1
|
Hauptman JS, Antonios J, Mathern GW, Levine MS, Cepeda C. Chronic Rapamycin Prevents Electrophysiological and Morphological Alterations Produced by Conditional Pten Deletion in Mouse Cortex. Cells 2025; 14:79. [PMID: 39851507 PMCID: PMC11764219 DOI: 10.3390/cells14020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Abnormalities in the mammalian target of the rapamycin (mTOR) pathway have been implicated in numerous developmental brain disorders. While the molecular and histological abnormalities have been described, less is known about alterations in membrane and synaptic excitability with chronic changes in the mTOR pathway. In the present study, we used a conditional mouse model with a deletion of the phosphatase and tensin homologue (Pten-/-, a negative regulator of mTOR) from cortical pyramidal neurons (CPNs). Whole-cell patch clamp recordings in ex vivo slices examined the intrinsic and synaptic membrane properties of layer II/III CPNs in normal mice treated with rapamycin for four weeks, and Pten-/- mice with and without chronic treatment with rapamycin. Compared with control mice, CPNs from Pten-/- mice demonstrated increased membrane capacitance and time constant in association with increased neuronal somatic size, reduced neuronal firing, and decreased frequency of spontaneous and miniature inhibitory postsynaptic currents, consistent with decreased pre-synaptic GABA release. Rapamycin treatment for four weeks prevented these changes in Pten-/- mice. CPNs from normal mice chronically treated with rapamycin, compared with CPNs from naïve mice, showed reduced capacitance and time constant, increased input resistance, and changes in inhibitory synaptic inputs, consistent with increased pre-synaptic GABA release. These results support the concept that Pten deletion results in significant changes in inhibitory inputs onto CPNs, and these alterations can be prevented with chronic rapamycin treatment. In addition, normal mice treated with rapamycin also display altered membrane and synaptic properties. These findings have potential implications for the treatment of neurological disorders associated with mTOR pathway dysfunction, such as epilepsy and autism.
Collapse
Affiliation(s)
- Jason S. Hauptman
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
| | - Joseph Antonios
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
| | - Gary W. Mathern
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael S. Levine
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
| | - Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.S.H.); (J.A.); (G.W.M.)
| |
Collapse
|
2
|
Cheng J, Yu H, Zhang ZF, Jiang HX, Wu P, Wang ZG, Chen ZB, Wu LQ. Mxene-bpV plays a neuroprotective role in cerebral ischemia-reperfusion injury by activating the Akt and promoting the M2 microglial polarization signaling pathways. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:42. [PMID: 39073469 PMCID: PMC11286715 DOI: 10.1007/s10856-024-06811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/29/2024] [Indexed: 07/30/2024]
Abstract
Studies have shown that the inhibition of phosphatase and tensin homolog deleted on chromosome 10 (PTEN)was neuroprotective against ischemia/reperfusion(I/R) injury. Bisperoxovanadium (bpV), a derivative of vanadate, is a well-established inhibitor of PTEN. However, its function islimited due to its general inadequacy in penetrating cell membranes. Mxene(Ti3C2Tx) is a novel two-dimensional lamellar nanomaterial with an excellent ability to penetrate the cell membrane. Yet, the effects of this nanomaterial on nervous system diseases have yet to be scrutinized. Here, Mxene(Ti3C2Tx) was used for the first time to carry bpV(HOpic), creating a new nanocomposite Mxene-bpV that was probed in a cerebral I/R injury model. The findings showed that this synthetic Mxene-bpV was adequately stable and can cross the cell membraneeasily. We observed that Mxene-bpV treatment significantly increased the survival rate of oxygen glucose deprivation/reperfusion(OGD/R)--insulted neurons, reduced infarct sizes and promoted the recovery of brain function after mice cerebral I/R injury. Crucially, Mxene-bpV treatment was more therapeutically efficient than bpV(HOpic) treatment alone over the same period. Mechanistically, Mxene-bpV inhibited the enzyme activity of PTEN in vitro and in vivo. It also promoted the expression of phospho-Akt (Ser473) by repressing PTEN and then activated the Akt pathway to boost cell survival. Additionally, in PTEN transgenic mice, Mxene-bpV suppressed I/R-induced inflammatory response by promoting M2 microglial polarization through PTEN inhibition. Collectively, the nanosynthetic Mxene-bpV inhibited PTEN' enzymatic activity by activating Akt pathway and promoting M2 microglial polarization, and finally exerted neuroprotection against cerebral I/R injury.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Street, Wuhan, 430060, China
| | - Han Yu
- Department of Pathology, Xiangyang No.1 People's Hospital, Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Hubei University of Medicine, Xiangyang, 441000, China
| | - Zhi-Feng Zhang
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China
| | - Hong-Xiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Street, Wuhan, 430060, China
| | - Ping Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhou-Guang Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Zhi-Biao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Street, Wuhan, 430060, China.
| | - Li-Quan Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Street, Wuhan, 430060, China.
| |
Collapse
|
3
|
Zhang Y, Tan YT, Wang MJ, Li L, Huang JF, Wang SC. Bibliometric analysis of PTEN in neurodevelopment and neurodegeneration. Front Aging Neurosci 2024; 16:1390324. [PMID: 38586827 PMCID: PMC10995293 DOI: 10.3389/fnagi.2024.1390324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Phosphatase and tensin homologue deleted on chromosome ten (PTEN) was initially recognized as a significant regulator of cancer suppression and could impede cancer cell survival, proliferation, and energy metabolism. PTEN is highly expressed in neurons and performs crucial functions in neurogenesis, synaptogenesis, and neuronal survival. Disruption of PTEN activity may also result in abnormal neuronal function and is associated with various neurological disorders, including stroke, seizures, and autism. Although several studies have shown that PTEN is involved in the development and degenerative processes of the nervous system, there is still a lack of in-depth studies that summarize and analyse patterns of cooperation between authors, institutions, countries, and journals, as well as research hotspots and trends in this important field. To identify and further visualize the cooperation and comprehend the development and trends of PTEN in the nervous system, especially in neural development and neurological diseases, we used a bibliometric analysis to identify relevant publications on this topic. We first found that the number of publications displayed a growing trend with time, but this was not stable. Universities, institutions, and authors from the United States are leading in this area of research. In addition, many cutting-edge research results have been discovered, such as key regulatory molecules and cellular mechanisms of PTEN in the nervous system, which may provide novel intervention targets and precise therapeutic strategies for related pathological injuries and diseases. Finally, the literature published within the last 5 years is discussed to identify future research trends regarding PTEN in the nervous system. Taken together, our findings, analysed using bibliometrics, may reflect research hotspots and trends, providing a reference for studying PTEN in the nervous system, especially in neural development and neurological diseases. These findings can assist new researchers in developing their research interests and gaining basic information. Moreover, our findings also may provide precise clinical guidelines and strategies for treating nervous system injuries and diseases caused by PTEN dysfunction.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ya-ting Tan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Mei-juan Wang
- Medical Imaging Center, Qingdao West Coast New District People's Hospital, Qingdao, Shandong, China
| | - Lan Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ju-fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Shu-chao Wang
- Center for Medical Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Fang Y, Zhang T, Li L, Chen S, Wang L, Tang J, Liao Y. Nicotine Decreases Nerve Regeneration and Pain Behaviors via PTEN and Downstream Inflammation-Related Pathway in Two Rat Nerve Injury Models. eNeuro 2023; 10:ENEURO.0185-23.2023. [PMID: 37620149 PMCID: PMC10484360 DOI: 10.1523/eneuro.0185-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Neuropathic pain is stubborn and associated with the peripheral nerve regeneration process. Nicotine has been found to reduce pain, but whether it is involved in the regulation of nerve regeneration and the underlying mechanism are unknown. In this study, we examined the mechanical allodynia thermal hyperalgesia together with the peripheral nerve regeneration after nicotine exposure in two rat neuropathic pain models. In the spinal nerve ligation model, in which anatomic nerve regeneration can be easily observed, nicotine reduced anatomic measures of regeneration as well as expression of regeneration marker growth-associated protein 43 (GAP43). In the tibial nerve crush model, nicotine treatment significantly suppressed GAP43 expression and functional reinnervation as measured by myelinated action potential and electromyography of gastrocnemius. In both models, nicotine treatment reduced macrophage density in the sensory ganglia and peripheral nerve. These effects of nicotine were reversed by the selective α7 nicotinic acetylcholine receptor (nAChR) blocker methyllycaconitine. In addition, nicotine significantly elevated expression of PTEN (the phosphatase and tensin homolog deleted on chromosome 10), a key player in both regeneration and pain. Pharmacological interference of PTEN could regulate GAP43 expression, pain-related behaviors, and macrophage infiltration in a nicotine-treated nerve crush model. Our results reveal that nicotine and its α7-nAChR regulate both peripheral nerve regeneration process and pain though PTEN and the downstream inflammation-related pathway.
Collapse
Affiliation(s)
- Yehong Fang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Tingkai Zhang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Ling Li
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Shanshan Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Liangliang Wang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| |
Collapse
|
5
|
Fang Y, Cui H, Liu F, Su S, Wang T, Yuan B, Xie Y, Ma C. Astrocytic phosphatase and tensin homolog deleted on chromosome 10 regulates neuropathic pain by facilitating 3-hydroxy-3-methylglutaryl-CoA reductase-dependent cholesterol biosynthesis. Pain 2022; 163:e1192-e1206. [PMID: 35559917 DOI: 10.1097/j.pain.0000000000002682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Recent studies have noted the role of the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in developing neuropathic pain, but the underlying mechanisms are obscure. We found that PTEN was mainly expressed in astrocytes in the rat spinal cord and dramatically downregulated after chronic constriction injury (CCI). Intrathecal injection of a PTEN inhibitor induced pain-related behaviors in naive rats. By contrast, administration of a PTEN protector effectively mitigated CCI-induced pain. Adeno-associated virus-mediated overexpression of astrocytic PTEN in the spinal cord reduced glial activation and neuroinflammation and subsequently alleviated pain-related behaviors. Importantly, astrocyte-specific PTEN knockout ( Pten conditional knockout , Pten CKO) mice showed nociceptive sensitization and glial activation. Proteomic analysis revealed that PTEN overexpression upregulated at least 7 enzymes in the cholesterol biosynthesis pathway and the total cholesterol level in the spinal cord of CCI rats. Furthermore, PTEN directly interacted with enzymes, including 3-hydroxy-3-methylglutaryl-CoA reductase, in the cholesterol biosynthesis pathway. Astrocytic 3-hydroxy-3-methylglutaryl-CoA reductase overexpression alleviated both CCI-induced pain and mechanical allodynia in Pten CKO mice. Finally, cholesterol replenishment attenuated CCI-induced pain and suppressed spinal glial activation. Taken together, these findings imply that spinal astrocytic PTEN plays a beneficial role in CCI-induced pain by regulating cholesterol biosynthesis, and an increased level of PTEN may accelerate cholesterol biosynthesis and reduce glial activation, thereby alleviating neuropathic pain. Recovery of PTEN or cholesterol might be an effective therapeutic strategy for neuropathic pain.
Collapse
Affiliation(s)
- Yehong Fang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Huan Cui
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Fan Liu
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, China
| | - Si Su
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Wang
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bo Yuan
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yikuan Xie
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
6
|
Su K, Hao W, Lv Z, Wu M, Li J, Hu Y, Zhang Z, Gao J, Feng X. Electroacupuncture of Baihui and Shenting ameliorates cognitive deficits via Pten/Akt pathway in a rat cerebral ischemia injury model. Front Neurol 2022; 13:855362. [PMID: 36062010 PMCID: PMC9437581 DOI: 10.3389/fneur.2022.855362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Cerebral ischemic stroke is a huge threat to the health and life of many people. Electroacupuncture (EA) at Baihui (GV20) and Shenting (GV24) acupoints can notably alleviate cerebral ischemia/reperfusion injury (CIRI). However, the molecular basis underlying the effectiveness of EA at the GV20 and GV24 acupoints for CIRI remains largely unknown. Our present study demonstrated that EA treatment at the GV20 and GV24 acupoints markedly alleviated middle cerebral artery occlusion/reperfusion (MCAO/R)-induced cognitive deficits and cerebral infarction in rats. Proteomics analysis revealed that 195 and 218 proteins were dysregulated in rat hippocampal tissues in the MCAO/R vs. sham group and thhhe EA vs. MCAO/R group, respectively. Moreover, 62 proteins with converse alteration trends in MCAO/R vs. sham and EA vs. MCAO/R groups were identified. These proteins might be implicated in the EA-mediated protective effect against MCAO/R-induced cerebral injury. GO enrichment analysis showed that 39 dysregulated proteins in the MCAO/R vs. sham group and 40 dysregulated proteins in the EA vs. MCAO/R group were related to brain and nerve development. Protein–protein interaction analysis of the abovementioned dysregulated proteins associated with brain and nerve development suggested that Pten/Akt pathway-related proteins might play major roles in regulating EA-mediated protective effects against MCAO/R-induced brain and nerve injury. Western blot assays demonstrated that Pak4, Akt3, and Efnb2 were expressed at low levels in the MCAO/R group vs. the sham group but at high levels in the EA group vs. the MCAO/R group. In conclusion, multiple proteins related to the protective effect of EA at the GV20 and GV24 acupoints against CIRI were identified in our study.
Collapse
Affiliation(s)
- Kaiqi Su
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenxue Hao
- Department of Rehabilitation, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuan Lv
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Mingli Wu
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jieying Li
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanchao Hu
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhenhua Zhang
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jing Gao
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Jing Gao
| | - Xiaodong Feng
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Xiaodong Feng
| |
Collapse
|
7
|
Zhao M, Gao J, Zhang Y, Jiang X, Tian Y, Zheng X, Wang K, Cui J. Elevated miR-29a Contributes to Axonal Outgrowth and Neurological Recovery After Intracerebral Hemorrhage via Targeting PTEN/PI3K/Akt Pathway. Cell Mol Neurobiol 2021; 41:1759-1772. [PMID: 32889668 PMCID: PMC11444011 DOI: 10.1007/s10571-020-00945-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/14/2020] [Indexed: 01/24/2023]
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a clinical challenge with high disability and lacks an effective treatment. miR-29a strongly expressed in the brain has been implicated in various neurological disorders. In this study, we investigated the biological roles of miR-29a in axonal outgrowth and neurological outcomes after ICH and relevant molecular mechanism. The rat model of ICH was established by injection of autologous whole blood into the right basal ganglia. First, a significant decrease in miR-29a level was found in perihematomal brain tissues and cerebrospinal fluid (CSF) after ICH in vivo and hemin-treated neurons in vitro. Further study documented that lentivirus-mediated miR-29a overexpression could remarkably attenuate hemorrhagic brain injury, promoted regenerative outgrowth of injured axons and improved neurobehavioral and cognitive impairments after ICH in rats. In addition, we also identified that overexpression of miR-29a obviously alleviated neuronal damage and mitochondrial dysfunctions, and facilitated neurite outgrowth in cultured neurons exposed to hemin in vitro. Furthermore, luciferase reporter assay showed that miR-29a directly targeted the 3'-UTR region of phosphatase and tensin homolog (PTEN) mRNA and negatively regulated its expression. More importantly, pharmacological inhibition of PTEN has similar neuroprotective effects as miR-29a overexpression involving activation of the PI3K/Akt pathway after hemorrhagic stroke. Collectively, these results suggested that elevated miR-29a could contribute to axonal outgrowth and neurological recovery through targeting PTEN/PI3K/Akt pathway after ICH, thereby providing a potential therapeutic target for patients with ICH.
Collapse
Affiliation(s)
- Manman Zhao
- Department of Surgery, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Junling Gao
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research On Chronic Diseases, Tangshan, 063000, Hebei, China
- Department of Histology and Embryology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yanan Zhang
- Department of Histology and Embryology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Xiaohua Jiang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research On Chronic Diseases, Tangshan, 063000, Hebei, China
- Department of Histology and Embryology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Yanxia Tian
- Department of Histology and Embryology, North China University of Science and Technology, Tangshan, 063000, Hebei, China
| | - Xuecheng Zheng
- Department of Surgery, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
| | - Kaijie Wang
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Jianzhong Cui
- Department of Surgery, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.
- Department of Neurosurgery, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China.
| |
Collapse
|
8
|
Nakamura T, Oh CK, Zhang X, Tannenbaum SR, Lipton SA. Protein Transnitrosylation Signaling Networks Contribute to Inflammaging and Neurodegenerative Disorders. Antioxid Redox Signal 2021; 35:531-550. [PMID: 33957758 PMCID: PMC8388249 DOI: 10.1089/ars.2021.0081] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: Physiological concentrations of nitric oxide (NO•) and related reactive nitrogen species (RNS) mediate multiple signaling pathways in the nervous system. During inflammaging (chronic low-grade inflammation associated with aging) and in neurodegenerative diseases, excessive RNS contribute to synaptic and neuronal loss. "NO signaling" in both health and disease is largely mediated through protein S-nitrosylation (SNO), a redox-based posttranslational modification with "NO" (possibly in the form of nitrosonium cation [NO+]) reacting with cysteine thiol (or, more properly, thiolate anion [R-S-]). Recent Advances: Emerging evidence suggests that S-nitrosylation occurs predominantly via transnitros(yl)ation. Mechanistically, the reaction involves thiolate anion, as a nucleophile, performing a reversible nucleophilic attack on a nitroso nitrogen to form an SNO-protein adduct. Prior studies identified transnitrosylation reactions between glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-nuclear proteins, thioredoxin-caspase-3, and X-linked inhibitor of apoptosis (XIAP)-caspase-3. Recently, we discovered that enzymes previously thought to act in completely disparate biochemical pathways can transnitrosylate one another during inflammaging in an unexpected manner to mediate neurodegeneration. Accordingly, we reported a concerted tricomponent transnitrosylation network from Uch-L1-to-Cdk5-to-Drp1 that mediates synaptic damage in Alzheimer's disease. Critical Issues: Transnitrosylation represents a critical chemical mechanism for transduction of redox-mediated events to distinct subsets of proteins. Although thousands of thiol-containing proteins undergo S-nitrosylation, how transnitrosylation regulates a myriad of neuronal attributes is just now being uncovered. In this review, we highlight recent progress in the study of the chemical biology of transnitrosylation between proteins as a mechanism of disease. Future Directions: We discuss future areas of study of protein transnitrosylation that link our understanding of aging, inflammation, and neurodegenerative diseases. Antioxid. Redox Signal. 35, 531-550.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Chang-Ki Oh
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Xu Zhang
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stuart A Lipton
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA.,Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
9
|
Yang L, Wang Y, Zhang C, Cheng H. Perampanel, an AMPAR antagonist, alleviates experimental intracerebral hemorrhage‑induced brain injury via necroptosis and neuroinflammation. Mol Med Rep 2021; 24:544. [PMID: 34080030 PMCID: PMC8185517 DOI: 10.3892/mmr.2021.12183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a subtype of stroke with high mortality and morbidity due to the lack of effective therapies. The alpha‑amino‑3‑hydroxy‑5‑methyl‑4‑isoxazolepropionic acid receptor antagonist perampanel has been reported to alleviate early brain injury following subarachnoid hemorrhage and traumatic brain injury by reducing reactive oxygen species, apoptosis, autophagy, and necroptosis. Necroptosis is a caspase‑independent programmed cell death mechanism that serves a vital role in neuronal cell death following ICH. However, the precise role of necroptosis in perampanel‑mediated neuroprotection following ICH has not been confirmed. The present study aimed to investigate the neuroprotective effects and potential molecular mechanisms of perampanel in ICH‑induced early brain injury by regulating neural necroptosis in C57BL/6 mice and in a hemin‑induced neuron damage cell culture model. Mortality, neurological score, brain water content, and neuronal death were evaluated. The results demonstrated that perampanel treatment increased the survival rate and neurological score, and increased neuron survival. In addition, perampanel treatment downregulated the protein expression levels of receptor interacting serine/threonine kinase (RIP) 1, RIP3, and mixed lineage kinase domain like pseudokinase, and of the cytokines IL‑1β, IL‑6, TNF‑α, and NF‑κB. These results indicated that perampanel‑mediated inhibition of necroptosis and neuroinflammation ameliorated neuronal death in vitro and in vivo following ICH. The neuroprotective capacity of perampanel was partly dependent on the PTEN pathway. Taken together, the results of the present study demonstrated that perampanel improved neurological outcomes in mice and reduced neuronal death by protecting against neural necroptosis and neuroinflammation.
Collapse
Affiliation(s)
- Lixiang Yang
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yue Wang
- Department of Neurosurgery, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi Clinical College of Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Can Zhang
- Department of Neurosurgery, The Second People's Hospital of Hefei, Hefei, Anhui 230011, P.R. China
| | - Huilin Cheng
- Department of Neurosurgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
10
|
Shikonin Attenuates Chronic Cerebral Hypoperfusion-Induced Cognitive Impairment by Inhibiting Apoptosis via PTEN/Akt/CREB/BDNF Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5564246. [PMID: 34211568 PMCID: PMC8205575 DOI: 10.1155/2021/5564246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022]
Abstract
Shikonin (SK) exerts neuroprotective effects; however, to date, its protective effect against chronic cerebral hypoperfusion- (CCH-) induced vascular dementia (VaD) has not been investigated. Therefore, the current study investigated whether SK could mitigate the cognitive deficits caused by CCH. The effects of SK treatment on the PTEN/Akt/CREB/BDNF signaling pathway and apoptosis in hippocampal neurons were examined in a rat model of VaD established via bilateral common carotid artery occlusion (BCCAO). Fifty-two rats were randomly divided into 4 groups: sham, vehicle, SK-L (10 mg/kg SK per day), and SK-H (25 mg/kg SK per day). SK was regularly administered by gavage for 2 weeks. The results of the water maze test revealed that the escape latency in the vehicle group was significantly longer than that in the sham group, and rats in the vehicle group spent a smaller proportion of time in the target quadrant than those in the sham group. SK treatment reduced the escape latencies and increased the proportion of time spent in the target quadrant. Nissl staining showed morphological damage in the CA1 areas of the hippocampus in the vehicle group. SK treatment alleviated the injuries to hippocampal neurons. Western blot analysis showed higher p-PTEN and lower p-Akt, p-CREB, and BDNF expression in the vehicle group than in the sham group. SK administration reversed the upregulation of p-PTEN and the downregulation of p-Akt, p-CREB, and BDNF. The number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling- (TUNEL-) positive cells in the hippocampal CA1 region of the vehicle group was significantly increased. Treatment with SK decreased the number of positive cells. Furthermore, as marker proteins of apoptosis, bcl-2 expression was decreased and bax expression was increased; thus, the ratio of bcl-2/bax was decreased in the vehicle group. SK treatment upregulated the expression of bcl-2 and downregulated the expression of bax, thereby elevating the bcl-2/bax ratio. Moreover, the aforementioned effects of SK were dose-dependent. The effect of 25 mg/kg per day was more obvious than that of 10 mg/kg per day. In conclusion, SK inhibited hippocampal neuronal apoptosis to protect against CCH-induced injury by regulating the PTEN/Akt/CREB/BDNF signaling pathway, consequently improving cognitive impairment.
Collapse
|
11
|
Pan Q, Liu Y, Wang G, Wen Z, Wang Y. MTMR14 protects against cerebral stroke through suppressing PTEN-regulated autophagy. Biochem Biophys Res Commun 2020; 529:1045-1052. [PMID: 32819563 DOI: 10.1016/j.bbrc.2020.06.096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
The phosphoinositide phosphatase, myotubularinrelated protein 14 (MTMR14), plays a critical role in the regulating autophagy. However, its functional contribution to neuronal autophagy is still unclear. In the present study, we attempted to explore the effects of MTMR14 on ischemic stroke progression, as well as the underlying molecular mechanisms. Oxygen-glucose deprivation/reoxygenation (OGDR)-induced primary cortical neurons and pheochromocytoma (PC12) cells, and middle cerebral artery occlusion (MCAO)-operated mice were used to establish cerebral ischemia/reperfusion (I/R) injury in vitro and in vivo, respectively. OGDR treatment markedly decreased the expression of MTMR14 expression from mRNA and protein levels in the cultured primary neurons and PC12 cells. Functional analysis showed that OGDR-reduced cell viability was further accelerated by MTMR14 knockdown. On the contrary, MTMR14 over-expression significantly rescued the cell survival in OGDR-exposed cells. Moreover, autophagic markers including LC3BII and Beclin 1 were highly up-regulated in OGDR-incubated neurons and PC12 cells, while being further exacerbated by MTMR14 deletion. However, promoting MTMR14 dramatically alleviated LC3BII and Beclin 1 expression levels stimulated by OGDR. Importantly, we found that MTMR14-regulated autophagy was through its interactions with phosphatase and tensin homolog (PTEN). MTMR14 negatively modulated PTEN protein expression levels in OGDR-exposed cells. In vivo, MCAO-operated mice exhibited significantly reduced expression of MTMR14 in the ischemic penumbra tissues. After MCAO operation, MTMR14 over-expression effectively reduced infarct volume and neurological deficits scores, along with decreased activation of LC3B in neurons. Consistently, MCAO-increased PTEN, LC3BII and Beclin 1 were repressed by MTMR14 in mice. An interaction between MTMR14 and PTEN in response to MCAO was confirmed in vivo. Together, these results indicated the neuroprotective effects of MTMR14 on modulating PTEN-dependent excessive autophagy during cerebral I/R injury. Thus, targeting MTMR14 may provide feasible therapy for ischemic stroke onset and progression.
Collapse
Affiliation(s)
- Qichen Pan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, PR China.
| | - Yuan Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, PR China
| | - Gang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, PR China
| | - Zhifeng Wen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, PR China
| | - Yiqun Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, PR China
| |
Collapse
|
12
|
Exercise ameliorates post-stroke depression by inhibiting PTEN elevation-mediated upregulation of TLR4/NF-κB/NLRP3 signaling in mice. Brain Res 2020; 1736:146777. [DOI: 10.1016/j.brainres.2020.146777] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
|
13
|
Cheng J, Tang JC, Pan MX, Chen SF, Zhao D, Zhang Y, Liao HB, Zhuang Y, Lei RX, Wang S, Liu AC, Chen J, Zhang ZH, Li HT, Wan Q, Chen QX. l-lysine confers neuroprotection by suppressing inflammatory response via microRNA-575/PTEN signaling after mouse intracerebral hemorrhage injury. Exp Neurol 2020; 327:113214. [DOI: 10.1016/j.expneurol.2020.113214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 10/25/2022]
|
14
|
Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, Xu K. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation 2020; 17:46. [PMID: 32014002 PMCID: PMC6998092 DOI: 10.1186/s12974-020-1725-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are suspected to exert neuroprotective effects in brain injury, in part through the secretion of extracellular vesicles like exosomes containing bioactive compounds. We now investigate the mechanism by which bone marrow MSCs (BMSCs)-derived exosomes harboring the small non-coding RNA miR-29b-3p protect against hypoxic-ischemic brain injury in rats. METHODS We established a rat model of middle cerebral artery occlusion (MCAO) and primary cortical neuron or brain microvascular endothelial cell (BMEC) models of oxygen and glucose deprivation (OGD). Exosomes were isolated from the culture medium of BMSCs. We treated the MCAO rats with BMSC-derived exosomes in vivo, and likewise the OGD-treated neurons and BMECs in vitro. We then measured apoptosis- and angiogenesis-related features using TUNEL and CD31 immunohistochemical staining and in vitro Matrigel angiogenesis assays. RESULTS The dual luciferase reporter gene assay showed that miR-29b-3p targeted the protein phosphatase and tensin homolog (PTEN). miR-29b-3p was downregulated and PTEN was upregulated in the brain of MCAO rats and in OGD-treated cultured neurons. MCAO rats and OGD-treated neurons showed promoted apoptosis and decreased angiogenesis, but overexpression of miR-29b-3p or silencing of PTEN could reverse these alterations. Furthermore, miR-29b-3p could negatively regulate PTEN and activate the Akt signaling pathway. BMSCs-derived exosomes also exerted protective effects against apoptosis of OGD neurons and cell apoptosis in the brain samples from MCAO rats, where we also observed promotion of angiogenesis. CONCLUSION BMSC-derived exosomal miR-29b-3p ameliorates ischemic brain injury by promoting angiogenesis and suppressing neuronal apoptosis, a finding which may be of great significance in the treatment of hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Guichen Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Jinchuan Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Baofeng Xu
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Yang Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Jinlu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China.
| | - Kan Xu
- Department of Neurosurgery, The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
15
|
Zhao D, Qin XP, Chen SF, Liao XY, Cheng J, Liu R, Lei Y, Zhang ZF, Wan Q. PTEN Inhibition Protects Against Experimental Intracerebral Hemorrhage-Induced Brain Injury Through PTEN/E2F1/β-Catenin Pathway. Front Mol Neurosci 2019; 12:281. [PMID: 31866820 PMCID: PMC6906195 DOI: 10.3389/fnmol.2019.00281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke with highest mortality and morbidity. We have previously demonstrated that dipotassium bisperoxo (picolinato) oxovanadate (V), (bpV[pic]) inhibits phosphatase and tensin homolog (PTEN) and activates extracellular signal-regulated kinase (ERK)1/2. In this study, we examined the effect of bpV[pic] in the rat ICH model in vivo and the hemin-induced injury model in rat cortical cultures. The rat model of ICH was created by injecting autologous blood into the striatum, and bpV[pic] was intraperitoneally injected. The effects of bpV[pic] were evaluated by neurological tests, Fluoro-Jade C (FJC) staining, and Nissl staining. We demonstrate that bpV[pic] attenuates ICH-induced brain injury in vivo and hemin-induced neuron injury in vitro. The expression of E2F1 was increased, but β-catenin expression was decreased after ICH, and the altered expressions of E2F1 and β-catenin after ICH were blocked by bpV[pic] treatment. Our results further show that bpV[pic] increases β-catenin expression through downregulating E2F1 in cortical neurons and prevents hemin-induced neuronal damage through E2F1 downregulation and subsequent upregulation of β-catenin. By testing the effect of PTEN-siRNA, PTEN cDNA, or combined use of ERK1/2 inhibitor and bpV[pic] in cultured cortical neurons after hemin-induced injury, we provide evidence suggesting that PTEN inhibition by bpV[pic] confers neuroprotection through E2F1 and β-catenin pathway, but the neuroprotective role of ERK1/2 activation by bpV[pic] cannot be excluded.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xing-Ping Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Song-Feng Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Xin-Yu Liao
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Jing Cheng
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Rui Liu
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Yang Lei
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Zhi-Feng Zhang
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Department of Neurosurgery of the Affiliated Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Baniasadi M, Manaheji H, Maghsoudi N, Danyali S, Zakeri Z, Maghsoudi A, Zaringhalam J. Microglial-induced apoptosis is potentially responsible for hyperalgesia variations during CFA-induced inflammation. Inflammopharmacology 2019; 28:475-485. [DOI: 10.1007/s10787-019-00623-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/23/2019] [Indexed: 12/19/2022]
|
17
|
Chen C, Zhang H, Xu H, Xue R, Zheng Y, Wu T, Lian Y. Harpagoside Rescues the Memory Impairments in Chronic Cerebral Hypoperfusion Rats by Inhibiting PTEN Activity. J Alzheimers Dis 2019; 63:445-455. [PMID: 29614669 DOI: 10.3233/jad-171170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Vascular dementia (VaD) is the second most common dementia worldwide. Unlike Alzheimer's disease, VaD does not yet have effective therapeutic drugs. Harpagoside is the most important component extracted from Harpagophytum procumbens, a traditional Chinese medicine that has been widely used. The neuroprotective effects of harpagoside have been studied in Aβ- and MPTP-induced neurotoxicity. However, whether harpagoside is protective against VaD is not clear. In this study, with the use of chronic cerebral hypoperfusion rats, a well-known VaD model, we demonstrated that chronic administration (two months) of harpagoside was able to restore both the spatial learning/memory and fear memory impairments. Importantly, the protective effects of harpagoside were not due to alterations in the physiological conditions, metabolic parameters, or locomotor abilities of the rats. Meanwhile, we found that harpagoside suppressed the overactivation of PTEN induced by CCH by enhancing PTEN phosphorylation. Furthermore, harpagoside elevated the activity of Akt and inhibited the activity of GSK-3β, downstream effectors of PTEN. Overall, our study suggested that harpagoside treatment might be a potential therapeutic drug targeting the cognitive impairments of VaD.
Collapse
Affiliation(s)
- Chen Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, People's Republic of China
| | - Haifeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, People's Republic of China
| | - Hongliang Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, People's Republic of China
| | - Rui Xue
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, People's Republic of China
| | - Yake Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, People's Republic of China
| | - Tianwen Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, People's Republic of China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, People's Republic of China
| |
Collapse
|
18
|
Liao XY, Lei Y, Chen SF, Cheng J, Zhao D, Zhang ZF, Han X, Zhang Y, Liao HB, Zhuang Y, Chen J, Zhou HB, Wan Q, Zou YY. The neuroprotective effect of bisperoxovandium (pyridin-2-squaramide) in intracerebral hemorrhage. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1957-1967. [PMID: 31354241 PMCID: PMC6585412 DOI: 10.2147/dddt.s204956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Background: The authors have recently designed a new compound bisperoxovandium (pyridin-2-squaramide) [bpV(pis)] and verified that bpV(pis) confers neuroprotection through suppressing PTEN and activating ERK1/2, respectively. Intracerebral hemorrhage (ICH) is the second most common cause of stroke and has severe clinical outcome. In this study, we investigate the effect of bpV(pis) in ICH model both in vivo and in vitro. Materials and methods: The novel drug bpV(pis) was synthesized in the Faculty of Pharmacy, Wuhan University School of Medicine. An ICH model was generated on both SD rats and cells. bpV(pis) was injected into intracerebroventricular or culture media. Western blotting was applied to test the signal pathway. To determine the effect of bpV(pis) on PTEN inhibition and ERK1/2 activation, we measured the phosphorylation level of AKT (a direct downstream target of PTEN that negatively regulates AKT) and ERK1/2. FJC, MTT, and LDH were applied to measure the cell viability. Neurobehavioral tests were performed to measure the effect of bpV(pis). Results: The in vivo results showed that intracerebroventricular administration of bpV(pis) significantly alleviates hematoma, the damage of brain–blood barrier and brain edema. The in vitro results demonstrated that bpV(pis) treatment reduces ICH-induced neuronal injury. Western blotting results identified that bpV(pis) exerts a neuroprotective effect by significantly increasing the phosphorylation level of AKT and ERK1/2 after experimental ICH. Neurobehavioral tests indicate that bpV(pis) promotes functional recovery in ICH animals. Conclusion: This study provides first and direct evidence for a potential role of bpV(pis) in ICH therapy.
Collapse
Affiliation(s)
- Xin-Yu Liao
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Yang Lei
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China
| | - Song-Feng Chen
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China
| | - Jing Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Dan Zhao
- Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, People's Republic of China
| | - Zhi-Feng Zhang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China
| | - Xin Han
- School of Pharmacy, Wuhan University, Wuhan 430071, People's Republic of China
| | - Ya Zhang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China
| | - Hua-Bao Liao
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China
| | - Yang Zhuang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan 430071, People's Republic of China
| | - Juan Chen
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science & Technology, Wuhan 430013, People's Republic of China
| | - Hai-Bing Zhou
- School of Pharmacy, Wuhan University, Wuhan 430071, People's Republic of China
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Collaborative Innovation Center for Brain Science, Department of Neurosurgery of the Affiliated Hospital, Qingdao University, Qingdao 266071, People's Republic of China
| | - Ying-Ying Zou
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| |
Collapse
|
19
|
Abstract
Polyphosphoinositides (PPIn) are essential signaling phospholipids that make remarkable contributions to the identity of all cellular membranes and signaling cascades in mammalian cells. They exert regulatory control over membrane homeostasis via selective interactions with cellular proteins at the membrane–cytoplasm interface. This review article briefly summarizes our current understanding of the key roles that PPIn play in orchestrating and regulating crucial electrical and chemical signaling events in mammalian neurons and the significant neuro-pathophysiological conditions that arise following alterations in their metabolism.
Collapse
Affiliation(s)
- Eamonn James Dickson
- Department Physiology and Membrane Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
20
|
Zhao D, Chen J, Zhang Y, Liao HB, Zhang ZF, Zhuang Y, Pan MX, Tang JC, Liu R, Lei Y, Wang S, Qin XP, Feng YG, Chen Y, Wan Q. Glycine confers neuroprotection through PTEN/AKT signal pathway in experimental intracerebral hemorrhage. Biochem Biophys Res Commun 2018; 501:85-91. [PMID: 29698679 DOI: 10.1016/j.bbrc.2018.04.171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/21/2018] [Indexed: 01/12/2023]
Abstract
Glycine has been shown to protect against ischemic stroke through various mechanisms. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) which antagonize Akt-dependent cell survival has been linked to neuronal damage. However, whether glycine has a neuroprotective property in intracerebral hemorrhage (ICH) was unknown. This study aimed to determine the protective effect of glycine in rats ICH. Adult male Sprague-Dawley (SD) rats were subjected to left striatum infusion of autologous blood. ICH animals received glycine (0.2-3 mg/kg, icv) at 1 h after ICH with or without pre-injection of Akt Inhibitor IV (100 μM, 2 μl, icv) 0.5 h prior to glycine treatment. Our results showed that in the perihematomal area PTEN was up-regulated in the early stage after ICH. However, glycine treatment decreased PTEN protein level and increased the phosphorylation level of AKT (p-AKT) in the perihematomal area. With the administration of glycine, neuronal death was significantly reduced and Evans blue leakage was alleviated as well as the brain edema after ICH. Moreover, hematoma volume was decreased and neurobehavioral outcome was improved. Nevertheless, Akt Inhibitor IV abolished the neuroprotective effects of glycine after ICH. Together, our findings demonstrate, for the first time, the protective role of glycine on ICH rats, and suggest that the neuroprotective effect of glycine was mediated through PTEN/Akt signal pathway.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China; Department of Biomedical Engineering, School of Basic Medical Sciences, WuhanUniversity, Wuhan 430071, China; Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei, 442000 China
| | - Juan Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China; Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science & Technology, 26 Shengli Street, Wuhan, 430013, China
| | - Ya Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Hua-Bao Liao
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Zhi-Feng Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China; Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, 30 South Renmin Road, Shiyan, Hubei, 442000 China
| | - Yang Zhuang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Meng-Xian Pan
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Jun-Chun Tang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Rui Liu
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Yang Lei
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Shu Wang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Xing-Ping Qin
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan 430071, China
| | - Yu-Gong Feng
- Institute of Neuroregeneration& Neurorehabilitation, Department of Neurosurgery of the Affiliated Hospital, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Yun Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, WuhanUniversity, Wuhan 430071, China.
| | - Qi Wan
- Institute of Neuroregeneration& Neurorehabilitation, Department of Neurosurgery of the Affiliated Hospital, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China.
| |
Collapse
|
21
|
Carvajal FJ, Mira RG, Rovegno M, Minniti AN, Cerpa W. Age-related NMDA signaling alterations in SOD2 deficient mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2010-2020. [PMID: 29577983 DOI: 10.1016/j.bbadis.2018.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/23/2022]
Abstract
Oxidative stress affects the survival and function of neurons. Hence, they have a complex and highly regulated machinery to handle oxidative changes. The dysregulation of this antioxidant machinery is associated with a wide range of neurodegenerative conditions. Therefore, we evaluated signaling alterations, synaptic properties and behavioral performance in 2 and 6-month-old heterozygous manganese superoxide dismutase knockout mice (SOD2+/- mice). We found that their low antioxidant capacity generated direct oxidative damage in proteins, lipids, and DNA. However, only 6-month-old heterozygous knockout mice presented behavioral impairments. On the other hand, synaptic plasticity, synaptic strength and NMDA receptor (NMDAR) dependent postsynaptic potentials were decreased in an age-dependent manner. We also analyzed the phosphorylation state of the NMDAR subunit GluN2B. We found that while the levels of GluN2B phosphorylated on tyrosine 1472 (synaptic form) remain unchanged, we detected increased levels of GluN2B phosphorylated on tyrosine 1336 (extrasynaptic form), establishing alterations in the synaptic/extrasynaptic ratio of GluN2B. Additionally, we found increased levels of two phosphatases associated with dephosphorylation of p-1472: striatal-enriched protein tyrosine phosphatase (STEP) and phosphatase and tensin homolog deleted on chromosome Ten (PTEN). Moreover, we found decreased levels of p-CREB, a master transcription factor activated by synaptic stimulation. In summary, we describe mechanisms by which glutamatergic synapses are altered under oxidative stress conditions. Our results uncovered new putative therapeutic targets for conditions where NMDAR downstream signaling is altered. This work also contributes to our understanding of processes such as synapse formation, learning, and memory in neuropathological conditions.
Collapse
Affiliation(s)
- Francisco J Carvajal
- Laboratorio de Función y Patología Neuronal, Santiago, Chile; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo G Mira
- Laboratorio de Función y Patología Neuronal, Santiago, Chile; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alicia N Minniti
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Santiago, Chile; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
22
|
Zhang ZF, Chen J, Han X, Zhang Y, Liao HB, Lei RX, Zhuang Y, Wang ZF, Li Z, Chen JC, Liao WJ, Zhou HB, Liu F, Wan Q. Bisperoxovandium (pyridin-2-squaramide) targets both PTEN and ERK1/2 to confer neuroprotection. Br J Pharmacol 2017; 174:641-656. [PMID: 28127755 DOI: 10.1111/bph.13727] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE We and others have shown that inhibiting phosphatase and tensin homolog deleted on chromosome 10 (PTEN) or activating ERK1/2 confer neuroprotection. As bisperoxovanadium compounds are well-established inhibitors of PTEN, we designed bisperoxovandium (pyridin-2-squaramide) [bpV(pis)] and determined whether and how bpV(pis) exerts a neuroprotective effect in cerebral ischaemia-reperfusion injury. EXPERIMENTAL APPROACH Malachite green-based phosphatase assay was used to measure PTEN activity. A western blot assay was used to measure the phosphorylation level of Akt and ERK1/2 (p-Akt and p-ERK1/2). Oxygen-glucose deprivation (OGD) was used to injure cultured cortical neurons. Cell death and viability were assessed by LDH and MTT assays. To verify the effects of bpV(pis) in vivo, Sprague-Dawley rats were subjected to middle cerebral artery occlusion, and brain infarct volume was measured and neurological function tests performed. KEY RESULTS bpV(pis) inhibited PTEN activity and increased p-Akt in SH-SY5Y cells but not in PTEN-deleted U251 cells. bpV(pis) also elevated p-ERK1/2 in both SH-SY5Y and U251 cells. These data indicate that bpV(pis) enhances Akt activation through PTEN inhibition but increases ERK1/2 activation independently of PTEN signalling. bpV(pis) prevented OGD-induced neuronal death in vitro and reduced brain infarct volume and promoted functional recovery in stroke animals. This neuroprotective effect of bpV(pis) was blocked by inhibiting Akt and/or ERK1/2. CONCLUSIONS AND IMPLICATIONS bpV(pis) confers neuroprotection in OGD-induced injury in vitro and in cerebral ischaemia in vivo by suppressing PTEN and activating ERK1/2. Thus, bpV(pis) is a bi-target neuroprotectant that may be developed as a drug candidate for stroke treatment.
Collapse
Affiliation(s)
- Zhi-Feng Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China.,Department of Physiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Juan Chen
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China.,Department of Neurology, the Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Xin Han
- School of Pharmacy, Wuhan University, Wuhan, China
| | - Ya Zhang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Hua-Bao Liao
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Rui-Xue Lei
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Yang Zhuang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Ze-Fen Wang
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China
| | - Zhiqiang Li
- Brain Centre, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| | - Jin-Cao Chen
- Brain Centre, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| | - Wei-Jing Liao
- Brain Centre, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| | | | - Fang Liu
- Campbell Research Institute, Centre for Addiction and Mental Health, and Departments of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Qi Wan
- Department of Physiology, Collaborative Innovation Center for Brain Science, School of Basic Medical Sciences, Wuhan University School of Medicine, Wuhan, China.,Brain Centre, Zhongnan Hospital, Wuhan University School of Medicine, Wuhan, China
| |
Collapse
|
23
|
Association between TLR4 and PTEN Involved in LPS-TLR4 Signaling Response. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6083178. [PMID: 27563672 PMCID: PMC4985570 DOI: 10.1155/2016/6083178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/17/2016] [Accepted: 06/20/2016] [Indexed: 01/23/2023]
Abstract
In this study, we explored the potential mechanisms of how PTEN regulating LPS induced TLR4 signaling pathway. The initial findings from ELISA demonstrate that PTEN influences TNF-α secretion by its lipid phosphatase activity. Subsequently, western blot, immunoprecipitation assay, and immunofluorescence were performed to explore the activation process of PTEN by stimulation with LPS. As early as 20 minutes after LPS stimulation, reduced phosphorylation of PTEN was found obviously. Accordingly, the whole cell-scattered PTEN translocated towards the cell membrane 20 minutes after stimulating with LPS. Moreover, the weak physical association between PTEN and TLR4 in resting RAW264.7 cells increased gradually after the stimulation of LPS. Furthermore, our study showed PTEN decreased LPS-induced Akt activity and upregulated NF-κB-dependent gene transcription, identifying indirectly that the PTEN could regulate the activation of NF-κB by its downstream Akt kinase. In summary, our study illustrates the potential signal transduction process of PTEN while stimulated by LPS: by increasing the association of TLR4, PTEN recruits to its phosphoinositide substrate PI(3,4,5)P3 located on the cell membrane and exerts its dephosphorylated function and subsequently depresses the activity of downstream molecule Akt and results in activation of NF-κB, followed by the secretion of inflammatory mediators TNF-α.
Collapse
|
24
|
Kim SR. Control of Granule Cell Dispersion by Natural Materials Such as Eugenol and Naringin: A Potential Therapeutic Strategy Against Temporal Lobe Epilepsy. J Med Food 2016; 19:730-6. [PMID: 27404051 DOI: 10.1089/jmf.2016.3712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The hippocampus is an important brain area where abnormal morphological characteristics are often observed in patients with temporal lobe epilepsy (TLE), typically showing the loss of the principal neurons in the CA1 and CA3 areas of the hippocampus. TLE is frequently associated with widening of the granule cell layer of the dentate gyrus (DG), termed granule cell dispersion (GCD), in the hippocampus, suggesting that the control of GCD with protection of hippocampal neurons may be useful for preventing and inhibiting epileptic seizures. We previously reported that eugenol (EUG), which is an essential component of medicinal herbs and has anticonvulsant activity, is beneficial for treating epilepsy through its ability to inhibit GCD via suppression of mammalian target of rapamycin complex 1 (mTORC1) activation in the hippocampal DG in a kainic acid (KA)-treated mouse model of epilepsy in vivo. In addition, we reported that naringin, a bioflavonoid in citrus fruits, could exert beneficial effects, such as antiautophagic stress and antineuroinflammation, in the KA mouse model of epilepsy, even though it was unclear whether naringin might also attenuate the seizure-induced morphological changes of GCD in the DG. Similar to the effects of EUG, we recently observed that naringin treatment significantly reduced KA-induced GCD and mTORC1 activation, which are both involved in epileptic seizures, in the hippocampus of mouse brain. Therefore, these observations suggest that the utilization of natural materials, which have beneficial properties such as inhibition of GCD formation and protection of hippocampal neurons, may be useful in developing a novel therapeutic agent against TLE.
Collapse
Affiliation(s)
- Sang Ryong Kim
- 1 School of Life Sciences, Kyungpook National University , Daegu, Korea.,2 BK21 plus KNU Creative BioResearch Group, Kyungpook National University , Daegu, Korea.,3 Brain Science and Engineering Institute, Kyungpook National University , Daegu, Korea
| |
Collapse
|
25
|
Chen J, Zhuang Y, Zhang ZF, Wang S, Jin P, He C, Hu PC, Wang ZF, Li ZQ, Xia GM, Li G, Wang Y, Wan Q. Glycine confers neuroprotection through microRNA-301a/PTEN signaling. Mol Brain 2016; 9:59. [PMID: 27230112 PMCID: PMC4880874 DOI: 10.1186/s13041-016-0241-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/17/2016] [Indexed: 12/22/2022] Open
Abstract
Background Glycine is known to protect against neuronal death. However, the underlying mechanism remains to be elucidated. The microRNA-301a is involved in both biological and pathological processes. But it is not known whether microRNA-301a has a neuroprotective property. In this study, we aimed to determine whether glycine-induced neuroprotection requires microRNA-301a-dependent signaling. Results We provided the first evidence that glycine increased the expression of microRNA-301a in cultured rat cortical neurons and protected against cortical neuronal death through up-regulation of microRNA-301a after oxygen-glucose deprivation. MicroRNA-301a directly bound the predicted 3′UTR target sites of PTEN and reduced PTEN expression in cortical neurons. We revealed that PTEN down-regulation by microRNA-301a mediated glycine-induced neuroprotective effect following oxygen-glucose deprivation. Conclusions Our results suggest that 1) microRNA-301a is neuroprotective in oxygen-glucose deprivation-induced neuronal injury; 2) glycine is an upstream regulator of microRNA-301a; 3) glycine confers neuroprotection through microRNA-301a/PTEN signal pathway.
Collapse
Affiliation(s)
- Juan Chen
- Department of Physiology, School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, 185 Donghu Street, Wuhan, 430071, China.,Department of Neurology, the Central Hospital of Wuhan, Wuhan, 430060, China
| | - Yang Zhuang
- Department of Physiology, School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, 185 Donghu Street, Wuhan, 430071, China
| | - Zhi-Feng Zhang
- Department of Physiology, School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, 185 Donghu Street, Wuhan, 430071, China
| | - Shu Wang
- Department of Physiology, School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, 185 Donghu Street, Wuhan, 430071, China
| | - Ping Jin
- Department of Neurology, the Central Hospital of Wuhan, Wuhan, 430060, China
| | - Chunjiang He
- Department of Genetics, School of Basic Medical Sciences, Wuhan University School of Medicine, 185 Donghu Street, Wuhan, 430071, China
| | - Peng-Chao Hu
- Department of Physiology, School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, 185 Donghu Street, Wuhan, 430071, China
| | - Ze-Fen Wang
- Department of Physiology, School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, 185 Donghu Street, Wuhan, 430071, China
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University School of Medicine, 169 Donghu Street, Wuhan, 430071, China
| | - Guang-Ming Xia
- Department of Neurology, the Central Hospital of Huanggang, Huanggang, 438000, China
| | - Gang Li
- Department of Neurology, the Central Hospital of Huanggang, Huanggang, 438000, China
| | - Yuan Wang
- Department of Physiology, School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, 185 Donghu Street, Wuhan, 430071, China
| | - Qi Wan
- Department of Physiology, School of Basic Medical Sciences, Medical Research Institute, Wuhan University School of Medicine, 185 Donghu Street, Wuhan, 430071, China. .,Department of Neurosurgery, Zhongnan Hospital, Wuhan University School of Medicine, 169 Donghu Street, Wuhan, 430071, China.
| |
Collapse
|
26
|
Pulido R. PTEN: a yin-yang master regulator protein in health and disease. Methods 2016; 77-78:3-10. [PMID: 25843297 DOI: 10.1016/j.ymeth.2015.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 01/16/2023] Open
Abstract
The PTEN gene is a tumor suppressor gene frequently mutated in human tumors, which encodes a ubiquitous protein whose major activity is to act as a lipid phosphatase that counteracts the action of the oncogenic PI3K. In addition, PTEN displays protein phosphatase- and catalytically-independent activities. The physiologic control of PTEN function, and its inactivation in cancer and other human diseases, including some neurodevelopmental disorders, is upon the action of multiple regulatory mechanisms. This provides a wide spectrum of potential therapeutic approaches to reconstitute PTEN activity. By contrast, inhibition of PTEN function may be beneficial in a different group of human diseases, such as type 2 diabetes or neuroregeneration-related pathologies. This makes PTEN a functionally dual yin-yang protein with high potential in the clinics. Here, a brief overview on PTEN and its relation with human disease is presented.
Collapse
Affiliation(s)
- Rafael Pulido
- BioCruces Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
27
|
Kun-Rodrigues C, Ganos C, Guerreiro R, Schneider SA, Schulte C, Lesage S, Darwent L, Holmans P, Singleton A, Bhatia K, Bras J. A systematic screening to identify de novo mutations causing sporadic early-onset Parkinson's disease. Hum Mol Genet 2015; 24:6711-20. [PMID: 26362251 PMCID: PMC4634375 DOI: 10.1093/hmg/ddv376] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/08/2015] [Indexed: 12/13/2022] Open
Abstract
Despite the many advances in our understanding of the genetic basis of Mendelian forms of Parkinson's disease (PD), a large number of early-onset cases still remain to be explained. Many of these cases, present with a form of disease that is identical to that underlined by genetic causes, but do not have mutations in any of the currently known disease-causing genes. Here, we hypothesized that de novo mutations may account for a proportion of these early-onset, sporadic cases. We performed exome sequencing in full parent–child trios where the proband presents with typical PD to unequivocally identify de novo mutations. This approach allows us to test all genes in the genome in an unbiased manner. We have identified and confirmed 20 coding de novo mutations in 21 trios. We have used publicly available population genetic data to compare variant frequencies and our independent in-house dataset of exome sequencing in PD (with over 1200 cases) to identify additional variants in the same genes. Of the genes identified to carry de novo mutations, PTEN, VAPB and ASNA1 are supported by various sources of data to be involved in PD. We show that these genes are reported to be within a protein–protein interaction network with PD genes and that they contain additional rare, case-specific, mutations in our independent cohort of PD cases. Our results support the involvement of these three genes in PD and suggest that testing for de novo mutations in sporadic disease may aid in the identification of novel disease-causing genes.
Collapse
Affiliation(s)
- Celia Kun-Rodrigues
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, UK
| | - Christos Ganos
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg 20246, Germany, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Rita Guerreiro
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, UK
| | - Susanne A Schneider
- Department of Neurology, University Hospital Schleswig Holstein, Campus Kiel 24105, Germany
| | - Claudia Schulte
- German Center for Neurodegenerative Diseases, Tübingen, Germany, Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Suzanne Lesage
- INSERM U M27, Pitié-Salpêtrière Hospital, Brain and Spinal Cord Institute (ICM), Paris 75013, France
| | - Lee Darwent
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, UK
| | - Peter Holmans
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK and
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institutes on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kailash Bhatia
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jose Bras
- Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3AR, UK,
| |
Collapse
|
28
|
Stavarache MA, Musatov S, McGill M, Vernov M, Kaplitt MG. The tumor suppressor PTEN regulates motor responses to striatal dopamine in normal and Parkinsonian animals. Neurobiol Dis 2015; 82:487-494. [PMID: 26232589 DOI: 10.1016/j.nbd.2015.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/03/2023] Open
Abstract
Phosphatase and Tensin homolog deleted on chromosome 10 (PTEN) is a dual lipid-protein phosphatase known primarily as a growth preventing tumor suppressor. PTEN is also expressed in neurons, and pathways modulated by PTEN can influence neuronal function. Here we report a novel function of PTEN as a regulator of striatal dopamine signaling in a model of Parkinson's disease (PD). Blocking PTEN expression with an adeno-associated virus (AAV) vector expressing a small hairpin RNA (shRNA) resulted in reduced responses of cultured striatal neurons to dopamine, which appeared to be largely due to reduction in D2 receptor activation. Co-expression of shRNA-resistant wild-type and mutant forms of PTEN indicated that the lipid-phosphatase activity was essential for this effect. In both normal and Parkinsonian rats, inhibition of striatal PTEN in vivo resulted in motor dysfunction and impaired responses to dopamine, particularly D2 receptor agonists. Expression of PTEN mutants confirmed the lipid-phosphatase activity as critical, while co-expression of a dominant-negative form of Akt overcame the PTEN shRNA effect. These results identify PTEN as a key mediator of striatal responses to dopamine, and suggest that drugs designed to potentiate PTEN expression or activity, such as cancer chemotherapeutics, may also be useful for improving striatal responses to dopamine in conditions of dopamine depletion such as PD. This also suggests that strategies which increase Akt or decrease PTEN expression or function, such as growth factors to prevent neuronal death, may have a paradoxical effect on neurological functioning by inhibiting striatal responses to dopamine.
Collapse
Affiliation(s)
- Mihaela A Stavarache
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Sergei Musatov
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Marlon McGill
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mary Vernov
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michael G Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
29
|
Caillet-Saguy C, Maisonneuve P, Delhommel F, Terrien E, Babault N, Lafon M, Cordier F, Wolff N. Strategies to interfere with PDZ-mediated interactions in neurons: What we can learn from the rabies virus. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:53-9. [PMID: 25748547 DOI: 10.1016/j.pbiomolbio.2015.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 11/29/2022]
Abstract
PDZ (PSD-95/Dlg/ZO-1) domains play a major role in neuronal homeostasis in which they act as scaffold domains regulating cellular trafficking, self-association and catalytic activity of essential proteins such as kinases and phosphatases. Because of their central role in cell signaling, cellular PDZ-containing proteins are preferential targets of viruses to hijack cellular function to their advantage. Here, we describe how the viral G protein of the rabies virus specifically targets the PDZ domain of neuronal enzymes during viral infection. By disrupting the complexes formed by cellular enzymes and their ligands, the virus triggers drastic effect on cell signaling and commitment of the cell to either survival (virulent strains) or death (vaccinal strains). We provide structural and biological evidences that the viral proteins act as competitors endowed with specificity and affinity in an essential cellular process by mimicking PDZ binding motif of cellular partners. Disruption of critical endogenous protein-protein interactions by viral protein drastically alters intracellular protein trafficking and catalytic activity of cellular proteins that control cell homeostasis. This work opens up many perspectives to mimic viral sequences and developing innovative therapies to manipulate cellular homeostasis.
Collapse
Affiliation(s)
- Célia Caillet-Saguy
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Pierre Maisonneuve
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Florent Delhommel
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France; Université Pierre et Marie Curie, Cellule Pasteur UPMC, rue du Docteur Roux, 75015 Paris, France
| | - Elouan Terrien
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Nicolas Babault
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Monique Lafon
- Unité de Neuroimmunologie Virale, Département de Virologie, Institut Pasteur, Paris, France
| | - Florence Cordier
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Nicolas Wolff
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France.
| |
Collapse
|
30
|
Administration of a PTEN inhibitor BPV(pic) attenuates early brain injury via modulating AMPA receptor subunits after subarachnoid hemorrhage in rats. Neurosci Lett 2015; 588:131-6. [PMID: 25575796 DOI: 10.1016/j.neulet.2015.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 12/31/2014] [Accepted: 01/03/2015] [Indexed: 01/08/2023]
Abstract
The aim of this study was to investigate whether the phosphatase and tensin homolog deleted on chromosome ten (PTEN) inhibitor dipotassium bisperoxo(pyridine-2-carboxyl) oxovanadate (BPV(pic)) attenuates early brain injury by modulating α-amino-3-hydroxy-5-methyl-4-isoxa-zolep-propionate (AMPA) receptor subunits after subarachnoid hemorrhage (SAH). A standard intravascular perforation model was used to produce the experimental SAH in Sprague-Dawley rats. BPV(pic) treatment (0.2mg/kg) was evaluated for effects on neurological score, brain water content, Evans blue extravasation, hippocampal neuronal death and AMPA receptor subunits alterations after SAH. We found that BPV(pic) is effective in attenuating BBB disruption, lowering edema, reducing hippocampal neural death and improving neurological outcomes. In addition, the AMPA receptor subunit GluR1 protein expression at cytomembrane was downregulated, whereas the expression of GluR2 and GluR3 was upregulated after BPV(pic) treatment. Our results suggest that PTEN inhibited by BPV(pic) plays a neuroprotective role in SAH pathophysiology, possibly by alterations in glutamate AMPA receptor subunits.
Collapse
|
31
|
In vivo AAV1 transduction with hRheb(S16H) protects hippocampal neurons by BDNF production. Mol Ther 2014; 23:445-55. [PMID: 25502903 DOI: 10.1038/mt.2014.241] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 12/06/2014] [Indexed: 01/08/2023] Open
Abstract
Recent evidence has shown that Ras homolog enriched in brain (Rheb) is dysregulated in Alzheimer's disease (AD) brains. However, it is still unclear whether Rheb activation contributes to the survival and protection of hippocampal neurons in the adult brain. To assess the effects of active Rheb in hippocampal neurons in vivo, we transfected neurons in the cornu ammonis 1 (CA1) region in normal adult rats with an adeno-associated virus containing the constitutively active human Rheb (hRheb(S16H)) and evaluated the effects on thrombin-induced neurotoxicity. Transduction with hRheb(S16H) significantly induced neurotrophic effects in hippocampal neurons through activation of mammalian target of rapamycin complex 1 (mTORC1) without side effects such as long-term potentiation impairment and seizures from the alteration of cytoarchitecture, and the expression of hRheb(S16H) prevented thrombin-induced neurodegeneration in vivo, an effect that was diminished by treatment with specific neutralizing antibodies against brain-derived neurotrophic factor (BDNF). In addition, our results showed that the basal mTORC1 activity might be insufficient to mediate the level of BDNF expression, but hRheb(S16H)-activated mTORC1 stimulated BDNF production in hippocampal neurons. These results suggest that viral vector transduction with hRheb(S16H) may have therapeutic value in the treatment of neurodegenerative diseases such as AD.
Collapse
|
32
|
Jeon MT, Kim SR. Roles of Rheb(S16H) in substantia nigra pars compacta dopaminergic neurons in vivo. Biomed Rep 2014; 3:137-140. [PMID: 25798236 DOI: 10.3892/br.2014.397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/01/2014] [Indexed: 11/06/2022] Open
Abstract
Although there are ongoing intensive research efforts, no effective pharmacological therapies for Parkinson's disease (PD) have been developed thus far. However, with the development of efficient gene delivery systems, gene therapy for PD has become a focus of research and increasing evidence suggests that continuous production of neurotrophic factors play a significant role in the functional restoration of the nigrostriatal dopaminergic (DA) system. Our recent study reported that the transduction of DA neurons with ras homolog enriched in brain, which has an S16H mutation [Rheb(S16H)], protected the nigrostriatal DA projection in a neurotoxin model of PD in vivo. In addition, Rheb(S16H) expression significantly increased the levels of glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor, which contributed to the neuroprotective effects of Rheb(S16H) in DA neurons in the adult brain, indicating that the activation of the signaling pathways involved in cell survival by a specific gene delivery, such as Rheb(S16H) to adult neurons, may be a useful strategy to protect neural systems in the adult brain. In the present study, a brief overview of our recent studies is provided, which demonstrates the neuroprotective mechanisms of Rheb(S16H) on the nigrostriatal DA projection in the adult brain.
Collapse
Affiliation(s)
- Min-Tae Jeon
- School of Life Sciences, Kyungpook National University, Daegu 700-842, Republic of Korea ; BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 700-842, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu 700-842, Republic of Korea ; BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 700-842, Republic of Korea ; Institute of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701, Republic of Korea ; Brain Science and Engineering Institute, Kyungpook National University, Daegu 700-842, Republic of Korea
| |
Collapse
|
33
|
Wei Y, Stec B, Redfield AG, Weerapana E, Roberts MF. Phospholipid-binding sites of phosphatase and tensin homolog (PTEN): exploring the mechanism of phosphatidylinositol 4,5-bisphosphate activation. J Biol Chem 2014; 290:1592-606. [PMID: 25429968 DOI: 10.1074/jbc.m114.588590] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipid phosphatase activity of the tumor suppressor phosphatase and tensin homolog (PTEN) is enhanced by the presence of its biological product, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This enhancement is suggested to occur via the product binding to the N-terminal region of the protein. PTEN effects on short-chain phosphoinositide (31)P linewidths and on the full field dependence of the spin-lattice relaxation rate (measured by high resolution field cycling (31)P NMR using spin-labeled protein) are combined with enzyme kinetics with the same short-chain phospholipids to characterize where PI(4,5)P2 binds on the protein. The results are used to model a discrete site for a PI(4,5)P2 molecule close to, but distinct from, the active site of PTEN. This PI(4,5)P2 site uses Arg-47 and Lys-13 as phosphate ligands, explaining why PTEN R47G and K13E can no longer be activated by that phosphoinositide. Placing a PI(4,5)P2 near the substrate site allows for proper orientation of the enzyme on interfaces and should facilitate processive catalysis.
Collapse
Affiliation(s)
- Yang Wei
- From the Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467 and
| | - Boguslaw Stec
- From the Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467 and
| | - Alfred G Redfield
- the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454
| | - Eranthie Weerapana
- From the Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467 and
| | - Mary F Roberts
- From the Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467 and
| |
Collapse
|
34
|
Is Cytoplasmic PTEN a Specific Target for Neuronal Survival? Mol Neurobiol 2014; 52:1758-1764. [DOI: 10.1007/s12035-014-8922-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/30/2014] [Indexed: 01/16/2023]
|
35
|
Xu W, Xin C, Lin Q, Ding F, Gong W, Zhou Y, Yu J, Cui P, Hu S. Adolescent mouse takes on an active transcriptomic expression during postnatal cerebral development. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:111-9. [PMID: 24953867 PMCID: PMC4411375 DOI: 10.1016/j.gpb.2014.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/15/2022]
Abstract
Postnatal cerebral development is a complicated biological process precisely controlled by multiple genes. To understand the molecular mechanism of cerebral development, we compared dynamics of mouse cerebrum transcriptome through three developmental stages using high-throughput RNA-seq technique. Three libraries were generated from the mouse cerebrum at infancy, adolescence and adulthood, respectively. Consequently, 44,557,729 (infancy), 59,257,530 (adolescence) and 72,729,636 (adulthood) reads were produced, which were assembled into 15,344, 16,048 and 15,775 genes, respectively. We found that the overall gene expression level increased from infancy to adolescence and decreased later on upon reaching adulthood. The adolescence cerebrum has the most active gene expression, with expression of a large number of regulatory genes up-regulated and some crucial pathways activated. Transcription factor (TF) analysis suggested the similar dynamics as expression profiling, especially those TFs functioning in neurogenesis differentiation, oligodendrocyte lineage determination and circadian rhythm regulation. Moreover, our data revealed a drastic increase in myelin basic protein (MBP)-coding gene expression in adolescence and adulthood, suggesting that the brain myelin may be generated since mouse adolescence. In addition, differential gene expression analysis indicated the activation of rhythmic pathway, suggesting the function of rhythmic movement since adolescence; Furthermore, during infancy and adolescence periods, gene expression related to axon repulsion and attraction showed the opposite trends, indicating that axon repulsion was activated after birth, while axon attraction might be activated at the embryonic stage and declined during the postnatal development. Our results from the present study may shed light on the molecular mechanism underlying the postnatal development of the mammalian cerebrum.
Collapse
Affiliation(s)
- Wei Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengqi Xin
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Lin
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Ding
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Gong
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Zhou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Cui
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
36
|
Jung UJ, Leem E, Kim SR. Naringin: a protector of the nigrostriatal dopaminergic projection. Exp Neurobiol 2014; 23:124-9. [PMID: 24963276 PMCID: PMC4065825 DOI: 10.5607/en.2014.23.2.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 01/15/2023] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disorder characterized by the progressive degeneration of dopaminergic neurons and a biochemical reduction of striatal dopamine levels. Despite the lack of fully understanding of the etiology of Parkinson's disease, accumulating evidences suggest that Parkinson's disease may be caused by the insufficient support of neurotrophic factors, and by microglial activation, resident immune cells in the brain. Naringin, a major flavonone glycoside in grapefruits and citrus fruits, is considered as a protective agent against neurodegenerative diseases because it can induce not only anti-oxidant effects but also neuroprotective effects by the activation of anti-apoptotic pathways and the induction of neurotrophic factors such as brain-derived neurotrophic factor and vascular endothelial growth factor. We have recently reported that naringin has neuroprotective effects in a neurotoxin model of Parkinson's disease. Our observations show that intraperitoneal injection of naringin induces increases in glial cell line-derived neurotrophic factor expression and mammalian target of rapamycin complex 1 activity in dopaminergic neurons of rat brains with anti-inflammatory effects. Moreover, the production of glial cell line-derived neurotrophic factor by naringin treatment contributes to the protection of the nigrostriatal dopaminergic projection in a neurotoxin model of Parkinson's disease. Although the effects of naringin on the nigrostriatal dopaminergic system in human brains are largely unknown, these results suggest that naringin may be a beneficial natural product for the prevention of dopaminergic degeneration in the adult brain.
Collapse
Affiliation(s)
- Un Ju Jung
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea
| | - Eunju Leem
- School of Life Sciences, Kyungpook National University, Daegu 702-701, Korea. ; BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu 702-701, Korea. ; BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Korea. ; Institute of Life Science & Biotechnology, Kyungpook National University, Daegu 702-701, Korea. ; Brain Science and Engineering Institute, Kyungpook National University, Daegu 700-842, Korea
| |
Collapse
|
37
|
Goh CP, Putz U, Howitt J, Low LH, Gunnersen J, Bye N, Morganti-Kossmann C, Tan SS. Nuclear trafficking of Pten after brain injury leads to neuron survival not death. Exp Neurol 2013; 252:37-46. [PMID: 24275527 DOI: 10.1016/j.expneurol.2013.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/29/2013] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
Abstract
There is controversy whether accumulation of the tumor suppressor PTEN protein in the cell nucleus under stress conditions such as trauma and stroke causes cell death. A number of in vitro studies have reported enhanced apoptosis in neurons possessing nuclear PTEN, with the interpretation that its nuclear phosphatase activity leads to reduction of the survival protein phospho-Akt. However, there have been no in vivo studies to show that nuclear PTEN in neurons under stress is detrimental. Using a mouse model of injury, we demonstrate here that brain trauma altered the nucleo-cytoplasmic distribution of Pten, resulting in increased nuclear Pten but only in surviving neurons near the lesion. This event was driven by Ndfip1, an adaptor and activator of protein ubiquitination by Nedd4 E3 ligases. Neurons next to the lesion with nuclear PTEN were invariably negative for TUNEL, a marker for cell death. These neurons also showed increased Ndfip1 which we previously showed to be associated with neuron survival. Biochemical assays revealed that overall levels of Pten in the affected cortex were unchanged after trauma, suggesting that Pten abundance globally had not increased but rather Pten subcellular location in affected neurons had changed. Following experimental injury, the number of neurons with nuclear Pten was reduced in heterozygous mice (Ndfip1(+/-)) although lesion volumes were increased. We conclude that nuclear trafficking of Pten following injury leads to neuron survival not death.
Collapse
Affiliation(s)
- Choo-Peng Goh
- Brain Development and Regeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Ulrich Putz
- Brain Development and Regeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Jason Howitt
- Brain Development and Regeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Ley-Hian Low
- Brain Development and Regeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Jenny Gunnersen
- Brain Development and Regeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Nicole Bye
- National Trauma Research Institute, Alfred Hospital, Monash University, Australia
| | | | - Seong-Seng Tan
- Brain Development and Regeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
38
|
Zheng M, Liao M, Cui T, Tian H, Fan DS, Wan Q. Regulation of nuclear TDP-43 by NR2A-containing NMDA receptors and PTEN. J Cell Sci 2013; 125:1556-67. [PMID: 22526419 DOI: 10.1242/jcs.095729] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The dysfunction of TAR DNA-binding protein-43 (TDP-43) is implicated in neurodegenerative diseases. However, the function of TDP-43 is not fully elucidated. Here we show that the protein level of endogenous TDP-43 in the nucleus is increased in mouse cortical neurons in the early stages, but return to basal level in the later stages after glutamate accumulation-induced injury. The elevation of TDP-43 results from a downregulation of phosphatase and tensin homolog (PTEN). We further demonstrate that activation of NR2A-containing NMDA receptors (NR2ARs) leads to PTEN downregulation and subsequent reduction of PTEN import from the cytoplasm to the nucleus after glutamate accumulation. The decrease of PTEN in the nucleus contributes to its reduced association with TDP-43, and thereby mediates the elevation of nuclear TDP-43. We provide evidence that the elevation of nuclear TDP-43, mediated by NR2AR activation and PTEN downregulation, confers protection against cortical neuronal death in the late stages after glutamate accumulation. Thus, this study reveals a NR2AR-PTEN-TDP-43 signaling pathway by which nuclear TDP-43 promotes neuronal survival. These results suggest that upregulation of nuclear TDP-43 represents a self-protection mechanism to delay neurodegeneration in the early stages after glutamate accumulation and that prolonging the upregulation process of nuclear TDP-43 might have therapeutic significance.
Collapse
Affiliation(s)
- Mei Zheng
- Department of Neurology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | | | | | | | | | | |
Collapse
|
39
|
Bartlett TE, Wang YT. The intersections of NMDAR-dependent synaptic plasticity and cell survival. Neuropharmacology 2013; 74:59-68. [PMID: 23357336 DOI: 10.1016/j.neuropharm.2013.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/09/2013] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
Abstract
The discovery of a requirement for N-methyl d-aspartate receptor (NMDAR) activation in long-term potentiation (LTP) set off an explosion of interest in the mechanisms of NMDAR-dependent synaptic plasticity. Meanwhile other research has advanced our understanding of how NMDAR activation regulates neuronal death and survival. Surprisingly, there have been few attempts to correlate these important areas of research. Here we review current knowledge of the various mechanisms of NMDAR-dependent synaptic plasticity that are shared with neuronal survival and death, while drawing comparisons with the proneurotrophin/neurotrophin receptor and intracellular signaling systems. Our conclusion is that NMDAR-dependent LTP and long-term depression (LTD) share many common mechanisms with cell survival and cell death, respectively. The intersections of plasticity and cell survival may represent novel avenues for neuroprotection. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'.
Collapse
Affiliation(s)
- Thomas E Bartlett
- Brain Research Centre, Room F270, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | | |
Collapse
|
40
|
Zhang Y, Granholm AC, Huh K, Shan L, Diaz-Ruiz O, Malik N, Olson L, Hoffer BJ, Lupica CR, Hoffman AF, Bäckman CM. PTEN deletion enhances survival, neurite outgrowth and function of dopamine neuron grafts to MitoPark mice. Brain 2012; 135:2736-49. [PMID: 22961549 PMCID: PMC3437026 DOI: 10.1093/brain/aws196] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Clinical trials in Parkinson’s disease have shown that transplants of embryonic mesencephalic dopamine neurons form new functional connections within the host striatum, but the therapeutic benefits have been highly variable. One obstacle has been poor survival and integration of grafted dopamine neurons. Activation of Akt, a serine/threonine kinase that promotes cell survival and growth, increases the ability of neurons to survive after injury and to regenerate lost neuronal connections. Because the lipid phosphatase, phosphatase and tensin homolog (PTEN) inhibits Akt, we generated a mouse with conditional knock-out of PTEN in dopamine neurons, leading to constitutive expression of Akt in these neurons. Ventral mesencephalic tissue from dopamine phosphatase and tensin homologue knock-out or control animals was then transplanted bilaterally into the dopamine depleted striata of MitoPark mice that express a parkinsonian phenotype because of severe respiratory chain dysfunction in dopamine neurons. After transplantation into MitoPark mice, PTEN-deficient dopamine neurons were less susceptible to cell death, and exhibited a more extensive pattern of fibre outgrowth compared to control grafts. Voltammetric measurements demonstrated that dopamine release and reuptake were significantly increased in the striata of animals receiving dopamine PTEN knock-out transplants. These animals also displayed enhanced spontaneous and drug-induced locomotor activity, relative to control transplanted MitoPark mice. Our results suggest that disinhibition of the Akt-signalling pathway may provide a valuable strategy to enhance survival, function and integration of grafted dopamine neurons within the host striatum and, more generally, to improve survival and integration of different forms of neural grafts.
Collapse
Affiliation(s)
- YaJun Zhang
- Integrative Neuroscience Branch, National Institute on Drug Abuse Intramural Research Programme, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen Z, Chen B, Xu W, Liu R, Yang J, Yu C. Effects of PTEN inhibition on regulation of tau phosphorylation in an okadaic acid‐induced neurodegeneration model. Int J Dev Neurosci 2012; 30:411-9. [DOI: 10.1016/j.ijdevneu.2012.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/18/2012] [Accepted: 08/01/2012] [Indexed: 01/24/2023] Open
Affiliation(s)
- Zhou Chen
- Department of PharmacologyCollege of Pharmacy, 88 Jiao‐Tong RoadFujian Medical UniversityFuzhou350004FujianPR China
| | - Bin Chen
- Department of PharmacologyCollege of Pharmacy, 88 Jiao‐Tong RoadFujian Medical UniversityFuzhou350004FujianPR China
| | - Wen‐Fang Xu
- Department of PharmacologyCollege of Pharmacy, 88 Jiao‐Tong RoadFujian Medical UniversityFuzhou350004FujianPR China
| | - Rong‐Fang Liu
- Department of PharmacologyCollege of Pharmacy, 88 Jiao‐Tong RoadFujian Medical UniversityFuzhou350004FujianPR China
| | - Jian Yang
- Department of PharmacologyCollege of Pharmacy, 88 Jiao‐Tong RoadFujian Medical UniversityFuzhou350004FujianPR China
| | - Chang‐Xi Yu
- Department of PharmacologyCollege of Pharmacy, 88 Jiao‐Tong RoadFujian Medical UniversityFuzhou350004FujianPR China
| |
Collapse
|
42
|
Zhang X, Piccini A, Myers M, Van Aelst L, Tonks N. Functional analysis of the protein phosphatase activity of PTEN. Biochem J 2012; 444:457-64. [PMID: 22413754 PMCID: PMC3365644 DOI: 10.1042/bj20120098] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/22/2012] [Accepted: 03/13/2012] [Indexed: 01/03/2023]
Abstract
In vitro, the tumour suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) displays intrinsic phosphatase activity towards both protein and lipid substrates. In vivo, the lipid phosphatase activity of PTEN, through which it dephosphorylates the 3 position in the inositol sugar of phosphatidylinositol derivatives, is important for its tumour suppressor function; however, the significance of its protein phosphatase activity remains unclear. Using two-photon laser-scanning microscopy and biolistic gene delivery of GFP (green fluorescent protein)-tagged constructs into organotypic hippocampal slice cultures, we have developed an assay of PTEN function in living tissue. Using this bioassay, we have demonstrated that overexpression of wild-type PTEN led to a decrease in spine density in neurons. Furthermore, it was the protein phosphatase activity, but not the lipid phosphatase activity, of PTEN that was essential for this effect. The ability of PTEN to decrease neuronal spine density depended upon the phosphorylation status of serine and threonine residues in its C-terminal segment and the integrity of the C-terminal PDZ-binding motif. The present study reveals a new aspect of the function of this important tumour suppressor and suggest that, in addition to dephosphorylating the 3 position in phosphatidylinositol phospholipids, the critical protein substrate of PTEN may be PTEN itself.
Collapse
Affiliation(s)
| | - Antonella Piccini
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, U.S.A
| | - Michael P. Myers
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, U.S.A
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, U.S.A
| | - Nicholas K. Tonks
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, U.S.A
| |
Collapse
|
43
|
Kazdoba TM, Sunnen CN, Crowell B, Lee GH, Anderson AE, D'Arcangelo G. Development and characterization of NEX- Pten, a novel forebrain excitatory neuron-specific knockout mouse. Dev Neurosci 2012; 34:198-209. [PMID: 22572802 DOI: 10.1159/000337229] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/13/2012] [Indexed: 01/15/2023] Open
Abstract
The phosphatase and tensin homolog located on chromosome 10 (PTEN) suppresses the activity of the phosphoinositide-3-kinase/Akt/mammalian target of rapamycin (mTOR) pathway, a signaling cascade critically involved in the regulation of cell proliferation and growth. Human patients carrying germ line PTEN mutations have an increased predisposition to tumors, and also display a variety of neurological symptoms and increased risk of epilepsy and autism, implicating PTEN in neuronal development and function. Consistently, loss of Pten in mouse neural cells results in ataxia, seizures, cognitive abnormalities, increased soma size and synaptic abnormalities. To better understand how Pten regulates the excitability of principal forebrain neurons, a factor that is likely to be altered in cognitive disorders, epilepsy and autism, we generated a novel conditional knockout mouse line (NEX-Pten) in which Cre, under the control of the NEX promoter, drives the deletion of Pten specifically in early postmitotic, excitatory neurons of the developing forebrain. Homozygous mutant mice exhibited a massive enlargement of the forebrain, and died shortly after birth due to excessive mTOR activation. Analysis of the neonatal cerebral cortex further identified molecular defects resulting from Pten deletion that likely affect several aspects of neuronal development and excitability.
Collapse
Affiliation(s)
- Tatiana M Kazdoba
- Department of Cell Biology and Neuroscience, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
44
|
Howitt J, Lackovic J, Low LH, Naguib A, Macintyre A, Goh CP, Callaway JK, Hammond V, Thomas T, Dixon M, Putz U, Silke J, Bartlett P, Yang B, Kumar S, Trotman LC, Tan SS. Ndfip1 regulates nuclear Pten import in vivo to promote neuronal survival following cerebral ischemia. ACTA ACUST UNITED AC 2012; 196:29-36. [PMID: 22213801 PMCID: PMC3255971 DOI: 10.1083/jcb.201105009] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PTEN nuclear entry driven by ubiquitination is mediated by the ligase-interacting protein Ndfip1 and is essential for neuronal survival in mice after cerebral ischemia. PTEN (phosphatase and tensin homologue deleted on chromosome TEN) is the major negative regulator of phosphatidylinositol 3-kinase signaling and has cell-specific functions including tumor suppression. Nuclear localization of PTEN is vital for tumor suppression; however, outside of cancer, the molecular and physiological events driving PTEN nuclear entry are unknown. In this paper, we demonstrate that cytoplasmic Pten was translocated into the nuclei of neurons after cerebral ischemia in mice. Critically, this transport event was dependent on a surge in the Nedd4 family–interacting protein 1 (Ndfip1), as neurons in Ndfip1-deficient mice failed to import Pten. Ndfip1 binds to Pten, resulting in enhanced ubiquitination by Nedd4 E3 ubiquitin ligases. In vitro, Ndfip1 overexpression increased the rate of Pten nuclear import detected by photobleaching experiments, whereas Ndfip1−/− fibroblasts showed negligible transport rates. In vivo, Ndfip1 mutant mice suffered larger infarct sizes associated with suppressed phosphorylated Akt activation. Our findings provide the first physiological example of when and why transient shuttling of nuclear Pten occurs and how this process is critical for neuron survival.
Collapse
Affiliation(s)
- Jason Howitt
- Brain Development and Regeneration Laboratory, Florey Neuroscience Institutes, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Davies EM, Sheffield DA, Tibarewal P, Fedele CG, Mitchell CA, Leslie NR. The PTEN and Myotubularin phosphoinositide 3-phosphatases: linking lipid signalling to human disease. Subcell Biochem 2012; 58:281-336. [PMID: 22403079 DOI: 10.1007/978-94-007-3012-0_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two classes of lipid phosphatases selectively dephosphorylate the 3 position of the inositol ring of phosphoinositide signaling molecules: the PTEN and the Myotubularin families. PTEN dephosphorylates PtdIns(3,4,5)P(3), acting in direct opposition to the Class I PI3K enzymes in the regulation of cell growth, proliferation and polarity and is an important tumor suppressor. Although there are several PTEN-related proteins encoded by the human genome, none of these appear to fulfill the same functions. In contrast, the Myotubularins dephosphorylate both PtdIns(3)P and PtdIns(3,5)P(2), making them antagonists of the Class II and Class III PI 3-kinases and regulators of membrane traffic. Both phosphatase groups were originally identified through their causal mutation in human disease. Mutations in specific myotubularins result in myotubular myopathy and Charcot-Marie-Tooth peripheral neuropathy; and loss of PTEN function through mutation and other mechanisms is evident in as many as a third of all human tumors. This chapter will discuss these two classes of phosphatases, covering what is known about their biochemistry, their functions at the cellular and whole body level and their influence on human health.
Collapse
Affiliation(s)
- Elizabeth M Davies
- Division of Cell Signalling and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, Scotland, United Kingdom,
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Synaptic transmission is amongst the most sophisticated and tightly controlled biological phenomena in higher eukaryotes. In the past few decades, tremendous progress has been made in our understanding of the molecular mechanisms underlying multiple facets of neurotransmission, both pre- and postsynaptically. Brought under the spotlight by pioneer studies in the areas of secretion and signal transduction, phosphoinositides and their metabolizing enzymes have been increasingly recognized as key protagonists in fundamental aspects of neurotransmission. Not surprisingly, dysregulation of phosphoinositide metabolism has also been implicated in synaptic malfunction associated with a variety of brain disorders. In the present chapter, we summarize current knowledge on the role of phosphoinositides at the neuronal synapse and highlight some of the outstanding questions in this research field.
Collapse
Affiliation(s)
- Samuel G Frere
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 West 168th Street, P&S 12-420C, 10032, New York, USA
| | | | | |
Collapse
|
47
|
Abstract
AbstractPTEN (phosphatase and tensin homologue deleted in chromosome 10) was first identified as a candidate tumour suppressor gene located on chromosome 10q23. It is considered as one of the most frequently mutated genes in human malignancies. Emerging evidence shows that the biological function of PTEN extends beyond its tumour suppressor activity. In the central nervous system PTEN is a crucial regulator of neuronal development, neuronal survival, axonal regeneration and synaptic plasticity. Furthermore, PTEN has been linked to the pathogenesis of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Recently increased attention has been focused on PTEN as a potential target for the treatment of brain injury and neurodegeneration. In this review we discuss the essential functions of PTEN in the central nervous system and its involvement in neurodegeneration.
Collapse
|
48
|
Shahani N, Sawa A. Protein S-nitrosylation: role for nitric oxide signaling in neuronal death. Biochim Biophys Acta Gen Subj 2011; 1820:736-42. [PMID: 21803124 DOI: 10.1016/j.bbagen.2011.07.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/21/2011] [Accepted: 07/13/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND One of the signaling mechanisms mediated by nitric oxide (NO) is through S-nitrosylation, the reversible redox-based modification of cysteine residues, on target proteins that regulate a myriad of physiological and pathophysiological processes. In particular, an increasing number of studies have identified important roles for S-nitrosylation in regulating cell death. SCOPE OF REVIEW The present review focuses on different targets and functional consequences associated with nitric oxide and protein S-nitrosylation during neuronal cell death. MAJOR CONCLUSIONS S-Nitrosylation exhibits double-edged effects dependent on the levels, spatiotemporal distribution, and origins of NO in the brain: in general Snitrosylation resulting from the basal low level of NO in cells exerts anti-cell death effects, whereas S-nitrosylation elicited by induced NO upon stressed conditions is implicated in pro-cell death effects. GENERAL SIGNIFICANCE Dysregulated protein S-nitrosylation is implicated in the pathogenesis of several diseases including degenerative diseases of the central nervous system (CNS). Elucidating specific targets of S-nitrosylation as well as their regulatory mechanisms may aid in the development of therapeutic intervention in a wide range of brain diseases.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|
49
|
Domanskyi A, Geiβler C, Vinnikov IA, Alter H, Schober A, Vogt MA, Gass P, Parlato R, Schütz G. Pten
ablation in adult dopaminergic neurons is neuroprotective in Parkinson's disease models. FASEB J 2011; 25:2898-910. [DOI: 10.1096/fj.11-181958] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andrii Domanskyi
- Division of Molecular Biology of the Cell IGerman Cancer Research CenterHeidelbergGermany
| | - Christin Geiβler
- Division of Molecular Biology of the Cell IGerman Cancer Research CenterHeidelbergGermany
| | - Ilya A. Vinnikov
- Division of Molecular Biology of the Cell IGerman Cancer Research CenterHeidelbergGermany
| | - Heike Alter
- Division of Molecular Biology of the Cell IGerman Cancer Research CenterHeidelbergGermany
| | - Andreas Schober
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology IIUniversity of FreiburgFreiburgGermany
| | - Miriam A. Vogt
- Central Institute of Mental HealthRG Animal Models in PsychiatryUniversity of HeidelbergMannheimGermany
| | - Peter Gass
- Central Institute of Mental HealthRG Animal Models in PsychiatryUniversity of HeidelbergMannheimGermany
| | - Rosanna Parlato
- Division of Molecular Biology of the Cell IGerman Cancer Research CenterHeidelbergGermany
| | - Günther Schütz
- Division of Molecular Biology of the Cell IGerman Cancer Research CenterHeidelbergGermany
| |
Collapse
|
50
|
In vivo contributions of BH3-only proteins to neuronal death following seizures, ischemia, and traumatic brain injury. J Cereb Blood Flow Metab 2011; 31:1196-210. [PMID: 21364604 PMCID: PMC3099642 DOI: 10.1038/jcbfm.2011.26] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Bcl-2 homology (BH) domain 3-only proteins are a proapoptotic subgroup of the Bcl-2 gene family, which regulate cell death via effects on mitochondria. The BH3-only proteins react to various cell stressors and promote cell death by binding and inactivating antiapoptotic Bcl-2 family members and direct activation of proapoptotic multi-BH domain proteins such as Bax. Here, we review the in vivo evidence for their involvement in the pathophysiology of status epilepticus and contrast it to ischemia and traumatic brain injury. Seizures in rodents activate three potent proapoptotic BH3-only proteins: Bid, Bim, and Puma. Analysis of damage after seizures in mice singly deficient for each BH3-only protein supports a causal role for Puma and to a lesser extent Bim but, surprisingly, not Bid. In ischemia and trauma, where core aspects of the pathophysiology of cell death overlap, multiple BH3-only proteins are also activated and Bid has been shown to be required for neuronal death. The findings suggest that while each neurologic insult activates multiple BH3-only proteins, there may be specificity in their functional contribution. Future challenges include evaluating the remaining BH3-only proteins, explaining different causal contributions, and, if possible, exploring neurologic outcomes in mouse models deficient for multiple BH3-only proteins.
Collapse
|