal vs. external orienting behavior are respectively more closely linked to the medial vs. lateral extent of the caudate. Third, the caudate's M-L organization showed greater age-related reduction in integrity, which was further associated with age-related changes in behavioral measures of executive functions. In sum, our analysis confirmed a sometimes overlooked M-L functional connectivity gradient within the caudate nucleus, with its lateral longitudinal zone more closely linked to the frontoparietal cortical circuits and age-related changes in cognitive control. These findings provide a more precise mapping of the human caudate functional connectivity, both in terms of the gradient organization with cortical networks and age-related changes in such organization.
Collapse
Affiliation(s)
- Jonathan F. O'Rawe
- Integrative Neuroscience Program, Department of Psychology, Stony Brook University, Stony Brook, NY, United States
- National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Hoi-Chung Leung
| | - Hoi-Chung Leung
- National Institute of Mental Health Intramural Program, National Institutes of Health, Bethesda, MD, United States
- Jonathan F. O'Rawe jonathan.o'
| |
Collapse
|
13
|
Cole DM, Stämpfli P, Gandia R, Schibli L, Gantner S, Schuetz P, Meier ML. In the back of your mind: Cortical mapping of paraspinal afferent inputs. Hum Brain Mapp 2022; 43:4943-4953. [PMID: 35979921 PMCID: PMC9582373 DOI: 10.1002/hbm.26052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 11/06/2022] Open
Abstract
Topographic organisation is a hallmark of vertebrate cortex architecture, characterised by ordered projections of the body's sensory surfaces onto brain systems. High-resolution functional magnetic resonance imaging (fMRI) has proven itself as a valuable tool to investigate the cortical landscape and its (mal-)adaptive plasticity with respect to various body part representations, in particular extremities such as the hand and fingers. Less is known, however, about the cortical representation of the human back. We therefore validated a novel, MRI-compatible method of mapping cortical representations of sensory afferents of the back, using vibrotactile stimulation at varying frequencies and paraspinal locations, in conjunction with fMRI. We expected high-frequency stimulation to be associated with differential neuronal activity in the primary somatosensory cortex (S1) compared with low-frequency stimulation and that somatosensory representations would differ across the thoracolumbar axis. We found significant differences between neural representations of high-frequency and low-frequency stimulation and between representations of thoracic and lumbar paraspinal locations, in several bilateral S1 sub-regions, and in regions of the primary motor cortex (M1). High-frequency stimulation preferentially activated Brodmann Area (BA) regions BA3a and BA4p, whereas low-frequency stimulation was more encoded in BA3b and BA4a. Moreover, we found clear topographic differences in S1 for representations of the upper and lower back during high-frequency stimulation. We present the first neurobiological validation of a method for establishing detailed cortical maps of the human back, which might serve as a novel tool to evaluate the pathological significance of neuroplastic changes in clinical conditions such as chronic low back pain.
Collapse
Affiliation(s)
- David M Cole
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,MR-Center of the Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Robert Gandia
- Competence Center Thermal Energy Storage, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Louis Schibli
- Competence Center Thermal Energy Storage, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Sandro Gantner
- Competence Center Thermal Energy Storage, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Philipp Schuetz
- Competence Center Thermal Energy Storage, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Michael L Meier
- Integrative Spinal Research, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Bshary R, Triki Z. Fish ecology and cognition: insights from studies on wild and wild-caught teleost fishes. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Papo D. Attaining the recesses of the cognitive space. Cogn Neurodyn 2022; 16:767-778. [PMID: 35847536 PMCID: PMC9279523 DOI: 10.1007/s11571-021-09755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022] Open
Abstract
Existing neuropsychological tests of executive function often manifest a difficulty pinpointing cognitive deficits when these are intermittent and come in the form of omissions. We discuss the hypothesis that two partially interrelated reasons for this failure stem from relative inability of neuropsychological tests to explore the cognitive space and to explicitly take into account strategic and opportunistic resource allocation decisions, and to address the temporal aspects of both behaviour and task-related brain function in data analysis. Criteria for tasks suitable for neuropsychological assessment of executive function, as well as appropriate ways to analyse and interpret observed behavioural data are suggested. It is proposed that experimental tasks should be devised which emphasize typical rather than optimal performance, and that analyses should quantify path-dependent fluctuations in performance levels rather than averaged behaviour. Some implications for experimental neuropsychology are illustrated for the case of planning and problem-solving abilities and with particular reference to cognitive impairment in closed-head injury.
Collapse
Affiliation(s)
- David Papo
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
- Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
| |
Collapse
|
16
|
Triki Z, Granell-Ruiz M, Fong S, Amcoff M, Kolm N. Brain morphology correlates of learning and cognitive flexibility in a fish species ( Poecilia reticulata). Proc Biol Sci 2022; 289:20220844. [PMID: 35858069 PMCID: PMC9277233 DOI: 10.1098/rspb.2022.0844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Determining how variation in brain morphology affects cognitive abilities is important to understand inter-individual variation in cognition and, ultimately, cognitive evolution. Yet, despite many decades of research in this area, there is surprisingly little experimental data available from assays that quantify cognitive abilities and brain morphology in the same individuals. Here, we tested female guppies (Poecilia reticulata) in two tasks, colour discrimination and reversal learning, to evaluate their learning abilities and cognitive flexibility. We then estimated the size of five brain regions (telencephalon, optic tectum, hypothalamus, cerebellum and dorsal medulla), in addition to relative brain size. We found that optic tectum relative size, in relation to the rest of the brain, correlated positively with discrimination learning performance, while relative telencephalon size correlated positively with reversal learning performance. The other brain measures were not associated with performance in either task. By evaluating how fast learning occurs and how fast an animal adjusts its learning rules to changing conditions, we find support for that different brain regions have distinct functional correlations at the individual level. Importantly, telencephalon size emerges as an important neural correlate of higher executive functions such as cognitive flexibility. This is rare evidence supporting the theory that more neural tissue in key brain regions confers cognitive benefits.
Collapse
Affiliation(s)
- Zegni Triki
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| | - Maria Granell-Ruiz
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| |
Collapse
|
17
|
Jones L, Verriotis M, Cooper RJ, Laudiano-Dray MP, Rupawala M, Meek J, Fabrizi L, Fitzgerald M. Widespread nociceptive maps in the human neonatal somatosensory cortex. eLife 2022; 11:71655. [PMID: 35451960 PMCID: PMC9090328 DOI: 10.7554/elife.71655] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Topographic cortical maps are essential for spatial localisation of sensory stimulation and generation of appropriate task-related motor responses. Somatosensation and nociception are finely mapped and aligned in the adult somatosensory (S1) cortex, but in infancy, when pain behaviour is disorganised and poorly directed, nociceptive maps may be less refined. We compared the topographic pattern of S1 activation following noxious (clinically required heel lance) and innocuous (touch) mechanical stimulation of the same skin region in newborn infants (n = 32) using multioptode functional near-infrared spectroscopy (fNIRS). Within S1 cortex, touch and lance of the heel elicit localised, partially overlapping increases in oxygenated haemoglobin concentration (Δ[HbO]), but while touch activation was restricted to the heel area, lance activation extended into cortical hand regions. The data reveals a widespread cortical nociceptive map in infant S1, consistent with their poorly directed pain behaviour.
Collapse
Affiliation(s)
- Laura Jones
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Madeleine Verriotis
- Department of Developmental Neuroscience, University College London, London, United Kingdom
| | - Robert J Cooper
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Maria Pureza Laudiano-Dray
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Mohammed Rupawala
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
18
|
Blazquez Freches G, Haak KV, Beckmann CF, Mars RB. Connectivity gradients on tractography data: Pipeline and example applications. Hum Brain Mapp 2021; 42:5827-5845. [PMID: 34559432 PMCID: PMC8596970 DOI: 10.1002/hbm.25623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/03/2021] [Accepted: 07/30/2021] [Indexed: 11/08/2022] Open
Abstract
Gray matter connectivity can be described in terms of its topographical organization, but the differential role of white matter connections underlying that organization is often unknown. In this study, we propose a method for unveiling principles of organization of both gray and white matter based on white matter connectivity as assessed using diffusion magnetic ressonance imaging (MRI) tractography with spectral embedding gradient mapping. A key feature of the proposed approach is its capacity to project the individual connectivity gradients it reveals back onto its input data in the form of projection images, allowing one to assess the contributions of specific white matter tracts to the observed gradients. We demonstrate the ability of our proposed pipeline to identify connectivity gradients in prefrontal and occipital gray matter. Finally, leveraging the use of tractography, we demonstrate that it is possible to observe gradients within the white matter bundles themselves. Together, the proposed framework presents a generalized way to assess both the topographical organization of structural brain connectivity and the anatomical features driving it.
Collapse
Affiliation(s)
- Guilherme Blazquez Freches
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenThe Netherlands
| | - Koen V. Haak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Christian F. Beckmann
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nufeld Department of Clinical NeurosciencesJohn Radclife Hospital, University of OxfordOxfordUK
| | - Rogier B. Mars
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenThe Netherlands
| |
Collapse
|
19
|
Abstract
Recurrent neural networks can solve a variety of computational tasks and produce patterns of activity that capture key properties of brain circuits. However, learning rules designed to train these models are time-consuming and prone to inaccuracies when tuning connection weights located deep within the network. Here, we describe a rapid one-shot learning rule to train recurrent networks composed of biologically-grounded neurons. First, inputs to the model are compressed onto a smaller number of recurrent neurons. Then, a non-iterative rule adjusts the output weights of these neurons based on a target signal. The model learned to reproduce natural images, sequential patterns, as well as a high-resolution movie scene. Together, results provide a novel avenue for one-shot learning in biologically realistic recurrent networks and open a path to solving complex tasks by merging brain-inspired models with rapid optimization rules.
Collapse
|
20
|
Abstract
Tractography is an important technique that allows the in vivo reconstruction of structural connections in the brain using diffusion MRI. Although tracking algorithms have improved during the last two decades, results of validation studies and international challenges warn about the reliability of tractography and point out the need for improved algorithms. In propagation-based tracking, connections have traditionally been modeled as piece-wise linear segments. In this work, we propose a novel propagation-based tracker that is capable of generating geometrically smooth ( C1 ) curves using parallel transport frames. Notably, our approach does not increase the complexity of the propagation problem that remains two-dimensional. Moreover, our tracker has a novel mechanism to reduce noise related propagation errors by incorporating topographic regularity of connections, a neuroanatomic property of many brain pathways. We ran extensive experiments and compared our approach against deterministic and other probabilistic algorithms. Our experiments on FiberCup and ISMRM 2015 challenge datasets as well as on 56 subjects of the Human Connectome Project show highly promising results both visually and quantitatively. Open-source implementations of the algorithm are shared publicly.
Collapse
|
21
|
Matyi MA, Spielberg JM. Differential spatial patterns of structural connectivity of amygdala nuclei with orbitofrontal cortex. Hum Brain Mapp 2020; 42:1391-1405. [PMID: 33270320 PMCID: PMC7927308 DOI: 10.1002/hbm.25300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
The orbitofrontal cortex (OFC)‐amygdala circuit is critical to goal‐directed behavior, learning, and valuation. However, our understanding of the OFC‐amygdala connections that support these emergent processes is hampered by our reliance on the primate literature and insufficient knowledge regarding the connectivity patterns between regions of OFC and amygdala nuclei, each of which is differentially involved in these processes in humans. Thus, we examined structural connectivity between different OFC regions and four amygdala nuclei in healthy adults (n = 1,053) using diffusion‐based anatomical networks and probabilistic tractography in four conceptually distinct ways. First, we identified the OFC regions that connect with each nucleus. Second, we identified the OFC regions that were more likely to connect with a given nucleus than the others. Finally, we developed probabilistic and rank‐order maps of OFC (one for each nucleus) based upon the likelihood of each OFC voxel exhibiting preferential connectivity with each nucleus and the relative density of connectivity between each OFC voxel and each nucleus, respectively. The first analyses revealed that the connections of each nucleus spanned all of OFC, reflecting widespread overall amygdala linkage with OFC. Analysis of preferential connectivity and probabilistic and rank‐order maps of OFC converged to reveal differential patterns of connectivity between OFC and each nucleus. Present findings illustrate the importance of accounting for spatial specificity when examining links between OFC and amygdala. This fine‐grained examination of OFC‐amygdala connectivity can be applied to understand how such connectivity patterns support a range of emergent functions including affective and motivational processes.
Collapse
Affiliation(s)
- Melanie A Matyi
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Jeffrey M Spielberg
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
22
|
Hampel S, Eichler K, Yamada D, Bock DD, Kamikouchi A, Seeds AM. Distinct subpopulations of mechanosensory chordotonal organ neurons elicit grooming of the fruit fly antennae. eLife 2020; 9:e59976. [PMID: 33103999 PMCID: PMC7652415 DOI: 10.7554/elife.59976] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/25/2020] [Indexed: 11/13/2022] Open
Abstract
Diverse mechanosensory neurons detect different mechanical forces that can impact animal behavior. Yet our understanding of the anatomical and physiological diversity of these neurons and the behaviors that they influence is limited. We previously discovered that grooming of the Drosophila melanogaster antennae is elicited by an antennal mechanosensory chordotonal organ, the Johnston's organ (JO) (Hampel et al., 2015). Here, we describe anatomically and physiologically distinct JO mechanosensory neuron subpopulations that each elicit antennal grooming. We show that the subpopulations project to different, discrete zones in the brain and differ in their responses to mechanical stimulation of the antennae. Although activation of each subpopulation elicits antennal grooming, distinct subpopulations also elicit the additional behaviors of wing flapping or backward locomotion. Our results provide a comprehensive description of the diversity of mechanosensory neurons in the JO, and reveal that distinct JO subpopulations can elicit both common and distinct behavioral responses.
Collapse
Affiliation(s)
- Stefanie Hampel
- Institute of Neurobiology, University of Puerto Rico Medical Sciences CampusSan JuanPuerto Rico
| | - Katharina Eichler
- Institute of Neurobiology, University of Puerto Rico Medical Sciences CampusSan JuanPuerto Rico
| | - Daichi Yamada
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Davi D Bock
- Department of Neurological Sciences, Larner College of Medicine, University of VermontBurlingtonUnited States
| | - Azusa Kamikouchi
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Andrew M Seeds
- Institute of Neurobiology, University of Puerto Rico Medical Sciences CampusSan JuanPuerto Rico
| |
Collapse
|
23
|
Understanding brain organisation in the face of functional heterogeneity and functional multiplicity. Neuroimage 2020; 220:117061. [DOI: 10.1016/j.neuroimage.2020.117061] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2020] [Accepted: 06/13/2020] [Indexed: 01/28/2023] Open
|
24
|
Whitehead K, Papadelis C, Laudiano-Dray MP, Meek J, Fabrizi L. The Emergence of Hierarchical Somatosensory Processing in Late Prematurity. Cereb Cortex 2020; 29:2245-2260. [PMID: 30843584 PMCID: PMC6458926 DOI: 10.1093/cercor/bhz030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
The somatosensory system has a hierarchical organization. Information processing increases in complexity from the contralateral primary sensory cortex to bilateral association cortices and this is represented by a sequence of somatosensory-evoked potentials recorded with scalp electroencephalographies. The mammalian somatosensory system matures over the early postnatal period in a rostro-caudal progression, but little is known about the development of hierarchical information processing in the human infant brain. To investigate the normal human development of the somatosensory hierarchy, we recorded potentials evoked by mechanical stimulation of hands and feet in 34 infants between 34 and 42 weeks corrected gestational age, with median postnatal age of 3 days. We show that the shortest latency potential was evoked for both hands and feet at all ages with a contralateral somatotopic source in the primary somatosensory cortex (SI). However, the longer latency responses, localized in SI and beyond, matured with age. They gradually emerged for the foot and, although always present for the hand, showed a shift from purely contralateral to bilateral hemispheric activation. These results demonstrate the rostro-caudal development of human somatosensory hierarchy and suggest that the development of its higher tiers is complete only just before the time of normal birth.
Collapse
Affiliation(s)
- K Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - C Papadelis
- Laboratory of Children's Brain Dynamics, Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - M P Laudiano-Dray
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - J Meek
- Neonatal Unit, Elizabeth Garrett Anderson Wing, University College London Hospitals, London, UK
| | - L Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
25
|
Bueti D. Time Processing: Multiple Topographic Representations of Time across Human Cortex. Curr Biol 2020; 30:R356-R358. [DOI: 10.1016/j.cub.2020.02.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Principles of temporal association cortex organisation as revealed by connectivity gradients. Brain Struct Funct 2020; 225:1245-1260. [PMID: 32157450 PMCID: PMC7270054 DOI: 10.1007/s00429-020-02047-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/10/2020] [Indexed: 01/10/2023]
Abstract
To establish the link between structure and function of any large area of the neocortex, it is helpful to identify its principles of organisation. One way to establish such principles is to investigate how differences in whole-brain connectivity are structured across the area. Here, we use Laplacian eigenmaps on diffusion MRI tractography data to investigate the organisational principles of the human temporal association cortex. We identify three overlapping gradients of connectivity that are, for the most part, consistent across hemispheres. The first gradient reveals an inferior–superior organisation of predominantly longitudinal tracts and separates visual and auditory unimodal and multimodal cortices. The second gradient radiates outward from the posterior middle temporal cortex with the arcuate fascicle as a distinguishing feature; the third gradient is concentrated in the anterior temporal lobe and emanates towards its posterior end. We describe the functional relevance of each of these gradients through the meta-analysis of data from the neuroimaging literature. Together, these results unravel the overlapping dimensions of structural organization of the human temporal cortex and provide a framework underlying its functional multiplicity.
Collapse
|
27
|
Staszko SM, Boughter JD, Fletcher ML. Taste coding strategies in insular cortex. Exp Biol Med (Maywood) 2020; 245:448-455. [PMID: 32106700 DOI: 10.1177/1535370220909096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While the cortical representation of sensory stimuli is well described for some sensory systems, a clear understanding of the cortical representation of taste stimuli remains elusive. Recent investigations have focused on both spatial and temporal organization of taste responses in the putative taste region of insular cortex. This review highlights recent literature focused on spatiotemporal coding strategies in insular cortex. These studies are examined in the context of the organization and function of the entire insular cortex, rather than a specific gustatory region of insular cortex. In regard to a taste quality-specific map, imaging studies have reported conflicting results, whereas electrophysiology studies have described a broad distribution of taste-responsive neurons found throughout insular cortex with no spatial organization. The current collection of evidence suggests that insular cortex may be organized into a hedonic or “viscerotopic” map, rather than one ordered according to taste quality. Further, it has been proposed that cortical taste responses can be separated into temporal “epochs” representing stimulus identity and palatability. This coding strategy presents a potential framework, whereby the coordinated activity of a population of neurons allows for the same neurons to respond to multiple taste stimuli or even other sensory modalities, a well-documented phenomenon in insular cortex neurons. However, these representations may not be static, as several studies have demonstrated that both spatial representation and temporal dynamics of taste coding change with experience. Collectively, these studies suggest that cortical taste representation is not organized in a spatially discrete map, but rather is plastic and spatially dispersed, using temporal information to encode multiple types of information about ingested stimuli. Impact statement The organization of taste coding in insular cortex is widely debated. While early work has focused on whether taste quality is encoded via labeled line or ensemble mechanisms, recent work has attempted to delineate the spatial organization and temporal components of taste processing in insular cortex. Recent imaging and electrophysiology studies have reported conflicting results in regard to the spatial organization of cortical taste responses, and many studies ignore potentially important temporal dynamics when investigating taste processing. This review highlights the latest research in these areas and examines them in the context of the anatomy and physiology of the insular cortex in general to provide a more comprehensive description of taste coding in insular cortex.
Collapse
Affiliation(s)
- Stephanie M Staszko
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - John D Boughter
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Max L Fletcher
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
28
|
Topographic Mapping as a Basic Principle of Functional Organization for Visual and Prefrontal Functional Connectivity. eNeuro 2020; 7:ENEURO.0532-19.2019. [PMID: 31988218 PMCID: PMC7029189 DOI: 10.1523/eneuro.0532-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
The organization of region-to-region functional connectivity has major implications for understanding information transfer and transformation between brain regions. We extended connective field mapping methodology to 3-D anatomic space to derive estimates of corticocortical functional organization. Using multiple publicly available human (both male and female) resting-state fMRI data samples for model testing and replication analysis, we have three main findings. First, we found that the functional connectivity between early visual regions maintained a topographic relationship along the anterior-posterior dimension, which corroborates previous research. Higher order visual regions showed a pattern of connectivity that supports convergence and biased sampling, which has implications for their receptive field properties. Second, we demonstrated that topographic organization is a fundamental aspect of functional connectivity across the entire cortex, with higher topographic connectivity between regions within a functional network than across networks. The principle gradient of topographic connectivity across the cortex resembled whole-brain gradients found in previous work. Last but not least, we showed that the organization of higher order regions such as the lateral prefrontal cortex demonstrate functional gradients of topographic connectivity and convergence. These organizational features of the lateral prefrontal cortex predict task-based activation patterns, particularly visual specialization and higher order rules. In sum, these findings suggest that topographic input is a fundamental motif of functional connectivity between cortical regions for information processing and transfer, with maintenance of topography potentially important for preserving the integrity of information from one region to another.
Collapse
|
29
|
Serranová T, Sieger T, Růžička F, Bakštein E, Dušek P, Vostatek P, Novák D, Růžička E, Urgošík D, Jech R. Topography of emotional valence and arousal within the motor part of the subthalamic nucleus in Parkinson's disease. Sci Rep 2019; 9:19924. [PMID: 31882633 PMCID: PMC6934686 DOI: 10.1038/s41598-019-56260-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 12/02/2019] [Indexed: 01/24/2023] Open
Abstract
Clinical motor and non-motor effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson's disease (PD) seem to depend on the stimulation site within the STN. We analysed the effects of the position of the stimulation electrode within the motor STN on subjective emotional experience, expressed as emotional valence and arousal ratings to pictures representing primary rewards and aversive fearful stimuli in 20 PD patients. Patients' ratings from both aversive and erotic stimuli matched the mean ratings from a group of 20 control subjects at similar position within the STN. Patients with electrodes located more posteriorly reported both valence and arousal ratings from both the rewarding and aversive pictures as more extreme. Moreover, posterior electrode positions were associated with a higher occurrence of depression at a long-term follow-up. This brain-behavior relationship suggests a complex emotion topography in the motor part of the STN. Both valence and arousal representations overlapped and were uniformly arranged anterior-posteriorly in a gradient-like manner, suggesting a specific spatial organization needed for the coding of the motivational salience of the stimuli. This finding is relevant for our understanding of neuropsychiatric side effects in STN DBS and potentially for optimal electrode placement.
Collapse
Affiliation(s)
- Tereza Serranová
- Department of Neurology and Center of Clinical Neuroscience, Charles University, 1st Faculty of Medicine and General University Hospital, Kateřinská 30, 128 08, Prague, Czech Republic.
| | - Tomáš Sieger
- Department of Neurology and Center of Clinical Neuroscience, Charles University, 1st Faculty of Medicine and General University Hospital, Kateřinská 30, 128 08, Prague, Czech Republic.,Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27, Prague, Czech Republic
| | - Filip Růžička
- Department of Neurology and Center of Clinical Neuroscience, Charles University, 1st Faculty of Medicine and General University Hospital, Kateřinská 30, 128 08, Prague, Czech Republic.,Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Roentgenova 2, 150 30, Prague, Czech Republic
| | - Eduard Bakštein
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27, Prague, Czech Republic.,National Institute of Mental Health, Klecany, Topolová 748, 250 67, Czech Republic
| | - Petr Dušek
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27, Prague, Czech Republic
| | - Pavel Vostatek
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27, Prague, Czech Republic
| | - Daniel Novák
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27, Prague, Czech Republic
| | - Evžen Růžička
- Department of Neurology and Center of Clinical Neuroscience, Charles University, 1st Faculty of Medicine and General University Hospital, Kateřinská 30, 128 08, Prague, Czech Republic
| | - Dušan Urgošík
- Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Roentgenova 2, 150 30, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, Charles University, 1st Faculty of Medicine and General University Hospital, Kateřinská 30, 128 08, Prague, Czech Republic.,Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Roentgenova 2, 150 30, Prague, Czech Republic
| |
Collapse
|
30
|
Zajzon B, Mahmoudian S, Morrison A, Duarte R. Passing the Message: Representation Transfer in Modular Balanced Networks. Front Comput Neurosci 2019; 13:79. [PMID: 31920605 PMCID: PMC6915101 DOI: 10.3389/fncom.2019.00079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023] Open
Abstract
Neurobiological systems rely on hierarchical and modular architectures to carry out intricate computations using minimal resources. A prerequisite for such systems to operate adequately is the capability to reliably and efficiently transfer information across multiple modules. Here, we study the features enabling a robust transfer of stimulus representations in modular networks of spiking neurons, tuned to operate in a balanced regime. To capitalize on the complex, transient dynamics that such networks exhibit during active processing, we apply reservoir computing principles and probe the systems' computational efficacy with specific tasks. Focusing on the comparison of random feed-forward connectivity and biologically inspired topographic maps, we find that, in a sequential set-up, structured projections between the modules are strictly necessary for information to propagate accurately to deeper modules. Such mappings not only improve computational performance and efficiency, they also reduce response variability, increase robustness against interference effects, and boost memory capacity. We further investigate how information from two separate input streams is integrated and demonstrate that it is more advantageous to perform non-linear computations on the input locally, within a given module, and subsequently transfer the result downstream, rather than transferring intermediate information and performing the computation downstream. Depending on how information is integrated early on in the system, the networks achieve similar task-performance using different strategies, indicating that the dimensionality of the neural responses does not necessarily correlate with nonlinear integration, as predicted by previous studies. These findings highlight a key role of topographic maps in supporting fast, robust, and accurate neural communication over longer distances. Given the prevalence of such structural feature, particularly in the sensory systems, elucidating their functional purpose remains an important challenge toward which this work provides relevant, new insights. At the same time, these results shed new light on important requirements for designing functional hierarchical spiking networks.
Collapse
Affiliation(s)
- Barna Zajzon
- Jülich Research Centre, Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6) and JARA Institute Brain Structure-Function Relationships (JBI-1/INM-10), Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Sepehr Mahmoudian
- Department of Data-Driven Analysis of Biological Networks, Campus Institute for Dynamics of Biological Networks, Georg August University Göttingen, Göttingen, Germany
- MEG Unit, Brain Imaging Center, Goethe University, Frankfurt, Germany
| | - Abigail Morrison
- Jülich Research Centre, Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6) and JARA Institute Brain Structure-Function Relationships (JBI-1/INM-10), Jülich, Germany
- Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Bochum, Germany
| | - Renato Duarte
- Jülich Research Centre, Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6) and JARA Institute Brain Structure-Function Relationships (JBI-1/INM-10), Jülich, Germany
| |
Collapse
|
31
|
Whitehead K, Jones L, Laudiano-Dray MP, Meek J, Fabrizi L. Altered cortical processing of somatosensory input in pre-term infants who had high-grade germinal matrix-intraventricular haemorrhage. NEUROIMAGE-CLINICAL 2019; 25:102095. [PMID: 31835239 PMCID: PMC6920135 DOI: 10.1016/j.nicl.2019.102095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 11/06/2019] [Accepted: 11/15/2019] [Indexed: 12/27/2022]
Abstract
Infants who had GM-IVH recruit different cortical sources following foot stimulation. Results indicate restructuring of somatosensory processing during the weeks after GM-IVH. GM-IVH is more detrimental for lower than upper limb somatosensory processing.
High-grade (large) germinal matrix-intraventricular haemorrhage (GM-IVH) is one of the most common causes of somatomotor neurodisability in pre-term infants. GM-IVH presents during the first postnatal week and can impinge on somatosensory circuits resulting in aberrant somatosensory cortical events straight after injury. Subsequently, somatosensory circuits undergo significant plastic changes, sometimes allowing the reinstatement of a somatosensory cortical response. However, it is not known whether this restructuring results in a full recovery of somatosensory functions. To investigate this, we compared somatosensory responses to mechanical stimulation measured with 18-channels EEG between infants who had high-grade GM-IVH (with ventricular dilatation and/or intraparenchymal lesion; n = 7 studies from 6 infants; mean corrected gestational age = 33 weeks; mean postnatal age = 56 days) and age-matched controls (n = 9 studies from 8 infants; mean corrected gestational age = 32 weeks; mean postnatal age = 36 days). We showed that infants who had high-grade GM-IVH did not recruit the same cortical source configuration following stimulation of the foot, but their response to stimulation of the hand resembled that of controls. These results show that somatosensory cortical circuits are reinstated in infants who had GM-IVH, during the several weeks after injury, but remain different from those of infants without brain injury. An important next step will be to investigate whether these evidences of neural reorganisation predict neurodevelopmental outcome.
Collapse
Affiliation(s)
- Kimberley Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| | - Laura Jones
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| | - Maria Pureza Laudiano-Dray
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| | - Judith Meek
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom; Elizabeth Garrett Anderson Wing, University College London Hospitals, London WC1E 6BD, United Kingdom.
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
32
|
Vilarchao ME, Estebanez L, Shulz DE, Férézou I. Supra-barrel Distribution of Directional Tuning for Global Motion in the Mouse Somatosensory Cortex. Cell Rep 2019; 22:3534-3547. [PMID: 29590621 DOI: 10.1016/j.celrep.2018.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 01/17/2018] [Accepted: 02/28/2018] [Indexed: 11/15/2022] Open
Abstract
Rodents explore their environment with an array of whiskers, inducing complex patterns of whisker deflections. Cortical neuronal networks can extract global properties of tactile scenes. In the primary somatosensory cortex, the information relative to the global direction of a spatiotemporal sequence of whisker deflections can be extracted at the single neuron level. To further understand how the cortical network integrates multi-whisker inputs, we imaged and recorded the mouse barrel cortex activity evoked by sequences of multi-whisker deflections generating global motions in different directions. A majority of barrel-related cortical columns show a direction preference for global motions with an overall preference for caudo-ventral directions. Responses to global motions being highly sublinear, the identity of the first deflected whiskers is highly salient but does not seem to determine the global direction preference. Our results further demonstrate that the global direction preference is spatially organized throughout the barrel cortex at a supra-columnar scale.
Collapse
Affiliation(s)
- María Eugenia Vilarchao
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France
| | - Luc Estebanez
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France
| | - Daniel E Shulz
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France.
| | - Isabelle Férézou
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique, FRE 3693, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
33
|
França TFA, Monserrat JM. Hippocampal place cells are topographically organized, but physical space has nothing to do with it. Brain Struct Funct 2019; 224:3019-3029. [DOI: 10.1007/s00429-019-01968-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/11/2019] [Indexed: 12/18/2022]
|
34
|
Analysing linear multivariate pattern transformations in neuroimaging data. PLoS One 2019; 14:e0223660. [PMID: 31613918 PMCID: PMC6793861 DOI: 10.1371/journal.pone.0223660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022] Open
Abstract
Most connectivity metrics in neuroimaging research reduce multivariate activity patterns in regions-of-interests (ROIs) to one dimension, which leads to a loss of information. Importantly, it prevents us from investigating the transformations between patterns in different ROIs. Here, we applied linear estimation theory in order to robustly estimate the linear transformations between multivariate fMRI patterns with a cross-validated ridge regression approach. We used three functional connectivity metrics that describe different features of these voxel-by-voxel mappings: goodness-of-fit, sparsity and pattern deformation. The goodness-of-fit describes the degree to which the patterns in an input region can be described as a linear transformation of patterns in an output region. The sparsity metric, which relies on a Monte Carlo procedure, was introduced in order to test whether the transformation mostly consists of one-to-one mappings between voxels in different regions. Furthermore, we defined a metric for pattern deformation, i.e. the degree to which the transformation rotates or rescales the input patterns. As a proof of concept, we applied these metrics to an event-related fMRI data set consisting of four subjects that has been used in previous studies. We focused on the transformations from early visual cortex (EVC) to inferior temporal cortex (ITC), fusiform face area (FFA) and parahippocampal place area (PPA). Our results suggest that the estimated linear mappings explain a significant amount of response variance in the three output ROIs. The transformation from EVC to ITC shows the highest goodness-of-fit, and those from EVC to FFA and PPA show the expected preference for faces and places as well as animate and inanimate objects, respectively. The pattern transformations are sparse, but sparsity is lower than would have been expected for one-to-one mappings, thus suggesting the presence of one-to-few voxel mappings. The mappings are also characterised by different levels of pattern deformations, thus indicating that the transformations differentially amplify or dampen certain dimensions of the input patterns. While our results are only based on a small number of subjects, they show that our pattern transformation metrics can describe novel aspects of multivariate functional connectivity in neuroimaging data.
Collapse
|
35
|
Menezes GD, Faria-Melibeu AC, Serfaty CA, Campello-Costa P. In vivo effect of acute exposure to interleukin-6 on the developing visual system. Neurosci Lett 2019; 698:7-12. [PMID: 30611891 DOI: 10.1016/j.neulet.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 01/12/2023]
Abstract
Interleukin-6 (IL-6) is involved in different processes of the central nervous system. Our aims were to investigate the effect of IL-6 on retinotectal topography and on different signaling pathways. Rats were submitted to an intravitreous injection of either IL-6 (50 ng/ml) or PBS (vehicle) at postnatal day 10 (PND10). At PND11 or PND14, different groups were processed for western blot, histochemistry or immunofluorescence analysis. IL-6 treatment leads to an increase in pSTAT-3 levels in the retina and a disruption in the retinotectal topographic map, suggesting that a transient increase in interleukin-6 levels may impact neural circuitry development.
Collapse
Affiliation(s)
- Grasielle Duarte Menezes
- Programa de Neurociências, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Adriana C Faria-Melibeu
- Programa de Neurociências, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Claudio Alberto Serfaty
- Programa de Neurociências, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Paula Campello-Costa
- Programa de Neurociências, Departamento de Neurobiologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
36
|
Model testing for distinctive functional connectivity gradients with resting-state fMRI data. Neuroimage 2019; 185:102-110. [DOI: 10.1016/j.neuroimage.2018.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/15/2018] [Accepted: 10/07/2018] [Indexed: 11/15/2022] Open
|
37
|
Aydogan DB, Shi Y. Tracking and validation techniques for topographically organized tractography. Neuroimage 2018; 181:64-84. [PMID: 29986834 PMCID: PMC6139055 DOI: 10.1016/j.neuroimage.2018.06.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/18/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022] Open
Abstract
Topographic regularity of axonal connections is commonly understood as the preservation of spatial relationships between nearby neurons and is a fundamental structural property of the brain. In particular the retinotopic mapping of the visual pathway can even be quantitatively computed. Inspired from this previously untapped anatomical knowledge, we propose a novel tractography method that preserves both topographic and geometric regularity. We make use of parameterized curves with Frenet-Serret frame and introduce a highly flexible mechanism for controlling geometric regularity. At the same time, we incorporate a novel local data support term in order to account for topographic organization. Unifying geometry with topographic regularity, we develop a Bayesian framework for generating highly organized streamlines that accurately follow neuroanatomy. We additionally propose two novel validation techniques to quantify topographic regularity. In our experiments, we studied the results of our approach with respect to connectivity, reproducibility and topographic regularity aspects. We present both qualitative and quantitative comparisons of our technique against three algorithms from MRtrix3. We show that our method successfully generates highly organized fiber tracks while capturing bundle anatomy that are geometrically challenging for other approaches.
Collapse
Affiliation(s)
- Dogu Baran Aydogan
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yonggang Shi
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Wang J, Aydogan DB, Varma R, Toga AW, Shi Y. Modeling topographic regularity in structural brain connectivity with application to tractogram filtering. Neuroimage 2018; 183:87-98. [PMID: 30081193 DOI: 10.1016/j.neuroimage.2018.07.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 11/27/2022] Open
Abstract
Topographic regularity is an important biological principle in brain connections that has been observed in various anatomical studies. However, there has been limited research on mathematically characterizing this property and applying it in the analysis of in vivo connectome imaging data. In this work, we propose a general mathematical model of topographic regularity for white matter fiber bundles based on previous neuroanatomical understanding. Our model is based on a novel group spectral graph analysis (GSGA) framework motivated by spectral graph theory and tensor decomposition. The GSGA provides a common set of eigenvectors for the graphs formed by topographic proximity of nearby tracts, which gives rises to the group graph spectral distance, or G2SD, for measuring the topographic regularity of each fiber tract in a tractogram. Based on this novel model of topographic regularity in fiber tracts, we then develop a tract filtering algorithm that can generally be applied to remove outliers in tractograms generated by any tractography algorithm. In the experimental results, we show that our novel algorithm outperforms existing methods in both simulation data from ISMRM 2015 Tractography Challenge and real data from the Human Connectome Project (HCP). On a large-scale dataset from 215 HCP subjects, we quantitatively show our method can significantly improve the retinotopy in the reconstruction of the optic radiation bundle. The software for the tract filtering algorithm developed in this work has also been publicly released on NITRC (https://www.nitrc.org/projects/connectopytool).
Collapse
Affiliation(s)
- Junyan Wang
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Dogu Baran Aydogan
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Rohit Varma
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Yonggang Shi
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
39
|
Calderini M, Zhang S, Berberian N, Thivierge JP. Optimal Readout of Correlated Neural Activity in a Decision-Making Circuit. Neural Comput 2018; 30:1573-1611. [PMID: 29652584 DOI: 10.1162/neco_a_01083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The neural correlates of decision making have been extensively studied with tasks involving a choice between two alternatives that is guided by visual cues. While a large body of work argues for a role of the lateral intraparietal (LIP) region of cortex in these tasks, this role may be confounded by the interaction between LIP and other regions, including medial temporal (MT) cortex. Here, we describe a simplified linear model of decision making that is adapted to two tasks: a motion discrimination and a categorization task. We show that the distinct contribution of MT and LIP may indeed be confounded in these tasks. In particular, we argue that the motion discrimination task relies on a straightforward visuomotor mapping, which leads to redundant information between MT and LIP. The categorization task requires a more complex mapping between visual information and decision behavior, and therefore does not lead to redundancy between MT and LIP. Going further, the model predicts that noise correlations within LIP should be greater in the categorization compared to the motion discrimination task due to the presence of shared inputs from MT. The impact of these correlations on task performance is examined by analytically deriving error estimates of an optimal linear readout for shared and unique inputs. Taken together, results clarify the contribution of MT and LIP to decision making and help characterize the role of noise correlations in these regions.
Collapse
Affiliation(s)
- Matias Calderini
- Center for Neural Dynamics and School of Psychology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Sophie Zhang
- Center for Neural Dynamics and School of Psychology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Nareg Berberian
- Center for Neural Dynamics and School of Psychology, University of Ottawa, Ontario K1N 6N5, Canada
| | - Jean-Philippe Thivierge
- Center for Neural Dynamics and School of Psychology, University of Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
40
|
Connectopic mapping with resting-state fMRI. Neuroimage 2018; 170:83-94. [PMID: 28666880 DOI: 10.1016/j.neuroimage.2017.06.075] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 11/24/2022] Open
|
41
|
Powell MA, Garcia JO, Yeh FC, Vettel JM, Verstynen T. Local connectome phenotypes predict social, health, and cognitive factors. Netw Neurosci 2018; 2:86-105. [PMID: 29911679 PMCID: PMC5989992 DOI: 10.1162/netn_a_00031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/08/2017] [Indexed: 12/13/2022] Open
Abstract
The unique architecture of the human connectome is defined initially by genetics and subsequently sculpted over time with experience. Thus, similarities in predisposition and experience that lead to similarities in social, biological, and cognitive attributes should also be reflected in the local architecture of white matter fascicles. Here we employ a method known as local connectome fingerprinting that uses diffusion MRI to measure the fiber-wise characteristics of macroscopic white matter pathways throughout the brain. This fingerprinting approach was applied to a large sample (N = 841) of subjects from the Human Connectome Project, revealing a reliable degree of between-subject correlation in the local connectome fingerprints, with a relatively complex, low-dimensional substructure. Using a cross-validated, high-dimensional regression analysis approach, we derived local connectome phenotype (LCP) maps that could reliably predict a subset of subject attributes measured, including demographic, health, and cognitive measures. These LCP maps were highly specific to the attribute being predicted but also sensitive to correlations between attributes. Collectively, these results indicate that the local architecture of white matter fascicles reflects a meaningful portion of the variability shared between subjects along several dimensions. The local connectome is the pattern of fiber systems (i.e., number of fibers, orientation, and size) within a voxel, and it reflects the proximal characteristics of white matter fascicles distributed throughout the brain. Here we show how variability in the local connectome is correlated in a principled way across individuals. This intersubject correlation is reliable enough that unique phenotype maps can be learned to predict between-subject variability in a range of social, health, and cognitive attributes. This work shows, for the first time, how the local connectome has both the sensitivity and the specificity to be used as a phenotypic marker for subject-specific attributes.
Collapse
Affiliation(s)
- Michael A Powell
- Department of Mathematical Sciences, United States Military Academy, West Point, NY, USA
| | - Javier O Garcia
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jean M Vettel
- U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.,Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Timothy Verstynen
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
42
|
James SS, Papapavlou C, Blenkinsop A, Cope AJ, Anderson SR, Moustakas K, Gurney KN. Integrating Brain and Biomechanical Models-A New Paradigm for Understanding Neuro-muscular Control. Front Neurosci 2018; 12:39. [PMID: 29467606 PMCID: PMC5808253 DOI: 10.3389/fnins.2018.00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/16/2018] [Indexed: 12/26/2022] Open
Abstract
To date, realistic models of how the central nervous system governs behavior have been restricted in scope to the brain, brainstem or spinal column, as if these existed as disembodied organs. Further, the model is often exercised in relation to an in vivo physiological experiment with input comprising an impulse, a periodic signal or constant activation, and output as a pattern of neural activity in one or more neural populations. Any link to behavior is inferred only indirectly via these activity patterns. We argue that to discover the principles of operation of neural systems, it is necessary to express their behavior in terms of physical movements of a realistic motor system, and to supply inputs that mimic sensory experience. To do this with confidence, we must connect our brain models to neuro-muscular models and provide relevant visual and proprioceptive feedback signals, thereby closing the loop of the simulation. This paper describes an effort to develop just such an integrated brain and biomechanical system using a number of pre-existing models. It describes a model of the saccadic oculomotor system incorporating a neuromuscular model of the eye and its six extraocular muscles. The position of the eye determines how illumination of a retinotopic input population projects information about the location of a saccade target into the system. A pre-existing saccadic burst generator model was incorporated into the system, which generated motoneuron activity patterns suitable for driving the biomechanical eye. The model was demonstrated to make accurate saccades to a target luminance under a set of environmental constraints. Challenges encountered in the development of this model showed the importance of this integrated modeling approach. Thus, we exposed shortcomings in individual model components which were only apparent when these were supplied with the more plausible inputs available in a closed loop design. Consequently we were able to suggest missing functionality which the system would require to reproduce more realistic behavior. The construction of such closed-loop animal models constitutes a new paradigm of computational neurobehavior and promises a more thoroughgoing approach to our understanding of the brain's function as a controller for movement and behavior.
Collapse
Affiliation(s)
- Sebastian S. James
- Adaptive Behaviour Research Group, Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In-Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Chris Papapavlou
- Department of Electrical and Computer Engineering, The University of Patras, Patras, Greece
| | - Alexander Blenkinsop
- Adaptive Behaviour Research Group, Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In-Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Alexander J. Cope
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Sean R. Anderson
- Insigneo Institute for In-Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Department of Automatic Control Systems Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Konstantinos Moustakas
- Department of Electrical and Computer Engineering, The University of Patras, Patras, Greece
| | - Kevin N. Gurney
- Adaptive Behaviour Research Group, Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In-Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
43
|
Marquand AF, Haak KV, Beckmann CF. Functional corticostriatal connection topographies predict goal directed behaviour in humans. Nat Hum Behav 2017; 1:0146. [PMID: 28804783 PMCID: PMC5549843 DOI: 10.1038/s41562-017-0146] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Anatomical tracing studies in non-human primates have suggested that corticostriatal connectivity is topographically organized: nearby locations in striatum are connected with nearby locations in cortex. The topographic organization of corticostriatal connectivity is thought to underpin many goal-directed behaviours, but these topographies have not been completely characterised in humans and their relationship to uniquely human behaviours remains to be fully determined. Instead, the dominant approach employs parcellations that cannot model the continuous nature of the topography, nor accommodate overlapping cortical projections in the striatum. Here, we employ a different approach to studying human corticostriatal circuitry: we estimate smoothly-varying and spatially overlapping 'connection topographies' from resting state fMRI. These correspond exceptionally well with and extend the topographies predicted from primate tracing studies. We show that striatal topography is preserved in regions not previously known to have topographic connections with the striatum and that many goal-directed behaviours can be mapped precisely onto individual variations in the spatial layout of striatal connectivity.
Collapse
Affiliation(s)
- Andre F Marquand
- Radboud University Medical Centre, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands.,Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands.,Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, De Crespigny Park, London SE5 8AF, United Kingdom
| | - Koen V Haak
- Radboud University Medical Centre, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands.,Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands
| | - Christian F Beckmann
- Radboud University Medical Centre, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands.,Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, 6525 EN, Nijmegen, the Netherlands.,Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
44
|
Wang J, Aydogan DB, Varma R, Toga AW, Shi Y. Topographic Regularity for Tract Filtering in Brain Connectivity. INFORMATION PROCESSING IN MEDICAL IMAGING : PROCEEDINGS OF THE ... CONFERENCE 2017; 10265:263-274. [PMID: 28943732 DOI: 10.1007/978-3-319-59050-9_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The preservation of the spatial relationships among axonal pathways has long been studied and known to be critical for many functions of the brain. Being a fundamental property of the brain connections, there is an intuitive understanding of topographic regularity in neuroscience but yet to be systematically explored in connectome imaging research. In this work, we propose a general mathematical model for topographic regularity of fiber bundles that is consistent with its neuroanatomical understanding. Our model is based on a novel group spectral graph analysis (GSGA) framework motivated by spectral graph theory and tensor decomposition. GSGA provides a common set of eigenvectors for the graphs formed by topographic proximity measures whose preservation along individual tracts in return is modeled as topographic regularity. To demonstrate the application of this novel measure of topographic regularity, we apply it to filter fiber tracts from connectome imaging. Using large-scale data from the Human Connectome Project (HCP), we show that our novel algorithm can achieve better performance than existing methods on the filtering of both individual bundles and whole brain tractograms.
Collapse
Affiliation(s)
- Junyan Wang
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033
| | - Dogu Baran Aydogan
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033
| | - Rohit Varma
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033
| | - Arthur W Toga
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033
| | - Yonggang Shi
- Laboratory of Neuro Imaging (LONI), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
45
|
Kolasinski J, Logan JP, Hinson EL, Manners D, Divanbeighi Zand AP, Makin TR, Emir UE, Stagg CJ. A Mechanistic Link from GABA to Cortical Architecture and Perception. Curr Biol 2017; 27:1685-1691.e3. [PMID: 28552355 PMCID: PMC5462622 DOI: 10.1016/j.cub.2017.04.055] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/07/2017] [Accepted: 04/26/2017] [Indexed: 11/26/2022]
Abstract
Understanding both the organization of the human cortex and its relation to the performance of distinct functions is fundamental in neuroscience. The primary sensory cortices display topographic organization, whereby receptive fields follow a characteristic pattern, from tonotopy to retinotopy to somatotopy [1]. GABAergic signaling is vital to the maintenance of cortical receptive fields [2]; however, it is unclear how this fine-grain inhibition relates to measurable patterns of perception [3, 4]. Based on perceptual changes following perturbation of the GABAergic system, it is conceivable that the resting level of cortical GABAergic tone directly relates to the spatial specificity of activation in response to a given input [5, 6, 7]. The specificity of cortical activation can be considered in terms of cortical tuning: greater cortical tuning yields more localized recruitment of cortical territory in response to a given input. We applied a combination of fMRI, MR spectroscopy, and psychophysics to substantiate the link between the cortical neurochemical milieu, the tuning of cortical activity, and variability in perceptual acuity, using human somatosensory cortex as a model. We provide data that explain human perceptual acuity in terms of both the underlying cellular and metabolic processes. Specifically, higher concentrations of sensorimotor GABA are associated with more selective cortical tuning, which in turn is associated with enhanced perception. These results show anatomical and neurochemical specificity and are replicated in an independent cohort. The mechanistic link from neurochemistry to perception provides a vital step in understanding population variability in sensory behavior, informing metabolic therapeutic interventions to restore perceptual abilities clinically. GABAergic tone correlates with perceptual acuity in the human somatosensory system This relationship is mediated by the tuning of activity in somatosensory cortex We explain perceptual acuity via the underlying cellular and metabolic processes
Collapse
Affiliation(s)
- James Kolasinski
- Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff CF24 4HQ, UK; University College, Oxford OX1 4BH, UK.
| | - John P Logan
- Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Emily L Hinson
- Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Daniel Manners
- Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Amir P Divanbeighi Zand
- Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Tamar R Makin
- Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Uzay E Emir
- Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Charlotte J Stagg
- Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| |
Collapse
|
46
|
Quast KB, Ung K, Froudarakis E, Huang L, Herman I, Addison AP, Ortiz-Guzman J, Cordiner K, Saggau P, Tolias AS, Arenkiel BR. Developmental broadening of inhibitory sensory maps. Nat Neurosci 2016; 20:189-199. [PMID: 28024159 DOI: 10.1038/nn.4467] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/18/2016] [Indexed: 12/14/2022]
Abstract
Sensory maps are created by networks of neuronal responses that vary with their anatomical position, such that representations of the external world are systematically and topographically organized in the brain. Current understanding from studying excitatory maps is that maps are sculpted and refined throughout development and/or through sensory experience. Investigating the mouse olfactory bulb, where ongoing neurogenesis continually supplies new inhibitory granule cells into existing circuitry, we isolated the development of sensory maps formed by inhibitory networks. Using in vivo calcium imaging of odor responses, we compared functional responses of both maturing and established granule cells. We found that, in contrast to the refinement observed for excitatory maps, inhibitory sensory maps became broader with maturation. However, like excitatory maps, inhibitory sensory maps are sensitive to experience. These data describe the development of an inhibitory sensory map as a network, highlighting the differences from previously described excitatory maps.
Collapse
Affiliation(s)
- Kathleen B Quast
- Department of Molecular &Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Kevin Ung
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Longwen Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Isabella Herman
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Angela P Addison
- SMART Program, Baylor College of Medicine, Houston, Texas, USA.,University of St. Thomas, Houston, Texas, USA
| | - Joshua Ortiz-Guzman
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Keith Cordiner
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Peter Saggau
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Allen Institute for Brain Science, Seattle, Washington, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA
| | - Benjamin R Arenkiel
- Department of Molecular &Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
47
|
Artificial Neuron Based on Integrated Semiconductor Quantum Dot Mode-Locked Lasers. Sci Rep 2016; 6:39317. [PMID: 27991574 PMCID: PMC5171909 DOI: 10.1038/srep39317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/19/2016] [Indexed: 11/08/2022] Open
Abstract
Neuro-inspired implementations have attracted strong interest as a power efficient and robust alternative to the digital model of computation with a broad range of applications. Especially, neuro-mimetic systems able to produce and process spike-encoding schemes can offer merits like high noise-resiliency and increased computational efficiency. Towards this direction, integrated photonics can be an auspicious platform due to its multi-GHz bandwidth, its high wall-plug efficiency and the strong similarity of its dynamics under excitation with biological spiking neurons. Here, we propose an integrated all-optical neuron based on an InAs/InGaAs semiconductor quantum-dot passively mode-locked laser. The multi-band emission capabilities of these lasers allows, through waveband switching, the emulation of the excitation and inhibition modes of operation. Frequency-response effects, similar to biological neural circuits, are observed just as in a typical two-section excitable laser. The demonstrated optical building block can pave the way for high-speed photonic integrated systems able to address tasks ranging from pattern recognition to cognitive spectrum management and multi-sensory data processing.
Collapse
|
48
|
Sood MR, Sereno MI. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps. Hum Brain Mapp 2016; 37:2784-810. [PMID: 27061771 PMCID: PMC4949687 DOI: 10.1002/hbm.23208] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/09/2016] [Accepted: 03/24/2016] [Indexed: 11/18/2022] Open
Abstract
Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor-preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface-based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory-motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory-motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M-I. Hum Brain Mapp 37:2784-2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mariam R. Sood
- Department of Psychological SciencesBirkbeck, University of London Malet StreetLondonWC1E 7HXUnited Kingdom
| | - Martin I. Sereno
- Department of Psychological SciencesBirkbeck, University of London Malet StreetLondonWC1E 7HXUnited Kingdom
- Experimental Psychology, Division of Psychology and Language Sciences 26 Bedford WayLondonWC1H 0APUnited Kingdom
| |
Collapse
|
49
|
Mileva GR, Kozak IJ, Lewis JE. Short-term synaptic plasticity across topographic maps in the electrosensory system. Neuroscience 2016; 318:1-11. [PMID: 26791523 DOI: 10.1016/j.neuroscience.2016.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
The early pathways underlying the active electric sense of the weakly electric fish Apteronotus leptorhynchus involve three parallel processing streams. An array of tuberous electroreceptors distributed over the skin provides inputs to the electrosensory lateral line lobe (ELL), forming the basis for three topographic maps: LS (lateral segment), CLS (centrolateral segment), and CMS (centromedial segment). In addition, each map receives topographically preserved inputs from a direct feedback pathway. How this feedback contributes to the distinct spatiotemporal filtering properties of ELL pyramidal neurons across maps is not clear. We used an in vitro approach to characterize short-term plasticity (STP) in the direct feedback synapses onto pyramidal neurons in each map. Our findings indicated that the dynamics of STP varied across maps in a manner that was consistent with the temporal filtering properties of pyramidal neurons in vivo. Using a modeling approach, we found that the STP of direct feedback synapses in CMS was best described by a simple facilitation-depression model. On the other hand, STP in LS was best described by synaptic facilitation with a use-dependent recovery rate. These results suggest that differential regulation of overlapping STP processes in feedback pathways can contribute to the functional specialization of topographic sensory maps.
Collapse
Affiliation(s)
- G R Mileva
- Department of Biology and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada.
| | - I J Kozak
- Department of Biology and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada
| | - J E Lewis
- Department of Biology and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
50
|
Inter-hemispheric Claustral Connections in Human Brain: A Constrained Spherical Deconvolution-Based Study. Clin Neuroradiol 2015; 27:275-281. [DOI: 10.1007/s00062-015-0492-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
|