1
|
Abdullah NS, Bradaia A, Defaye M, Ohland C, Svendsen K, Dickemann A, Delanne-Cumenal M, Hassan A, Iftinca M, McCoy KD, Altier C. Early life microbiota colonization programs nociceptor sensitivity by regulating NGF production in mast cells. Mucosal Immunol 2025; 18:326-338. [PMID: 39662673 DOI: 10.1016/j.mucimm.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Recent evidence suggests that the gut microbiota can influence pain sensitivity, highlighting the potential for microbiota-targeted pain interventions. During early life, both the microbiota and nociceptors are fine-tuned and respond to environmental factors, however, little is known about how they interact with each other. Using germ-free and gnotobiotic models, we demonstrate that microbiota colonization controls nociceptor sensitivity, partly by modulating mast cell production of nerve growth factor (NGF). We report that germ-free mice respond less to thermal and capsaicin-induced stimulation, which correlates with reduced trafficking of TRPV1 to the cell membrane of nociceptors. In germ-free mice, mast cells express lower levels of NGF. Hyposensitivity to thermal and capsaicin-induced stimulation, reduced TRPV1 trafficking, and decreased NGF expression are reversed when mice are colonized at birth, but not when colonization occurs after weaning. Inhibition of mast cell degranulation and NGF signaling during the first weeks of life in colonized mice leads to a hyposensitive phenotype in adulthood, demonstrating a role for mast cells and NGF signaling in linking early life colonization with nociceptor sensitivity. These findings implicate the early life microbiota in shaping mast cell NGF production and nociceptor sensitivity later in life. SIGNIFICANCE STATEMENT: Nociceptors are specialized sensory neurons that detect and transduce painful stimuli. During the early postnatal period, nociceptors are influenced by sensory experiences and the environment. Our findings demonstrate that gut microbiota colonization is essential in setting the threshold of nociceptor responses to painful stimuli. We show that early-life bacterial colonization controls the production of nerve growth factor by mast cells, affecting our sensitivity to pain later in life. Our study highlights the potential for developing new pain treatments that target the gut microbiome.
Collapse
Affiliation(s)
- Nasser S Abdullah
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Inflammation Research Network, Snyder institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Amyaouch Bradaia
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Inflammation Research Network, Snyder institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Inflammation Research Network, Snyder institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Christina Ohland
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Inflammation Research Network, Snyder institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Kristofer Svendsen
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Inflammation Research Network, Snyder institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Anabel Dickemann
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Inflammation Research Network, Snyder institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Melissa Delanne-Cumenal
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Inflammation Research Network, Snyder institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Ahmed Hassan
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Inflammation Research Network, Snyder institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Mircea Iftinca
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Inflammation Research Network, Snyder institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Inflammation Research Network, Snyder institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Inflammation Research Network, Snyder institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N4N1, Canada.
| |
Collapse
|
2
|
Fatima SA, Akhtar B, Sharif A, Khan MI, Shahid M, Anjum F, Hussain F, Mobashar A, Ashraf M. Implications of nociceptor receptors and immune modulation: emerging therapeutic targets for autoimmune diseases. Inflammopharmacology 2025; 33:959-977. [PMID: 39955696 DOI: 10.1007/s10787-025-01653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Chronic painful autoimmune disorders such as multiple sclerosis (MS), inflammatory bowel disease (IBD), and rheumatoid arthritis (RA) induce significant discomfort. They are defined by persistent inflammation and immune-mediated tissue injury. The activation and sensitisation of nociceptors, mutated in various disorders, are fundamental components contributing to the pain experienced in these conditions. Recent discoveries indicate that immunological mediators and nociceptive receptors interact functionally within peripheral and central sensitisation pathways, amplifying chronic pain. This research examines the involvement of nociceptors in rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease. It explores how immune cells and pro-inflammatory cytokines induce, sensitise and regulate various nociceptive receptors (P2X, TRPA1 and TRPV1). Finally, we address possible future directions with respect to the treatment of long-lasting effects on immunity, and what new drug targets could be pursued as well, in order to counteract such either neuro-immune interactions in conditions involving the immunological system. By studying nociceptive mechanisms across autoimmune illnesses, we want to identify shared pathways and activation of nociceptors specific to individual diseases. This will shed insight on potential therapies for managing pain associated with autoimmune diseases.
Collapse
Affiliation(s)
- Syeda Asloob Fatima
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, Faculty of Health and Pharmaceutical Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Ali Sharif
- Department of Pharmacology, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Fozia Anjum
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Fatma Hussain
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Maham Ashraf
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
3
|
Zhang Y, Li T, Zhao H, Xiao X, Hu X, Wang B, Huang Y, Yin Z, Zhong Y, Li Y, Li J. High-sensitive sensory neurons exacerbate rosacea-like dermatitis in mice by activating γδ T cells directly. Nat Commun 2024; 15:7265. [PMID: 39179539 PMCID: PMC11344132 DOI: 10.1038/s41467-024-50970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/26/2024] [Indexed: 08/26/2024] Open
Abstract
Rosacea patients show facial hypersensitivity to stimulus factors (such as heat and capsaicin); however, the underlying mechanism of this hyperresponsiveness remains poorly defined. Here, we show capsaicin stimulation in mice induces exacerbated rosacea-like dermatitis but has no apparent effect on normal skin. Nociceptor ablation substantially reduces the hyperresponsiveness of rosacea-like dermatitis. Subsequently, we find that γδ T cells express Ramp1, the receptor of the neuropeptide CGRP, and are in close contact with these nociceptors in the skin. γδ T cells are significantly increased in rosacea skin lesions and can be further recruited and activated by neuron-secreted CGRP. Rosacea-like dermatitis is reduced in T cell receptor δ-deficient (Tcrd-/-) mice, and the nociceptor-mediated aggravation of rosacea-like dermatitis is also reduced in these mice. In vitro experiments show that CGRP induces IL17A secretion from γδ T cells by regulating inflammation-related and metabolism-related pathways. Finally, rimegepant, a CGRP receptor antagonist, shows efficacy in the treatment of rosacea-like dermatitis. In conclusion, our findings demonstrate a neuron-CGRP-γδT cell axis that contributes to the hyperresponsiveness of rosacea, thereby showing that targeting CGRP is a potentially effective therapeutic strategy for rosacea.
Collapse
MESH Headings
- Animals
- Rosacea/immunology
- Mice
- Calcitonin Gene-Related Peptide/metabolism
- Sensory Receptor Cells/metabolism
- Capsaicin/pharmacology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Skin/pathology
- Skin/immunology
- Skin/metabolism
- Interleukin-17/metabolism
- Interleukin-17/immunology
- Mice, Knockout
- Mice, Inbred C57BL
- Dermatitis/immunology
- Dermatitis/metabolism
- Dermatitis/pathology
- Disease Models, Animal
- Male
- Nociceptors/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Humans
- Receptors, Calcitonin Gene-Related Peptide/metabolism
Collapse
Affiliation(s)
- Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Tao Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Han Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Ximin Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxue Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Yun Zhong
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yangfan Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China.
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.
| |
Collapse
|
4
|
Bao C, Abraham SN. Mast cell-sensory neuron crosstalk in allergic diseases. J Allergy Clin Immunol 2024; 153:939-953. [PMID: 38373476 PMCID: PMC10999357 DOI: 10.1016/j.jaci.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Mast cells (MCs) are tissue-resident immune cells, well-positioned at the host-environment interface for detecting external antigens and playing a critical role in mobilizing innate and adaptive immune responses. Sensory neurons are afferent neurons innervating most areas of the body but especially in the periphery, where they sense external and internal signals and relay information to the brain. The significance of MC-sensory neuron communication is now increasingly becoming recognized, especially because both cell types are in close physical proximity at the host-environment interface and around major organs of the body and produce specific mediators that can activate each other. In this review, we explore the roles of MC-sensory neuron crosstalk in allergic diseases, shedding light on how activated MCs trigger sensory neurons to initiate signaling in pruritus, shock, and potentially abdominal pain in allergy, and how activated sensory neurons regulate MCs in homeostasis and atopic dermatitis associated with contact hypersensitivity and type 2 inflammation. Throughout the review, we also discuss how these 2 sentinel cell types signal each other, potentially resulting in a positive feedback loop that can sustain inflammation. Unraveling the mysteries of MC-sensory neuron crosstalk is likely to unveil their critical roles in various disease conditions and enable the development of new therapeutic approaches to combat these maladies.
Collapse
Affiliation(s)
- Chunjing Bao
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC; Department of Immunology, Duke University Medical Center, Durham, NC; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC; Department of Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Yeo E, Shim J, Oh SJ, Choi Y, Noh H, Kim H, Park JH, Lee KT, Kim SH, Lee D, Lee JH. Revisiting roles of mast cells and neural cells in keloid: exploring their connection to disease activity. Front Immunol 2024; 15:1339336. [PMID: 38524141 PMCID: PMC10957560 DOI: 10.3389/fimmu.2024.1339336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Background Mast cells (MCs) and neural cells (NCs) are important in a keloid microenvironment. They might contribute to fibrosis and pain sensation within the keloid. However, their involvement in pathological excessive scarring has not been adequately explored. Objectives To elucidate roles of MCs and NCs in keloid pathogenesis and their correlation with disease activity. Methods Keloid samples from chest and back regions were analyzed. Single-cell RNA sequencing (scRNA-seq) was conducted for six active keloids (AK) samples, four inactive keloids (IK) samples, and three mature scar (MS) samples from patients with keloids. Results The scRNA-seq analysis demonstrated notable enrichment of MCs, lymphocytes, and macrophages in AKs, which exhibited continuous growth at the excision site when compared to IK and MS samples (P = 0.042). Expression levels of marker genes associated with activated and degranulated MCs, including FCER1G, BTK, and GATA2, were specifically elevated in keloid lesions. Notably, MCs within AK lesions exhibited elevated expression of genes such as NTRK1, S1PR1, and S1PR2 associated with neuropeptide receptors. Neural progenitor cell and non-myelinating Schwann cell (nmSC) genes were highly expressed in keloids, whereas myelinating Schwann cell (mSC) genes were specific to MS samples. Conclusions scRNA-seq analyses of AK, IK, and MS samples unveiled substantial microenvironmental heterogeneity. Such heterogeneity might be linked to disease activity. These findings suggest the potential contribution of MCs and NCs to keloid pathogenesis. Histopathological and molecular features observed in AK and IK samples provide valuable insights into the mechanisms underlying pain and pruritus in keloid lesions.
Collapse
Affiliation(s)
- Eunhye Yeo
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Joonho Shim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se Jin Oh
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - YoungHwan Choi
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyungrye Noh
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Heeyeon Kim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji-Hye Park
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyeong-Tae Lee
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seok-Hyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dongyoun Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Hee Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Zhang H, Wang M, Zhao X, Wang Y, Chen X, Su J. Role of stress in skin diseases: A neuroendocrine-immune interaction view. Brain Behav Immun 2024; 116:286-302. [PMID: 38128623 DOI: 10.1016/j.bbi.2023.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/16/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Psychological stress is a crucial factor in the development of many skin diseases, and the stigma caused by skin disorders may further increase the psychological burden, forming a vicious cycle of psychological stress leading to skin diseases. Therefore, understanding the relationship between stress and skin diseases is necessary. The skin, as the vital interface with the external environment, possesses its own complex immune system, and the neuroendocrine system plays a central role in the stress response of the body. Stress-induced alterations in the immune system can also disrupt the delicate balance of immune cells and inflammatory mediators in the skin, leading to immune dysregulation and increased susceptibility to various skin diseases. Stress can also affect the skin barrier function, impair wound healing, and promote the release of pro-inflammatory cytokines, thereby exacerbating existing skin diseases such as psoriasis, atopic dermatitis, acne, and urticaria. In the present review, we explored the intricate relationship between stress and skin diseases from a neuroendocrine-immune interaction perspective. We explored the occurrence and development of skin diseases in the context of stress, the stress models for skin diseases, the impact of stress on skin function and diseases, and relevant epidemiological studies and clinical trials. Understanding the relationship between stress and skin diseases from a neuroendocrine-immune interaction perspective provides a comprehensive framework for targeted interventions and new insights into the diagnosis and treatment of skin diseases.
Collapse
Affiliation(s)
- Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Mi Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China; Department of Mental Health Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xue Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Yujie Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
| |
Collapse
|
7
|
Kumar V, Stewart JH. Immune Homeostasis: A Novel Example of Teamwork. Methods Mol Biol 2024; 2782:1-24. [PMID: 38622389 DOI: 10.1007/978-1-0716-3754-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
All living organisms must maintain homeostasis to survive, reproduce, and pass their traits on to the next generation. If homeostasis is not maintained, it can result in various diseases and ultimately lead to death. Physiologists have coined the term "homeostasis" to describe this process. With the emergence of immunology as a separate branch of medicine, the concept of immune homeostasis has been introduced. Maintaining immune homeostasis is crucial to support overall homeostasis through different immunological and non-immunological routes. Any changes in the immune system can lead to chronic inflammatory or autoimmune diseases, immunodeficiency diseases, frequent infections, and cancers. Ongoing scientific advances are exploring new avenues in immunology and immune homeostasis maintenance. This chapter introduces the concept of immune homeostasis and its maintenance through different mechanisms.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, GA, USA
| | - John H Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
8
|
Tauber M, Basso L, Martin J, Bostan L, Pinto MM, Thierry GR, Houmadi R, Serhan N, Loste A, Blériot C, Kamphuis JB, Grujic M, Kjellén L, Pejler G, Paul C, Dong X, Galli SJ, Reber LL, Ginhoux F, Bajenoff M, Gentek R, Gaudenzio N. Landscape of mast cell populations across organs in mice and humans. J Exp Med 2023; 220:e20230570. [PMID: 37462672 PMCID: PMC10354537 DOI: 10.1084/jem.20230570] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells that exhibit homeostatic and neuron-associated functions. Here, we combined whole-tissue imaging and single-cell RNA sequencing datasets to generate a pan-organ analysis of MCs in mice and humans at steady state. In mice, we identify two mutually exclusive MC populations, MrgprB2+ connective tissue-type MCs and MrgprB2neg mucosal-type MCs, with specific transcriptomic core signatures. While MrgprB2+ MCs develop in utero independently of the bone marrow, MrgprB2neg MCs develop after birth and are renewed by bone marrow progenitors. In humans, we unbiasedly identify seven MC subsets (MC1-7) distributed across 12 organs with different transcriptomic core signatures. MC1 are preferentially enriched in the bladder, MC2 in the lungs, and MC4, MC6, and MC7 in the skin. Conversely, MC3 and MC5 are shared by most organs but not skin. This comprehensive analysis offers valuable insights into the natural diversity of MC subtypes in both mice and humans.
Collapse
Affiliation(s)
- Marie Tauber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Lilian Basso
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Jeremy Martin
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Luciana Bostan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Marlene Magalhaes Pinto
- Centre for Inflammation Research and Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Guilhem R. Thierry
- Aix Marseille University, CNRS, INSERM, Centre d'immunologie de Marseille-Luminy, Marseille, France
| | - Raïssa Houmadi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Alexia Loste
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Camille Blériot
- Institut Necker des Enfants Malades, CNRS UMR8253, Paris, France
| | - Jasper B.J. Kamphuis
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Mirjana Grujic
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Carle Paul
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
- Toulouse University and Centre Hospitalier Universitaire, Toulouse, France
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Center for Sensory Biology, Johns Hopkins University, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen J. Galli
- Departments of Pathology and Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Laurent L. Reber
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM U1015, Gustave Roussy, Villejuif, France
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Marc Bajenoff
- Aix Marseille University, CNRS, INSERM, Centre d'immunologie de Marseille-Luminy, Marseille, France
| | - Rebecca Gentek
- Centre for Inflammation Research and Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERMUMR1291—CNRS UMR5051—University Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| |
Collapse
|
9
|
West PW, Tontini C, Atmoko H, Kiss O, Garner T, Bahri R, Warren RB, Griffiths CEM, Stevens A, Bulfone-Paus S. Human Mast Cells Upregulate Cathepsin B, a Novel Marker of Itch in Psoriasis. Cells 2023; 12:2177. [PMID: 37681909 PMCID: PMC10486964 DOI: 10.3390/cells12172177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Mast cells (MCs) contribute to skin inflammation. In psoriasis, the activation of cutaneous neuroimmune networks commonly leads to itch. To dissect the unique contribution of MCs to the cutaneous neuroinflammatory response in psoriasis, we examined their density, distribution, relation to nerve fibres and disease severity, and molecular signature by comparing RNA-seq analysis of MCs isolated from the skin of psoriasis patients and healthy volunteers. In involved psoriasis skin, MCs and Calcitonin Gene-Related Peptide (CGRP)-positive nerve fibres were spatially associated, and the increase of both MC and nerve fibre density correlated with disease severity. Gene set enrichment analysis of differentially expressed genes in involved psoriasis skin showed significant representation of neuron-related pathways (i.e., regulation of neuron projection along with dendrite and dendritic spine morphogenesis), indicating MC engagement in neuronal development and supporting the evidence of close MC-nerve fibre interaction. Furthermore, the analysis of 208 identified itch-associated genes revealed that CTSB, TLR4, and TACR1 were upregulated in MCs in involved skin. In both whole-skin published datasets and isolated MCs, CTSB was found to be a reliable indicator of the psoriasis condition. Furthermore, cathepsin B+ cells were increased in psoriasis skin and cathepsin B+ MC density correlated with disease severity. Therefore, our study provides evidence that cathepsin B could serve as a common indicator of the MC-dependent itch signature in psoriasis.
Collapse
Affiliation(s)
- Peter W. West
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (P.W.W.); (C.T.); (O.K.); (R.B.); (R.B.W.); (C.E.M.G.)
| | - Chiara Tontini
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (P.W.W.); (C.T.); (O.K.); (R.B.); (R.B.W.); (C.E.M.G.)
| | - Haris Atmoko
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (P.W.W.); (C.T.); (O.K.); (R.B.); (R.B.W.); (C.E.M.G.)
| | - Orsolya Kiss
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (P.W.W.); (C.T.); (O.K.); (R.B.); (R.B.W.); (C.E.M.G.)
| | - Terence Garner
- Division of Developmental Biology and Medicine, Manchester Institute for Collaborative Research on Ageing, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M23 9LT, UK; (T.G.); (A.S.)
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (P.W.W.); (C.T.); (O.K.); (R.B.); (R.B.W.); (C.E.M.G.)
| | - Richard B. Warren
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (P.W.W.); (C.T.); (O.K.); (R.B.); (R.B.W.); (C.E.M.G.)
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
| | - Christopher E. M. Griffiths
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (P.W.W.); (C.T.); (O.K.); (R.B.); (R.B.W.); (C.E.M.G.)
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
| | - Adam Stevens
- Division of Developmental Biology and Medicine, Manchester Institute for Collaborative Research on Ageing, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M23 9LT, UK; (T.G.); (A.S.)
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (P.W.W.); (C.T.); (O.K.); (R.B.); (R.B.W.); (C.E.M.G.)
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M23 9LT, UK
| |
Collapse
|
10
|
Feuillet V, Ugolini S, Reynders A. Differential regulation of cutaneous immunity by sensory neuron subsets. Trends Neurosci 2023:S0166-2236(23)00128-5. [PMID: 37277277 DOI: 10.1016/j.tins.2023.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023]
Abstract
The nervous and immune systems have classically been studied as separate entities, but there is now mounting evidence for bidirectional communication between them in various organs, including the skin. The skin is an epithelial tissue with important sensory and immune functions. The skin is highly innervated with specialized subclasses of primary sensory neurons (PSNs) that can be in contact with skin-resident innate and adaptive immune cells. Neuroimmune crosstalk in the skin, through interactions of PSNs with the immune system, has been shown to regulate host cutaneous defense, inflammation, and tissue repair. Here, we review current knowledge about the cellular and molecular mechanisms involved in this crosstalk, as depicted via mouse model studies. We highlight the ways in which different immune challenges engage specialized subsets of PSNs to produce mediators acting on immune cell subsets and modulating their function.
Collapse
Affiliation(s)
- Vincent Feuillet
- Aix-Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Sophie Ugolini
- Aix-Marseille Université, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Ana Reynders
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Marseille, France
| |
Collapse
|
11
|
Hanč P, Messou MA, Wang Y, von Andrian UH. Control of myeloid cell functions by nociceptors. Front Immunol 2023; 14:1127571. [PMID: 37006298 PMCID: PMC10064072 DOI: 10.3389/fimmu.2023.1127571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
The immune system has evolved to protect the host from infectious agents, parasites, and tumor growth, and to ensure the maintenance of homeostasis. Similarly, the primary function of the somatosensory branch of the peripheral nervous system is to collect and interpret sensory information about the environment, allowing the organism to react to or avoid situations that could otherwise have deleterious effects. Consequently, a teleological argument can be made that it is of advantage for the two systems to cooperate and form an “integrated defense system” that benefits from the unique strengths of both subsystems. Indeed, nociceptors, sensory neurons that detect noxious stimuli and elicit the sensation of pain or itch, exhibit potent immunomodulatory capabilities. Depending on the context and the cellular identity of their communication partners, nociceptors can play both pro- or anti-inflammatory roles, promote tissue repair or aggravate inflammatory damage, improve resistance to pathogens or impair their clearance. In light of such variability, it is not surprising that the full extent of interactions between nociceptors and the immune system remains to be established. Nonetheless, the field of peripheral neuroimmunology is advancing at a rapid pace, and general rules that appear to govern the outcomes of such neuroimmune interactions are beginning to emerge. Thus, in this review, we summarize our current understanding of the interaction between nociceptors and, specifically, the myeloid cells of the innate immune system, while pointing out some of the outstanding questions and unresolved controversies in the field. We focus on such interactions within the densely innervated barrier tissues, which can serve as points of entry for infectious agents and, where known, highlight the molecular mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Pavel Hanč
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: Pavel Hanč, ; Ulrich H. von Andrian,
| | - Marie-Angèle Messou
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Yidi Wang
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Ulrich H. von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA, United States
- The Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- *Correspondence: Pavel Hanč, ; Ulrich H. von Andrian,
| |
Collapse
|
12
|
Neuroimmunology and Allergic Disease. ALLERGIES 2022. [DOI: 10.3390/allergies2030008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The prevalence of allergic diseases is rising globally, inducing heavy quality of life and economic burdens. Allergic reactions are mediated by the complex bi-directional cross-talk between immune and nervous systems that we are only beginning to understand. Here, we discuss our current understanding of the molecular mechanisms of how this cross-talk occurs in the skin, gut, and lungs. An improved understanding of the communication between the immune and nervous system may lead to the development of novel therapies for allergic diseases.
Collapse
|
13
|
Tominaga M, Takamori K. Peripheral itch sensitization in atopic dermatitis. Allergol Int 2022; 71:265-277. [PMID: 35624035 DOI: 10.1016/j.alit.2022.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis is a skin disorder caused by skin dryness and barrier dysfunction, resulting in skin inflammation and chronic itch (or pruritus). The pathogenesis of atopic dermatitis is thought to be initiated by a lowering of the itch threshold due to dry skin. This lowering of the itch threshold is at least partially due to the increase in intraepidermal nerve fibers and sensitization of sensory nerves by interleukin (IL)-33 produced and secreted by keratinocytes. Such skin is easily prone to itch due to mechanical stimuli, such as rubbing of clothing and chemical stimuli from itch mediators. In patients with atopic dermatitis, once itch occurs, further itch is induced by scratching, and the associated scratching breaks down the skin barrier. Disruption of the skin barrier allows entry into the epidermis of external foreign substances, such as allergens derived from house dust mites, leading to an increased induction of type 2 inflammatory responses. As a result, type 2 cytokines IL-4, IL-13, and IL-31 are mainly secreted by Th2 cells, and their action on sensory nerve fibers causes further itch sensitization. These sequences of events are thought to occur simultaneously in patients with atopic dermatitis, leading to a vicious itch-scratch cycle. This vicious cycle becomes a negative spiral that leads to disease burden. Therefore, controlling itch is essential for the treatment of atopic dermatitis. In this review, we summarize and discuss advances in the mechanisms of peripheral itch sensitization in atopic dermatitis, focusing on skin barrier-neuro-immune triadic connectivity.
Collapse
|
14
|
Jin R, Luo L, Zheng J. The Trinity of Skin: Skin Homeostasis as a Neuro-Endocrine-Immune Organ. Life (Basel) 2022; 12:725. [PMID: 35629392 PMCID: PMC9144330 DOI: 10.3390/life12050725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
For a long time, skin was thought to be no more than the barrier of our body. However, in the last few decades, studies into the idea of skin as an independent functional organ have gradually deepened our understanding of skin and its functions. In this review, we gathered evidence that presented skin as a "trinity" of neuro-endocrine-immune function. From a neuro perspective, skin communicates through nerves and receptors, releasing neurotrophins and neuropeptides; from an endocrine perspective, skin is able to receive and secrete most hormones and has the cutaneous equivalent of the hypothalamic-pituitary-adrenal (HPA) axis; from an immune perspective, skin is protected not only by its physical barrier, but also immune cells and molecules, which can also cause inflammation. Together as an organ, skin works bidirectionally by operating peripheral neuro-endocrine-immune function and being regulated by the central nervous system, endocrine system and immune system at the same time, maintaining homeostasis. Additionally, to further explain the "trinity" of cutaneous neuro-endocrine-immune function and how it works in disease pathophysiology, a disease model of rosacea is presented.
Collapse
Affiliation(s)
- Rong Jin
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Lan Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Jie Zheng
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
15
|
Nikolenko VN, Shelomentseva EM, Tsvetkova MM, Abdeeva EI, Giller DB, Babayeva JV, Achkasov EE, Gavryushova LV, Sinelnikov MY. Nociceptors: Their Role in Body’s Defenses, Tissue Specific Variations and Anatomical Update. J Pain Res 2022; 15:867-877. [PMID: 35392632 PMCID: PMC8982820 DOI: 10.2147/jpr.s348324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/12/2022] [Indexed: 01/13/2023] Open
Abstract
The human body is constantly under the influence of numerous pathological factors: both external and internal. These factors can be potentially harmful and are perceived as such with a specialized nervous system subunit: the nociceptive system. The functional unit of the nociceptive system is the nociceptor. Recent studies have shown that nociceptors play a crucial role in maintaining of defensive homeostasis (responsive, immune, behavioral). Nociceptors respond to potentially harmful stimuli within viscera, bones, muscles, skin and specialized sensory organs. They function as complex predictors of harm through formation of pain stimulus. Their function and structures vary within different tissues. This variability reflects the anatomical and pathological peculiarities of varying tissues. Nociceptors play a significant role in adaptive, protective and behavioral reactions. Their functional capabilities and vast spread throughout the body make them the main units of the body’s defense system, allowing us to interact with the inner and outer environments.
Collapse
Affiliation(s)
- Vladimir N Nikolenko
- First Moscow State Medical University Named After I.M. Sechenov (Sechenov University), Moscow, 119991, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | | | - Elina I Abdeeva
- First Moscow State Medical University Named After I.M. Sechenov (Sechenov University), Moscow, 119991, Russia
| | - Dmitriy B Giller
- First Moscow State Medical University Named After I.M. Sechenov (Sechenov University), Moscow, 119991, Russia
| | - Juliya V Babayeva
- First Moscow State Medical University Named After I.M. Sechenov (Sechenov University), Moscow, 119991, Russia
| | - Evgeny E Achkasov
- First Moscow State Medical University Named After I.M. Sechenov (Sechenov University), Moscow, 119991, Russia
| | | | - Mikhail Y Sinelnikov
- First Moscow State Medical University Named After I.M. Sechenov (Sechenov University), Moscow, 119991, Russia
- Research Institute of Human Morphology, Moscow, 119901, Russian Federation
- Correspondence: Mikhail Y Sinelnikov, Sechenov University, Trubetskaya 8, Moscow, 119991, Russian Federation, Tel/Fax +7 89199688587, Email
| |
Collapse
|
16
|
Guo CJ, Grabinski NS, Liu Q. Peripheral Mechanisms of Itch. J Invest Dermatol 2021; 142:31-41. [PMID: 34838258 DOI: 10.1016/j.jid.2021.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022]
Abstract
Itch is a universally experienced sensation, and chronic itch can be as diabolically debilitating as pain. Recent advances have not only identified the neuronal itch sensing circuitry, but also have uncovered the intricate interactions between skin and immune cells that work together with neurons to identify itch-inducing irritants. In this review, we will summarize the fundamental mechanisms of acute itch detection in the skin, as well as highlight the recent discoveries relating to this topic.
Collapse
Affiliation(s)
- Changxiong J Guo
- Center for the Study of Itch & Sensory Disorders, Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Nathaniel S Grabinski
- Center for the Study of Itch & Sensory Disorders, Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Qin Liu
- Center for the Study of Itch & Sensory Disorders, Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
17
|
Misery L, Brenaut E, Pierre O, Le Garrec R, Gouin O, Lebonvallet N, Abasq-Thomas C, Talagas M, Le Gall-Ianotto C, Besner-Morin C, Fluhr JW, Leven C. Chronic itch: emerging treatments following new research concepts. Br J Pharmacol 2021; 178:4775-4791. [PMID: 34463358 DOI: 10.1111/bph.15672] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Until recently, itch pathophysiology was poorly understood and treatments were poorly effective in relieving itch. Current progress in our knowledge of the itch processing, the numerous mediators and receptors involved has led to a large variety of possible therapeutic pathways. Currently, inhibitors of IL-31, IL-4/13, NK1 receptors, opioids and cannabinoids, JAK, PDE4 or TRP are the main compounds involved in clinical trials. However, many new targets, such as Mas-related GPCRs and unexpected new pathways need to be also explored.
Collapse
Affiliation(s)
- Laurent Misery
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France
| | - Emilie Brenaut
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France
| | | | | | - Olivier Gouin
- LIEN, Univ Brest, Brest, France.,INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France.,University of Paris, Paris, France
| | | | - Claire Abasq-Thomas
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France
| | - Matthieu Talagas
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France
| | | | - Catherine Besner-Morin
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France.,Division of Dermatology, McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Joachim W Fluhr
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France.,Department of Dermatology, Charité Universitätsmedizin, Berlin, Germany
| | - Cyril Leven
- LIEN, Univ Brest, Brest, France.,EA3878, FCRIN INNOVTE, groupe d'étude thrombose Bretagne Occidentale, Brest, France.,Department of Biochemistry and Pharmaco-Toxicology, University Hospital of Brest, Brest, France
| |
Collapse
|
18
|
Roy S, Chompunud Na Ayudhya C, Thapaliya M, Deepak V, Ali H. Multifaceted MRGPRX2: New insight into the role of mast cells in health and disease. J Allergy Clin Immunol 2021; 148:293-308. [PMID: 33957166 PMCID: PMC8355064 DOI: 10.1016/j.jaci.2021.03.049] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Cutaneous mast cells (MCs) express Mas-related G protein-coupled receptor-X2 (MRGPRX2; mouse ortholog MrgprB2), which is activated by an ever-increasing number of cationic ligands. Antimicrobial host defense peptides (HDPs) generated by keratinocytes contribute to host defense likely by 2 mechanisms, one involving direct killing of microbes and the other via MC activation through MRGPRX2. However, its inappropriate activation may cause pseudoallergy and likely contribute to the pathogenesis of rosacea, atopic dermatitis, allergic contact dermatitis, urticaria, and mastocytosis. Gain- and loss-of-function missense single nucleotide polymorphisms in MRGPRX2 have been identified. The ability of certain ligands to serve as balanced or G protein-biased agonists has been defined. Small-molecule HDP mimetics that display both direct antimicrobial activity and activate MCs via MRGPRX2 have been developed. In addition, antibodies and reagents that modulate MRGPRX2 expression and signaling have been generated. In this article, we provide a comprehensive update on MrgprB2 and MRGPRX2 biology. We propose that harnessing MRGPRX2's host defense function by small-molecule HDP mimetics may provide a novel approach for the treatment of antibiotic-resistant cutaneous infections. In contrast, MRGPRX2-specific antibodies and inhibitors could be used for the modulation of allergic and inflammatory diseases that are mediated via this receptor.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Chalatip Chompunud Na Ayudhya
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Monica Thapaliya
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Vishwa Deepak
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Hydar Ali
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa.
| |
Collapse
|
19
|
Substance P Serves as a Balanced Agonist for MRGPRX2 and a Single Tyrosine Residue Is Required for β-Arrestin Recruitment and Receptor Internalization. Int J Mol Sci 2021; 22:ijms22105318. [PMID: 34070125 PMCID: PMC8158387 DOI: 10.3390/ijms22105318] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/13/2022] Open
Abstract
The neuropeptide substance P (SP) mediates neurogenic inflammation and pain and contributes to atopic dermatitis in mice through the activation of mast cells (MCs) via Mas-related G protein-coupled receptor (GPCR)-B2 (MrgprB2, human ortholog MRGPRX2). In addition to G proteins, certain MRGPRX2 agonists activate an additional signaling pathway that involves the recruitment of β-arrestins, which contributes to receptor internalization and desensitization (balanced agonists). We found that SP caused β-arrestin recruitment, MRGPRX2 internalization, and desensitization. These responses were independent of G proteins, indicating that SP serves as a balanced agonist for MRGPRX2. A tyrosine residue in the highly conserved NPxxY motif contributes to the activation and internalization of many GPCRs. We have previously shown that Tyr279 of MRGPRX2 is essential for G protein-mediated signaling and degranulation. To assess its role in β-arrestin-mediated MRGPRX2 regulation, we replaced Tyr279 in the NPxxY motif of MRGPRX2 with Ala (Y279A). Surprisingly, we found that, unlike the wild-type receptor, Y279A mutant of MRGPRX2 was resistant to SP-induced β-arrestin recruitment and internalization. This study reveals the novel findings that activation of MRGPRX2 by SP is regulated by β-arrestins and that a highly conserved tyrosine residue within MRGPRX2’s NPxxY motif contributes to both G protein- and β-arrestin-mediated responses.
Collapse
|
20
|
Gordon ES, Wagner LA, Kennedy JM. Challenge of diagnosing splenic torsion in a paediatric patient with gastroschisis. BMJ Case Rep 2021; 14:14/4/e239520. [PMID: 33883109 PMCID: PMC8061818 DOI: 10.1136/bcr-2020-239520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Gastroschisis is an uncommon congenital defect of the abdominal wall resulting in intestinal prolapse, most commonly associated with short gut syndrome or bowel obstruction. Wandering spleen, movement of the spleen due to the underdevelopment of splenic ligaments, has a prevalence of 0.25% and is asymptomatic in 15% of paediatric cases. An 11-year-old patient, admitted with a history of gastroschisis repaired at birth, presents with 18 months of intermittent, worsening abdominal pain. Imaging demonstrated splenomegaly and tortuosity of the splenic vein with abnormal positioning of the superior mesenteric artery and vein. The patient was found to have a wandering spleen with subacute splenic infarct secondary to splenic torsion, necessitating emergent surgical intervention. This patient experienced an extremely rare complication of gastroschisis that has not previously been reported. This complication is caused by a lack of appropriate abdominal fixation points for the spleen.
Collapse
Affiliation(s)
- Elliott S Gordon
- Department of Pediatrics, Mercer University School of Medicine, Macon, Georgia, USA
- Department of Pediatrics, Atrium Health Navicent Beverly Knight Olson Children's Hospital, Macon, Georgia, USA
| | - Lauren A Wagner
- Department of Pediatrics, Mercer University School of Medicine, Macon, Georgia, USA
- Department of Pediatrics, Atrium Health Navicent Beverly Knight Olson Children's Hospital, Macon, Georgia, USA
| | - Joanne M Kennedy
- Department of Pediatrics, Mercer University School of Medicine, Macon, Georgia, USA
- Department of Pediatrics, Atrium Health Navicent Beverly Knight Olson Children's Hospital, Macon, Georgia, USA
| |
Collapse
|
21
|
Douglas B, Oyesola O, Cooper MM, Posey A, Tait Wojno E, Giacomin PR, Herbert DR. Immune System Investigation Using Parasitic Helminths. Annu Rev Immunol 2021; 39:639-665. [PMID: 33646858 DOI: 10.1146/annurev-immunol-093019-122827] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coevolutionary adaptation between humans and helminths has developed a finely tuned balance between host immunity and chronic parasitism due to immunoregulation. Given that these reciprocal forces drive selection, experimental models of helminth infection are ideally suited for discovering how host protective immune responses adapt to the unique tissue niches inhabited by these large metazoan parasites. This review highlights the key discoveries in the immunology of helminth infection made over the last decade, from innate lymphoid cells to the emerging importance of neuroimmune connections. A particular emphasis is placed on the emerging areas within helminth immunology where the most growth is possible, including the advent of genetic manipulation of parasites to study immunology and the use of engineered T cells for therapeutic options. Lastly,we cover the status of human challenge trials with helminths as treatment for autoimmune disease, which taken together, stand to keep the study of parasitic worms at the forefront of immunology for years to come.
Collapse
Affiliation(s)
- Bonnie Douglas
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| | - Oyebola Oyesola
- Department of Immunology, University of Washington, Seattle, Washington 98109, USA; ,
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; ,
| | - Avery Posey
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Elia Tait Wojno
- Department of Immunology, University of Washington, Seattle, Washington 98109, USA; ,
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; ,
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| |
Collapse
|
22
|
Muller Q, Berthod F, Flacher V. [Tridimensional in vitro models of nervous and immune systems in the skin]. Med Sci (Paris) 2021; 37:68-76. [PMID: 33492221 DOI: 10.1051/medsci/2020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The immune system and the sensory nervous system are responsible for perceiving danger under distinct yet complementary forms. In the last few years, neuroimmune interactions have become an important topic of dermatological research for conditions including wound healing, atopic dermatitis and psoriasis. We present here a selection of tridimensional in vitro models that reproduce skin structure and integrate an immune or a sensory function. Future evolutions of such models are expected to greatly contribute in a better understanding of reciprocal influences between sensory nervous system and immune system.
Collapse
Affiliation(s)
- Quentin Muller
- Laboratoire CNRS UPR3572 / I2CT Immunologie, immunopathologie et chimie thérapeutique, Université de Strasbourg, Institut de biologie moléculaire et cellulaire, 2 allée Konrad Roentgen, 67084 Strasbourg, France - Centre LOEX de l'Université Laval ; Centre de recherche du CHU de Québec - Université Laval et Département de chirurgie, Faculté de médecine, 1401, 18e avenue, Québec, QC G1J 1Z4, Canada - Adresse actuelle : Laboratoire BIOTIS, Inserm U1026, Université de Bordeaux, Bordeaux, France
| | - François Berthod
- Centre LOEX de l'Université Laval ; Centre de recherche du CHU de Québec - Université Laval et Département de chirurgie, Faculté de médecine, 1401, 18e avenue, Québec, QC G1J 1Z4, Canada
| | - Vincent Flacher
- Laboratoire CNRS UPR3572 / I2CT Immunologie, immunopathologie et chimie thérapeutique, Université de Strasbourg, Institut de biologie moléculaire et cellulaire, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| |
Collapse
|
23
|
Abstract
The gut-brain axis is a coordinated communication system that not only maintains homeostasis, but significantly influences higher cognitive functions and emotions, as well as neurological and behavioral disorders. Among the large populations of sensory and motor neurons that innervate the gut, insights into the function of primary afferent nociceptors, whose cell bodies reside in the dorsal root ganglia and nodose ganglia, have revealed their multiple crosstalk with several cell types within the gut wall, including epithelial, vascular, and immune cells. These bidirectional communications have immunoregulatory functions, control host response to pathogens, and modulate sensations associated with gastrointestinal disorders, through activation of immune cells and glia in the peripheral and central nervous system, respectively. Here, we will review the cellular and neurochemical basis of these interactions at the periphery, in dorsal root ganglia, and in the spinal cord. We will discuss the research gaps that should be addressed to get a better understanding of the multifunctional role of sensory neurons in maintaining gut homeostasis and regulating visceral sensitivity.
Collapse
Affiliation(s)
- Nasser Abdullah
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|