1
|
Kachemov M, Vaibhav V, Smith C, Sundararaman N, Heath M, Pendlebury DF, Matlock A, Lau A, Morozko E, Lim RG, Reidling J, Steffan JS, Van Eyk JE, Thompson LM. Dysregulation of protein SUMOylation networks in Huntington's disease R6/2 mouse striatum. Brain 2025; 148:1212-1227. [PMID: 39391934 PMCID: PMC11969464 DOI: 10.1093/brain/awae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/13/2024] [Accepted: 09/21/2024] [Indexed: 10/12/2024] Open
Abstract
Huntington's disease is a neurodegenerative disorder caused by an expanded CAG repeat mutation in the Huntingtin (HTT) gene. The mutation impacts neuronal protein homeostasis and cortical/striatal circuitry. SUMOylation is a post-translational modification with broad cellular effects including via modification of synaptic proteins. Here, we used an optimized SUMO protein-enrichment and mass spectrometry method to identify the protein SUMOylation/SUMO interaction proteome in the context of Huntington's disease using R6/2 transgenic and non-transgenic mice. Significant changes in the enrichment of SUMOylated and SUMO-interacting proteins were observed, including those involved in presynaptic function, cytomatrix at the active zone, cytoskeleton organization and glutamatergic signalling. Mitochondrial and RNA-binding proteins also showed altered enrichment. Modified SUMO-associated pathways in Huntington's disease tissue include clathrin-mediated endocytosis signalling, synaptogenesis signalling, synaptic long-term potentiation and SNARE signalling. To evaluate how modulation of SUMOylation might influence functional measures of neuronal activity in Huntington's disease cells in vitro, we used primary neuronal cultures from R6/2 and non-transgenic mice. A receptor internalization assay for the metabotropic glutamate receptor 7 (mGLUR7), a SUMO-enriched protein in the mass spectrometry, showed decreased internalization in R6/2 neurons compared to non-transgenic neurons. SiRNA-mediated knockdown of the E3 SUMO ligase protein inhibitor of activated STAT1 (Pias1), which can SUMO modify mGLUR7, reduced this Huntington's disease phenotype. In addition, microelectrode array analysis of primary neuronal cultures indicated early hyperactivity in Huntington's disease cells, while later time points demonstrated deficits in several measurements of neuronal activity within cortical neurons. Huntington's disease phenotypes were rescued at selected time points following knockdown of Pias1. Collectively, our results provide a mouse brain SUMOome resource and show that significant alterations occur within the post-translational landscape of SUMO-protein interactions of synaptic proteins in Huntington's disease mice, suggesting that targeting of synaptic SUMO networks may provide a proteostatic systems-based therapeutic approach for Huntington's disease and other neurological disorders.
Collapse
Affiliation(s)
- Marketta Kachemov
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Vineet Vaibhav
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Charlene Smith
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92868, USA
| | - Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Marie Heath
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Devon F Pendlebury
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Andrea Matlock
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alice Lau
- Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA
| | - Eva Morozko
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Ryan G Lim
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Jack Reidling
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Joan S Steffan
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92868, USA
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leslie M Thompson
- Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92868, USA
- Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA
- Institute of Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Bhardwaj M, Begum F, Singh D, Krupanidhi S, Yadav VK, Sahoo DK, Patel A, Singh S. Identification of Biomarkers Associated With Paget's Disease of Bone and Bone Metastasis From Breast Cancer Patients. Cancer Rep (Hoboken) 2024; 7:e70003. [PMID: 39233667 PMCID: PMC11375332 DOI: 10.1002/cnr2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/22/2024] [Accepted: 08/11/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND The bone is among the most frequently chosen sites for the metastatic spread of breast cancer. The prediction of biomarkers for BM (Bone Metastasis) and PDB (Paget's disease of bone) initiated from breast cancer could be critically important in categorizing individuals with a higher risk and providing targeted treatment for PDB and BM. AIMS This research aims to investigate the common key candidate biomarkers that contribute to BM-BCa (Bone metastasis of breast cancer) and PDB by employing network decomposition and functional enrichment studies. METHODS AND RESULTS This research analyzed high-throughput transcriptome sequencing (RNA-Seq). For this work, the dataset (GSE121677) was downloaded from GEO (Gene Expression Omnibus), and DEGs were identified using Galaxy and R script 4.3. Using STRING (Search Tool for the Retrieval of Interacting Genes), high-throughput research created a protein-protein interaction network (PPIN). The BM-PDB-interactome was created using Cytoscape 3.9.1 and PDB biomarkers, with the top 3% DEGs from BM-BCa. Functional Enrichment Analysis (Funrich 3.1.3) and DAVID 6.8 performed functional and gene set enrichment analysis (GSEA) of putatively essential biomarkers. TCGA (The Cancer Genome Atlas) validated the discovered genes. Based on our research, we identified 1262 DEGs; among these DEGs, 431 genes were upregulated, and 831 genes were downregulated. During the third growth of the interactome, 20 more genes were pinned to the BM-PDB interactome. RAC2, PIAS1, EP300, EIF2S1, and LRP6 are among the additional 25% of genes identified to interact with the BM-PDB interactome. To corroborate the findings of the research presented, additional functional and gene set enrichment analyses have been performed. CONCLUSION Of the five reported genes (RAC2, PIAS1, EP300, EIF2S1, and LRP6), RAC2 was identified to function as the common key potential biomarker in the BM-PDB interactome analysis and validated by TCGA in the study presented.
Collapse
Affiliation(s)
- Mahima Bhardwaj
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to Be University), Guntur, Andhra Pradesh, India
| | - Farhana Begum
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to Be University), Guntur, Andhra Pradesh, India
| | - Duleswar Singh
- Department of Biotechnology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Srirama Krupanidhi
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to Be University), Guntur, Andhra Pradesh, India
| | - Virendra Kumar Yadav
- Department of Biotechnology, Faculty of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Ashish Patel
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Sachidanand Singh
- Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, India
| |
Collapse
|
3
|
Wang M, Wang P, Li B, Zhao G, Zhang N, Cao R. Protein inhibitor of activated STAT1 (PIAS1) alleviates cerebral infarction and inflammation after cerebral ischemia in rats. Heliyon 2024; 10:e24743. [PMID: 38617924 PMCID: PMC11015098 DOI: 10.1016/j.heliyon.2024.e24743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/01/2023] [Accepted: 01/12/2024] [Indexed: 04/16/2024] Open
Abstract
Background Ischemic stroke is a severe disorder with high incidence, disability rate and mortality. Multiple pathogenesis mechanisms are involved in ischemic stroke, such as inflammation and neuronal cell apoptosis. Protein inhibitor of activated signal transducer and activators of transcription 1 (PIAS1) plays a crucial role in various biological processes, including inflammation. PIAS1 is also downregulated in ischemia-reperfusion injury and involved in the disease processes. However, the role of PIAS1 in cerebral ischemia is unclear. Methods Sprague-Dawley (SD) rats were induced with middle cerebral artery occlusion (MCAO). The role and mechanisms of PIAS1 in ischemic cerebral infarction were explored by Longa test, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Morris water maze (MWM) test, hematoxylin-eosin (HE) staining, quantification of brain water content, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL), Western blot and immunofluorescence assays. Results The expression of PIAS1 in MCAO-induced rat was declined compared to sham rats. Overexpression of PIAS1 reduced the Longa neurological scores, the percent of infarction area, the pathological abnormality, the escape latency of swimming and the percent of brain water content, and increased the number of platform crossings and time in the target quadrant in the MCAO-induced rats. Besides, overexpression of PIAS1 decreased the MCAO-induced the contents of IL-1β, IL-6 and TNF-α, but further elevated the concentrations of IL-10 in both sera and brain tissues. Moreover, overexpression of PIAS1 reversed the MCAO-induced apoptosis rate and the relative protein level of Bax, cleaved caspase3 and Bcl-2. Overexpression of PIAS1 also reversed the level of proteins involved in NF-κB pathway. Conclusion PIAS1 reduced inflammation and apoptosis, thereby alleviating ischemic cerebral infarction in MCAO-induced rats through regulation NF-κB pathway.
Collapse
Affiliation(s)
- Mingyang Wang
- Department of Rehabilitation Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Pingzhi Wang
- Department of Rehabilitation Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Bo Li
- Department of Rehabilitation Medicine, Shanxi Rongjun Hospital, Taiyuan, Shanxi, 030031, China
| | - Guohu Zhao
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Nan Zhang
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| | - Ruifeng Cao
- Department of Stomatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, China
| |
Collapse
|
4
|
Li X, Rasul A, Sharif F, Hassan M. PIAS family in cancer: from basic mechanisms to clinical applications. Front Oncol 2024; 14:1376633. [PMID: 38590645 PMCID: PMC10999569 DOI: 10.3389/fonc.2024.1376633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
Protein inhibitors of activated STATs (PIAS) are proteins for cytokine signaling that activate activator-mediated gene transcription. These proteins, as versatile cellular regulators, have been described as regulators of approximately 60 proteins. Dysregulation of PIAS is associated with inappropriate gene expression that promotes oncogenic signaling in multiple cancers. Multiple lines of evidence have revealed that PIAS family members show modulated expressions in cancer cells. Most frequently reported PIAS family members in cancer development are PIAS1 and PIAS3. SUMOylation as post-translational modifier regulates several cellular machineries. PIAS proteins as SUMO E3 ligase factor promotes SUMOylation of transcription factors tangled cancer cells for survival, proliferation, and differentiation. Attenuated PIAS-mediated SUMOylation mechanism is involved in tumorigenesis. This review article provides the PIAS/SUMO role in the modulation of transcriptional factor control, provides brief update on their antagonistic function in different cancer types with particular focus on PIAS proteins as a bonafide therapeutic target to inhibit STAT pathway in cancers, and summarizes natural activators that may have the ability to cure cancer.
Collapse
Affiliation(s)
- Xiaomeng Li
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farzana Sharif
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mudassir Hassan
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
5
|
Wang L, Zeng W, Wang C, Lu Y, Xiong X, Chen S, Huang Q, Yan F, Huang Q. SUMOylation and coupling of eNOS mediated by PIAS1 contribute to maintenance of vascular homeostasis. FASEB J 2024; 38:e23362. [PMID: 38102979 DOI: 10.1096/fj.202301963r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Endothelial dysfunction (ED) is commonly considered a crucial initiating step in the pathogenesis of numerous cardiovascular diseases. The coupling of endothelial nitric oxide synthase (eNOS) is important in maintaining normal endothelial functions. However, it still remains elusive whether and how eNOS SUMOylation affects the eNOS coupling. In the study, we investigate the roles and possible action mechanisms of protein inhibitor of activated STAT 1 (PIAS1) in ED. Human umbilical vein endothelial cells (HUVECs) treated with palmitate acid (PA) in vitro and ApoE-/- mice fed with high-fat diet (HFD) in vivo were constructed as the ED models. Our in vivo data show that PIAS1 alleviates the dysfunction of vascular endothelium by increasing nitric oxide (NO) level, reducing malondialdehyde (MDA) level, and activating the phosphatidylinositol 3-kinase-protein kinase B-endothelial nitric oxide synthase (PI3K-AKT-eNOS) signaling in ApoE-/- mice. Our in vitro data also show that PIAS1 can SUMOylate eNOS under endogenous conditions; moreover, it antagonizes the eNOS uncoupling induced by PA. The findings demonstrate that PIAS1 alleviates the dysfunction of vascular endothelium by promoting the SUMOylation and inhibiting the uncoupling of eNOS, suggesting that PIAS1 would become an early predictor of atherosclerosis and a new potential target of the hyperlipidemia-related cardiovascular diseases.
Collapse
Affiliation(s)
- Li Wang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Wenjing Zeng
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Chaowen Wang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Yanli Lu
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Xiaowei Xiong
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Sheng Chen
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Qianqian Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Feixing Yan
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Qiren Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
6
|
Baruah P, Marshall J, Jones PN, Major T, Pucino V, O'Neil JD, Nefla M, McGettrick H, Monksfield P, Irving R, Buckley CD. Fibroblasts Derived From Vestibular Schwannoma Express Protumorogenic Markers. Otol Neurotol 2023; 44:e755-e765. [PMID: 37733967 DOI: 10.1097/mao.0000000000004011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
BACKGROUND AND AIM Vestibular schwannomas (VSs), despite being histologically benign, cause significant morbidity because of their challenging intracranial location and the propensity for growth. The role of the stroma and particularly fibroblasts, in the progression of VS, is not completely understood. This study examines the profile of fibroblasts in VS. METHODS Seventeen patients undergoing surgical excision of VS were recruited into the study. Reverse transcription with quantitative polymerase chain reaction (RT-qPCR) was performed on VS tissue samples and fibroblast-associated molecules examined. Immunofluorescence and immunohistochemistry in VS tissue were used to study the expression of fibroblast markers CD90 and podoplanin in situ. Fibroblast cultures were established from VS, and RT-qPCR analysis was performed on a panel of fibroblast markers on VS and control tissue fibroblasts. RESULTS Several fibroblast-associated molecules including members of galectin family and matrix metalloproteinases were found to be expressed in VS tissue on RT-qPCR analysis. In situ, expression of CD90 and podoplanin was observed in VS tissue both on immunohistochemistry and immunofluorescence. RT-qPCR analysis of fibroblasts from VS and control vestibular neuroepithelium (NE) showed a higher expression of several molecules of the galectin and matrix metalloproteinases family on VS fibroblasts compared with NE fibroblasts. CONCLUSION This work examines fibroblasts from VS and shows qualitative differences from NE fibroblasts on RT-qPCR. Further understanding of the fibroblast function in the progression of VS will potentially unveil new targets to manage VS growth.
Collapse
Affiliation(s)
| | - Jennifer Marshall
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Philip N Jones
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Triin Major
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Valentina Pucino
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - John D O'Neil
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Meriam Nefla
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Helen McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Peter Monksfield
- Department of ENT, University Hospitals of Birmingham NHS Trust, Birmingham
| | - Richard Irving
- Department of ENT, University Hospitals of Birmingham NHS Trust, Birmingham
| | | |
Collapse
|
7
|
Wu W, Huang C. SUMOylation and DeSUMOylation: Prospective therapeutic targets in cancer. Life Sci 2023; 332:122085. [PMID: 37722589 DOI: 10.1016/j.lfs.2023.122085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
The SUMO family is a type of ubiquitin-like protein modification molecule. Its protein modification mechanism is similar to that of ubiquitination: both involve modifier-activating enzyme E1, conjugating enzyme E2 and substrate-specific ligase E3. However, polyubiquitination can lead to the degradation of substrate proteins, while poly-SUMOylation only leads to the degradation of substrate proteins through the proteasome pathway after being recognized by ubiquitin as a signal factor. There are currently five reported subtypes in the SUMO family, namely SUMO1-5. As a reversible dynamic modification, intracellular sentrin/SUMO-specific proteases (SENPs) mainly regulate the reverse reaction pathway of SUMOylation. The SUMOylation modification system affects the localization, activation and turnover of proteins in cells and participates in regulating most nuclear and extranuclear molecular reactions. Abnormal expression of proteins related to the SUMOylation pathway is commonly observed in tumors, indicating that this pathway is closely related to tumor occurrence, metastasis and invasion. This review mainly discusses the composition of members in the protein family related to SUMOylation pathways, mutual connections between SUMOylation and other post-translational modifications on proteins as well as therapeutic drugs developed based on these pathways.
Collapse
Affiliation(s)
- Wenyan Wu
- Kunming University of Science and Technology, Medical School, Kunming 650500, China
| | - Chao Huang
- Kunming University of Science and Technology, Medical School, Kunming 650500, China.
| |
Collapse
|
8
|
Chen H, Tu J, He L, Gao N, Yang W. Mmu_circ_0000037 inhibits the progression of acute pancreatitis by miR-92a-3p/Pias1 axis. Immun Inflamm Dis 2023; 11:e819. [PMID: 37102653 PMCID: PMC10091370 DOI: 10.1002/iid3.819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory disease with high mortality. Previous study has suggested that circular RNAs are dysregulated and involved in the regulation of inflammatory responses in AP. This study aimed to investigate the function and regulatory mechanism underlying mmu_circ_0000037 in caerulein-induced AP cellular model. METHODS Caerulein-treated MPC-83 cells were used as an in vitro cellular model for AP. The expression levels of mmu_circ_0000037, microRNA (miR)-92a-3p, and protein inhibitor of activated STAT1 (Pias1) were detected by quantitative real-time polymerase chain reaction. Cell viability, amylase activity, apoptosis, and inflammatory response were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Amylase Assay Kit, flow cytometry, and enzyme-linked immunosorbent assays. The protein level was quantified by western blot analysis. The target interaction between miR-92a-3p and mmu_circ_0000037 or Pias1 were predicted by StarbaseV3.0 and validated by dual-luciferase reporter assay and RNA immunoprecipitation assay. RESULTS Mmu_circ_0000037 and Pias1 levels were decreased, whereas miR-92a-3p expression was elevated in caerulein-induced MPC-83 cells. Overexpression of mmu_circ_0000037 protected MPC-83 cells from caerulein-induced the decrease of cell viability, as well as the promotion of amylase activity, apoptosis and inflammation. MiR-92a-3p was targeted by mmu_circ_0000037, and miR-92a-3p overexpression rescued the effect of mmu_circ_0000037 on caerulein-induced MPC-83 cell injury. Pias1 was confirmed as a target of miR-92a-3p and mmu_circ_0000037 regulated the expression of Pias1 by sponging miR-92a-3p. CONCLUSION Mmu_circ_0000037 relieves caerulein-induced inflammatory injury in MPC-83 cells by targeting miR-92a-3p/Pias1 axis, providing a theoretical basis for the treatment of AP.
Collapse
Affiliation(s)
- Hua Chen
- Department of GastroenterologyFengxian District Central HospitalShanghaiChina
| | - Jun Tu
- Department of GastroenterologyFengxian District Central HospitalShanghaiChina
| | - Lei He
- Department of GastroenterologyFengxian District Central HospitalShanghaiChina
| | - Ning Gao
- Department of General Internal Medicine, Ping An Health InternetShanghai BranchShanghaiChina
| | - Weiqiang Yang
- Department of General SurgeryJiading District Central HospitalShanghaiChina
| |
Collapse
|
9
|
SUMOylation targeting mitophagy in cardiovascular diseases. J Mol Med (Berl) 2022; 100:1511-1538. [PMID: 36163375 DOI: 10.1007/s00109-022-02258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
Small ubiquitin-like modifier (SUMO) plays a key regulatory role in cardiovascular diseases, such as cardiac hypertrophy, hypertension, atherosclerosis, and cardiac ischemia-reperfusion injury. As a multifunctional posttranslational modification molecule in eukaryotic cells, SUMOylation is essentially associated with the regulation of mitochondrial dynamics, especially mitophagy, which is involved in the progression and development of cardiovascular diseases. SUMOylation targeting mitochondrial-associated proteins is admittedly considered to regulate mitophagy activation and mitochondrial functions and dynamics, including mitochondrial fusion and fission. SUMOylation triggers mitochondrial fusion to promote mitochondrial dysfunction by modifying Fis1, OPA1, MFN1/2, and DRP1. The interaction between SUMO and DRP1 induces SUMOylation and inhibits lysosomal degradation of DRP1, which is further involved in the regulation of mitochondrial fission. Both SUMOylation and deSUMOylation contribute to the initiation and activation of mitophagy by regulating the conjugation of MFN1/2 SERCA2a, HIF1α, and PINK1. SUMOylation mediated by the SUMO molecule has attracted much attention due to its dual roles in the development of cardiovascular diseases. In this review, we systemically summarize the current understanding underlying the expression, regulation, and structure of SUMO molecules; explore the biochemical functions of SUMOylation in the initiation and activation of mitophagy; discuss the biological roles and mechanisms of SUMOylation in cardiovascular diseases; and further provide a wider explanation of SUMOylation and deSUMOylation research to provide a possible therapeutic strategy for cardiovascular diseases. Considering the precise functions and exact mechanisms of SUMOylation in mitochondrial dysfunction and mitophagy will provide evidence for future experimental research and may serve as an effective approach in the development of novel therapeutic strategies for cardiovascular diseases. Regulation and effect of SUMOylation in cardiovascular diseases via mitophagy. SUMOylation is involved in multiple cardiovascular diseases, including cardiac hypertrophy, hypertension, atherosclerosis, and cardiac ischemia-reperfusion injury. Since it is expressed in multiple cells associated with cardiovascular disease, SUMOylation can be regulated by numerous ligases, including the SENP family proteins PIAS1, PIASy/4, UBC9, and MAPL. SUMOylation regulates the activation and degradation of PINK1, SERCA2a, PPARγ, ERK5, and DRP1 to mediate mitochondrial dynamics, especially mitophagy activation. Mitophagy activation regulated by SUMOylation further promotes or inhibits ventricular diastolic dysfunction, perfusion injury, ventricular remodelling and ventricular noncompaction, which contribute to the development of cardiovascular diseases.
Collapse
|
10
|
PIAS1 Regulates Hepatitis C Virus-Induced Lipid Droplet Accumulation by Controlling Septin 9 and Microtubule Filament Assembly. Pathogens 2021; 10:pathogens10101327. [PMID: 34684276 PMCID: PMC8537804 DOI: 10.3390/pathogens10101327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 01/22/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection often leads to fibrosis and chronic hepatitis, then cirrhosis and ultimately hepatocellular carcinoma (HCC). The processes of the HVC life cycle involve intimate interactions between viral and host cell proteins and lipid metabolism. However, the molecules and mechanisms involved in this tripartite interaction remain poorly understood. Herein, we show that the infection of HCC-derived Huh7.5 cells with HCV promotes upregulation of the protein inhibitor of activated STAT1 (PIAS1). Reciprocally, PIAS1 regulated the expression of HCV core protein and HCV-induced LD accumulation and impaired HCV replication. Furthermore, PIAS1 controlled HCV-promoted septin 9 filament formation and microtubule polymerization. Subsequently, we found that PIAS1 interacted with septin 9 and controlled its assembly on filaments, which thus affected septin 9-induced lipid droplet accumulation. Taken together, these data reveal that PIAS1 regulates the accumulation of lipid droplets and offer a meaningful insight into how HCV interacts with host proteins.
Collapse
|
11
|
Verma P, Srivastava A, Srikanth CV, Bajaj A. Nanoparticle-mediated gene therapy strategies for mitigating inflammatory bowel disease. Biomater Sci 2021; 9:1481-1502. [PMID: 33404019 DOI: 10.1039/d0bm01359e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder of the gastrointestinal tract (GIT) where Ulcerative Colitis (UC) displays localized inflammation in the colon, and Crohn's Disease (CD) affects the entire GIT. Failure of current therapies and associated side-effects bring forth serious social, economic, and health challenges. The gut epithelium provides the best target for gene therapy delivery vehicles to combat IBD. Gene therapy involving the use of nucleic acid (NA) therapeutics faces major challenges due to the hydrophilic, negative-charge, and degradable nature of NAs. Recent success in the engineering of biomaterials for gene therapy and their emergence in clinical trials for various diseases is an inspiration for scientists to develop gene therapy vehicles that can be easily targeted to the desired tissues for IBD. Advances in nanotechnology have enabled the formulations of numerous nanoparticles for NA delivery to mitigate IBD that still faces challenges of stability in the GIT, poor therapeutic efficacy, and targetability. This review presents the challenges of gene therapeutics, gastrointestinal barriers, and recent advances in the engineering of nanoparticles for IBD treatment along with future directions for successful translation of nanoparticle-mediated gene therapeutics in clinics.
Collapse
Affiliation(s)
- Priyanka Verma
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, By-pass Road, Bhauri, Bhopal-462030, India
| | - C V Srikanth
- Laboratory of Gut Inflammation and Infection Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad- Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.
| |
Collapse
|
12
|
Cardiolipin-mediated PPARγ S112 phosphorylation impairs IL-10 production and inflammation resolution during bacterial pneumonia. Cell Rep 2021; 34:108736. [PMID: 33567272 PMCID: PMC7947928 DOI: 10.1016/j.celrep.2021.108736] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/17/2020] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Bacterial pneumonia is a global healthcare burden, and unwarranted inflammation is suggested as an important cause of mortality. Optimum levels of the anti-inflammatory cytokine IL-10 are essential to reduce inflammation and improve survival in pneumonia. Elevated levels of the mitochondrial-DAMP cardiolipin (CL), reported in tracheal aspirates of pneumonia patients, have been shown to block IL-10 production from lung MDSCs. Although CL-mediated K107 SUMOylation of PPARγ has been suggested to impair this IL-10 production, the mechanism remains elusive. We identify PIAS2 to be the specific E3-SUMOligase responsible for this SUMOylation. Moreover, we identify a concomitant CL-mediated PPARγ S112 phosphorylation, mediated by JNK-MAPK, to be essential for PIAS2 recruitment. Furthermore, using a clinically tested peptide inhibitor targeting JNK-MAPK, we blocked these post-translational modifications (PTMs) of PPARγ and rescued IL-10 expression, improving survival in murine pneumonia models. Thus, we explore the mechanism of mito-DAMP-mediated impaired lung inflammation resolution and propose a therapeutic strategy targeting PPARγ PTMs.
Collapse
|
13
|
Morozko EL, Smith-Geater C, Monteys AM, Pradhan S, Lim RG, Langfelder P, Kachemov M, Kulkarni JA, Zaifman J, Hill A, Stocksdale JT, Cullis PR, Wu J, Ochaba J, Miramontes R, Chakraborty A, Hazra TK, Lau A, St-Cyr S, Orellana I, Kopan L, Wang KQ, Yeung S, Leavitt BR, Reidling JC, Yang XW, Steffan JS, Davidson BL, Sarkar PS, Thompson LM. PIAS1 modulates striatal transcription, DNA damage repair, and SUMOylation with relevance to Huntington's disease. Proc Natl Acad Sci U S A 2021; 118:e2021836118. [PMID: 33468657 PMCID: PMC7848703 DOI: 10.1073/pnas.2021836118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA damage repair genes are modifiers of disease onset in Huntington's disease (HD), but how this process intersects with associated disease pathways remains unclear. Here we evaluated the mechanistic contributions of protein inhibitor of activated STAT-1 (PIAS1) in HD mice and HD patient-derived induced pluripotent stem cells (iPSCs) and find a link between PIAS1 and DNA damage repair pathways. We show that PIAS1 is a component of the transcription-coupled repair complex, that includes the DNA damage end processing enzyme polynucleotide kinase-phosphatase (PNKP), and that PIAS1 is a SUMO E3 ligase for PNKP. Pias1 knockdown (KD) in HD mice had a normalizing effect on HD transcriptional dysregulation associated with synaptic function and disease-associated transcriptional coexpression modules enriched for DNA damage repair mechanisms as did reduction of PIAS1 in HD iPSC-derived neurons. KD also restored mutant HTT-perturbed enzymatic activity of PNKP and modulated genomic integrity of several transcriptionally normalized genes. The findings here now link SUMO modifying machinery to DNA damage repair responses and transcriptional modulation in neurodegenerative disease.
Collapse
Affiliation(s)
- Eva L Morozko
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697
| | - Charlene Smith-Geater
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
| | - Alejandro Mas Monteys
- Raymond G. Perelman Center for Cell and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Subrata Pradhan
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555
| | - Ryan G Lim
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
| | - Peter Langfelder
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Marketta Kachemov
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697
| | - Jayesh A Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Josh Zaifman
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - Austin Hill
- Incisive Genetics Inc., Vancouver, BC, Canada V6A 0H9
| | | | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
- NanoMedicines Innovation Network, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, CA 92697
| | - Joseph Ochaba
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697
| | - Ricardo Miramontes
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Alice Lau
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
| | - Sophie St-Cyr
- Raymond G. Perelman Center for Cell and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Iliana Orellana
- Sue and Bill Gross Stem Cell Institute, University of California, Irvine, CA 92697
| | - Lexi Kopan
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
| | - Keona Q Wang
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
| | - Sylvia Yeung
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Jack C Reidling
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
| | - X William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095
| | - Joan S Steffan
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cell and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Partha S Sarkar
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697;
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
- Department of Biological Chemistry, University of California, Irvine, CA 92697
- Sue and Bill Gross Stem Cell Institute, University of California, Irvine, CA 92697
| |
Collapse
|
14
|
Abstract
Sentrin/small ubiquitin-like modifier (SUMO) is protein modification pathway that regulates multiple biological processes, including cell division, DNA replication/repair, signal transduction, and cellular metabolism. In this review, we will focus on recent advances in the mechanisms of disease pathogenesis, such as cancer, diabetes, seizure, and heart failure, which have been linked to the SUMO pathway. SUMO is conjugated to lysine residues in target proteins through an isopeptide linkage catalyzed by SUMO-specific activating (E1), conjugating (E2), and ligating (E3) enzymes. In steady state, the quantity of SUMO-modified substrates is usually a small fraction of unmodified substrates due to the deconjugation activity of the family Sentrin/SUMO-specific proteases (SENPs). In contrast to the complexity of the ubiquitination/deubiquitination machinery, the biochemistry of SUMOylation and de-SUMOylation is relatively modest. Specificity of the SUMO pathway is achieved through redox regulation, acetylation, phosphorylation, or other posttranslational protein modification of the SUMOylation and de-SUMOylation enzymes. There are three major SUMOs. SUMO-1 usually modifies a substrate as a monomer; however, SUMO-2/3 can form poly-SUMO chains. The monomeric SUMO-1 or poly-SUMO chains can interact with other proteins through SUMO-interactive motif (SIM). Thus SUMO modification provides a platform to enhance protein-protein interaction. The consequence of SUMOylation includes changes in cellular localization, protein activity, or protein stability. Furthermore, SUMO may join force with ubiquitin to degrade proteins through SUMO-targeted ubiquitin ligases (STUbL). After 20 yr of research, SUMO has been shown to play critical roles in most, if not all, biological pathways. Thus the SUMO enzymes could be targets for drug development to treat human diseases.
Collapse
Affiliation(s)
- Hui-Ming Chang
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Edward T H Yeh
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
15
|
Li N, Zhang S, Xiong F, Eizirik DL, Wang CY. SUMOylation, a multifaceted regulatory mechanism in the pancreatic beta cells. Semin Cell Dev Biol 2020; 103:51-58. [PMID: 32331991 DOI: 10.1016/j.semcdb.2020.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/03/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
SUMOylation is an evolutionarily conserved post-translational modification (PTM) that regulates protein subcellular localization, stability, conformation, transcription and enzymatic activity. Recent studies indicate that SUMOylation plays a key role in insulin gene expression, glucose metabolism and insulin exocytosis under physiological conditions in the pancreatic beta cells. Furthermore, SUMOylation is implicated in beta cell survival and recovery following exposure to oxidative stress, ER stress and inflammatory mediators under pathological situations. SUMOylation is closely regulated by the cellular redox status, and it collaborates with other PTMs such as phosphorylation, ubiquitination, and NEDDylation, to maintain beta cellular homeostasis. We hereby provide an update on recent findings regarding the role of SUMOylation in the regulation of pancreatic beta cell viability and function, and discuss its potential implication in beta cell senescence and RNA processing (e.g., pre-mRNA splicing and mRNA methylation). Through which we intend to provide novel insights into this fundamental biological process regarding both maintenance of beta cell viability and functionality, and beta cell dysfunction in diabetes mellitus.
Collapse
Affiliation(s)
- Na Li
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Fei Xiong
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, 808 Route de Lennik, B-1070, Brussels, Belgium; Indiana Biosciences Research Institute (IBRI), Indianapolis, IN, USA.
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Wuhan, China.
| |
Collapse
|
16
|
Protein inhibitor of activated STAT1 (PIAS1) inhibits IRF8 activation of Epstein-Barr virus lytic gene expression. Virology 2019; 540:75-87. [PMID: 31743858 DOI: 10.1016/j.virol.2019.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 11/23/2022]
Abstract
Epstein-Barr virus (EBV), a major human oncogenic pathogen, establishes life-long persistent infections. In latently infected B lymphocytes, the virus persists as an episome in the nucleus. Periodic reactivation of latent virus is controlled by both viral and cellular factors. Our recent studies showed that interferon regulatory factor 8 (IRF8) is required for EBV lytic reactivation while protein inhibitor of activated STAT1 (PIAS1) functions as an EBV restriction factor to block viral reactivation. Here, we show that IRF8 directly binds to the EBV genome and regulates EBV lytic gene expression together with PU.1 and EBV transactivator RTA. Furthermore, our study reveals that PIAS1 antagonizes IRF8/PU.1-mediated lytic gene activation through binding to and inhibiting IRF8. Together, our study establishes IRF8 as a transcriptional activator in promoting EBV reactivation and defines PIAS1 as an inhibitor of IRF8 to limit lytic gene expression.
Collapse
|
17
|
Gong X, Nie Q, Xiao Y, Xiang JW, Wang L, Liu F, Fu JL, Liu Y, Yang L, Gan Y, Chen H, Luo Z, Qi R, Chen Z, Tang X, Li DWC. Localization Patterns of Sumoylation Enzymes E1, E2 and E3 in Ocular Cell Lines Predict Their Functional Importance. Curr Mol Med 2019; 18:516-522. [PMID: 30636611 DOI: 10.2174/1566524019666190112144436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE It is well established now that protein sumoylation acts as an important regulatory mechanism mediating control of ocular development through regulation of multiple transcription factors. Yet the functional mechanisms of each factor modulated remain to be further explored using the available in vitro systems. In this regard, various ocular cell lines including HLE, FHL124, αTN4-1, N/N1003A and ARPE-19 have been demonstrated to be useful for biochemical and molecular analyses of normal physiology and pathogenesis. We have recently examined that these cell lines express a full set of sumoylation enzymes E1, E2 and E3. Following this study, here we have examined the localization of these enzymes and determined their differential localization patterns in these major ocular cell lines. METHODS The 5 major ocular cell lines were cultured in Dulbecco's modified Eagle's medium (DMEM) containing fetal bovine serum (FBS) or rabbit serum (RBS) and 1% Penicillin- Streptomycin. The localization of the 3 major sumoylation enzymes in the 5 major ocular cell lines were determined with immunohistochemistry. The images were captured with a Zeiss LSM 880 confocal microscope. RESULTS we have obtained the following results: 1) The sumoylation enzymes SAE1, UBC9 and PIAS1 are distributed in both nucleus and cytoplasm, with a much higher level concentrated in the nucleus and the neighboring cellular organelle zone in all cell lines; 2) The sumoylation enzyme UBA2 was highly concentrated in both cytoplasm membrane, cytoskeleton and nucleus of all cell lines; 3) The ligase E3, RanBP2 was exclusively localized in the nucleus with homogeneous distribution. CONCLUSIONS Our results for the first time established the differential localization patterns of the three types of sumoylation enzymes in 5 major ocular cell lines. Our establishment of the differential localization patterns of the three types of sumoylation enzymes in these cell lines help to predict their functional importance of sumoylation in the vision system. Together, our results demonstrate that these cell lines can be used for assay systems to explore the functional mechanisms of sumoylation mediating ocular development and pathogenesis.
Collapse
Affiliation(s)
- Xiaodong Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Fangyuan Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yunfei Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuwen Gan
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Huimin Chen
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhongwen Luo
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Ruili Qi
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Zhigang Chen
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Xiangcheng Tang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
18
|
Dehnavi S, Sadeghi M, Johnston TP, Barreto G, Shohan M, Sahebkar A. The role of protein SUMOylation in rheumatoid arthritis. J Autoimmun 2019; 102:1-7. [PMID: 31078376 DOI: 10.1016/j.jaut.2019.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 01/09/2023]
Abstract
Small ubiquitin-like modifier (SUMO) proteins, as a subgroup of post-translational modifiers, act to change the function of proteins. Through their interactions with different targets, immune pathways, and the responses they elicit, can be affected by these SUMO conjugations. Thus, both a change to protein function and involvement in immune pathways has the potential to promote an efficient immune response to either a pathogenic challenge, or the development of an imbalance that could lead to an autoimmune-based disease. Also, a variety of changes such as mutations and polymorphisms can interfere with common functions of these modifications and move an effective immune response in the direction of an autoimmune disease. The present review discusses the general characteristics of SUMO proteins and focuses on their involvement in rheumatoid arthritis as an autoimmune disease.
Collapse
Affiliation(s)
- Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - George Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Mojtaba Shohan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Ke H, Lee S, Kim J, Liu HC, Yoo D. Interaction of PIAS1 with PRRS virus nucleocapsid protein mediates NF-κB activation and triggers proinflammatory mediators during viral infection. Sci Rep 2019; 9:11042. [PMID: 31363150 PMCID: PMC6667501 DOI: 10.1038/s41598-019-47495-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) activates NF-κB during infection. We examined the ability of all 22 PRRSV genes for NF-κB regulation and determined the nucleocapsid (N) protein as the NF-κB activator. Protein inhibitor of activated STAT1 (signal transducer and activator of transcription 1) (PIAS1) was identified as a cellular protein binding to N. PIAS1 is known to bind to p65 (RelA) in the nucleus and blocks its DNA binding, thus functions as a repressor of NF-κB. Binding of N to PIAS1 released p65 for NF-κB activation. The N-terminal half of PIAS1 was mapped as the N-binding domain, and this region overlapped its p65-binding domain. For N, the region between 37 and 72 aa was identified as the binding domain to PIAS1, and this domain alone was able to activate NF-κB. A nuclear localization signal (NLS) knock-out mutant N did not activate NF-κB, and this is mostly likely due to the lack of its interaction with PIAS1 in the nucleus, demonstrating the positive correlation between the binding of N to PIAS1 and the NF-κB activation. Our study reveals a role of N in the nucleus for NF-κB activation and proinflammatory cytokine production during infection.
Collapse
Affiliation(s)
- Hanzhong Ke
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sera Lee
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jineui Kim
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
20
|
Abstract
Healthy tissues of the body express relatively low basal levels of interferons. However, following detection of microbial invasion by sentinel receptors, a cascade of events initiates leading to the transcriptional induction of interferon genes. Interferons are secreted and act primarily as paracrine cytokines to bind neighboring cell surface receptors. Binding to interferon receptors activates a signal pathway to the nucleus inducing a set of interferon-stimulated genes. The biological activity of these genes confers the unique antiviral and innate immune response of interferons. The rapid induction of interferons is critical to survival, and equally critical is the recovery from this defensive state. Either an aberrant response to infection or an inherited genetic disorder that leads to sustained or increased interferon levels can tip the balance towards pathogenesis.
Collapse
Affiliation(s)
- Nancy C Reich
- Stony Brook University, Dept Molecular Genetics & Microbiology, 11796 Stony Brook, NY, USA.
| |
Collapse
|
21
|
Kouchaki E, Nikoueinejad H, Akbari H, Azimi S, Behnam M. The investigation of relevancy between PIAS1 and PIAS2 gene expression and disease severity of multiple sclerosis. J Immunoassay Immunochem 2019; 40:396-406. [PMID: 31084243 DOI: 10.1080/15321819.2019.1613244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Introduction: PIAS1 and PIAS2 (protein inhibitor of activated STAT 1,2) play key roles in the pathogenesis of autoimmune and inflammatory diseases. This study aims to evaluate the gene expression of these factors in multiple sclerosis (MS) patients compared to healthy individuals and correlate them with the severity of MS. Materials and methods: Sixty participants, including 30 patients with MS and 30 healthy controls were studied. The expression of PIAS1 and PIAS2 genes in peripheral blood samples of all participants was measured by real-time PCR. The severity of MS was evaluated using the Expanded Disability Status Scale (EDSS). Finally, we evaluated the correlation between the expression of PIAS1 and PIAS2 genes with disease severity. Results: The expression of PIAS1 gene was increased in patients with MS compared to healthy subjects (P value<.001). Also, there was a significant correlation between the expression of PIAS1 and PIAS2 genes with disease severity according to EDSS. Conclusion: Our study suggests the expression of PIAS1 and PIAS2 genes as a prognostic and diagnostic marker in MS disease.
Collapse
Affiliation(s)
- Ebrahim Kouchaki
- a Physiology Research Center , Kashan University of Medical Sciences , Kashan , Iran.,b Department of Neurology , Kashan University of Medical Sciences , Kashan , Iran
| | - Hassan Nikoueinejad
- c Nephrology and Urology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Hossein Akbari
- d Trauma Research Center , Kashan University of Medical Sciences , Kashan , Iran
| | - Shirin Azimi
- e Student Research Committee , Kashan University of Medical Sciences , Kashan , Iran
| | - Mohammad Behnam
- f Research Center for Biochemistry and Nutrition in Metabolic Diseases , Kashan University of Medical Sciences , Kashan , Iran
| |
Collapse
|
22
|
Mustfa SA, Singh M, Suhail A, Mohapatra G, Verma S, Chakravorty D, Rana S, Rampal R, Dhar A, Saha S, Ahuja V, Srikanth CV. SUMOylation pathway alteration coupled with downregulation of SUMO E2 enzyme at mucosal epithelium modulates inflammation in inflammatory bowel disease. Open Biol 2018; 7:rsob.170024. [PMID: 28659381 PMCID: PMC5493774 DOI: 10.1098/rsob.170024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/25/2017] [Indexed: 02/06/2023] Open
Abstract
Post-translational modification pathways such as SUMOylation are integral to all cellular processes and tissue homeostasis. We investigated the possible involvement of SUMOylation in the epithelial signalling in Crohn's disease (CD) and ulcerative colitis (UC), the two major forms of inflammatory bowel disease (IBD). Initially in a murine model of IBD, induced by dextran–sulfate–sodium (DSS mice), we observed inflammation accompanied by a lowering of global SUMOylation of colonic epithelium. The observed SUMOylation alteration was due to a decrease in the sole SUMO E2 enzyme (Ubc9). Mass-spectrometric analysis revealed the existence of a distinct SUMOylome (SUMO-conjugated proteome) in DSS mice with alteration of key cellular regulators, including master kinase Akt1. Knocking-down of Ubc9 in epithelial cells resulted in dramatic activation of inflammatory gene expression, a phenomenon that acted via reduction in Akt1 and its SUMOylated form. Importantly, a strong decrease in Ubc9 and Akt1 was also seen in endoscopic biopsy samples (N = 66) of human CD and UC patients. Furthermore, patients with maximum disease indices were always accompanied by severely lowered Ubc9 or SUMOylated-Akt1. Mucosal tissues with severely compromised Ubc9 function displayed higher levels of pro-inflammatory cytokines and compromised wound-healing markers. Thus, our results reveal an important and previously undescribed role for the SUMOylation pathway involving Ubc9 and Akt1 in modulation of epithelial inflammatory signalling in IBD.
Collapse
Affiliation(s)
- Salman Ahmad Mustfa
- Laboratory of gut inflammation and infection biology (LGIIB), Regional Centre for Biotechnology, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India.,Department of Gastroenterology, Manipal University, Manipal, Karnataka, India
| | - Mukesh Singh
- Laboratory of gut inflammation and infection biology (LGIIB), Regional Centre for Biotechnology, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India
| | - Aamir Suhail
- Laboratory of gut inflammation and infection biology (LGIIB), Regional Centre for Biotechnology, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India.,Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Gayatree Mohapatra
- Laboratory of gut inflammation and infection biology (LGIIB), Regional Centre for Biotechnology, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India.,Department of Gastroenterology, Manipal University, Manipal, Karnataka, India
| | - Smriti Verma
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Boston, MA, USA
| | - Debangana Chakravorty
- Functional interactomics laboratory, Bose Institute Kolkata, P 1/12, C.I.T Road, Scheme VII M, Kolkata 700054, India
| | - Sarika Rana
- Laboratory of gut inflammation and infection biology (LGIIB), Regional Centre for Biotechnology, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India.,Department of Gastroenterology, Manipal University, Manipal, Karnataka, India
| | - Ritika Rampal
- All India Institute of Medical Sciences, Ansari Nagar East, New Delhi, India
| | - Atika Dhar
- National Institute of Immunology, New Delhi, India
| | - Sudipto Saha
- Functional interactomics laboratory, Bose Institute Kolkata, P 1/12, C.I.T Road, Scheme VII M, Kolkata 700054, India
| | - Vineet Ahuja
- All India Institute of Medical Sciences, Ansari Nagar East, New Delhi, India
| | - C V Srikanth
- Laboratory of gut inflammation and infection biology (LGIIB), Regional Centre for Biotechnology, 3rd milestone Gurgaon Faridabad Expressway, Faridabad, India
| |
Collapse
|
23
|
Ohkuni K, Pasupala N, Peek J, Holloway GL, Sclar GD, Levy-Myers R, Baker RE, Basrai MA, Kerscher O. SUMO-Targeted Ubiquitin Ligases (STUbLs) Reduce the Toxicity and Abnormal Transcriptional Activity Associated With a Mutant, Aggregation-Prone Fragment of Huntingtin. Front Genet 2018; 9:379. [PMID: 30279700 PMCID: PMC6154015 DOI: 10.3389/fgene.2018.00379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/27/2018] [Indexed: 01/01/2023] Open
Abstract
Cell viability and gene expression profiles are altered in cellular models of neurodegenerative disorders such as Huntington’s Disease (HD). Using the yeast model system, we show that the SUMO-targeted ubiquitin ligase (STUbL) Slx5 reduces the toxicity and abnormal transcriptional activity associated with a mutant, aggregation-prone fragment of huntingtin (Htt), the causative agent of HD. We demonstrate that expression of an aggregation-prone Htt construct with 103 glutamine residues (103Q), but not the non-expanded form (25Q), results in severe growth defects in slx5Δ and slx8Δ cells. Since Slx5 is a nuclear protein and because Htt expression affects gene transcription, we assessed the effect of STUbLs on the transcriptional properties of aggregation-prone Htt. Expression of Htt 25Q and 55Q fused to the Gal4 activation domain (AD) resulted in reporter gene auto-activation. Remarkably, the auto-activation of Htt constructs was abolished by expression of Slx5 fused to the Gal4 DNA-binding domain (BD-Slx5). In support of these observations, RNF4, the human ortholog of Slx5, curbs the aberrant transcriptional activity of aggregation-prone Htt in yeast and a variety of cultured human cell lines. Functionally, we find that an extra copy of SLX5 specifically reduces Htt aggregates in the cytosol as well as chromatin-associated Htt aggregates in the nucleus. Finally, using RNA sequencing, we identified and confirmed specific targets of Htt’s transcriptional activity that are modulated by Slx5. In summary, this study of STUbLs uncovers a conserved pathway that counteracts the accumulation of aggregating, transcriptionally active Htt (and possibly other poly-glutamine expanded proteins) on chromatin in both yeast and in mammalian cells.
Collapse
Affiliation(s)
- Kentaro Ohkuni
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Nagesh Pasupala
- Biology Department, College of William & Mary, Williamsburg, VA, United States
| | - Jennifer Peek
- Biology Department, College of William & Mary, Williamsburg, VA, United States
| | | | - Gloria D Sclar
- Biology Department, College of William & Mary, Williamsburg, VA, United States
| | - Reuben Levy-Myers
- Biology Department, College of William & Mary, Williamsburg, VA, United States
| | - Richard E Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Oliver Kerscher
- Biology Department, College of William & Mary, Williamsburg, VA, United States
| |
Collapse
|
24
|
Kapur R, Semple JW. Alleviation of gram-negative bacterial lung inflammation by targeting HECTD2. ANNALS OF TRANSLATIONAL MEDICINE 2017; 4:488. [PMID: 28149850 DOI: 10.21037/atm.2016.11.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rick Kapur
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Canadian Blood Services
| | - John W Semple
- Toronto Platelet Immunobiology Group, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Canadian Blood Services,; Department of Pharmacology, Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada;; Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| |
Collapse
|
25
|
Anderson DB, Zanella CA, Henley JM, Cimarosti H. Sumoylation: Implications for Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:261-281. [PMID: 28197918 DOI: 10.1007/978-3-319-50044-7_16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The covalent posttranslational modifications of proteins are critical events in signaling cascades that enable cells to efficiently, rapidly and reversibly respond to extracellular stimuli. This is especially important in the CNS where the processes affecting synaptic communication between neurons are highly complex and very tightly regulated. Sumoylation regulates the function and fate of a diverse array of proteins and participates in the complex cell signaling pathways required for cell survival. One of the most complex signaling pathways is synaptic transmission.Correct synaptic function is critical to the working of the brain and its alteration through synaptic plasticity mediates learning, mental disorders and stroke. The investigation of neuronal sumoylation is a new and exciting field and the functional and pathophysiological implications are far-reaching. Sumoylation has already been implicated in a diverse array of neurological disorders. Here we provide an overview of current literature highlighting recent insights into the role of sumoylation in neurodegeneration. In addition we present a brief assessment of drug discovery in the analogous ubiquitin system and extrapolate on the potential for development of novel therapies that might target SUMO-associated mechanisms of neurodegenerative disease.
Collapse
Affiliation(s)
- Dina B Anderson
- Ipsen Bioinnovation Ltd, Units 4-10 The Quadrant, Barton Lane, Abingdon, OX14 3YS, UK
| | - Camila A Zanella
- Department of Pharmacology, Federal University of Santa Catarina, Campus Universitario - Trindade, Florianopolis, CEP, 88040-900, Brazil
| | - Jeremy M Henley
- MRC Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Helena Cimarosti
- Department of Pharmacology, Federal University of Santa Catarina, Campus Universitario - Trindade, Florianopolis, CEP, 88040-900, Brazil.
| |
Collapse
|
26
|
Goldberg AA, Nkengfac B, Sanchez AMJ, Moroz N, Qureshi ST, Koromilas AE, Wang S, Burelle Y, Hussain SN, Kristof AS. Regulation of ULK1 Expression and Autophagy by STAT1. J Biol Chem 2016; 292:1899-1909. [PMID: 28011640 DOI: 10.1074/jbc.m116.771584] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 02/02/2023] Open
Abstract
Autophagy involves the lysosomal degradation of cytoplasmic contents for regeneration of anabolic substrates during nutritional or inflammatory stress. Its initiation occurs rapidly after inactivation of the protein kinase mammalian target of rapamycin (mTOR) (or mechanistic target of rapamycin), leading to dephosphorylation of Unc-51-like kinase 1 (ULK1) and autophagosome formation. Recent studies indicate that mTOR can, in parallel, regulate the activity of stress transcription factors, including signal transducer and activator of transcription-1 (STAT1). The current study addresses the role of STAT1 as a transcriptional suppressor of autophagy genes and autophagic activity. We show that STAT1-deficient human fibrosarcoma cells exhibited enhanced autophagic flux as well as its induction by pharmacological inhibition of mTOR. Consistent with enhanced autophagy initiation, ULK1 mRNA and protein levels were increased in STAT1-deficient cells. By chromatin immunoprecipitation, STAT1 bound a putative regulatory sequence in the ULK1 5'-flanking region, the mutation of which increased ULK1 promoter activity, and rendered it unresponsive to mTOR inhibition. Consistent with an anti-apoptotic effect of autophagy, rapamycin-induced apoptosis and cytotoxicity were blocked in STAT1-deficient cells but restored in cells simultaneously exposed to the autophagy inhibitor ammonium chloride. In vivo, skeletal muscle ULK1 mRNA and protein levels as well as autophagic flux were significantly enhanced in STAT1-deficient mice. These results demonstrate a novel mechanism by which STAT1 negatively regulates ULK1 expression and autophagy.
Collapse
Affiliation(s)
- Alexander A Goldberg
- From the Departments of Critical Care and Medicine, McGill University Health Centre and Meakins-Christie Laboratories, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Bernard Nkengfac
- From the Departments of Critical Care and Medicine, McGill University Health Centre and Meakins-Christie Laboratories, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Anthony M J Sanchez
- From the Departments of Critical Care and Medicine, McGill University Health Centre and Meakins-Christie Laboratories, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Nikolay Moroz
- From the Departments of Critical Care and Medicine, McGill University Health Centre and Meakins-Christie Laboratories, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Salman T Qureshi
- From the Departments of Critical Care and Medicine, McGill University Health Centre and Meakins-Christie Laboratories, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Antonis E Koromilas
- the Lady Davis Institute for Medical Research, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Shuo Wang
- the Lady Davis Institute for Medical Research, McGill University, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Yan Burelle
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Sabah N Hussain
- From the Departments of Critical Care and Medicine, McGill University Health Centre and Meakins-Christie Laboratories, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Arnold S Kristof
- From the Departments of Critical Care and Medicine, McGill University Health Centre and Meakins-Christie Laboratories, McGill University, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
27
|
El-Tahan RR, Ghoneim AM, El-Mashad N. TNF-α gene polymorphisms and expression. SPRINGERPLUS 2016; 5:1508. [PMID: 27652081 PMCID: PMC5014780 DOI: 10.1186/s40064-016-3197-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 09/01/2016] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor alpha (TNF-α) is a proinflammatory cytokine with an important role in the pathogenesis of several diseases. Its encoding gene is located in the short arm of chromosome 6 in the major histocompatibility complex class III region. Most of the TNF-α gene polymorphisms are located in its promoter region and they are thought to affect the susceptibility and/or severity of different human diseases. This review summarizes the data related to the association between TNF-α gene and its receptor polymorphisms, and the development of autoimmune diseases. Among these polymorphisms the -308G/A TNF-α promotor polymorphism has been associated several times with the the development of autoimmune diseases, however some discrepant results have been recorded. The other TNF-α gene polymorphisms had little or no association with autoimmune diseases. Current results about the molecules controlling TNF-α expression are also presented. The discrepancy between different records could be related partly to either the differences in the ethnic origin or number of the studied individuals, or the abundance and activation of other molecules that interact with the TNF-α promotor region or other elements.
Collapse
Affiliation(s)
- Radwa R. El-Tahan
- Zoology Department, Faculty of Science, Damietta University, P.O. 34517, New Damietta, Damietta Egypt
| | - Ahmed M. Ghoneim
- Zoology Department, Faculty of Science, Damietta University, P.O. 34517, New Damietta, Damietta Egypt
| | - Noha El-Mashad
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
28
|
Abe JI. Multiple Functions of Protein Inhibitor of Activated STAT1 in Regulating Endothelial Cell Proliferation and Inflammation. Arterioscler Thromb Vasc Biol 2016; 36:1717-9. [PMID: 27559144 DOI: 10.1161/atvbaha.116.308131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jun-Ichi Abe
- From the Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston.
| |
Collapse
|
29
|
Lerchenmüller C, Heißenberg J, Damilano F, Bezzeridis VJ, Krämer I, Bochaton-Piallat ML, Hirschberg K, Busch M, Katus HA, Peppel K, Rosenzweig A, Busch H, Boerries M, Most P. S100A6 Regulates Endothelial Cell Cycle Progression by Attenuating Antiproliferative Signal Transducers and Activators of Transcription 1 Signaling. Arterioscler Thromb Vasc Biol 2016; 36:1854-67. [PMID: 27386938 DOI: 10.1161/atvbaha.115.306415] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 06/27/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE S100A6, a member of the S100 protein family, has been described as relevant for cell cycle entry and progression in endothelial cells. The molecular mechanism conferring S100A6's proliferative actions, however, remained elusive. APPROACH AND RESULTS Originating from the clinically relevant observation of enhanced S100A6 protein expression in proliferating endothelial cells in remodeling coronary and carotid arteries, our study unveiled S100A6 as a suppressor of antiproliferative signal transducers and activators of transcription 1 signaling. Discovery of the molecular liaison was enabled by combining gene expression time series analysis with bioinformatic pathway modeling in S100A6-silenced human endothelial cells stimulated with vascular endothelial growth factor A. This unbiased approach led to successful identification and experimental validation of interferon-inducible transmembrane protein 1 and protein inhibitors of activated signal transducers and activators of transcription as key components of the link between S100A6 and signal transducers and activators of transcription 1. CONCLUSIONS Given the important role of coordinated endothelial cell cycle activity for integrity and reconstitution of the inner lining of arterial blood vessels in health and disease, signal transducers and activators of transcription 1 suppression by S100A6 may represent a promising therapeutic target to facilitate reendothelialization in damaged vessels.
Collapse
Affiliation(s)
- Carolin Lerchenmüller
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries).
| | - Julian Heißenberg
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Federico Damilano
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Vassilios J Bezzeridis
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Isabel Krämer
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Marie-Luce Bochaton-Piallat
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Kristóf Hirschberg
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Martin Busch
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Hugo A Katus
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Karsten Peppel
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Anthony Rosenzweig
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Hauke Busch
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| | - Melanie Boerries
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries).
| | - Patrick Most
- From the Cardiovascular Research Center, Massachusetts General Hospital (C.L., F.D., A.R.), Cardiovascular Institute, Beth Israel Deaconess Medical Center (F.D.), and Boston Children's Hospital (V.J.B.), Harvard Medical School, Boston, MA; Molecular and Translational Cardiology (MTC), Department of Internal Medicine III, University Hospital Heidelberg, Germany (C.L., J.H., I.K., M. Busch, P.M.); Department of Pathology and Immunology, University of Geneva, Switzerland (M.-L.B.-P.); DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, University of Heidelberg, Germany (K.H., M. Busch, H.A.K., P.M.); Center for Translational Medicine, Jefferson Medical College, Philadelphia, PA (K.P., P.M.); Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University, Freiburg, Germany (H.B., M. Boerries); German Cancer Consortium (DKTK), Freiburg, Germany (H.B., M. Boerries); and German Cancer Research Center (DKFZ), Heidelberg, Germany (H.B., M. Boerries)
| |
Collapse
|
30
|
Coon TA, McKelvey AC, Lear T, Rajbhandari S, Dunn SR, Connelly W, Zhao JY, Han S, Liu Y, Weathington NM, McVerry BJ, Zhang Y, Chen BB. The proinflammatory role of HECTD2 in innate immunity and experimental lung injury. Sci Transl Med 2016; 7:295ra109. [PMID: 26157031 DOI: 10.1126/scitranslmed.aab3881] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Invading pathogens may trigger overactivation of the innate immune system, which results in the release of large amounts of proinflammatory cytokines (cytokine storm) and leads to the development of pulmonary edema, multiorgan failure, and shock. PIAS1 is a multifunctional and potent anti-inflammatory protein that negatively regulates several key inflammatory pathways such as Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and nuclear factor κB (NF-κB). We discovered a ubiquitin E3 ligase, HECTD2, which ubiquitinated and mediated the degradation of PIAS1, thus increasing inflammation in an experimental pneumonia model. We found that GSK3β phosphorylation of PIAS1 provided a phosphodegron for HECTD2 targeting. We also identified a mislocalized HECTD2 polymorphism, HECTD2(A19P), that was present in 8.5% of the population and functioned to reduce inflammation. This polymorphism prevented HECTD2/PIAS1 nuclear interaction, thus preventing PIAS1 degradation. The HECTD2(A19P) polymorphism was also protective toward acute respiratory distress syndrome (ARDS). We then developed a small-molecule inhibitor, BC-1382, that targeted HECTD2 and attenuated lipopolysaccharide (LPS)- and Pseudomonas aeruginosa-induced lung inflammation. These studies describe an unreported innate immune pathway and suggest that mutation or antagonism of the E3 ligase HECTD2 results in reduced severity of lung inflammation by selectively modulating the abundance of the anti-inflammatory protein PIAS1.
Collapse
Affiliation(s)
- Tiffany A Coon
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alison C McKelvey
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Travis Lear
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shristi Rajbhandari
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarah R Dunn
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - William Connelly
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joe Y Zhao
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - SeungHye Han
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yuan Liu
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nathaniel M Weathington
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bryan J McVerry
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yingze Zhang
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bill B Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA. Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
31
|
Ochaba J, Monteys AM, O'Rourke JG, Reidling JC, Steffan JS, Davidson BL, Thompson LM. PIAS1 Regulates Mutant Huntingtin Accumulation and Huntington's Disease-Associated Phenotypes In Vivo. Neuron 2016; 90:507-20. [PMID: 27146268 PMCID: PMC4942306 DOI: 10.1016/j.neuron.2016.03.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/04/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
The disruption of protein quality control networks is central to pathology in Huntington's disease (HD) and other neurodegenerative disorders. The aberrant accumulation of insoluble high-molecular-weight protein complexes containing the Huntingtin (HTT) protein and SUMOylated protein corresponds to disease manifestation. We previously identified an HTT-selective E3 SUMO ligase, PIAS1, that regulates HTT accumulation and SUMO modification in cells. Here we investigated whether PIAS1 modulation in neurons alters HD-associated phenotypes in vivo. Instrastriatal injection of a PIAS1-directed miRNA significantly improved behavioral phenotypes in rapidly progressing mutant HTT (mHTT) fragment R6/2 mice. PIAS1 reduction prevented the accumulation of mHTT and SUMO- and ubiquitin-modified proteins, increased synaptophysin levels, and normalized key inflammatory markers. In contrast, PIAS1 overexpression exacerbated mHTT-associated phenotypes and aberrant protein accumulation. These results confirm the association between aberrant accumulation of expanded polyglutamine-dependent insoluble protein species and pathogenesis, and they link phenotypic benefit to reduction of these species through PIAS1 modulation.
Collapse
Affiliation(s)
- Joseph Ochaba
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Alex Mas Monteys
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jacqueline G O'Rourke
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA 90048, USA
| | - Jack C Reidling
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Joan S Steffan
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA; Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
32
|
Liu Y, Ge X, Dou X, Guo L, Liu Y, Zhou SR, Wei XB, Qian SW, Huang HY, Xu CJ, Jia WP, Dang YJ, Li X, Tang QQ. Protein Inhibitor of Activated STAT 1 (PIAS1) Protects Against Obesity-Induced Insulin Resistance by Inhibiting Inflammation Cascade in Adipose Tissue. Diabetes 2015; 64:4061-74. [PMID: 26324179 DOI: 10.2337/db15-0278] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 07/15/2015] [Indexed: 11/13/2022]
Abstract
Obesity is associated with chronic low-level inflammation, especially in fat tissues, which contributes to insulin resistance and type 2 diabetes mellitus (T2DM). Protein inhibitor of activated STAT 1 (PIAS1) modulates a variety of cellular processes such as cell proliferation and DNA damage responses. Particularly, PIAS1 functions in the innate immune system and is a key regulator of the inflammation cascade. However, whether PIAS1 is involved in the regulation of insulin sensitivity remains unknown. Here, we demonstrated that PIAS1 expression in white adipose tissue (WAT) was downregulated by c-Jun N-terminal kinase in prediabetic mice models. Overexpression of PIAS1 in inguinal WAT of prediabetic mice significantly improved systemic insulin sensitivity, whereas knockdown of PIAS1 in wild-type mice led to insulin resistance. Mechanistically, PIAS1 inhibited the activation of stress-induced kinases and the expression of nuclear factor-κB target genes in adipocytes, mainly including proinflammatory and chemotactic factors. In doing so, PIAS1 inhibited macrophage infiltration in adipose tissue, thus suppressing amplification of the inflammation cascade, which in turn improved insulin sensitivity. These results were further verified in a fat transplantation model. Our findings shed light on the critical role of PIAS1 in controlling insulin sensitivity and suggest a therapeutic potential of PIAS1 in T2DM.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xin Ge
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xin Dou
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Liang Guo
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yuan Liu
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shui-Rong Zhou
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiang-Bo Wei
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Shu-Wen Qian
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Hai-Yan Huang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Cong-Jian Xu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Disease, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Wei-Ping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yong-Jun Dang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xi Li
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China Institute of Stem Cell Research and Regenerative Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Small ubiquitin-related modifier 2/3 interacts with p65 and stabilizes it in the cytoplasm in HBV-associated hepatocellular carcinoma. BMC Cancer 2015; 15:675. [PMID: 26458400 PMCID: PMC4603762 DOI: 10.1186/s12885-015-1665-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 09/30/2015] [Indexed: 11/17/2022] Open
Abstract
Background SUMOylation, an important post-translational modification, associates with the development of hepatocellular carcinoma (HCC). p65, one of the most important subunits of NF-κB, is a key regulator in the development of HCC and has been reported to be SUMOylated by exogenous small ubiquitin-related modifier 3 (SUMO3) in HEK 293T cells. However, the relationship between p65 and SUMO2/3 in HCC remains unknown. This study was to investigate the interaction between p65 and SUMO2/3 and explore the potential roles involved in HCC. Methods The expressions of p65 and SUMO2/3 in the liver tissues were detected by using immunohistochemistry. We performed double-labeled immunofluorescence and co-immunoprecipitation assay to verify the interaction between p65 and SUMO2/3. The extraction of nuclear and cytoplasmic proteins was performed, and the subcellular localization of p65 was detected. The proliferation and migration of hepatoma cells were observed using MTT, colony formation, and transwell assays. Results We found a strong SUMO2/3-positive immunoreactivity in the cytoplasm in the non-tumor tissues of HCC. However, SUMO2/3 level was down regulated in the tumor tissues as compared with the adjacent non-tumor tissues. In accordance with this finding, p65 was up regulated in the adjacent non-tumor tissues and almost localized in the cytoplasm. There was a close correlation between SUMO2/3 and p65 expressions in the liver tissues (R = 0.800, p = 0.006). The interaction between p65 and SUMO2/3 was verified by co-immunoprecipitation and double-labeled immunofluorescent assays. TNF-α (10 ng/ml) treatment for 30 min not only up regulated the cytoplasmic conjugated SUMO2/3, but also enhanced SUMO2/3-p65 interaction. Furthermore, we found that SUMO2/3 up regulated the cytoplasmic p65 protein level in a dose-dependent manner, but not affected its mRNA level. The increase of p65 protein by SUMO2/3 was abolished by MG132 treatment, a reversible inhibitor of proteasome. Meanwhile, TNF-α-induced increase of SUMO2/3-conjugated p65 was along with the reduction of the ubiquitin-conjugated p65. The further study showed that SUMO2/3 over-expression decreased the proliferative ability of hepatoma cells, but did not affect the migration. Conclusion SUMO2/3-p65 interaction may be a novel mechanism involved in the transformation from chronic hepatitis B to HCC via stabilizing cytoplasmic p65, which might shed light on understanding the tumorigenesis and development. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1665-3) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Salmonella Engages Host MicroRNAs To Modulate SUMOylation: a New Arsenal for Intracellular Survival. Mol Cell Biol 2015; 35:2932-46. [PMID: 26100020 DOI: 10.1128/mcb.00397-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/17/2015] [Indexed: 12/13/2022] Open
Abstract
Posttranslational modifications (PTMs) can alter many fundamental properties of a protein. One or combinations of them have been known to regulate the dynamics of many cellular pathways and consequently regulate all vital processes. Understandably, pathogens have evolved sophisticated strategies to subvert these mechanisms to achieve instantaneous control over host functions. Here, we present the first report of modulation by intestinal pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) of host SUMOylation, a PTM pathway central to all fundamental cellular processes. Both in cell culture and in a mouse model, we observed that S. Typhimurium infection led to a dynamic SUMO-conjugated proteome alteration. The intracellular survival of S. Typhimurium was dependent on SUMO status as revealed by reduced infection and Salmonella-induced filaments (SIFs) in SUMO-upregulated cells. S. Typhimurium-dependent SUMO modulation was seen as a result of depletion of crucial SUMO pathway enzymes Ubc-9 and PIAS1, at both the protein and the transcript levels. Mechanistically, depletion of Ubc-9 relied on upregulation of small noncoding RNAs miR30c and miR30e during S. Typhimurium infection. This was necessary and sufficient for both down-modulation of Ubc-9 and a successful infection. Thus, we demonstrate a novel strategy of pathogen-mediated perturbation of host SUMOylation, an integral mechanism underlying S. Typhimurium infection and intracellular survival.
Collapse
|
35
|
Transcriptome profiling of biliary atresia from new born infants by deep sequencing. Mol Biol Rep 2014; 41:8063-9. [DOI: 10.1007/s11033-014-3704-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 08/23/2014] [Indexed: 01/18/2023]
|
36
|
Chiou HYC, Liu SY, Lin CH, Lee EH. Hes-1 SUMOylation by protein inhibitor of activated STAT1 enhances the suppressing effect of Hes-1 on GADD45α expression to increase cell survival. J Biomed Sci 2014; 21:53. [PMID: 24894488 PMCID: PMC4071220 DOI: 10.1186/1423-0127-21-53] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/22/2014] [Indexed: 01/18/2023] Open
Abstract
Background Hairy and Enhancer of split 1 (Hes-1) is a transcriptional repressor that plays an important role in neuronal differentiation and development, but post-translational modifications of Hes-1 are much less known. In the present study, we aimed to investigate whether Hes-1 could be SUMO-modified and identify the candidate SUMO acceptors on Hes-1. We also wished to examine the role of the SUMO E3 ligase protein inhibitor of activated STAT1 (PIAS1) in SUMOylation of Hes-1 and the molecular mechanism of Hes-1 SUMOylation. Further, we aimed to identify the molecular target of Hes-1 and examine how Hes-1 SUMOylation affects its molecular target to affect cell survival. Results In this study, by using HEK293T cells, we have found that Hes-1 could be SUMO-modified and Hes-1 SUMOylation was greatly enhanced by the SUMO E3 ligase PIAS1 at Lys8, Lys27 and Lys39. Furthermore, Hes-1 SUMOylation stabilized the Hes-1 protein and increased the transcriptional suppressing activity of Hes-1 on growth arrest and DNA damage-inducible protein alpha (GADD45α) expression. Overexpression of GADD45α increased, whereas knockdown of GADD45αα expression decreased cell apoptosis. In addition, H2O2 treatment increased the association between PIAS1 and Hes-1 and enhanced the SUMOylation of Hes-1 for endogenous protection. Overexpression of Hes-1 decreased H2O2-induced cell death, but this effect was blocked by transfection of the Hes-1 triple sumo-mutant (Hes-1 3KR). Overexpression of PIAS1 further facilitated the anti-apoptotic effect of Hes-1. Moreover, Hes-1 SUMOylation was independent of Hes-1 phosphorylation and vice versa. Conclusions The present results revealed, for the first time, that Hes-1 could be SUMO-modified by PIAS1 and GADD45α is a novel target of Hes-1. Further, Hes-1 SUMOylation mediates cell survival through enhanced suppression of GADD45α expression. These results revealed a novel role of Hes-1 in addition to its involvement in Notch signaling. They also implicate that SUMOylation could be an important posttranslational modification that regulates cell survival.
Collapse
Affiliation(s)
| | | | | | - Eminy Hy Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
37
|
PIAS1 regulates breast tumorigenesis through selective epigenetic gene silencing. PLoS One 2014; 9:e89464. [PMID: 24586797 PMCID: PMC3933565 DOI: 10.1371/journal.pone.0089464] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/20/2014] [Indexed: 01/06/2023] Open
Abstract
Epigenetic gene silencing by histone modifications and DNA methylation is essential for cancer development. The molecular mechanism that promotes selective epigenetic changes during tumorigenesis is not understood. We report here that the PIAS1 SUMO ligase is involved in the progression of breast tumorigenesis. Elevated PIAS1 expression was observed in breast tumor samples. PIAS1 knockdown in breast cancer cells reduced the subpopulation of tumor-initiating cells, and inhibited breast tumor growth in vivo. PIAS1 acts by delineating histone modifications and DNA methylation to silence the expression of a subset of clinically relevant genes, including breast cancer DNA methylation signature genes such as cyclin D2 and estrogen receptor, and breast tumor suppressor WNT5A. Our studies identify a novel epigenetic mechanism that regulates breast tumorigenesis through selective gene silencing.
Collapse
|
38
|
Functional annotation of rheumatoid arthritis and osteoarthritis associated genes by integrative genome-wide gene expression profiling analysis. PLoS One 2014; 9:e85784. [PMID: 24551036 PMCID: PMC3925090 DOI: 10.1371/journal.pone.0085784] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 12/02/2013] [Indexed: 12/20/2022] Open
Abstract
Background Rheumatoid arthritis (RA) and osteoarthritis (OA) are two major types of joint diseases that share multiple common symptoms. However, their pathological mechanism remains largely unknown. The aim of our study is to identify RA and OA related-genes and gain an insight into the underlying genetic basis of these diseases. Methods We collected 11 whole genome-wide expression profiling datasets from RA and OA cohorts and performed a meta-analysis to comprehensively investigate their expression signatures. This method can avoid some pitfalls of single dataset analyses. Results and Conclusion We found that several biological pathways (i.e., the immunity, inflammation and apoptosis related pathways) are commonly involved in the development of both RA and OA. Whereas several other pathways (i.e., vasopressin-related pathway, regulation of autophagy, endocytosis, calcium transport and endoplasmic reticulum stress related pathways) present significant difference between RA and OA. This study provides novel insights into the molecular mechanisms underlying this disease, thereby aiding the diagnosis and treatment of the disease.
Collapse
|
39
|
Liu B, Yee KM, Tahk S, Mackie R, Hsu C, Shuai K. PIAS1 SUMO ligase regulates the self-renewal and differentiation of hematopoietic stem cells. EMBO J 2013; 33:101-13. [PMID: 24357619 DOI: 10.1002/embj.201283326] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The selective and temporal DNA methylation plays an important role in the self-renewal and differentiation of hematopoietic stem cells (HSCs), but the molecular mechanism that controls the dynamics of DNA methylation is not understood. Here, we report that the PIAS1 epigenetic pathway plays an important role in regulating HSC self-renewal and differentiation. PIAS1 is required for maintaining the quiescence of dormant HSCs and the long-term repopulating capacity of HSC. Pias1 disruption caused the abnormal expression of lineage-associated genes. Bisulfite sequencing analysis revealed the premature promoter demethylation of Gata1, a key myeloerythroid transcription factor and a PIAS1-target gene, in Pias1(-/-) HSCs. As a result, Pias1 disruption caused the inappropriate induction of Gata1 in HSCs and common lymphoid progenitors (CLPs). The expression of other myeloerythroid genes was also enhanced in CLPs and lineage-negative progenitors, with a concurrent repression of B cell-specific genes. Consistently, Pias1 disruption caused enhanced myeloerythroid, but reduced B lymphoid lineage differentiation. These results identify a novel role of PIAS1 in maintaining the quiescence of dormant HSCs and in the epigenetic repression of the myeloerythroid program.
Collapse
Affiliation(s)
- Bin Liu
- Division of Hematology-Oncology Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
40
|
Protein inhibitor of activated STAT 1 (PIAS1) is identified as the SUMO E3 ligase of CCAAT/enhancer-binding protein β (C/EBPβ) during adipogenesis. Mol Cell Biol 2013; 33:4606-17. [PMID: 24061474 DOI: 10.1128/mcb.00723-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
It is well recognized that PIAS1, a SUMO (small ubiquitin-like modifier) E3 ligase, modulates such cellular processes as cell proliferation, DNA damage responses, and inflammation responses. Recent studies have shown that PIAS1 also plays a part in cell differentiation. However, the role of PIAS1 in adipocyte differentiation remains unknown. CCAAT/enhancer-binding protein β (C/EBPβ), a major regulator of adipogenesis, is a target of SUMOylation, but the E3 ligase responsible for the SUMOylation of C/EBPβ has not been identified. The present study showed that PIAS1 functions as a SUMO E3 ligase of C/EBPβ to regulate adipogenesis. PIAS1 expression was significantly and transiently induced on day 4 of 3T3-L1 adipocyte differentiation, when C/EBPβ began to decline. PIAS1 was found to interact with C/EBPβ through the SAP (scaffold attachment factor A/B/acinus/PIAS) domain and SUMOylate it, leading to increased ubiquitination and degradation of C/EBPβ. C/EBPβ became more stable when PIAS1 was silenced by RNA interference (RNAi). Moreover, adipogenesis was inhibited by overexpression of wild-type PIAS1 and promoted by knockdown of PIAS1. The mutational study indicated that the catalytic activity of SUMO E3 ligase was required for PIAS1 to restrain adipogenesis. Importantly, the inhibitory effect of PIAS1 overexpression on adipogenesis was rescued by overexpressed C/EBPβ. Thus, PIAS1 could play a dynamic role in adipogenesis by promoting the SUMOylation of C/EBPβ.
Collapse
|
41
|
Li R, Pan Y, Shi DD, Zhang Y, Zhang J. PIAS1 negatively modulates virus triggered type I IFN signaling by blocking the DNA binding activity of IRF3. Antiviral Res 2013; 100:546-54. [PMID: 24036127 DOI: 10.1016/j.antiviral.2013.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 10/26/2022]
Abstract
During viral infection, production of proinflammatory cytokines including type I interferons (IFNs) is under stringent control to avoid detrimental overreaction. The protein inhibitor of activated STAT (PIAS) family proteins have been recognized as anti-inflammatory molecules by restraining type I IFN induced amplifying signaling. Here we identified PIAS1 as an important negative regulator of virus-triggered type I IFN signaling. Overexpression of PIAS1 repressed virus-or RIG-I like receptor stimulated type I IFN transcription, whereas knockdown of PIAS1 expression augmented virus-induced production of type I IFNs. PIAS1 with a mutation in the SAP domain retained the inhibitory function in virus-induced IFN transcription, but abolished the inhibition in IFN-stimulated signaling. SUMO E3 ligase activity dead mutant PIAS1/C350S still had the comparable inhibitory function with WT PIAS1. Further study indicated that PIAS1 interacted with IRF3 and inhibited the DNA binding activity of IRF3. The C-terminal region of PIAS1 around a cluster of acidic amino acids is critical for the interaction with IRF3 and the inhibitory functions of PIAS1. Therefore, these results unveil PIAS1 functions both at the virus-induced early signaling stage and IFN stimulated amplifying stage with distinct mechanisms. PIAS1 is important in maintaining proper amounts of type I IFNs and restrains its magnitude when the antiviral response intensifies.
Collapse
Affiliation(s)
- Rui Li
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Health Science Center, Beijing 100191, PR China
| | | | | | | | | |
Collapse
|
42
|
O’Rourke JG, Gareau JR, Ochaba J, Song W, Raskó T, Reverter D, Lee J, Monteys AM, Pallos J, Mee L, Vashishtha M, Apostol BL, Nicholson TP, Illes K, Zhu YZ, Dasso M, Bates GP, Difiglia M, Davidson B, Wanker EE, Marsh JL, Lima CD, Steffan JS, Thompson LM. SUMO-2 and PIAS1 modulate insoluble mutant huntingtin protein accumulation. Cell Rep 2013; 4:362-75. [PMID: 23871671 PMCID: PMC3931302 DOI: 10.1016/j.celrep.2013.06.034] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/03/2013] [Accepted: 06/24/2013] [Indexed: 11/19/2022] Open
Abstract
A key feature in Huntington disease (HD) is the accumulation of mutant Huntingtin (HTT) protein, which may be regulated by posttranslational modifications. Here, we define the primary sites of SUMO modification in the amino-terminal domain of HTT, show modification downstream of this domain, and demonstrate that HTT is modified by the stress-inducible SUMO-2. A systematic study of E3 SUMO ligases demonstrates that PIAS1 is an E3 SUMO ligase for both HTT SUMO-1 and SUMO-2 modification and that reduction of dPIAS in a mutant HTT Drosophila model is protective. SUMO-2 modification regulates accumulation of insoluble HTT in HeLa cells in a manner that mimics proteasome inhibition and can be modulated by overexpression and acute knockdown of PIAS1. Finally, the accumulation of SUMO-2-modified proteins in the insoluble fraction of HD postmortem striata implicates SUMO-2 modification in the age-related pathogenic accumulation of mutant HTT and other cellular proteins that occurs during HD progression.
Collapse
Affiliation(s)
- Jacqueline Gire O’Rourke
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Jaclyn R. Gareau
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Joseph Ochaba
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Wan Song
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Tamás Raskó
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - David Reverter
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - John Lee
- Departments of Internal Medicine, Neurology, and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alex Mas Monteys
- Departments of Internal Medicine, Neurology, and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Judit Pallos
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Lisa Mee
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Malini Vashishtha
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Barbara L. Apostol
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | | | - Katalin Illes
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Ya-Zhen Zhu
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Mary Dasso
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gillian P. Bates
- Department of Medical and Molecular Genetics, King’s College London School of Medicine, London WC2R 2LS, UK
| | - Marian Difiglia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Beverly Davidson
- Departments of Internal Medicine, Neurology, and Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Erich E. Wanker
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - J. Lawrence Marsh
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Christopher D. Lima
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Joan S. Steffan
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Leslie M. Thompson
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Correspondence:
| |
Collapse
|
43
|
Sahin M, Sahin E, Koksoy S. Regulatory T cells in cancer: an overview and perspectives on cyclooxygenase-2 and Foxp3 DNA methylation. Hum Immunol 2013; 74:1061-8. [PMID: 23756166 DOI: 10.1016/j.humimm.2013.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 01/20/2023]
Abstract
Epigenetics has been gaining great attention as a therapeutic target in cancer. The cancer genome usually contains both hyper- and hypo-methylated genes to increase invasion, proliferation and metastasis. These cells not only operate their own growth, but also develop various strategies to escape from immune surveillance, and for this aim, regulatory T (Treg) cells support the cancer-mediated immune suppression. The fate of Treg cells is mainly controlled by DNA methylation within the promoter and intronic regions of Foxp3 gene. Foxp3 transcription factor is involved in the development, differentiation and function of Treg cells. COX-2 is also an epigenetically controlled gene in these processes. This enzyme and its product PGE2 plays essential roles in Treg functionality in cancer. Here, we discuss the effects of DNA methylation on cancer and nTreg cells. We also summarize the mechanisms related with COX-2/PGE2 and Foxp3 on inhibitory function of Treg cells in cancer.
Collapse
Affiliation(s)
- Mehmet Sahin
- Health Sciences Research Center, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| | | | | |
Collapse
|
44
|
Abstract
STAT1 (signal transducer and activator of transcription 1) is a member of the JAK-STAT signaling family and plays a key role in facilitating gene transcription in response to activation of the types I and II interferon (IFN) receptors. TYK2 is essential for type I, but not type II, IFN-induced STAT1 activation. Previous studies show that STAT1-deficient mice are resistant to endotoxin-induced shock. The goal of the present study was to assess the response of STAT1- and TYK2-deficient mice to septic shock caused by cecal ligation and puncture (CLP). End points included survival, core temperature, organ injury, systemic cytokine production, and bacterial clearance. Results showed that survival rates were significantly higher in STAT1 knockout (STAT1KO) mice compared with wild-type controls (80% vs. 10%). The improved survival of STAT1KO mice was associated with less hypothermia, metabolic acidosis, hypoglycemia, and hepatocellular injury. Plasma interleukin 6, MIP-2, CXCL10, and IFN-α concentrations were significantly lower in STAT1KO mice than in wild-type mice. In the absence of antibiotic treatment, blood and lung bacterial counts were significantly lower in STAT1KO mice than in controls. However, treatment with antibiotics ablated that difference. A survival advantage was not observed in TYK2-deficient mice compared with control. However, CLP-induced hypothermia and systemic interleukin 6 and CXCL10 production were significantly attenuated in TYK2-deficient mice. These results indicate that STAT1 activation is an important factor in the pathogenesis of CLP-induced septic shock and is associated with the development of systemic inflammation and organ injury. TYK2 activation also appears to contribute to CLP-induced inflammation, but to a lesser extent than STAT1.
Collapse
|
45
|
Reactive Oxygen Species, SUMOylation, and Endothelial Inflammation. Int J Inflam 2012; 2012:678190. [PMID: 22991685 PMCID: PMC3443607 DOI: 10.1155/2012/678190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/26/2012] [Indexed: 12/14/2022] Open
Abstract
Although the exact mechanism through which NADPH oxidases (Nox's) generate reactive oxygen species (ROS) is still not completely understood, it is widely considered that ROS accumulation is the cause of oxidative stress in endothelial cells. Increasing pieces of evidence strongly indicate the role for ROS in endothelial inflammation and dysfunction and subsequent development of atherosclerotic plaques, which are causes of various pathological cardiac events. An overview for a causative relationship between ROS and endothelial inflammation will be provided in this review. Particularly, a crucial role for specific protein SUMOylation in endothelial inflammation will be presented. Given that SUMOylation of specific proteins leads to increased endothelial inflammation, targeting specific SUMOylated proteins may be an elegant, effective strategy to control inflammation. In addition, the involvement of ROS production in increasing the risk of recurrent coronary events in a sub-group of non-diabetic, post-infarction patients with elevated levels of HDL-cholesterol will be presented with the emphasis that elevated HDL-cholesterol under certain inflammatory conditions can lead to increased incidence of cardiovascular events.
Collapse
|
46
|
A novel small molecule, HK-156, inhibits lipopolysaccharide-induced activation of NF-κB signaling and improves survival in mouse models of sepsis. Acta Pharmacol Sin 2012; 33:1204-16. [PMID: 22684031 DOI: 10.1038/aps.2012.56] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM To characterize a small molecule compound HK-156 as a novel inhibitor of the nuclear factor κB (NF-κB) signaling pathway. METHODS THP-1 monocytes and HEK293/hTLR4A-MD2-CD14 cells were tested. HK-156 and compound 809, an HK-156 analogue, were synthesized. A luciferase assay was used to evaluate the transcriptional activity of NF-κB. The levels of cytokines were measured with cytokine arrays, ELISA and quantitative PCR. An electrophoretic mobility shift assay (EMSA), immunofluorescence, Western blot and mass spectrometry were used to investigate the molecular mechanisms underlying the actions of the agent. BALB/c mice challenged with lipopolysaccharide (LPS, 15 mg/kg, ip) were used as a mouse experimental endotoxemia model. RESULTS In HEK293hTLR4/NF-κB-luc cells treated with LPS (1000 ng/mL), HK-156 inhibited the transcriptional activity of NF-κB in a concentration-dependent manner (IC₅₀=6.54 ± 0.37 μmol/L). Pretreatment of THP-1 monocytes with HK-156 (5, 10 and 20 μmol/L) significantly inhibited LPS-induced release and production of TNF-α and IL-1β, attenuated LPS-induced translocation of NF-κB into the nucleus and its binding to DNA, and suppressed LPS-induced phosphorylation and degradation of IκBα, and phosphorylation of IKKβ and TGFβ-activated kinase (TAK1). Meanwhile, HK-156 (5, 10 and 20 μmol/L) slightly suppressed LPS-induced activation of p38. The effect of HK-156 on LPS-induced activation of NF-κB signaling was dependent on thiol groups of cysteines in upstream proteins. In mouse models of sepsis, pre-injection of HK-156 (50 mg/kg, iv) significantly inhibited TNFα production and reduced the mortality caused by the lethal dose of LPS. CONCLUSION HK-156 inhibits LPS-induced activation of NF-κB signaling by suppressing the phosphorylation of TAK1 in vitro, and exerts beneficial effects in a mouse sepsis model. HK-156 may therefore be a useful therapeutic agent for treating sepsis.
Collapse
|
47
|
Leitao BB, Jones MC, Brosens JJ. The SUMO E3-ligase PIAS1 couples reactive oxygen species-dependent JNK activation to oxidative cell death. FASEB J 2011; 25:3416-25. [PMID: 21676946 PMCID: PMC3177572 DOI: 10.1096/fj.11-186346] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human endometrial stromal cells (HESCs) exposed to reactive oxygen species (ROS) mount a hypersumoylation response in a c-Jun N-terminal kinase (JNK)-dependent manner. The mechanism that couples JNK signaling to the small ubiquitin-related modifier (SUMO) pathway and its functional consequences are not understood. We show that ROS-dependent JNK activation converges on the SUMO pathway via PIAS1 (protein inhibitor of activated STAT1). Unexpectedly, PIAS1 knockdown not only prevented ROS-dependent hypersumoylation but also enhanced JNK signaling in HESCs. Conversely, PIAS overexpression increased sumoylation of various substrates, including c-Jun, yet inhibited basal and ROS-dependent JNK activity independently of its SUMO ligase function. Expression profiling demonstrated that PIAS1 knockdown enhances and profoundly modifies the transcriptional response to oxidative stress signals. Using a cutoff of 2-fold change or more, a total of 250 ROS-sensitive genes were identified, 97 of which were not dependent on PIAS1. PIAS1 knockdown abolished the regulation of 43 genes but also sensitized 110 other genes to ROS. Importantly, PIAS1 silencing was obligatory for the induction of several cellular defense genes in response to oxidative stress. In agreement, PIAS1 knockdown attenuated ROS-dependent caspase-3/7 activation and subsequent apoptosis. Thus, PIAS1 determines the level of JNK activity in HESCs, couples ROS signaling to the SUMO pathway, and promotes oxidative cell death.
Collapse
Affiliation(s)
- Beatriz B Leitao
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, UK
| | | | | |
Collapse
|
48
|
Abstract
The peroxisome proliferator-activated receptors (PPARs) and the retinoid X receptors (RXRs) are ligand-activated transcription factors that coordinately regulate gene expression. This PPAR-RXR transcriptional complex plays a critical role in energy balance, including triglyceride metabolism, fatty acid handling and storage, and glucose homeostasis: processes whose dysregulation characterize obesity, diabetes, and atherosclerosis. PPARs and RXRs are also involved directly in inflammatory and vascular responses in endothelial and vascular smooth muscle cells. New insights into fundamental aspects of PPAR and RXR biology, and their actions in the vasculature, continue to appear. Although RXRs are obligate heterodimeric partners for PPAR action, the part that RXRs, and their endogenous retinoid mediators, exert in the vessel wall is less well understood. Biological insights into PPAR-RXRs may help inform interpretation of clinical trials with synthetic PPAR agonists and prospects for future PPAR therapeutics. Importantly, the extensive data establishing a key role for PPARs and RXRs in energy balance, inflammation, and vascular biology stands separately from the clinical experience with any given synthetic PPAR agonist. Both the basic science data and the clinical experience with PPAR agonists identify the need to better understand these important transcriptional regulators.
Collapse
Affiliation(s)
- Jorge Plutzky
- From Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
49
|
Chen P, Huang L, Sun Y, Yuan Y. Upregulation of PIAS1 protects against sodium taurocholate-induced severe acute pancreatitis associated with acute lung injury. Cytokine 2011; 54:305-14. [PMID: 21419645 DOI: 10.1016/j.cyto.2011.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/12/2011] [Accepted: 02/18/2011] [Indexed: 01/26/2023]
Abstract
The regulator of cytokine signaling known as protein inhibitor of activated STAT-1 (PIAS1) is increasingly understood to have diverse regulatory functions for inflammation, but its effect in inflammatory conditions such as severe acute pancreatitis (SAP) has not previously been reported. The aim of this study was to investigate the effect of upregulation of PIAS1 on SAP associated with acute lung injury (ALI), and its subsequent effect on disease severity. Sprague-Dawley rats were given an IV injection of adenovirus serotype 5 (Ad5)/F35-PIAS1, Ad5/F35-vector or saline before induction of SAP. The control group received only a sham operation. Lung and pancreas samples were harvested 16h after induction. The protein levels of PIAS1 in tissue were investigated. The severity of pancreatic injury was determined by a histological score of pancreatic injury, serum amylase, and pancreatic water content. The lung injury was evaluated by measurement of pulmonary microvascular permeability, lung myeloperoxidase activity and malondialdehyde levels. The survival rates of rats were also analyzed. The results found that in Ad5/F35-PIAS1 treated rats, serum tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 levels were decreased but showed no influence on the levels of IL-10, and the severity of pancreatic tissue injury was less compared with either untreated SAP or Ad5/F35-vector treated rats (P<0.01). The administration of Ad5/F35-PIAS1 in SAP-induced rats downregulated the activity of the signal transducer and activator of transcription-1 (STAT1) pathway and the expressions of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule (ICAM)-1 protein in lung. Thus, compared with the untreated SAP rats, the inflammatory response and the severity of ALI decreased, and the survival rates increased (P<0.01). These findings suggest that PIAS1 could augment anti-inflammatory activity by inhibiting STAT1, thus attenuating the severity of SAP associated with ALI.
Collapse
Affiliation(s)
- Ping Chen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | | | | | | |
Collapse
|
50
|
Kubota T, Matsuoka M, Xu S, Otsuki N, Takeda M, Kato A, Ozato K. PIASy inhibits virus-induced and interferon-stimulated transcription through distinct mechanisms. J Biol Chem 2011; 286:8165-8175. [PMID: 21199872 DOI: 10.1074/jbc.m110.195255] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein inhibitor of activated STAT (PIAS) family proteins regulates innate immune responses by controlling transcription induced by Toll-like receptor, RIG-I-like receptor signaling, and JAK/STAT pathways. Here, we show that PIASy negatively regulates type I interferon (IFN) transcription. Virus infection led to enhanced type I IFN induction in PIASy null cells, and conversely PIASy overexpression reduced IFN transcription. A mutation in the LXXLL motif of the SAP domain abolished inhibition of IFN-stimulated gene expression but did not affect virus or Toll-like receptor/RIG-I-like receptor-stimulated IFN transcription, indicating that PIASy employs distinct mechanisms to inhibit virus-induced and IFN-stimulated transcription. SUMO E3 activity was not required for PIASy inhibition of IFN transcription; however, PIASy relied on the SUMO modification mechanism to inhibit IFN transcription, because the activity of the SUMO-interacting motif was required for inhibition, and knockdown of SUMO E2 enzyme UBC9 decreased inhibitory activity of PIASy. Our results demonstrate that PIASy negatively regulates both IFN transcription and IFN-stimulated gene expression through multiple mechanisms utilizing the function of different domains.
Collapse
Affiliation(s)
| | - Mayumi Matsuoka
- Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, Tokyo 208-0011, Japan and
| | - Songxiao Xu
- the Laboratory of Molecular Growth Regulation, Genomics of Differentiation Program, NICHD, National Institutes of Health, Bethesda, Maryland 20892-2753
| | | | | | | | - Keiko Ozato
- the Laboratory of Molecular Growth Regulation, Genomics of Differentiation Program, NICHD, National Institutes of Health, Bethesda, Maryland 20892-2753
| |
Collapse
|