1
|
Wu H, Saini C, Medina R, Hsieh SL, Meshkati A, Sung K. Pain without presence: a narrative review of the pathophysiological landscape of phantom limb pain. FRONTIERS IN PAIN RESEARCH 2025; 6:1419762. [PMID: 40041552 PMCID: PMC11876430 DOI: 10.3389/fpain.2025.1419762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/17/2025] [Indexed: 03/06/2025] Open
Abstract
Phantom limb pain (PLP) is defined as the perception of pain in a limb that has been amputated. In the United States, approximately 30,000-40,000 amputations are performed annually with an estimated 2.3 million people living with amputations. The prevalence of PLP among amputees is approximately 64%. Over the years, various theories regarding the etiology of PLP have been proposed, with some gaining more prominence than others. Yet, there is a lack of consensus on PLP mechanisms as the current literature exploring the pathophysiology of PLP is multifactorial, involving complex interactions between the central and peripheral nervous systems, psychosocial factors, and genetic influences. This review seeks to enhance the understanding of PLP by exploring its multifaceted pathophysiology, including genetic predispositions. We highlight historical aspects of pain theories and PLP, examining how these theories have expanded to include psychosocial dimensions associated with chronic pain in amputees. Additionally, we present significant findings from both human and animal studies focused on neuroaxial systems and recent advances in molecular research to further elucidate the complex and multifactorial nature of PLP. Ultimately, we hope that the integration of current theoretical frameworks and findings will lay a more robust foundation for future research on PLP.
Collapse
Affiliation(s)
- Hong Wu
- Department of Physical Medicine and Rehabilitation, Rush University Medical Center, Chicago, IL, United States
| | - Chandan Saini
- Department of Physical Medicine and Rehabilitation, Rush University Medical Center, Chicago, IL, United States
| | - Roi Medina
- Department of Physical Medicine and Rehabilitation, Rush University Medical Center, Chicago, IL, United States
| | - Sharon L. Hsieh
- Department of PhysicalMedicine and Rehabilitation, Emory University School of Medicine, Atlanta, GA, United States
| | - Aria Meshkati
- Rush University Medical College, Chicago, IL, United States
| | - Kerry Sung
- Rush University Medical College, Chicago, IL, United States
| |
Collapse
|
2
|
Yoo CH, Rani N, Shen S, Loggia ML, Gaynor K, Moore KE, Bagdasarian FA, Lin YS, Edwards RR, Price JC, Hooker JM, Wey HY. Investigating neuroepigenetic alterations in chronic low back pain with positron emission tomography. Pain 2024; 165:2586-2594. [PMID: 38776171 PMCID: PMC11511648 DOI: 10.1097/j.pain.0000000000003272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/10/2024] [Indexed: 05/24/2024]
Abstract
ABSTRACT Epigenetics has gained considerable interest as potential mediators of molecular alterations that could underlie the prolonged sensitization of nociceptors, neurons, and glia in response to various environmental stimuli. Histone acetylation and deacetylation, key processes in modulating chromatin, influence gene expression; elevated histone acetylation enhances transcriptional activity, whereas decreased acetylation leads to DNA condensation and gene repression. Altered levels of histone deacetylase (HDAC) have been detected in various animal pain models, and HDAC inhibitors have demonstrated analgesic effects in these models, indicating HDACs' involvement in chronic pain pathways. However, animal studies have predominantly examined epigenetic modulation within the spinal cord after pain induction, which may not fully reflect the complexity of chronic pain in humans. Moreover, methodological limitations have previously impeded an in-depth study of epigenetic changes in the human brain. In this study, we employed [ 11 C]Martinostat, an HDAC-selective radiotracer, positron emission tomography to assess HDAC availability in the brains of 23 patients with chronic low back pain (cLBP) and 11 age-matched and sex-matched controls. Our data revealed a significant reduction of [ 11 C]Martinostat binding in several brain regions associated with pain processing in patients with cLBP relative to controls, highlighting the promising potential of targeting HDAC modulation as a therapeutic strategy for cLBP.
Collapse
Affiliation(s)
- Chi-Hyeon Yoo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Nisha Rani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Shiqian Shen
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Marco L. Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Kate Gaynor
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Katelyn E. Moore
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Frederick A. Bagdasarian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Yu-Shiaun Lin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
- Centre for Chronobiology, University Psychiatric Clinics Basel, Basel, Switzerland
| | - Robert R. Edwards
- Anesthesia and Pain Management Center, Department of Anesthesia, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Julie C. Price
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, USA
| |
Collapse
|
3
|
Lucarini E, Micheli L, Toti A, Ciampi C, Margiotta F, Di Cesare Mannelli L, Ghelardini C. Anti-Hyperalgesic Efficacy of Acetyl L-Carnitine (ALCAR) Against Visceral Pain Induced by Colitis: Involvement of Glia in the Enteric and Central Nervous System. Int J Mol Sci 2023; 24:14841. [PMID: 37834289 PMCID: PMC10573187 DOI: 10.3390/ijms241914841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The management of abdominal pain in patients affected by inflammatory bowel diseases (IBDs) still represents a problem because of the lack of effective treatments. Acetyl L-carnitine (ALCAR) has proved useful in the treatment of different types of chronic pain with excellent tolerability. The present work aimed at evaluating the anti-hyperalgesic efficacy of ALCAR in a model of persistent visceral pain associated with colitis induced by 2,4-dinitrobenzene sulfonic acid (DNBS) injection. Two different protocols were applied. In the preventive protocol, ALCAR was administered daily starting 14 days to 24 h before the delivery of DNBS. In the interventive protocol, ALCAR was daily administered starting the same day of DNBS injection, and the treatment was continued for 14 days. In both cases, ALCAR significantly reduced the establishment of visceral hyperalgesia in DNBS-treated animals, though the interventive protocol showed a greater efficacy than the preventive one. The interventive protocol partially reduced colon damage in rats, counteracting enteric glia and spinal astrocyte activation resulting from colitis, as analyzed by immunofluorescence. On the other hand, the preventive protocol effectively protected enteric neurons from the inflammatory insult. These findings suggest the putative usefulness of ALCAR as a food supplement for patients suffering from IBDs.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (A.T.); (C.C.); (F.M.); (L.D.C.M.); (C.G.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Jiang W, Zhang LX, Tan XY, Yu P, Dong M. Inflammation and histone modification in chronic pain. Front Immunol 2023; 13:1087648. [PMID: 36713369 PMCID: PMC9880030 DOI: 10.3389/fimmu.2022.1087648] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Increasing evidence suggests that epigenetic mechanisms have great potential in the field of pain. The changes and roles of epigenetics of the spinal cord and dorsal root ganglia in the chronic pain process may provide broad insights for future pain management. Pro-inflammatory cytokines and chemokines released by microglia and astrocytes, as well as blood-derived macrophages, play critical roles in inducing and maintaining chronic pain, while histone modifications may play an important role in inflammatory metabolism. This review provides an overview of neuroinflammation and chronic pain, and we systematically discuss the regulation of neuroinflammation and histone modifications in the context of chronic pain. Specifically, we analyzed the role of epigenetics in alleviating or exacerbating chronic pain by modulating microglia, astrocytes, and the proinflammatory mediators they release. This review aimed to contribute to the discovery of new therapeutic targets for chronic pain.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Li-Xi Zhang
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xuan-Yu Tan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Peng Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Peng Yu, ; Ming Dong,
| | - Ming Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China,*Correspondence: Peng Yu, ; Ming Dong,
| |
Collapse
|
5
|
Formaggio F, Rimondini R, Delprete C, Scalia L, Merlo Pich E, Liguori R, Nicoletti F, Caprini M. L-Acetylcarnitine causes analgesia in mice modeling Fabry disease by up-regulating type-2 metabotropic glutamate receptors. Mol Pain 2022; 18:17448069221087033. [PMID: 35255745 PMCID: PMC9008852 DOI: 10.1177/17448069221087033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fabry disease (FD) is a X-linked lysosomal storage disorder caused by deficient
function of the alpha-galactosidase A (α-GalA) enzyme. α-GalA deficiency leads
to multisystemic clinical manifestations caused by the preferential accumulation
of globotriaosylceramide (Gb3). A hallmark symptom of FD patients is neuropathic
pain that appears in the early stage of the disease as a result of peripheral
small fiber damage. Previous studies have shown that Acetyl-L-carnitine (ALC)
has neuroprotective, neurotrophic, and analgesic activity in animal models of
neuropathic pain. To study the action of ALC on neuropathic pain associated with
FD, we treated α-GalA gene null mice (α-GalA(-/0)) with ALC for 30 days. In
α-Gal KO mice, ALC treatment induced acute and long-lasting analgesia, which
persisted 1 month after drug withdrawal. This effect was antagonized by single
administration of LY341495, an orthosteric antagonist of mGlu2/3 metabotropic
glutamate receptors. We also found an up-regulation of mGlu2 receptors in
cultured DRG neurons isolated from 30-day ALC-treated α-GalA KO mice. However,
the up-regulation of mGlu2 receptors was no longer present in DRG neurons
isolated 30 days after the end of treatment. Taken together, these findings
suggest that ALC induces analgesia in an animal model of FD by up-regulating
mGlu2 receptors, and that analgesia is maintained by additional mechanisms after
ALC withdrawal. ALC might represent a valuable pharmacological strategy to
reduce pain in FD patients.
Collapse
Affiliation(s)
| | - Roberto Rimondini
- Dipartimento di Scienze Mediche e Chirurgiche 9296University of Bologna
| | - Cecilia Delprete
- Department of Pharmacy and Biotechnology9296University of Bologna
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Neuropathic pain (NP) is a common symptom in many diseases of the somatosensory
nervous system, which severely affects the patient’s quality of life.
Epigenetics are heritable alterations in gene expression that do not cause
permanent changes in the DNA sequence. Epigenetic modifications can affect gene
expression and function and can also mediate crosstalk between genes and the
environment. Increasing evidence shows that epigenetic modifications, including
DNA methylation, histone modification, non-coding RNA, and RNA modification, are
involved in the development and maintenance of NP. In this review, we focus on
the current knowledge of epigenetic modifications in the development and
maintenance of NP. Then, we illustrate different facets of epigenetic
modifications that regulate gene expression and their crosstalk. Finally, we
discuss the burgeoning evidence supporting the potential of emerging epigenetic
therapies, which has been valuable in understanding mechanisms and offers novel
and potent targets for NP therapy.
Collapse
Affiliation(s)
- Danzhi Luo
- Department of Anesthesiology, The First People’s Hospital of
Foshan, Foshan, China
- Sun Yet-Sen Memorial Hospital of Sun
Yet-Sen University, Guangzhou, China
| | - Xiaohong Li
- Department of Anesthesiology, The First People’s Hospital of
Foshan, Foshan, China
| | - Simin Tang
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Fuhu Song
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Wenjun Li
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Guiling Xie
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Jinshu Liang
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of
Southern Medical University, Guangzhou, China
- Jun Zhou, Department of Anesthesiology, The
Third Affiliated Hospital of Southern Medical University, Guangzhou 510630,
China.
| |
Collapse
|
7
|
Sarzi-Puttini P, Giorgi V, Di Lascio S, Fornasari D. Acetyl-L-carnitine in chronic pain: A narrative review. Pharmacol Res 2021; 173:105874. [PMID: 34500063 DOI: 10.1016/j.phrs.2021.105874] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Acetyl-L-carnitine (ALC) is an endogenous molecule that not only plays a role in energy metabolism, but also has antioxidant properties, protects from oxidative stress, modulates brain neurotransmitters such as acetylcholine, serotonin and dopamine, and acts on neurotrophic factors such as nerve growth factor (NGF) and metabotropic glutamate (mGlu) receptors by means of epigenetic mechanisms. Importantly, it induces mGlu2 expression at nerve terminals, thus giving rise to analgesia and preventing spinal sensitisation. It has also been found to have even long-term neurotrophic and analgesic activity in experimental models of chronic inflammatory and neuropathic pain. The aim of this narrative review is to summarise the current evidence regarding the use of ALC in patients with chronic pain, and cognitive and mood disorders, and investigate the rationale underlying its use in patients with fibromyalgia syndrome, which is characterised by nociplastic changes that increase the sensitivity of the nervous system to pain.
Collapse
Affiliation(s)
| | - Valeria Giorgi
- Rheumatology Unit, ASST Fatebenefratelli Luigi Sacco University Hospital, Milan, Italy.
| | - Simona Di Lascio
- Department of Medical Biotechnology and Molecular Medicine, Università degli Studi di Milano, Milan, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Molecular Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
8
|
Marchesi N, Govoni S, Allegri M. Non-drug pain relievers active on non-opioid pain mechanisms. Pain Pract 2021; 22:255-275. [PMID: 34498362 DOI: 10.1111/papr.13073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review is aimed to summarize the pain-relieving effect of non-drug substances, mostly prescribed as integrators in treatment of pain, including especially in chronic postoperative pain (CPSP) and in chronic back pain after acute episodes. Their use reflects the fact that the current treatments for these syndromes continue to pose problems of unsatisfactory responses in a significant portion of patients and/or of an excess of side effects like those noted in the present opioid crisis. As integrators are frequently introduced into the market without adequate clinical testing, this review is aimed to collect the present scientific evidence either preclinical or clinical for their effectiveness. In particular, we reviewed the data on the use of: B vitamins; vitamin C; vitamin D; alpha lipoic acid (ALA); N-acetylcysteine; acetyl L-carnitine; curcumin; boswellia serrata; magnesium; coenzyme Q10, and palmitoylethanolamide. The combination of preclinical findings and clinical observations strongly indicate that these compounds deserve more careful attention, some of them having interesting clinical potentials also in preventing chronic pain after an acute episode. In particular, examining their putative mechanisms of action it emerges that combinations of few of them may exert an extraordinary spectrum of activities on a large variety of pain-associated pathways and may be eventually used in combination with more traditional pain killers in order to extend the duration of the effect and to lower the doses. Convincing examples of effective combinations against pain are vitamin B complex plus gabapentin for CPSP, including neuropathic pain; vitamin B complex plus diclofenac against low back pain and also in association with gabapentin, and ALA for burning mouth syndrome. These as well as other examples need, however, careful controlled independent clinical studies confirming their role in therapy.
Collapse
Affiliation(s)
| | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Massimo Allegri
- Pain Therapy Service, Policlinico Monza, Monza, Italy.,Italian Pain Group, Monza-Brianza, Italy
| |
Collapse
|
9
|
Cho C, Deol HK, Martin LJ. Bridging the Translational Divide in Pain Research: Biological, Psychological and Social Considerations. Front Pharmacol 2021; 12:603186. [PMID: 33935700 PMCID: PMC8082136 DOI: 10.3389/fphar.2021.603186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
A gap exists between translating basic science research into effective pain therapies in humans. While preclinical pain research has primarily used animal models to understand biological processes, a lesser focus has been toward using animal models to fully consider other components of the pain experience, such as psychological and social influences. Herein, we provide an overview of translational studies within pain research by breaking them down into purely biological, psychological and social influences using a framework derived from the biopsychosocial model. We draw from a wide landscape of studies to illustrate that the pain experience is highly intricate, and every attempt must be made to address its multiple components and interactors to aid in fully understanding its complexity. We highlight our work where we have developed animal models to assess the cognitive and social effects on pain modulation while conducting parallel experiments in people that provide proof-of-importance for human pain modulation. In some instances, human pain research has sparked the development of novel animal models, with these animal models used to better understand the complexity of phenomena considered to be uniquely human such as placebo responses and empathy.
Collapse
Affiliation(s)
- Chulmin Cho
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Harashdeep K Deol
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
10
|
Notartomaso S, Scarselli P, Mascio G, Liberatore F, Mazzon E, Mammana S, Gugliandolo A, Cruccu G, Bruno V, Nicoletti F, Battaglia G. N-Acetylcysteine causes analgesia in a mouse model of painful diabetic neuropathy. Mol Pain 2021; 16:1744806920904292. [PMID: 32009537 PMCID: PMC6997966 DOI: 10.1177/1744806920904292] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
N-Acetylcysteine, one of the most prescribed antioxidant drugs, enhances pain
threshold in rodents and humans by activating mGlu2 metabotropic glutamate
receptors. Here, we assessed the analgesic activity of N-acetylcysteine in the
streptozotocin model of painful diabetic neuropathy and examined the effect of
N-acetylcysteine on proteins that are involved in mechanisms of nociceptive
sensitization. Mice with blood glucose levels ≥250 mg/dl in response to a single
intraperitoneal (i.p.) injection of streptozotocin (200 mg/kg) were used for the
assessment of mechanical pain thresholds. Systemic treatment with
N-acetylcysteine (100 mg/kg, i.p., either single injection or daily injections
for seven days) caused analgesia in diabetic mice. N-acetylcysteine-induced
analgesia was abrogated by the Sxc− inhibitors, sulfasalazine (8 mg/kg, i.p.), erastin (30 mg/kg,
i.p.), and sorafenib (10 mg/kg, i.p.), or by the mGlu2/3 receptor antagonist,
LY341495 (1 mg/kg, i.p.). Repeated administrations of N-acetylcysteine in
diabetic mice reduced ERK1/2 phosphorylation in the dorsal region of the lumbar
spinal cord. The analgesic activity of N-acetylcysteine was occluded by the MEK
inhibitor, PD0325901 (25 mg/kg, i.p.), the TRPV1 channel blocker, capsazepine
(40 mg/kg, i.p.), or by a cocktail of NMDA and mGlu5 metabotropic glutamate
receptor antagonists (memantine, 25 mg/kg, plus MTEP, 5 mg/kg,
both i.p.). These findings offer the first demonstration that N-acetylcysteine
relieves pain associated with diabetic neuropathy and holds promise for the use
of N-acetylcysteine as an add-on drug in diabetic patients.
Collapse
Affiliation(s)
| | - Pamela Scarselli
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Giada Mascio
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | | | | | - Santa Mammana
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | | | - Giorgio Cruccu
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Valeria Bruno
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giuseppe Battaglia
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
11
|
Latham LE, Wang C, Patterson TA, Slikker W, Liu F. Neuroprotective Effects of Carnitine and Its Potential Application to Ameliorate Neurotoxicity. Chem Res Toxicol 2021; 34:1208-1222. [PMID: 33570912 DOI: 10.1021/acs.chemrestox.0c00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Carnitine is an essential metabolite that is absorbed from the diet and synthesized in the kidney, liver, and brain. It ferries fatty acids across the mitochondrial membrane to undergo β-oxidation. Carnitine has been studied as a therapy or protective agent for many neurological diseases and neurotoxicity (e.g., prolonged anesthetic exposure-induced developmental neurotoxicity in preclinical models). Preclinical and clinical data support the notion that carnitine or acetyl carnitine may improve a patient's quality of life through increased mitochondrial respiration, release of neurotransmitters, and global gene expression changes, showing the potential of carnitine beyond its approved use to treat primary and secondary carnitine deficiency. In this review, we summarize the beneficial effects of carnitine or acetyl carnitine on the central nervous system, highlighting protective effects against neurotoxicity-induced damage caused by various chemicals and encouraging a thorough evaluation of carnitine use as a therapy for patients suffering from neurotoxicant exposure.
Collapse
Affiliation(s)
- Leah E Latham
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Cheng Wang
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Tucker A Patterson
- Office of Director, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - William Slikker
- Office of Director, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| |
Collapse
|
12
|
Yuan G, Qu X, Zheng B, Neelamegam R, Afshar S, Iyengar S, Pan C, Wang J, Kang HJ, Ondrechen MJ, Poutiainen P, El Fakhri G, Zhang Z, Brownell AL. Design, Synthesis, and Characterization of Benzimidazole Derivatives as Positron Emission Tomography Imaging Ligands for Metabotropic Glutamate Receptor 2. J Med Chem 2020; 63:12060-12072. [PMID: 32981322 DOI: 10.1021/acs.jmedchem.0c01394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Three benzimidazole derivatives (13-15) have been synthetized as potential positron emission tomography (PET) imaging ligands for mGluR2 in the brain. Of these compounds, 13 exhibits potent binding affinity (IC50 = 7.6 ± 0.9 nM), positive allosteric modulator (PAM) activity (EC50 = 51.2 nM), and excellent selectivity against other mGluR subtypes (>100-fold). [11C]13 was synthesized via O-[11C]methylation of its phenol precursor 25 with [11C]methyl iodide. The achieved radiochemical yield was 20 ± 2% (n = 10, decay-corrected) based on [11C]CO2 with a radiochemical purity of >98% and molar activity of 98 ± 30 GBq/μmol EOS. Ex vivo biodistribution studies revealed reversible accumulation of [11C]13 and hepatobiliary and urinary excretions. PET imaging studies in rats demonstrated that [11C]13 accumulated in the mGluR2-rich brain regions. Pre-administration of mGluR2-selective PAM, 17 reduced the brain uptake of [11C]13, indicating a selective binding. Therefore, [11C]13 is a potential PET imaging ligand for mGluR2 in different central nervous system-related conditions.
Collapse
Affiliation(s)
- Gengyang Yuan
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Xiying Qu
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Baohui Zheng
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Ramesh Neelamegam
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Sepideh Afshar
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Suhasini Iyengar
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Chuzhi Pan
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Junfeng Wang
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina 27514, United States
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Pekka Poutiainen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio 70210, Finland
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| | - Zhaoda Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129, United States
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 3rd Avenue, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
13
|
Cisani F, Roggeri A, Olivero G, Garrone B, Tongiani S, Di Giorgio FP, Pittaluga A. Acute Low Dose of Trazodone Recovers Glutamate Release Efficiency and mGlu2/3 Autoreceptor Impairments in the Spinal Cord of Rats Suffering From Chronic Sciatic Ligation. Front Pharmacol 2020; 11:1108. [PMID: 32765286 PMCID: PMC7379891 DOI: 10.3389/fphar.2020.01108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022] Open
Abstract
We investigated whether chronic sciatic ligation modifies the glutamate release in spinal cord nerve endings (synaptosomes) as well as the expression and the function of presynaptic release-regulating mGlu2/3 autoreceptors and 5-HT2A heteroreceptors in these particles. Synaptosomes were from the spinal cord of animals suffering from the sciatic ligation that developed on day 6 post-surgery a significant decrease of the force inducing paw-withdrawal in the lesioned paw. The exocytosis of glutamate (quantified as release of preloaded [3H]D-aspartate, [3H]D-Asp) elicited by a mild depolarizing stimulus (15 mM KCl) was significantly increased in synaptosomes from injured rats when compared to controls (uninjured rats). The mGlu2/3 agonist LY379268 (1000 pM) significantly inhibited the 15 mM KCl-evoked [3H]D-Asp overflow from control synaptosomes, but not in terminals isolated from injured animals. Differently, a low concentration (10 nM) of (±) DOI, unable to modify the 15 mM KCl-evoked [3H]D-Asp overflow in control spinal cord synaptosomes, significantly reduced the glutamate exocytosis in nerve endings isolated from the injured rats. Acute oral trazodone (TZD, 0.3 mg/kg on day 7 post-surgery) efficiently recovered glutamate exocytosis as well as the efficiency of LY379268 in inhibiting this event in spinal cord synaptosomes from injured animals. The sciatic ligation significantly reduced the expression of mGlu2/3, but not of 5-HT2A, receptor proteins in spinal cord synaptosomal lysates. Acute TZD recovered this parameter. Our results support the use of 5-HT2A antagonists for restoring altered spinal cord glutamate plasticity in rats suffering from sciatic ligation.
Collapse
Affiliation(s)
- Francesca Cisani
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Alessandra Roggeri
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Guendalina Olivero
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Beatrice Garrone
- Angelini RR&D (Research, Regulatory & Development), Angelini Pharma S.p.A., Rome, Italy
| | - Serena Tongiani
- Angelini RR&D (Research, Regulatory & Development), Angelini Pharma S.p.A., Rome, Italy
| | | | - Anna Pittaluga
- Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
14
|
Basu P, Basu A. In Vitro and In Vivo Effects of Flavonoids on Peripheral Neuropathic Pain. Molecules 2020; 25:molecules25051171. [PMID: 32150953 PMCID: PMC7179245 DOI: 10.3390/molecules25051171] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 01/04/2023] Open
Abstract
Neuropathic pain is a common symptom and is associated with an impaired quality of life. It is caused by the lesion or disease of the somatosensory system. Neuropathic pain syndromes can be subdivided into two categories: central and peripheral neuropathic pain. The present review highlights the peripheral neuropathic models, including spared nerve injury, spinal nerve ligation, partial sciatic nerve injury, diabetes-induced neuropathy, chemotherapy-induced neuropathy, chronic constriction injury, and related conditions. The drugs which are currently used to attenuate peripheral neuropathy, such as antidepressants, anticonvulsants, baclofen, and clonidine, are associated with adverse side effects. These negative side effects necessitate the investigation of alternative therapeutics for treating neuropathic pain conditions. Flavonoids have been reported to alleviate neuropathic pain in murine models. The present review elucidates that several flavonoids attenuate different peripheral neuropathic pain conditions at behavioral, electrophysiological, biochemical and molecular biological levels in different murine models. Therefore, the flavonoids hold future promise and can be effectively used in treating or mitigating peripheral neuropathic conditions. Thus, future studies should focus on the structure-activity relationships among different categories of flavonoids and develop therapeutic products that enhance their antineuropathic effects.
Collapse
Affiliation(s)
- Paramita Basu
- Department of Anesthesiology, Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA
- Correspondence: ; Tel.: +702-895-4576; Fax: +702-895-1500
| |
Collapse
|
15
|
Anikin GS, Makhova AA, Shikh EV. [Prospects of application of acetyl-L-carnitine in neurology and psychiatry (the treatment of polyneuropathy and depressive states)]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:130-135. [PMID: 31626181 DOI: 10.17116/jnevro2019119081130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acetyl-L-carnitine (ALA) is a biologically active form of L-carnitine, which is a readily available substrate for triggering energy-dependent metabolic processes in the mitochondria. The mechanism of the protective effect of ALA on brain tissue is a significant reduction in the amount of oxygen consumed for energy supply of the needs of the nervous system. ALA also has antioxidant and antiapoptotic activity. In addition, ALK plays a neuromodulating effect on both synaptic morphology and synaptic transmission. The similarity in structure with acetylcholine allows to have a cholinomimetic effect, as well as to show neuroprotective and neurotrophic properties. ALK has an antidepressant and analgesic effect in painful neuropathies. Therefore, ALA is a promising drug for the treatment of polyneuropathy of various origins. Compared with antidepressants efficacy and a minimum of side effects open up wide possibilities of using ALA in the treatment of depression with a low risk of developing NLR.
Collapse
Affiliation(s)
- G S Anikin
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - A A Makhova
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - E V Shikh
- Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
16
|
RGS4 Maintains Chronic Pain Symptoms in Rodent Models. J Neurosci 2019; 39:8291-8304. [PMID: 31308097 DOI: 10.1523/jneurosci.3154-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/02/2019] [Accepted: 06/27/2019] [Indexed: 12/26/2022] Open
Abstract
Regulator of G-protein signaling 4 (RGS4) is a potent modulator of G-protein-coupled receptor signal transduction that is expressed throughout the pain matrix. Here, we use genetic mouse models to demonstrate a role of RGS4 in the maintenance of chronic pain states in male and female mice. Using paradigms of peripheral inflammation and nerve injury, we show that the prevention of RGS4 action leads to recovery from mechanical and cold allodynia and increases the motivation for wheel running. Similarly, RGS4KO eliminates the duration of nocifensive behavior in the second phase of the formalin assay. Using the Complete Freud's Adjuvant (CFA) model of hindpaw inflammation we also demonstrate that downregulation of RGS4 in the adult ventral posterolateral thalamic nuclei promotes recovery from mechanical and cold allodynia. RNA sequencing analysis of thalamus (THL) from RGS4WT and RGS4KO mice points to many signal transduction modulators and transcription factors that are uniquely regulated in CFA-treated RGS4WT cohorts. Ingenuity pathway analysis suggests that several components of glutamatergic signaling are differentially affected by CFA treatment between RGS4WT and RGS4KO groups. Notably, Western blot analysis shows increased expression of metabotropic glutamate receptor 2 in THL synaptosomes of RGS4KO mice at time points at which they recover from mechanical allodynia. Overall, our study provides information on a novel intracellular pathway that contributes to the maintenance of chronic pain states and points to RGS4 as a potential therapeutic target.SIGNIFICANCE STATEMENT There is an imminent need for safe and efficient chronic pain medications. Regulator of G-protein signaling 4 (RGS4) is a multifunctional signal transduction protein, widely expressed in the pain matrix. Here, we demonstrate that RGS4 plays a prominent role in the maintenance of chronic pain symptoms in male and female mice. Using genetically modified mice, we show a dynamic role of RGS4 in recovery from symptoms of sensory hypersensitivity deriving from hindpaw inflammation or hindlimb nerve injury. We also demonstrate an important role of RGS4 actions in gene expression patterns induced by chronic pain states in the mouse thalamus. Our findings provide novel insight into mechanisms associated with the maintenance of chronic pain states and demonstrate that interventions in RGS4 activity promote recovery from sensory hypersensitivity symptoms.
Collapse
|
17
|
Comparison of Different Histone Deacetylase Inhibitors in Attenuating Inflammatory Pain in Rats. Pain Res Manag 2019; 2019:1648919. [PMID: 30809320 PMCID: PMC6369477 DOI: 10.1155/2019/1648919] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/25/2018] [Indexed: 12/17/2022]
Abstract
Histone deacetylase inhibitors (HDACIs), which interfere with the epigenetic process of histone acetylation, have shown analgesic effects in animal models of persistent pain. The HDAC family comprises 18 genes; however, the different effects of distinct classes of HDACIs on pain relief remain unclear. The aim of this study was to determine the efficacy of these HDACIs on attenuating thermal hyperalgesia in persistent inflammatory pain. Persistent inflammatory pain was induced by injecting Complete Freund's Adjuvant (CFA) into the left hind paw of rats. Then, HDACIs targeting class I (entinostat (MS-275)) and class IIa (sodium butyrate, valproic acid (VPA), and 4-phenylbutyric acid (4-PBA)), or class II (suberoylanilide hydoxamic acid (SAHA), trichostatin A (TSA), and dacinostat (LAQ824)) were administered intraperitoneally once daily for 3 or 4 days. We found that the injection of SAHA once a day for 3 days significantly attenuated CFA-induced thermal hyperalgesia from day 4 and lasted 7 days. In comparison with SAHA, suppression of hyperalgesia by 4-PBA peaked on day 2, whereas that by MS-275 occurred on days 5 and 6. Fatigue was a serious side effect seen with MS-275. These findings will be beneficial for optimizing the selection of specific HDACIs in medical fields such as pain medicine and neuropsychiatry.
Collapse
|
18
|
Liester MB, Sullivan EE. A review of epigenetics in human consciousness. COGENT PSYCHOLOGY 2019. [DOI: 10.1080/23311908.2019.1668222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Mitchell B. Liester
- Department of Psychiatry, University of Colorado School of Medicine, P.O. Box 302 153 N. Washington Street, Suite 103, Monument, CO 80132, USA
| | - Erin E. Sullivan
- Computer Science, University of Oklahoma, P.O. Box 302, Monument, CO 80132, USA
| |
Collapse
|
19
|
Tardiolo G, Bramanti P, Mazzon E. Overview on the Effects of N-Acetylcysteine in Neurodegenerative Diseases. Molecules 2018; 23:molecules23123305. [PMID: 30551603 PMCID: PMC6320789 DOI: 10.3390/molecules23123305] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
N-acetylcysteine (NAC), which is an acetylated cysteine compound, has aroused scientific interest for decades due to its important medical applications. It also represents a nutritional supplement in the human diet. NAC is a glutathione precursor and shows antioxidant and anti-inflammatory activities. In addition to the uses quoted in the literature, NAC may be considered helpful in therapies to counteract neurodegenerative and mental health diseases. Furthermore, this compound has been evaluated for its neuroprotective potential in the prevention of cognitive aging dementia. NAC is inexpensive, commercially available and no relevant side effects were observed after its administration. The purpose of this paper is to give an overview on the effects and applications of NAC in Parkinson's and Alzheimer's disorders and in neuropathic pain and stroke.
Collapse
Affiliation(s)
- Giuseppe Tardiolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
20
|
Penas C, Navarro X. Epigenetic Modifications Associated to Neuroinflammation and Neuropathic Pain After Neural Trauma. Front Cell Neurosci 2018; 12:158. [PMID: 29930500 PMCID: PMC5999732 DOI: 10.3389/fncel.2018.00158] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests that epigenetic alterations lie behind the induction and maintenance of neuropathic pain. Neuropathic pain is usually a chronic condition caused by a lesion, or pathological change, within the nervous system. Neuropathic pain appears frequently after nerve and spinal cord injuries or diseases, producing a debilitation of the patient and a decrease of the quality of life. At the cellular level, neuropathic pain is the result of neuronal plasticity shaped by an increase in the sensitivity and excitability of sensory neurons of the central and peripheral nervous system. One of the mechanisms thought to contribute to hyperexcitability and therefore to the ontogeny of neuropathic pain is the altered expression, trafficking, and functioning of receptors and ion channels expressed by primary sensory neurons. Besides, neuronal and glial cells, such as microglia and astrocytes, together with blood borne macrophages, play a critical role in the induction and maintenance of neuropathic pain by releasing powerful neuromodulators such as pro-inflammatory cytokines and chemokines, which enhance neuronal excitability. Altered gene expression of neuronal receptors, ion channels, and pro-inflammatory cytokines and chemokines, have been associated to epigenetic adaptations of the injured tissue. Within this review, we discuss the involvement of these epigenetic changes, including histone modifications, DNA methylation, non-coding RNAs, and alteration of chromatin modifiers, that have been shown to trigger modification of nociception after neural lesions. In particular, the function on these processes of EZH2, JMJD3, MeCP2, several histone deacetylases (HDACs) and histone acetyl transferases (HATs), G9a, DNMT, REST and diverse non-coding RNAs, are described. Despite the effort on developing new therapies, current treatments have only produced limited relief of this pain in a portion of patients. Thus, the present review aims to contribute to find novel targets for chronic neuropathic pain treatment.
Collapse
Affiliation(s)
- Clara Penas
- Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Xavier Navarro
- Institut de Neurociències, Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
21
|
GluN2B/CaMKII mediates CFA-induced hyperalgesia via HDAC4-modified spinal COX2 transcription. Neuropharmacology 2018; 135:536-546. [DOI: 10.1016/j.neuropharm.2018.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/27/2018] [Accepted: 03/12/2018] [Indexed: 12/15/2022]
|
22
|
Sergi G, Pizzato S, Piovesan F, Trevisan C, Veronese N, Manzato E. Effects of acetyl-L-carnitine in diabetic neuropathy and other geriatric disorders. Aging Clin Exp Res 2018; 30:133-138. [PMID: 28534301 DOI: 10.1007/s40520-017-0770-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/05/2017] [Indexed: 01/31/2023]
Abstract
A long history of diabetes mellitus and increasing age are associated with the onset of diabetic neuropathy, a painful and highly disabling complication with a prevalence peaking at 50% among elderly diabetic patients. Acetyl-L-carnitine (ALC) is a molecule derived from the acetylation of carnitine in the mitochondria that has an essential role in energy production. It has recently been proposed as a therapy to improve the symptoms of diabetic neuropathy. ALC is widely distributed in mammalian tissues, including the brain, blood-brain barrier, brain neurons, and astrocytes. Aside from its metabolic activity, ALC has demonstrated cytoprotective, antioxidant, and antiapoptotic effects in the nervous system. It exerts an analgesic action by reducing the concentration of glutamate in the synapses. It facilitates nerve regeneration and damage repair after primary trauma: its positive effects on metabolism promote the synthesis, fluidity, and functionality of neuronal membranes, increase protein synthesis, and improve the axonal transport of neurofilament proteins and tubulin. It also amplifies nerve growth factor responsiveness, an effect that is believed to enhance overall neurite growth. ALC has been proposed for the treatment of various neurological and psychiatric diseases, such as mood disorders and depression, dementias, Alzheimer's disease, and Parkinson's disease, because synaptic energy states and mitochondrial dysfunction are core factors in their pathogenesis.
Collapse
Affiliation(s)
- G Sergi
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - S Pizzato
- Department of Medicine - DIMED, University of Padova, Padova, Italy.
| | - F Piovesan
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - C Trevisan
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - N Veronese
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - E Manzato
- Department of Medicine - DIMED, University of Padova, Padova, Italy
| |
Collapse
|
23
|
l-Acetylcarnitine: A Mechanistically Distinctive and Potentially Rapid-Acting Antidepressant Drug. Int J Mol Sci 2017; 19:ijms19010011. [PMID: 29267192 PMCID: PMC5795963 DOI: 10.3390/ijms19010011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/09/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023] Open
Abstract
Current therapy of mood disorders has several limitations. Although a high number of drugs are clinically available, as of today, nearly two-thirds of individuals do not achieve full symptomatic remission after treatment with conventional antidepressants. Moreover, several weeks of drug treatment are usually required to obtain clinical effects, a limitation that has considerable clinical implications, ranging from high suicide risk to reduced compliance. The characteristic lag time in classical antidepressant effectiveness has given great impulse to the search for novel therapeutics with more rapid effects. l-acetylcarnitine (LAC), a small molecule of growing interest for its pharmacological properties, is currently marketed for treatment of neuropathic pain. Recent preclinical and clinical data suggested that LAC may exert antidepressant effects with a more rapid onset than conventional drugs. Herein, we review data supporting LAC antidepressant activity and its distinctive mechanisms of action compared with monoaminergic antidepressants. Furthermore, we discuss the unique pharmacological properties of LAC that allow us to look at this molecule as representative of next generation antidepressants with a safe profile.
Collapse
|
24
|
Liao YH, Wang J, Wei YY, Zhang T, Zhang Y, Zuo ZF, Teng XY, Li YQ. Histone deacetylase 2 is involved in µ‑opioid receptor suppression in the spinal dorsal horn in a rat model of chronic pancreatitis pain. Mol Med Rep 2017; 17:2803-2810. [PMID: 29257262 PMCID: PMC5783494 DOI: 10.3892/mmr.2017.8245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic pain occurs in ~85–90% of chronic pancreatitis (CP) patients. However, as the pathogenesis of CP pain remains to be fully understood, the current therapies for CP pain remain inadequate. Emerging evidence has suggested that the epigenetic modulations of genes are involved in chronic pain. In the present study, intrapancreatic trinitrobenzene sulfonic acid infusions were used to establish a CP model in rats. Mechanical allodynia was measured with von Frey filaments. Immunofluorescent staining analysis was used to observe the expression changes of histone deacetylase 2 (HDAC2) and µ-opioid receptor (MOR), and intrathecal administration of the selective HDAC2 inhibitor AR-42 was used to assess the underlying mechanisms. The expression levels of c-Jun N-terminal kinase (JNK) in the thoracic spinal cord were detected by western blotting, and the mRNA expression levels of interleukin (IL)1-β, IL-6 and tumor necrosis factor (TNF)-α were detected by reverse transcription-quantitative polymerase chain reaction. The results demonstrated that HDAC2 expression was upregulated during the course of CP induction, while MOR activity in the thoracic spinal dorsal horn was significantly suppressed. Intrathecal infusion of AR-42 significantly attenuated CP-induced mechanical allodynia, with rescued MOR activity. Additionally, HDAC2 facilitated the release of inflammatory cytokines, including IL-1β, IL-6 and TNF-α. These results suggested that the underlying mechanisms of HDAC2 regulating MOR activity under CP induction may occur via promoting the release of inflammatory cytokines, thus activating the JNK signaling pathway. The present study suggested that the epigenetic-regulated disturbance of MOR is dependent on the endogenous analgesia system in CP, which may a provide novel therapeutic strategy for treating pain in CP.
Collapse
Affiliation(s)
- Yong-Hui Liao
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yan-Yan Wei
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ting Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yong Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhong-Fu Zuo
- Department of Anatomy, Histology and Embryology, Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Xiao-Yu Teng
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
25
|
Zammataro M, Merlo S, Barresi M, Parenti C, Hu H, Sortino MA, Chiechio S. Chronic Treatment with Fluoxetine Induces Sex-Dependent Analgesic Effects and Modulates HDAC2 and mGlu2 Expression in Female Mice. Front Pharmacol 2017; 8:743. [PMID: 29104538 PMCID: PMC5654865 DOI: 10.3389/fphar.2017.00743] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Gender and sex differences in pain recognition and drug responses have been reported in clinical trials and experimental models of pain. Among antidepressants, contradictory results have been observed in patients treated with selective serotonin reuptake inhibitors (SSRIs). This study evaluated sex differences in response to the SSRI fluoxetine after chronic administration in the mouse formalin test. Adult male and female CD1 mice were intraperitoneally injected with fluoxetine (10 mg/kg) for 21 days and subjected to pain assessment. Fluoxetine treatment reduced the second phase of the formalin test only in female mice without producing behavioral changes in males. We also observed that fluoxetine was able to specifically increase the expression of metabotropic glutamate receptor type-2 (mGlu2) in females. Also a reduced expression of the epigenetic modifying enzyme, histone deacetylase 2 (HDAC2), in dorsal root ganglia (DRG) and dorsal horn (DH) together with an increase histone 3 acetylation (H3) level was observed in females but not in males. With this study we provide evidence that fluoxetine induces sex specific changes in HDAC2 and mGlu2 expression in the DH of the spinal cord and in DRGs and suggests a molecular explanation for the analgesic effects in female mice.
Collapse
Affiliation(s)
- Magda Zammataro
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Carmela Parenti
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Maria A Sortino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Santina Chiechio
- Department of Drug Sciences, University of Catania, Catania, Italy
| |
Collapse
|
26
|
Notartomaso S, Mascio G, Bernabucci M, Zappulla C, Scarselli P, Cannella M, Imbriglio T, Gradini R, Battaglia G, Bruno V, Nicoletti F. Analgesia induced by the epigenetic drug, L-acetylcarnitine, outlasts the end of treatment in mouse models of chronic inflammatory and neuropathic pain. Mol Pain 2017; 13:1744806917697009. [PMID: 28326943 PMCID: PMC5407675 DOI: 10.1177/1744806917697009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background L-acetylcarnitine, a drug marketed for the treatment of chronic pain, causes analgesia by epigenetically up-regulating type-2 metabotropic glutamate (mGlu2) receptors in the spinal cord. Because the epigenetic mechanisms are typically long-lasting, we hypothesized that analgesia could outlast the duration of L-acetylcarnitine treatment in models of inflammatory and neuropathic pain. Results A seven-day treatment with L-acetylcarnitine (100 mg/kg, once a day, i.p.) produced an antiallodynic effect in the complete Freund adjuvant mouse model of chronic inflammatory pain. L-Acetylcarnitine-induced analgesia persisted for at least 14 days after drug withdrawal. In contrast, the analgesic effect of pregabalin, amitryptiline, ceftriaxone, and N-acetylcysteine disappeared seven days after drug withdrawal. L-acetylcarnitine treatment enhanced mGlu2/3 receptor protein levels in the dorsal region of the spinal cord. This effect also persisted for two weeks after drug withdrawal and was associated with increased levels of acetylated histone H3 bound to the Grm2 gene promoter in the dorsal root ganglia. A long-lasting analgesic effect of L-acetylcarnitine was also observed in mice subjected to chronic constriction injury of the sciatic nerve. In these animals, a 14-day treatment with pregabalin, amitryptiline, tramadol, or L-acetylcarnitine produced a significant antiallodynic effect, with pregabalin displaying the greatest efficacy. In mice treated with pregabalin, tramadol or L-acetylcarnitine the analgesic effect was still visible 15 days after the end of drug treatment. However, only in mice treated with L-acetylcarnitine analgesia persisted 37 days after drug withdrawal. This effect was associated with an increase in mGlu2/3 receptor protein levels in the dorsal horns of the spinal cord. Conclusions Our findings suggest that L-acetylcarnitine has the unique property to cause a long-lasting analgesic effect that might reduce relapses in patients suffering from chronic pain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Roberto Gradini
- 1 I.R.C.C.S. Neuromed, Pozzilli, Italy.,2 Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Valeria Bruno
- 1 I.R.C.C.S. Neuromed, Pozzilli, Italy.,3 Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Ferdinando Nicoletti
- 1 I.R.C.C.S. Neuromed, Pozzilli, Italy.,3 Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
27
|
Shao C, Gao Y, Jin D, Xu X, Tan S, Yu H, Zhao Q, Zhao L, Wang W, Wang D. DNMT3a methylation in neuropathic pain. J Pain Res 2017; 10:2253-2262. [PMID: 29075135 PMCID: PMC5609796 DOI: 10.2147/jpr.s130654] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Mu opioid receptor (MOR) plays a crucial role in mediating analgesic effects of opioids and is closely associated with the pathologies of neuropathic pain. Previous studies have reported that peripheral nerve injury downregulates MOR expression, but the epigenetic mechanisms remain unknown. Objective Therefore, we investigated DNA methyltransferase3a (DNMT3a) expression or methylation changes within MOR promoter in the spinal cord in a neuropathic pain induced by a chronic constriction injury (CCI) mouse model and further determined whether these injury-associated changes are reversible by pharmacological interventions. Methods A CCI mouse model was established and tissue specimens of lumbar spinal cords were collected. The nociception threshold was evaluated by a Model Heated 400 Base. DNMT3a and MOR mRNA and protein level were detected by real-time-polymerase chain reaction and Western blot, respectively. Methylation of DNMT3a gene was measured by methylation-specific PCR. Results Our data showed that chronic nerve injury led to a significant upregulation of DNMT3a expression that was associated with increased methylation of MOR gene promoter and decreased MOR protein expression in the spinal cord. Inhibition of DNMT3a catalytic activity with DNMT inhibitor RG108 significantly blocked the increase in methylation of the MOR promoter, and then upregulated MOR expression and attenuated thermal hyperalgesia in neuropathic pain mice. Conclusion This study demonstrates that an increase of DNMT3a expression and MOR methylation epigenetically play an important role in neuropathic pain. Targeting DNMT3a to the promoter of MOR gene by DNMT inhibitor may be a promising approach to the development of new neuropathic pain therapy.
Collapse
Affiliation(s)
- Cuijie Shao
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| | - Yong Gao
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| | - Dan Jin
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| | - Xin Xu
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| | - Shuying Tan
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| | - Hui Yu
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| | - Qingxiang Zhao
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| | - Li Zhao
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| | - Wansheng Wang
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| | - Deqiang Wang
- Department of Pain, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
28
|
Suberoylanilide hydroxamic acid prevents downregulation of spinal glutamate transporter-1 and attenuates spinal nerve ligation-induced neuropathic pain behavior. Neuroreport 2016; 27:427-34. [PMID: 26953753 DOI: 10.1097/wnr.0000000000000558] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glutamate transporter-1 (GLT-1) reduction causes dysregulation of excitatory-inhibitory balance, contributing toward neuropathic pain development. However, the mechanisms underlying GLT-1 downregulation are still unclear. Histone acetylation plays a pivotal role in the regulation of gene expression. We sought to examine the contribution of histone acetylation on pain hypersensitivity and GLT-1 downregulation in neuropathic pain development. Histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) was intrathecally infused to rats through osmotic pumps from -5 days to 7 days after spinal nerve ligation (SNL). Behavioral tests indicated that SAHA could significantly prevent SNL-induced mechanical allodynia and thermal hyperalgesia. The effect was dose related and lasted to 10 days after SNL when the SAHA infusion was stopped on day 7. Immunohistochemistry, western blot, and real-time reverse transcription PCR analysis showed that SAHA significantly prevented SNL-induced downregulation of GLT-1 in the spinal dorsal horn. In addition, SNL-induced weakened acetylation of histone H3 (AcH3) was significantly inhibited by SAHA. Immunofluorescent histochemistry showed that both GLT-1 and AcH3 had high expressions in the dorsal horn. Double staining indicated that several GLT-1-positive cells were colocalized with AcH3. Our data provide evidence that histone deacetylation may contribute toward the loss of GLT-1 and this could be a new consideration for the development of more effective strategies for treating neuropathic pain.
Collapse
|
29
|
Abstract
Precision medicine is an emerging approach for prevention and treatment of diseases considering individuals’ uniqueness. Omics provide one step forward toward advanced precision medicine and include technologies such as genomics, proteomics and metabolomics generating valuable data through characterization of entire biological systems. With the aid of omics, a major shift has been started to occur in understanding of diseases followed by potential fundamental changes in medical care strategies. This short review aims at providing some examples of current omics that are applied in the field of pain in terms of new biomarkers for diagnosis of different pain types, stratification of patients and new therapeutic targets. Implementation of omics would most likely offer breakthrough in the future of pain management.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Frederik Bajers Vej 7A2-A2-208, 9220 Aalborg East, Denmark
| | - Hye Sook Han Vinterhøj
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, Frederik Bajers Vej 7A2-A2-208, 9220 Aalborg East, Denmark
| |
Collapse
|
30
|
Matrisciano F, Panaccione I, Grayson DR, Nicoletti F, Guidotti A. Metabotropic Glutamate 2/3 Receptors and Epigenetic Modifications in Psychotic Disorders: A Review. Curr Neuropharmacol 2016; 14:41-7. [PMID: 26813121 PMCID: PMC4787284 DOI: 10.2174/1570159x13666150713174242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 01/08/2023] Open
Abstract
Schizophrenia and Bipolar Disorder are chronic psychiatric disorders, both considered as “major psychosis”; they are thought to share some pathogenetic factors involving a dysfunctional gene x environment interaction. Alterations in the glutamatergic transmission have been suggested to be involved in the pathogenesis of psychosis. Our group developed an epigenetic model of schizophrenia originated by Prenatal Restraint Stress (PRS) paradigm in mice. PRS mice developed some behavioral alterations observed in schizophrenic patients and classic animal models of schizophrenia, i.e. deficits in social interaction, locomotor activity and prepulse inhibition. They also showed specific changes in promoter DNA methylation activity of genes related to schizophrenia such as reelin, BDNF and GAD67, and altered expression and function of mGlu2/3 receptors in the frontal cortex. Interestingly, behavioral and molecular alterations were reversed by treatment with mGlu2/3 agonists. Based on these findings, we speculate that pharmacological modulation of these receptors could have a great impact on early phase treatment of psychosis together with the possibility to modulate specific epigenetic key protein involved in the development of psychosis. In this review, we will discuss in more details the specific features of the PRS mice as a suitable epigenetic model for
major psychosis. We will then focus on key proteins of chromatin remodeling machinery as potential target for new
pharmacological treatment through the activation of metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Francesco Matrisciano
- Psychiatry and Behavioral Science, Northwestern University, Feinberg School of Medicine, 303E Chicago Ave, Chicago, IL 60611.
| | | | | | | | | |
Collapse
|
31
|
Davidson S, Golden JP, Copits BA, Ray PR, Vogt SK, Valtcheva MV, Schmidt RE, Ghetti A, Price T, Gereau RW. Group II mGluRs suppress hyperexcitability in mouse and human nociceptors. Pain 2016; 157:2081-2088. [PMID: 27218869 PMCID: PMC4988887 DOI: 10.1097/j.pain.0000000000000621] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We introduce a strategy for preclinical research wherein promising targets for analgesia are tested in rodent and subsequently validated in human sensory neurons. We evaluate group II metabotropic glutamate receptors, the activation of which is efficacious in rodent models of pain. Immunohistochemical analysis showed positive immunoreactivity for mGlu2 in rodent dorsal root ganglia (DRG), peripheral fibers in skin, and central labeling in the spinal dorsal horn. We also found mGlu2-positive immunoreactivity in human neonatal and adult DRG. RNA-seq analysis of mouse and human DRG revealed a comparative expression profile between species for group II mGluRs and for opioid receptors. In rodent sensory neurons under basal conditions, activation of group II mGluRs with a selective group II agonist produced no changes to membrane excitability. However, membrane hyperexcitability in sensory neurons exposed to the inflammatory mediator prostaglandin E2 (PGE2) was prevented by (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC). In human sensory neurons from donors without a history of chronic pain, we show that PGE2 produced hyperexcitability that was similarly blocked by group II mGluR activation. These results reveal a mechanism for peripheral analgesia likely shared by mice and humans and demonstrate a translational research strategy to improve preclinical validation of novel analgesics using cultured human sensory neurons.
Collapse
Affiliation(s)
- Steve Davidson
- Washington University in St. Louis, School of Medicine, Pain Center and Department of Anesthesiology. St. Louis, MO. 63110
| | - Judith P. Golden
- Washington University in St. Louis, School of Medicine, Pain Center and Department of Anesthesiology. St. Louis, MO. 63110
| | - Bryan A. Copits
- Washington University in St. Louis, School of Medicine, Pain Center and Department of Anesthesiology. St. Louis, MO. 63110
| | - Pradipta R. Ray
- School of Brain and Behavioral Sciences, University of Texas at Dallas. 75080
| | - Sherri K. Vogt
- Washington University in St. Louis, School of Medicine, Pain Center and Department of Anesthesiology. St. Louis, MO. 63110
| | - Manouela V. Valtcheva
- Washington University in St. Louis, School of Medicine, Pain Center and Department of Anesthesiology. St. Louis, MO. 63110
| | - Robert E. Schmidt
- Washington University in St. Louis, School of Medicine Department of Neuropathology, St. Louis, MO. 63110
| | | | - Theodore Price
- School of Brain and Behavioral Sciences, University of Texas at Dallas. 75080
| | - Robert W. Gereau
- Washington University in St. Louis, School of Medicine, Pain Center and Department of Anesthesiology. St. Louis, MO. 63110
| |
Collapse
|
32
|
Curto M, Lionetto L, Negro A, Capi M, Fazio F, Giamberardino MA, Simmaco M, Nicoletti F, Martelletti P. Altered kynurenine pathway metabolites in serum of chronic migraine patients. J Headache Pain 2016; 17:47. [PMID: 27130315 PMCID: PMC4851673 DOI: 10.1186/s10194-016-0638-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/12/2016] [Indexed: 02/07/2023] Open
Abstract
Background Activation of glutamate (Glu) receptors plays a key role in the pathophysiology of migraine. Both NMDA and metabotropic Glu receptors are activated or inhibited by metabolites of the kynurenine pathway, such as kynureninic acid (KYNA), quinolinic acid (QUINA), and xanthurenic acid (XA). In spite of the extensive research carried out on KYNA and other kynurenine metabolites in experimental models of migraine, no studies have ever been carried out in humans. Here, we measured all metabolites of the kynurenine pathway in the serum of patients affected by chronic migraine (CM) and age- and gender-matched healthy controls. Methods We assessed serum levels of tryptophan (Trp), L-kynurenine (KYN), KYNA, anthranilic acid (ANA), 3-hydroxyanthranilic acid (3-HANA), 3-hydroxykynirenine (3-HK), XA, QUINA, and 5-hydroxyindolacetic acid (5-HIAA) in 119 patients affected by CM (ICHD-3beta criteria) and 84 age-matched healthy subjects. Patients with psychiatric co-morbidities, systemic inflammatory, endocrine or neurological disorders, and mental retardation were excluded. Serum levels of all metabolites were assayed using liquid chromatography/tandem mass spectrometry (LC-MS/MS). Results LC-MS/MS analysis of kynurenine metabolites showed significant reductions in the levels of KYN (−32 %), KYNA (−25 %), 3-HK (−49 %), 3-HANA (−63 %), 5-HIAA (−36 %) and QUINA (−80 %) in the serum of the CM patients, as compared to healthy controls. Conversely, levels of Trp, ANA and XA were significantly increased in CM patients (+5 %, +339 % and +28 %, respectively). Conclusions These findings suggest that in migraine KYN is unidirectionally metabolized into ANA at expenses of KYNA and 3-HK. The reduction in the levels of KYNA, which behaves as a competitive antagonist of the glycine site of NMDA receptors, is consistent with the hypothesis that NMDA receptors are overactive in migraine. The increase in XA, a putative activator of Glu2 receptors, may represent a compensatory event aimed at reinforcing endogenous analgesic mechanisms. The large increase in the levels of ANA encourages research aimed at establishing whether ANA has any role in the regulation of nociceptive transmission.
Collapse
Affiliation(s)
- Martina Curto
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA. .,Department of Molecular Medicine, Sant'Andrea Medical Center, Sapienza University, Via di Grottarossa 1035-1039, Rome, 00189, Italy.
| | | | - Andrea Negro
- Department of Molecular Medicine, Sant'Andrea Medical Center, Sapienza University, Via di Grottarossa 1035-1039, Rome, 00189, Italy.,Regional referral headache center, Sant'Andrea Hospital, Rome, Italy
| | - Matilde Capi
- Advanced Molecular Diagnostics, IDI-IRCSS, Rome, Italy
| | | | - Maria Adele Giamberardino
- Headache Center and Geriatrics Clinic, Department of Medicine and Science of Aging, "G. D'Annunzio" University, Chieti, Italy
| | | | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Paolo Martelletti
- Department of Molecular Medicine, Sant'Andrea Medical Center, Sapienza University, Via di Grottarossa 1035-1039, Rome, 00189, Italy.,Regional referral headache center, Sant'Andrea Hospital, Rome, Italy
| |
Collapse
|
33
|
Wang W, Cui SS, Lu R, Zhang H. Is there any therapeutic value for the use of histone deacetylase inhibitors for chronic pain? Brain Res Bull 2016; 125:44-52. [PMID: 27090944 DOI: 10.1016/j.brainresbull.2016.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/16/2016] [Accepted: 04/14/2016] [Indexed: 12/16/2022]
Abstract
Chronic pain is a complex clinical condition that reduces the quality of life for billions of people. In recent years, the role of epigenetic modulation in the control of long-term neuronal plasticity has attracted the attention of pain researchers. The epigenetic mechanisms include covalent modifications of DNA and/or histone proteins. Mounting evidence suggests that the activity of histone deacetylases (HDACs) and levels of histone acetylation are dynamic and that these enzymes modulate pain-related synaptic plasticity. Therefore, HDACs play essential roles in chronic pain development and maintenance. In this mini review, we will discuss the role of HDACs in the pathogenesis of chronic pain and will consider the therapeutic value of HDAC inhibitors in treating chronic pain.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| | - Shan-Shan Cui
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan 430071, China.
| | - Rui Lu
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| | - Hui Zhang
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
34
|
Dogra S, Sona C, Kumar A, Yadav PN. Epigenetic regulation of G protein coupled receptor signaling and its implications in psychiatric disorders. Int J Biochem Cell Biol 2016; 77:226-39. [PMID: 27046448 DOI: 10.1016/j.biocel.2016.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) act as a relay center through which extracellular signals, in the form of neurotransmitters or therapeutics, are converted into an intracellular response, which ultimately shapes the overall response at the tissue and behavioral level. Remarkably in similar ways, epigenetic mechanisms also modulate the expression pattern of a large number of genes in response to the dynamic environment inside and outside of the body, and consequently overall response. Emerging evidences from the pharmacogenomics and preclinical studies clearly suggest that these two distinct mechanisms criss-cross each other in several neurological disorders. At one hand such cross-talks between two distinct mechanisms make disease etiology more challenging to understand, while on the other hand if dealt appropriately, such situations might provide an opportunity to find novel druggable target and strategy for the treatment of complex diseases. In this review article, we have summarized and highlighted the main findings that tie epigenetic mechanisms to GPCR mediated signaling in the pathophysiology of central nervous system (CNS) disorders, including depression, addiction and pain.
Collapse
Affiliation(s)
- Shalini Dogra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Chandan Sona
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Ajeet Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Prem N Yadav
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India.
| |
Collapse
|
35
|
Curto M, Lionetto L, Negro A, Capi M, Perugino F, Fazio F, Giamberardino MA, Simmaco M, Nicoletti F, Martelletti P. Altered serum levels of kynurenine metabolites in patients affected by cluster headache. J Headache Pain 2016; 17:27. [PMID: 27000870 PMCID: PMC4801826 DOI: 10.1186/s10194-016-0620-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/17/2016] [Indexed: 01/03/2023] Open
Abstract
Background The reported efficacy of memantine in the treatment of patients with cluster headache (CH) suggests that NMDA receptors are involved in mechanisms of nociceptive sensitization within the trigeminal system associated with CH. NMDA receptors are activated or inhibited by neuroactive compounds generated by tryptophan metabolism through the kynurenine pathway. In the accompanying manuscript, we have found that serum levels of all kynurenine metabolites are altered in patients with chronic migraine. Here, we have extended the study to patients affected by episodic or chronic CH as compared to healthy controls. Method We assessed serum levels of kynurenine (KYN), kynurenic Acid (KYNA), anthranilic acid (ANA), 3-hydroxy-anthranilic acid (3-HANA), 3-hydroxykynurenine (3-HK), xanthurenic acid (XA), quinolinic acid (QUINA), tryptophan (Trp) and 5-hydroxyindolacetic acid (5-HIAA) by means of a liquid chromatography/tandem mass spectrometry (LC/MS-MS) method in 21 patients affected by CH (15 with episodic and 6 with chronic CH), and 35 age-matched healthy subjects. Patients with psychiatric co-morbidities, systemic inflammatory, endocrine or neurological disorders, and mental retardation were excluded. Results LC/MS-MS analysis of kynurenine metabolites showed significant reductions in the levels of KYN (-36 %), KYNA (-34 %), 3-HK (-51 %), 3-HANA (-54 %), XA (-25 %), 5-HIAA (-39 %) and QUINA (-43 %) in the serum of the overall population of patients affected by CH, as compared to healthy controls. Serum levels of Trp and ANA were instead significantly increased in CH patients (+18 % and +54 %, respectively). There was no difference in levels of any metabolite between patients affected by episodic and chronic CH, with the exception of KYN levels, which were higher in patients with chronic CH. Conclusion The reduced levels of KYNA (an NMDA receptor antagonist) support the hypothesis that NMDA receptors are overactive in CH. A similar reduction in KYNA levels was shown in the accompanying manuscript in patients affected by chronic migraine. The reduced levels of XA, a putative analgesic compound, may contribute to explain the severity of pain attacks in CH. These data, associated with the data reported in the accompanying manuscript, supports a role for the kynurenine pathway in the pathophysiology of chronic headache disorders.
Collapse
Affiliation(s)
- Martina Curto
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA. .,Department of Molecular Medicine, Sant'Andrea Medical Center, Sapienza University of Rome, Via di Grottarossa 1035-1039, Rome, 00189, Italy. .,Regional referral headache center, Sant'Andrea Hospital, Rome, Italy.
| | | | - Andrea Negro
- Department of Molecular Medicine, Sant'Andrea Medical Center, Sapienza University of Rome, Via di Grottarossa 1035-1039, Rome, 00189, Italy.,Advanced Molecular Diagnostics, IDI-IRCCS, Rome, Italy
| | - Matilde Capi
- Advanced Molecular Diagnostics, IDI-IRCCS, Rome, Italy
| | - Francesca Perugino
- Department of Molecular Medicine, Sant'Andrea Medical Center, Sapienza University of Rome, Via di Grottarossa 1035-1039, Rome, 00189, Italy
| | | | - Maria Adele Giamberardino
- Headache Center and Geriatrics Clinic, Department of Medicine and Science of Aging, "G. D'Annunzio" University, Chieti, Italy
| | | | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Paolo Martelletti
- Department of Molecular Medicine, Sant'Andrea Medical Center, Sapienza University of Rome, Via di Grottarossa 1035-1039, Rome, 00189, Italy.,Regional referral headache center, Sant'Andrea Hospital, Rome, Italy
| |
Collapse
|
36
|
Wood CM, Nicolas CS, Choi SL, Roman E, Nylander I, Fernandez-Teruel A, Kiianmaa K, Bienkowski P, de Jong TR, Colombo G, Chastagnier D, Wafford KA, Collingridge GL, Wildt SJ, Conway-Campbell BL, Robinson ESJ, Lodge D. Prevalence and influence of cys407* Grm2 mutation in Hannover-derived Wistar rats: mGlu2 receptor loss links to alcohol intake, risk taking and emotional behaviour. Neuropharmacology 2016; 115:128-138. [PMID: 26987983 DOI: 10.1016/j.neuropharm.2016.03.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/30/2022]
Abstract
Modulation of metabotropic glutamate 2 (mGlu2) receptor function has huge potential for treating psychiatric and neurological diseases. Development of drugs acting on mGlu2 receptors depends on the development and use of translatable animal models of disease. We report here a stop codon mutation at cysteine 407 in Grm2 (cys407*) that is common in some Wistar rats. Therefore, researchers in this field need to be aware of strains with this mutation. Our genotypic survey found widespread prevalence of the mutation in commercial Wistar strains, particularly those known as Han Wistar. Such Han Wistar rats are ideal for research into the separate roles of mGlu2 and mGlu3 receptors in CNS function. Previous investigations, unknowingly using such mGlu2 receptor-lacking rats, provide insights into the role of mGlu2 receptors in behaviour. The Grm2 mutant rats, which dominate some selectively bred lines, display characteristics of altered emotionality, impulsivity and risk-related behaviours and increased voluntary alcohol intake compared with their mGlu2 receptor-competent counterparts. In addition, the data further emphasize the potential therapeutic role of mGlu2 receptors in psychiatric and neurological disease, and indicate novel methods of studying the role of mGlu2 and mGlu3 receptors. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Christian M Wood
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Celine S Nicolas
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Sun-Lim Choi
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Erika Roman
- Neuropharmacology, Addiction and Behaviour, Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden
| | - Ingrid Nylander
- Neuropharmacology, Addiction and Behaviour, Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24 Uppsala, Sweden
| | - Alberto Fernandez-Teruel
- Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Kalervo Kiianmaa
- Department of Alcohol, Drugs and Addiction, National Institute for Health and Welfare, POB 30 00271 Helsinki, Finland
| | | | - Trynke R de Jong
- Department of Behavioural and Molecular Neuroendocrinology, University of Regensburg, 93040 Regensburg, Germany
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I09042 Monserrato, CA, Italy
| | - Denis Chastagnier
- Janvier Labs, CS4105 Le Genest-Saint-Isle, F-53941 Saint-Berthevin, France
| | - Keith A Wafford
- Eli Lilly Research Laboratories, Windlesham, Surrey GU20 6PH, UK
| | - Graham L Collingridge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Sheryl J Wildt
- Envigo, 8520 Allison Pointe Boulevard, Indianapolis IN 46250, USA
| | - Becky L Conway-Campbell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - David Lodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
37
|
Chiechio S. Modulation of Chronic Pain by Metabotropic Glutamate Receptors. PHARMACOLOGICAL MECHANISMS AND THE MODULATION OF PAIN 2016; 75:63-89. [DOI: 10.1016/bs.apha.2015.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
38
|
Descalzi G, Ikegami D, Ushijima T, Nestler EJ, Zachariou V, Narita M. Epigenetic mechanisms of chronic pain. Trends Neurosci 2015; 38:237-46. [PMID: 25765319 DOI: 10.1016/j.tins.2015.02.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 12/12/2022]
Abstract
Neuropathic and inflammatory pain promote a large number of persisting adaptations at the cellular and molecular level, allowing even transient tissue or nerve damage to elicit changes in cells that contribute to the development of chronic pain and associated symptoms. There is evidence that injury-induced changes in chromatin structure drive stable changes in gene expression and neural function, which may cause several symptoms, including allodynia, hyperalgesia, anxiety, and depression. Recent findings on epigenetic changes in the spinal cord and brain during chronic pain may guide fundamental advances in new treatments. Here, we provide a brief overview of epigenetic regulation in the nervous system and then discuss the still-limited literature that directly implicates epigenetic modifications in chronic pain syndromes.
Collapse
Affiliation(s)
- Giannina Descalzi
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daigo Ikegami
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan; Life Science Tokyo Advanced Research Center (L-StaR), 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Eric J Nestler
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Venetia Zachariou
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; Life Science Tokyo Advanced Research Center (L-StaR), 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
39
|
Gavrilova SI, Kalyn YB, Safarova TP, Yakovleva OB, Sheshenin VS, Kornilov VV, Shipilova ES. Optimization of the efficacy and safety of antidepressant therapy in patients of a geriatric psychiatric unit. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:24-32. [DOI: 10.17116/jnevro20151156124-32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
40
|
Traina G, Scuri R. Transcription and protein synthesis inhibitors influence long-term effects of acetyl-l-carnitine on non-associative learning in the leech. Neurochem Int 2015; 80:72-8. [DOI: 10.1016/j.neuint.2014.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 11/13/2014] [Accepted: 11/20/2014] [Indexed: 11/15/2022]
|
41
|
Moloney RD, O'Mahony SM, Dinan TG, Cryan JF. Stress-induced visceral pain: toward animal models of irritable-bowel syndrome and associated comorbidities. Front Psychiatry 2015; 6:15. [PMID: 25762939 PMCID: PMC4329736 DOI: 10.3389/fpsyt.2015.00015] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/28/2015] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is a global term used to describe pain originating from the internal organs, which is distinct from somatic pain. It is a hallmark of functional gastrointestinal disorders such as irritable-bowel syndrome (IBS). Currently, the treatment strategies targeting visceral pain are unsatisfactory, with development of novel therapeutics hindered by a lack of detailed knowledge of the underlying mechanisms. Stress has long been implicated in the pathophysiology of visceral pain in both preclinical and clinical studies. Here, we discuss the complex etiology of visceral pain reviewing our current understanding in the context of the role of stress, gender, gut microbiota alterations, and immune functioning. Furthermore, we review the role of glutamate, GABA, and epigenetic mechanisms as possible therapeutic strategies for the treatment of visceral pain for which there is an unmet medical need. Moreover, we discuss the most widely described rodent models used to model visceral pain in the preclinical setting. The theory behind, and application of, animal models is key for both the understanding of underlying mechanisms and design of future therapeutic interventions. Taken together, it is apparent that stress-induced visceral pain and its psychiatric comorbidities, as typified by IBS, has a multifaceted etiology. Moreover, treatment strategies still lag far behind when compared to other pain modalities. The development of novel, effective, and specific therapeutics for the treatment of visceral pain has never been more pertinent.
Collapse
Affiliation(s)
- Rachel D Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland
| | - Siobhain M O'Mahony
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Psychiatry, University College Cork , Cork , Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| |
Collapse
|
42
|
An Introduction to Pain Pathways and Pain “Targets”. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:1-30. [DOI: 10.1016/bs.pmbts.2015.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Zammataro M, Sortino MA, Parenti C, Gereau RW, Chiechio S. HDAC and HAT inhibitors differently affect analgesia mediated by group II metabotropic glutamate receptors. Mol Pain 2014; 10:68. [PMID: 25406541 PMCID: PMC4247606 DOI: 10.1186/1744-8069-10-68] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/04/2014] [Indexed: 12/24/2022] Open
Abstract
Background Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are key players in epigenetic regulation of gene expression. Analgesic activity by HDAC inhibitors has been reported in different pain models including inflammatory and neuropathic pain. These drugs interfere with gene expression through different mechanisms including chromatin remodeling and/or activation of transcription factors. Among other targets, HDAC inhibitors regulate metabotropic glutamate receptors type 2 (mGlu2) expression in central and peripheral central nervous system. However whether inhibition of HAT activity also regulates mGlu2 expression has not been reported. Findings Here we report that curcumin (CUR), a naturally occurring compound endowed with p300/CREB-binding protein HAT inhibitory activity, is able to induce a drastic down-regulation of the mGlu2 receptor in the mouse spinal cord after systemic administration together with a marked hypoacetylation of histones H3 and H4 in dorsal root ganglia (DRG). Furthermore, the analgesic activity of the mGlu2/3 agonist, LY379268 is lost after a 3-day treatment with CUR. Conversely the analgesic activity of LY379268 is potentiated in mice pretreated for 5 consecutive days with the HDAC inhibitor, Suberoylanilide Hydroxamic Acid (SAHA), known to induce mGlu2-upregulation. Conclusions Our results demonstrate that systemically injected CUR is able to inhibit H3 and H4 acetylation in the DRG and to down-regulate mGlu2 receptors in the spinal cord. We also demonstrate that long term modification of the mGlu2 expression affects the analgesic properties of the orthosteric mGlu2/3 agonist, LY379268. These data open up the possibility that epigenetic modulators might be given in combination with “traditional” drugs in a context of a multi target approach for a better analgesic efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Santina Chiechio
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
44
|
Cherng CH, Lee KC, Chien CC, Chou KY, Cheng YC, Hsin ST, Lee SO, Shen CH, Tsai RY, Wong CS. Baicalin ameliorates neuropathic pain by suppressing HDAC1 expression in the spinal cord of spinal nerve ligation rats. J Formos Med Assoc 2014; 113:513-20. [DOI: 10.1016/j.jfma.2013.04.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 03/18/2013] [Accepted: 04/04/2013] [Indexed: 12/30/2022] Open
|
45
|
Wang F, Stefano GB, Kream RM. Epigenetic modification of DRG neuronal gene expression subsequent to nerve injury: etiological contribution to complex regional pain syndromes (Part II). Med Sci Monit 2014; 20:1188-200. [PMID: 25027291 PMCID: PMC4106931 DOI: 10.12659/msm.890707] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cumulating evidence indicated that nerve injury-associated cellular and molecular changes play an essential role in contributing to the development of pathological pain, and more recent findings implicated the critical role of epigenetic mechanisms in pain-related sensitization in the DRG subsequent to nerve injury. In this part of the dyad review (Part II), we reviewed and paid special attention on the etiological contribution of DGR gene expression modulated by epigenetic mechanisms of CRPS. As essential effectors to different molecular activation, we first discussed the activation of various signaling pathways that subsequently from nerve injury, and in further illustrated the fundamental and functional underpinnings of nerve injury-induced pain, in which we argued for the potential epigenetic mechanisms in response to sensitizing stimuli or injury. Therefore, understanding the specific mediating factors that influence individual epigenetic differences contributing to pain sensitivity and responsiveness to analgesics possesses crucial clinical implications.
Collapse
Affiliation(s)
- Fuzhou Wang
- Department of Anesthesiology and Critical Care Medicine, Affiliated Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - George B Stefano
- Neuroscience Research Institute, State University of New York at Old Westbury, Old Westbury, China (mainland)
| | - Richard M Kream
- Neuroscience Research Institute, State University of New York at Old Westbury, Old Westbury, China (mainland)
| |
Collapse
|
46
|
Onofrj M, Ciccocioppo F, Varanese S, di Muzio A, Calvani M, Chiechio S, Osio M, Thomas A. Acetyl-L-carnitine: from a biological curiosity to a drug for the peripheral nervous system and beyond. Expert Rev Neurother 2014; 13:925-36. [DOI: 10.1586/14737175.2013.814930] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Abstract
Psychiatric disorders including major depressive disorder, drug addiction, and schizophrenia are debilitating illnesses with a multitude of complex symptoms underlying each of these disorders. In recent years, it has become appreciated that the onset and development of these disorders goes beyond the one gene-one disease approach. Rather, the involvement of many genes is likely linked to these illnesses, and regulating the activation or silencing of gene function may play a crucial role in contributing to their pathophysiology. Epigenetic modifications such as histone acetylation and deacetylation, as well as DNA methylation can induce lasting and stable changes in gene expression, and have therefore been implicated in promoting the adaptive behavioral and neuronal changes that accompany each of these illnesses. In this review we will discuss some of the latest work implicating a potential role for epigenetics in psychiatric disorders, namely, depression, addiction, and schizophrenia as well as a possible role in treatment.
Collapse
Affiliation(s)
- Melissa Mahgoub
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9111 USA
| | - Lisa M. Monteggia
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9111 USA
| |
Collapse
|
48
|
L-Acetylcarnitine in dysthymic disorder in elderly patients: a double-blind, multicenter, controlled randomized study vs. fluoxetine. Eur Neuropsychopharmacol 2013; 23:1219-25. [PMID: 23428336 DOI: 10.1016/j.euroneuro.2012.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 11/12/2012] [Accepted: 11/29/2012] [Indexed: 11/30/2022]
Abstract
INTRODUCTION L-Acetylcarnitine (LAC), the acetyl ester of carnitine naturally present in the central nervous system and involved in several neural pathways, has been demonstrated to be active in various animal experimental models resembling some features of human depression. The aim of the study is to verify whether LAC can have an antidepressant action in a population of elderly patients with dysthymic disorder in comparison with a traditional antidepressant such as fluoxetine. METHODS Multicentric, double-blind, double-dummy, controlled, randomized study based on a observation period of 7 weeks. 80 patients with DSM-IV diagnosis of dysthymic disorder were enrolled in the study and subdivided into 2 groups. Group A patients received LAC plus placebo; group B patients received fluoxetine 20 mg/die plus placebo. Clinical assessment was performed through several psychometric scales at 6 different moments. RESULTS Group A patients showed a statistically significant improvement in the following scales: HAM-D, HAM-A, BDI and Touluse Pieron Test. Comparison between the two groups, A and B, generally showed very similar clinical progression. DISCUSSION The results obtained with LAC and fluoxetine were equivalent. As the subjects in this study were of senile age, it is possible to hypothesize that the LAC positive effect on mood could be associated with improvement in subjective cognitive symptomatology. The difference in the latency time of clinical response (1 week of LAC treatment, compared with the 2 weeks' latency time with fluoxetine) suggests the existence of different mechanisms of action possibly in relation to the activation of rapid support processes of neuronal activity.
Collapse
|
49
|
Macaluso A, Bernabucci M, Trabucco A, Ciolli L, Troisi F, Baldini R, Gradini R, Battaglia G, Nicoletti F, Collini S. Analgesic Effect of a Single Preoperative Dose of the Antibiotic Ceftriaxone in Humans. THE JOURNAL OF PAIN 2013; 14:604-12. [DOI: 10.1016/j.jpain.2013.01.774] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/18/2013] [Accepted: 01/19/2013] [Indexed: 01/14/2023]
|
50
|
HDAC inhibitors attenuate the development of hypersensitivity in models of neuropathic pain. Pain 2013; 154:1668-1679. [PMID: 23693161 PMCID: PMC3763368 DOI: 10.1016/j.pain.2013.05.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/23/2013] [Accepted: 05/03/2013] [Indexed: 12/20/2022]
Abstract
Histone deacetylase inhibitors (HDACIs) interfere with the epigenetic process of histone acetylation and are known to have analgesic properties in models of chronic inflammatory pain. The aim of this study was to determine whether these compounds could also affect neuropathic pain. Different class I HDACIs were delivered intrathecally into rat spinal cord in models of traumatic nerve injury and antiretroviral drug–induced peripheral neuropathy (stavudine, d4T). Mechanical and thermal hypersensitivity was attenuated by 40% to 50% as a result of HDACI treatment, but only if started before any insult. The drugs globally increased histone acetylation in the spinal cord, but appeared to have no measurable effects in relevant dorsal root ganglia in this treatment paradigm, suggesting that any potential mechanism should be sought in the central nervous system. Microarray analysis of dorsal cord RNA revealed the signature of the specific compound used (MS-275) and suggested that its main effect was mediated through HDAC1. Taken together, these data support a role for histone acetylation in the emergence of neuropathic pain.
Collapse
|