1
|
Hong S, Piao J, Hu J, Liu X, Xu J, Mao H, Piao J, Piao MG. Advances in cell-penetrating peptide-based nose-to-brain drug delivery systems. Int J Pharm 2025; 678:125598. [PMID: 40300721 DOI: 10.1016/j.ijpharm.2025.125598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/01/2025] [Accepted: 04/12/2025] [Indexed: 05/01/2025]
Abstract
The incidence of brain disorders has gained worldwide attention and the presence of the blood-brain barrier prevents numerous drugs from reaching the targeted brain. The specific physiology of the nasal cavity and the brain provides the feasibility of direct nose-brain delivery, a system that bypasses the blood-brain barrier in a non-invasive manner for brain-targeted drug delivery via intracellular and extracellular mechanisms. The use of CPPs provides further feasibility for naso-brain drug delivery studies, and liposomes, nanopolymer particles, and gels modified with CPPs have demonstrated significant brain-targeting capabilities after nasal delivery. In this paper, the physiology of the nasal cavity and brain, the pathways of naso-brain delivery and the influencing factors are discussed in detail. At the same time, the introduction, classification, mechanism of action and application of CPPs in the nasal-brain delivery system are discussed in detail to provide a theoretical basis for the in-depth study of the application of CPPs in the nasal-brain delivery system.
Collapse
Affiliation(s)
- Shuai Hong
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Jinyou Piao
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Junsheng Hu
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Xinyu Liu
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Jing Xu
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Heying Mao
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China
| | - Jingshu Piao
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China.
| | - Ming Guan Piao
- College of Pharmacy, Yanbian University, Yanji 133002 Jilin, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002 Jilin, China.
| |
Collapse
|
2
|
Szecskó A, Mészáros M, Simões B, Cavaco M, Chaparro C, Porkoláb G, Castanho MARB, Deli MA, Neves V, Veszelka S. PepH3-modified nanocarriers for delivery of therapeutics across the blood-brain barrier. Fluids Barriers CNS 2025; 22:31. [PMID: 40170024 PMCID: PMC11959756 DOI: 10.1186/s12987-025-00641-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/14/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Nanocarriers targeting the blood-brain barrier (BBB) are promising drug delivery systems to enhance the penetration of therapeutic molecules into the brain. Immunotherapy, particularly monoclonal antibodies designed to bind amyloid-beta peptides have become a promising strategy for Alzheimer's disease, but ensuring efficacy and safety is challenging and crucial for these therapies. Our aim was to develop an innovative nanocarriers conjugated with PepH3, a cationic peptide derived from Dengue virus type-2 capsid protein that crosses the BBB and acts as a shuttle peptide for the encapsulated single domain antibody (sdAb) recognizing Aβ oligomers. RESULTS PepH3 peptide enhanced the uptake of the nanoparticles (NPs) into brain endothelial cells, and transcytosis of sdAb, as a potential therapeutic molecule, across both rat and human BBB culture models. The cargo uptake was a temperature dependent active process that was reduced by metabolic and endocytosis inhibitors. The cellular uptake of the cationic PepH3-tagged NPs decreased when the negative surface charge of brain endothelial cells became more positive after treatments with a cationic lipid or with neuraminidase by digesting the glycocalyx. The NPs colocalized mostly with endoplasmic reticulum and Golgi apparatus and not with lysosomes, indicating the cargo may avoid cellular degradation. CONCLUSIONS Our results support that combination of NPs with a potential brain shuttle peptide such as PepH3 peptide can improve the delivery of antibody fragments across the BBB.
Collapse
Affiliation(s)
- Anikó Szecskó
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Mária Mészáros
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
- One Health Institute, Faculty of Health Sciences, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Beatriz Simões
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marco Cavaco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Chaparro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Gergő Porkoláb
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mária A Deli
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Szilvia Veszelka
- Biological Barriers Research Group, Institute of Biophysics, HUN-REN Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
3
|
Ma M, Zhao R, Li X, Jing M, Song R, Fan J. Biological Properties of Arginine-rich Peptides and their Application in Cargo Delivery to Cancer. Curr Drug Deliv 2025; 22:387-400. [PMID: 37073158 DOI: 10.2174/1567201820666230417083350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 04/20/2023]
Abstract
Cell-penetrating peptides (CPPs) comprise short peptides of fewer than 30 amino acids, which are rich in arginine (Arg) or lysine (Lys). CPPs have attracted interest in the delivery of various cargos, such as drugs, nucleic acids, and other macromolecules over the last 30 years. Among all types of CPPs, arginine-rich CPPs exhibit higher transmembrane efficiency due to bidentate bonding between their guanidinium groups and negatively charged cellular components. Besides, endosome escape can be induced by arginine-rich CPPs to protect cargo from lysosome-dependent degradation. Here we summarize the function, design principles, and penetrating mechanisms of arginine-rich CPPs, and outline their biomedical applications in drug delivery and biosensing in tumors.
Collapse
Affiliation(s)
- Minghai Ma
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruizhao Zhao
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
- Clinical Medical School, Xi'an Medical University, Xi'an, 710061, China
| | - Xing Li
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Minxuan Jing
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rundong Song
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
4
|
Malinowska AL, Huynh HL, Bose S. Peptide-Oligonucleotide Conjugation: Chemistry and Therapeutic Applications. Curr Issues Mol Biol 2024; 46:11031-11047. [PMID: 39451535 PMCID: PMC11506717 DOI: 10.3390/cimb46100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Oligonucleotides have been identified as powerful therapeutics for treating genetic disorders and diseases related to epigenetic factors such as metabolic and immunological dysfunctions. However, they face certain obstacles in terms of limited delivery to tissues and poor cellular uptake due to their large size and often highly charged nature. Peptide-oligonucleotide conjugation is an extensively utilized approach for addressing the challenges associated with oligonucleotide-based therapeutics by improving their delivery, cellular uptake and bioavailability, consequently enhancing their overall therapeutic efficiency. In this review, we present an overview of the conjugation of oligonucleotides to peptides, covering the different strategies associated with the synthesis of peptide-oligonucleotide conjugates (POC), the commonly used peptides employed to generate POCs, with the aim to develop oligonucleotides with favourable pharmacokinetic (PK) or pharmacodynamic (PD) properties for therapeutic applications. The advantages and drawbacks of the synthetic methods and applications of POCs are also described.
Collapse
Affiliation(s)
| | | | - Sritama Bose
- Medical Research Council, Nucleic Acid Therapy Accelerator (UKRI), Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, UK
| |
Collapse
|
5
|
Leckie J, Yokota T. Potential of Cell-Penetrating Peptide-Conjugated Antisense Oligonucleotides for the Treatment of SMA. Molecules 2024; 29:2658. [PMID: 38893532 PMCID: PMC11173757 DOI: 10.3390/molecules29112658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disorder that is caused by mutations in the survival motor neuron 1 (SMN1) gene, hindering the production of functional survival motor neuron (SMN) proteins. Antisense oligonucleotides (ASOs), a versatile DNA-like drug, are adept at binding to target RNA to prevent translation or promote alternative splicing. Nusinersen is an FDA-approved ASO for the treatment of SMA. It effectively promotes alternative splicing in pre-mRNA transcribed from the SMN2 gene, an analog of the SMN1 gene, to produce a greater amount of full-length SMN protein, to compensate for the loss of functional protein translated from SMN1. Despite its efficacy in ameliorating SMA symptoms, the cellular uptake of these ASOs is suboptimal, and their inability to penetrate the CNS necessitates invasive lumbar punctures. Cell-penetrating peptides (CPPs), which can be conjugated to ASOs, represent a promising approach to improve the efficiency of these treatments for SMA and have the potential to transverse the blood-brain barrier to circumvent the need for intrusive intrathecal injections and their associated adverse effects. This review provides a comprehensive analysis of ASO therapies, their application for the treatment of SMA, and the encouraging potential of CPPs as delivery systems to improve ASO uptake and overall efficiency.
Collapse
Affiliation(s)
- Jamie Leckie
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Sciences Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
6
|
Wu J, Roesger S, Jones N, Hu CMJ, Li SD. Cell-penetrating peptides for transmucosal delivery of proteins. J Control Release 2024; 366:864-878. [PMID: 38272399 DOI: 10.1016/j.jconrel.2024.01.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Enabling non-invasive delivery of proteins across the mucosal barriers promises improved patient compliance and therapeutic efficacies. Cell-penetrating peptides (CPPs) are emerging as a promising and versatile tool to enhance protein and peptide permeation across various mucosal barriers. This review examines the structural and physicochemical attributes of the nasal, buccal, sublingual, and oral mucosa that hamper macromolecular delivery. Recent development of CPPs for overcoming those mucosal barriers for protein delivery is summarized and analyzed. Perspectives regarding current challenges and future research directions towards improving non-invasive transmucosal delivery of macromolecules for ultimate clinical translation are discussed.
Collapse
Affiliation(s)
- Jiamin Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sophie Roesger
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie Jones
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Che-Ming J Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
7
|
Haque US, Yokota T. Enhancing Antisense Oligonucleotide-Based Therapeutic Delivery with DG9, a Versatile Cell-Penetrating Peptide. Cells 2023; 12:2395. [PMID: 37830609 PMCID: PMC10572411 DOI: 10.3390/cells12192395] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Antisense oligonucleotide-based (ASO) therapeutics have emerged as a promising strategy for the treatment of human disorders. Charge-neutral PMOs have promising biological and pharmacological properties for antisense applications. Despite their great potential, the efficient delivery of these therapeutic agents to target cells remains a major obstacle to their widespread use. Cellular uptake of naked PMO is poor. Cell-penetrating peptides (CPPs) appear as a possibility to increase the cellular uptake and intracellular delivery of oligonucleotide-based drugs. Among these, the DG9 peptide has been identified as a versatile CPP with remarkable potential for enhancing the delivery of ASO-based therapeutics due to its unique structural features. Notably, in the context of phosphorodiamidate morpholino oligomers (PMOs), DG9 has shown promise in enhancing delivery while maintaining a favorable toxicity profile. A few studies have highlighted the potential of DG9-conjugated PMOs in DMD (Duchenne Muscular Dystrophy) and SMA (Spinal Muscular Atrophy), displaying significant exon skipping/inclusion and functional improvements in animal models. The article provides an overview of a detailed understanding of the challenges that ASOs face prior to reaching their targets and continued advances in methods to improve their delivery to target sites and cellular uptake, focusing on DG9, which aims to harness ASOs' full potential in precision medicine.
Collapse
Affiliation(s)
- Umme Sabrina Haque
- Department of Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada HM Toupin Neurological Science Research, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
8
|
Khairkhah N, Namvar A, Bolhassani A. Application of Cell Penetrating Peptides as a Promising Drug Carrier to Combat Viral Infections. Mol Biotechnol 2023; 65:1387-1402. [PMID: 36719639 PMCID: PMC9888354 DOI: 10.1007/s12033-023-00679-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023]
Abstract
Novel effective drugs or therapeutic vaccines have been already developed to eradicate viral infections. Some non-viral carriers have been used for effective drug delivery to a target cell or tissue. Among them, cell penetrating peptides (CPPs) attracted a special interest to enhance drug delivery into the cells with low toxicity. They were also applied to transfer peptide/protein-based and nucleic acids-based therapeutic vaccines against viral infections. CPPs-conjugated drugs or vaccines were investigated in several viral infections including poliovirus, Ebola, coronavirus, herpes simplex virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, Japanese encephalitis virus, and influenza A virus. Some studies showed that the uptake of CPPs or CPPs-conjugated drugs can be performed through both non-endocytic and endocytic pathways. Despite high potential of CPPs for cargo delivery, there are some serious drawbacks such as non-tissue-specificity, instability, and suboptimal pharmacokinetics features that limit their clinical applications. At present, some solutions are utilized to improve the CPPs properties such as conjugation of CPPs with targeting moieties, the use of fusogenic lipids, generation of the proton sponge effect, etc. Up to now, no CPP or composition containing CPPs has been approved by the Food and Drug Administration (FDA) due to the lack of sufficient in vivo studies on stability, immunological assays, toxicity, and endosomal escape of CPPs. In this review, we briefly describe the properties, uptake mechanisms, advantages and disadvantages, and improvement of intracellular delivery, and bioavailability of cell penetrating peptides. Moreover, we focus on their application as an effective drug carrier to combat viral infections.
Collapse
Affiliation(s)
- Niloofar Khairkhah
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Namvar
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
9
|
Warren MR, Bajpayee AG. Modeling Electrostatic Charge Shielding Induced by Cationic Drug Carriers in Articular Cartilage Using Donnan Osmotic Theory. Bioelectricity 2022; 4:248-258. [PMID: 36644714 PMCID: PMC9811830 DOI: 10.1089/bioe.2021.0026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Positively charged drug carriers are rapidly emerging as a viable solution for long-standing challenges in delivery to dense, avascular, negatively charged tissues. These cationic carriers have demonstrated especially strong promise in targeting drugs to articular cartilage for osteoarthritis (OA) treatment. It is critical to evaluate the dose-dependent effects of their high intratissue uptake levels on charge-shielding of anionic matrix constituents, and the resulting changes in tissue osmotic swelling and mechanical integrity. Materials and Methods We use the ideal Donnan osmotic theory to derive a model for predicting intracartilage swelling pressures as a function of net charge (z) and equilibrium uptake of short-length, arginine-rich, multivalent, cationic peptide carriers (cationic peptide carriers [CPCs], z varied from +8 to +20) in cartilage samples with varying arthritic severities and fixed charge density (FCD). We use this model to determine the dose-dependent influence of CPCs on both physiological osmotic swelling pressures and compressive electrostatic moduli of cartilage in healthy and arthritic states. Results Under physiological conditions, the Donnan model predicted carrier-induced reductions in free swelling pressure between 8 and 29 kPa, and diminished compressive modulus by 20-68 kPa, both dependent on the net charge and uptake of CPCs. The magnitudes of deswelling and stiffness reduction increased monotonically with carrier uptake and net charge. Furthermore, predicted levels of deswelling by CPC charge shielding were amplified in tissues with reduced FCD (which model OA). Finally, the Donnan model predicted markedly higher reductions in tissue compressive modulus in hypotonic bathing salinity compared with physiological and hypertonic conditions. Conclusion This analysis demonstrates the importance of considering charge shielding as a likely adverse effect associated with uptake of cationic drug carriers into negatively charged tissues, especially in the case of damaged tissue. The simple modeling approach and principles described herein can inform the design of cationic drug delivery carriers and their clinical treatment regimens.
Collapse
Affiliation(s)
- Matthew R. Warren
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA
| | - Ambika G. Bajpayee
- Department of Bioengineering and Northeastern University, Boston, Massachusetts, USA
- Department of Mechanical Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Bottens RA, Yamada T. Cell-Penetrating Peptides (CPPs) as Therapeutic and Diagnostic Agents for Cancer. Cancers (Basel) 2022; 14:cancers14225546. [PMID: 36428639 PMCID: PMC9688740 DOI: 10.3390/cancers14225546] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Cell-Penetrating Peptides (CPPs) are short peptides consisting of <30 amino acids. Their ability to translocate through the cell membrane while carrying large cargo biomolecules has been the topic of pre-clinical and clinical trials. The ability to deliver cargo complexes through membranes yields potential for therapeutics and diagnostics for diseases such as cancer. Upon cellular entry, some CPPs have the ability to target specific organelles. CPP-based intracellular targeting strategies hold tremendous potential as they can improve efficacy and reduce toxicities and side effects. Further, recent clinical trials show a significant potential for future CPP-based cancer treatment. In this review, we summarize recent advances in CPPs based on systematic searches in PubMed, Embase, Web of Science, and Scopus databases until 30 September 2022. We highlight targeted delivery and explore the potential uses for CPPs as diagnostics, drug delivery, and intrinsic anti-cancer agents.
Collapse
Affiliation(s)
- Ryan A. Bottens
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
- Richard & Loan Hill Department of Biomedical Engineering, College of Medicine and Engineering, University of Illinois, Chicago, IL 60607, USA
- Correspondence:
| |
Collapse
|
11
|
Parrasia S, Szabò I, Zoratti M, Biasutto L. Peptides as Pharmacological Carriers to the Brain: Promises, Shortcomings and Challenges. Mol Pharm 2022; 19:3700-3729. [PMID: 36174227 DOI: 10.1021/acs.molpharmaceut.2c00523] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Central nervous system (CNS) diseases are among the most difficult to treat, mainly because the vast majority of the drugs fail to cross the blood-brain barrier (BBB) or to reach the brain at concentrations adequate to exert a pharmacological activity. The obstacle posed by the BBB has led to the in-depth study of strategies allowing the brain delivery of CNS-active drugs. Among the most promising strategies is the use of peptides addressed to the BBB. Peptides are versatile molecules that can be used to decorate nanoparticles or can be conjugated to drugs, with either a stable link or as pro-drugs. They have been used to deliver to the brain both small molecules and proteins, with applications in diverse therapeutic areas such as brain cancers, neurodegenerative diseases and imaging. Peptides can be generally classified as receptor-targeted, recognizing membrane proteins expressed by the BBB microvessels (e.g., Angiopep2, CDX, and iRGD), "cell-penetrating peptides" (CPPs; e.g. TAT47-57, SynB1/3, and Penetratin), undergoing transcytosis through unspecific mechanisms, or those exploiting a mixed approach. The advantages of peptides have been extensively pointed out, but so far few studies have focused on the potential negative aspects. Indeed, despite having a generally good safety profile, some peptide conjugates may display toxicological characteristics distinct from those of the peptide itself, causing for instance antigenicity, cardiovascular alterations or hemolysis. Other shortcomings are the often brief lifetime in vivo, caused by the presence of peptidases, the vulnerability to endosomal/lysosomal degradation, and the frequently still insufficient attainable increase of brain drug levels, which remain below the therapeutically useful concentrations. The aim of this review is to analyze not only the successful and promising aspects of the use of peptides in brain targeting but also the problems posed by this strategy for drug delivery.
Collapse
Affiliation(s)
- Sofia Parrasia
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| |
Collapse
|
12
|
Warren MR, Vedadghavami A, Bhagavatula S, Bajpayee AG. Effects of polycationic drug carriers on the electromechanical and swelling properties of cartilage. Biophys J 2022; 121:3542-3561. [PMID: 35765244 PMCID: PMC9515003 DOI: 10.1016/j.bpj.2022.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
Cationic nanocarriers offer a promising solution to challenges in delivering drugs to negatively charged connective tissues, such as to articular cartilage for the treatment of osteoarthritis (OA). However, little is known about the effects that cationic macromolecules may have on the mechanical properties of cartilage at high interstitial concentrations. We utilized arginine-rich cationic peptide carriers (CPCs) with varying net charge (from +8 to +20) to investigate the biophysical mechanisms of nanocarrier-induced alterations to cartilage biomechanical properties. We observed that CPCs increased the compressive modulus of healthy bovine cartilage explants by up to 70% and decreased the stiffness of glycosaminoglycan-depleted tissues (modeling OA) by 69%; in both cases, the magnitude of the change in stiffness correlated with the uptake of CPC charge variants. Next, we directly measured CPC-induced osmotic deswelling in cartilage tissue due to shielding of charge repulsions between anionic extracellular matrix constituents, with magnitudes of reductions between 36 and 64 kPa. We then demonstrated that electrostatic interactions were required for CPC-induced stiffening to occur, evidenced by no observed increase in tissue stiffness when measured in hypertonic bathing salinity. We applied a non-ideal Donnan osmotic model (under triphasic theory) to separate bulk modulus measurements into Donnan and non-Donnan components, which further demonstrated the conflicting charge-shielding and matrix-stiffening effects of CPCs. These results show that cationic drug carriers can alter tissue mechanical properties via multiple mechanisms, including the expected charge shielding as well as a novel stiffening phenomenon mediated by physical linkages. We introduce a model for how the magnitudes of these mechanical changes depend on tunable physical properties of the drug carrier, including net charge, size, and spatial charge distribution. We envision that the results and theory presented herein will inform the design of future cationic drug-delivery systems intended to treat diseases in a wide range of connective tissues.
Collapse
Affiliation(s)
- Matthew R Warren
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Armin Vedadghavami
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Sanjana Bhagavatula
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, Massachusetts; Department of Mechanical Engineering, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
13
|
Jiménez-Morales JM, Hernández-Cuenca YE, Reyes-Abrahantes A, Ruiz-García H, Barajas-Olmos F, García-Ortiz H, Orozco L, Quiñones-Hinojosa A, Reyes-González J, Del Carmen Abrahantes-Pérez M. MicroRNA delivery systems in glioma therapy and perspectives: A systematic review. J Control Release 2022; 349:712-730. [PMID: 35905783 DOI: 10.1016/j.jconrel.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Gliomas are the deadliest of all primary brain tumors, and they constitute a serious global health problem. MicroRNAs (miRNAs) are gene expression regulators associated with glioma pathogenesis. Thus, miRNAs represent potential therapeutic agents for treating gliomas. However, miRNAs have not been established as part of the regular clinical armamentarium. This systemic review evaluates current molecular and pre-clinical studies with the aim of defining the most appealing supramolecular platform for administering therapeutic miRNA to patients with gliomas. An integrated analysis suggested that cationic lipid nanoparticles, functionalized with octa-arginine peptides, represent a potentially specific, practical, non-invasive intervention for treating gliomas. This supramolecular platform allows loading both hydrophilic (miRNA) and hydrophobic (anti-tumor drugs, like temozolomide) molecules. This systemic review is the first to describe miRNA delivery systems targeted to gliomas that integrate several types of molecules as active ingredients. Further experimental validation is warranted to confirm the practical value of miRNA delivery systems.
Collapse
Affiliation(s)
- José Marcos Jiménez-Morales
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Yanet Elisa Hernández-Cuenca
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Ander Reyes-Abrahantes
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Henry Ruiz-García
- Department of Neurosurgery, Mayo Clinic, Jacksonville, United States; Brain Tumor Stem Cell Research Laboratory, Mayo Clinic, Jacksonville, United States
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Humberto García-Ortiz
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, Mayo Clinic, Jacksonville, United States; Brain Tumor Stem Cell Research Laboratory, Mayo Clinic, Jacksonville, United States
| | - Jesús Reyes-González
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico.
| | | |
Collapse
|
14
|
Duarte D, Vale N. Synergistic Interaction of CPP2 Coupled with Thiazole Derivates Combined with Clotrimazole and Antineoplastic Drugs in Prostate and Colon Cancer Cell Lines. Int J Mol Sci 2021; 22:11984. [PMID: 34769414 PMCID: PMC8584931 DOI: 10.3390/ijms222111984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 01/21/2023] Open
Abstract
Cell-penetrating peptides (CPPs) are small peptide sequences used mainly as cellular delivery agents that are able to efficiently deliver cargo into cells. Some CPPs also demonstrate intrinsic anticancer properties. Previously, our group developed a new family of CPP2-thiazole conjugates that have been shown to effectively reduce the proliferation of different cancer cells. This work aimed to combine these CPP2-thiazole conjugates with paclitaxel (PTX) and 5-fluorouracil (5-FU) in PC-3 prostate and HT-29 colon cancer cells, respectively, to evaluate the cytotoxic effects of these combinations. We also combined these CPP2-thiazole conjugates with clotrimazole (CLZ), an antifungal agent that has been shown to decrease cancer cell proliferation. Cell viability was evaluated using MTT and SRB assays. Drug interaction was quantified using the Chou-Talalay method. We determined that CPP2 did not have significant activity in these cells and demonstrate that N-terminal modification of this peptide enhanced its anticancer activity in both cell lines. Our results also showed an uneven response between cell lines to the proposed combinations. PC-3 cells were more responsive to the combination of CPP2-thiazole conjugates with CLZ than PTX and were more sensitive to these combinations than HT-29 cells. In addition, the interaction of drugs resulted in more synergism in PC-3 cells. These results suggest that N-terminal modification of CPP2 results in the enhanced anticancer activity of the peptide and demonstrates the potential of CPPs as adjuvants in cancer therapy. These results also validate that CLZ has significant anticancer activity both alone and in combination and support the strategy of drug repurposing coupled to drug combination for prostate cancer therapy.
Collapse
Affiliation(s)
- Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
15
|
Kheraldine H, Rachid O, Habib AM, Al Moustafa AE, Benter IF, Akhtar S. Emerging innate biological properties of nano-drug delivery systems: A focus on PAMAM dendrimers and their clinical potential. Adv Drug Deliv Rev 2021; 178:113908. [PMID: 34390777 DOI: 10.1016/j.addr.2021.113908] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023]
Abstract
Drug delivery systems or vectors are usually needed to improve the bioavailability and effectiveness of a drug through improving its pharmacokinetics/pharmacodynamics at an organ, tissue or cellular level. However, emerging technologies with sensitive readouts as well as a greater understanding of physiological/biological systems have revealed that polymeric drug delivery systems are not biologically inert but can have innate or intrinsic biological actions. In this article, we review the emerging multiple innate biological/toxicological properties of naked polyamidoamine (PAMAM) dendrimer delivery systems in the absence of any drug cargo and discuss their correlation with the defined physicochemical properties of PAMAMs in terms of molecular size (generation), architecture, surface charge and chemistry. Further, we assess whether any of the reported intrinsic biological actions of PAMAMs such as their antimicrobial activity or their ability to sequester glucose and modulate key protein interactions or cell signaling pathways, can be exploited clinically such as in the treatment of diabetes and its complications.
Collapse
|
16
|
Prencipe F, Diaferia C, Rossi F, Ronga L, Tesauro D. Forward Precision Medicine: Micelles for Active Targeting Driven by Peptides. Molecules 2021; 26:4049. [PMID: 34279392 PMCID: PMC8271712 DOI: 10.3390/molecules26134049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Precision medicine is based on innovative administration methods of active principles. Drug delivery on tissue of interest allows improving the therapeutic index and reducing the side effects. Active targeting by means of drug-encapsulated micelles decorated with targeting bioactive moieties represents a new frontier. Between the bioactive moieties, peptides, for their versatility, easy synthesis and immunogenicity, can be selected to direct a drug toward a considerable number of molecular targets overexpressed on both cancer vasculature and cancer cells. Moreover, short peptide sequences can facilitate cellular intake. This review focuses on micelles achieved by self-assembling or mixing peptide-grafted surfactants or peptide-decorated amphiphilic copolymers. Nanovectors loaded with hydrophobic or hydrophilic cytotoxic drugs or with gene silence sequences and externally functionalized with natural or synthetic peptides are described based on their formulation and in vitro and in vivo behaviors.
Collapse
Affiliation(s)
- Filippo Prencipe
- Institute of Crystallography (IC) CNR, Via Amendola 122/o, 70126 Bari, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| | - Filomena Rossi
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| | - Luisa Ronga
- Institut des Sciences Analytiques et de Physico-Chimie Pour l'Environnement et les Matériaux, Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64053 Pau, France
| | - Diego Tesauro
- Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
17
|
Dacoba TG, Anfray C, Mainini F, Allavena P, Alonso MJ, Torres Andón F, Crecente-Campo J. Arginine-Based Poly(I:C)-Loaded Nanocomplexes for the Polarization of Macrophages Toward M1-Antitumoral Effectors. Front Immunol 2020; 11:1412. [PMID: 32733469 PMCID: PMC7358452 DOI: 10.3389/fimmu.2020.01412] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Tumor-associated macrophages (TAMs), with M2-like immunosuppressive profiles, are key players in the development and dissemination of tumors. Hence, the induction of M1 pro-inflammatory and anti-tumoral states is critical to fight against cancer cells. The activation of the endosomal toll-like receptor 3 by its agonist poly(I:C) has shown to efficiently drive this polarization process. Unfortunately, poly(I:C) presents significant systemic toxicity, and its clinical use is restricted to a local administration. Therefore, the objective of this work has been to facilitate the delivery of poly(I:C) to macrophages through the use of nanotechnology, that will ultimately drive their phenotype toward pro-inflammatory states. Methods: Poly(I:C) was complexed to arginine-rich polypeptides, and then further enveloped with an anionic polymeric layer either by film hydration or incubation. Physicochemical characterization of the nanocomplexes was conducted by dynamic light scattering and transmission electron microscopy, and poly(I:C) association efficiency by gel electrophoresis. Primary human-derived macrophages were used as relevant in vitro cell model. Alamar Blue assay, ELISA, PCR and flow cytometry were used to determine macrophage viability, polarization, chemokine secretion and uptake of nanocomplexes. The cytotoxic activity of pre-treated macrophages against PANC-1 cancer cells was assessed by flow cytometry. Results: The final poly(I:C) nanocomplexes presented sizes lower than 200 nm, with surface charges ranging from +40 to −20 mV, depending on the envelopment. They all presented high poly(I:C) loading values, from 12 to 50%, and great stability in cell culture media. In vitro, poly(I:C) nanocomplexes were highly taken up by macrophages, in comparison to the free molecule. Macrophage treatment with these nanocomplexes did not reduce their viability and efficiently stimulated the secretion of the T-cell recruiter chemokines CXCL10 and CCL5, of great importance for an effective anti-tumor immune response. Finally, poly(I:C) nanocomplexes significantly increased the ability of treated macrophages to directly kill cancer cells. Conclusion: Overall, these enveloped poly(I:C) nanocomplexes might represent a therapeutic option to fight cancer through the induction of cytotoxic M1-polarized macrophages.
Collapse
Affiliation(s)
- Tamara G Dacoba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Clément Anfray
- Laboratory of Cellular Immunology, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Francesco Mainini
- Laboratory of Cellular Immunology, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Paola Allavena
- Laboratory of Cellular Immunology, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Laboratory of Cellular Immunology, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
18
|
Young CC, Vedadghavami A, Bajpayee AG. Bioelectricity for Drug Delivery: The Promise of Cationic Therapeutics. Bioelectricity 2020; 2:68-81. [PMID: 32803148 DOI: 10.1089/bioe.2020.0012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biological systems overwhelmingly comprise charged entities generating electrical activity that can have significant impact on biological structure and function. This intrinsic bio-electrical activity can also be harnessed for overcoming the tissue matrix and cell membrane barriers, which have been outstanding challenges for targeted drug delivery, by using rationally designed cationic carriers. The weak and reversible long-range electrostatic interactions with fixed negatively charged groups facilitate electro-diffusive transport of cationic therapeutics through full-tissue thickness to effectively reach intra-tissue, cellular, and intracellular target sites. This article presents a perspective on the promise of using rationally designed cationic biomaterials in targeted drug delivery, the underlying charge-based mechanisms, and bio-transport phenomena while addressing outstanding concerns around toxicity and methods to mitigate them. We also discuss electrically charged drugs that are currently being evaluated in clinical trials and identify areas of further development that have the potential to usher in new treatments.
Collapse
Affiliation(s)
- Cameron C Young
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Armin Vedadghavami
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA.,Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Xie J, Bi Y, Zhang H, Dong S, Teng L, Lee RJ, Yang Z. Cell-Penetrating Peptides in Diagnosis and Treatment of Human Diseases: From Preclinical Research to Clinical Application. Front Pharmacol 2020; 11:697. [PMID: 32508641 PMCID: PMC7251059 DOI: 10.3389/fphar.2020.00697] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are short peptides (fewer than 30 amino acids) that have been predominantly used in basic and preclinical research during the last 30 years. Since they are not only capable of translocating themselves into cells but also facilitate drug or CPP/cargo complexes to translocate across the plasma membrane, they have potential applications in the disease diagnosis and therapy, including cancer, inflammation, central nervous system disorders, otologic and ocular disorders, and diabetes. However, no CPPs or CPP/cargo complexes have been approved by the US Food and Drug Administration (FDA). Many issues should be addressed before translating CPPs into clinics. In this review, we summarize recent developments and innovations in preclinical studies and clinical trials based on using CPP for improved delivery, which have revealed that CPPs or CPP-based delivery systems present outstanding diagnostic therapeutic delivery potential.
Collapse
Affiliation(s)
- Jing Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Ye Bi
- Practice Training Center, Changchun University of Chinese Medicine, Changchun, China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Shiyan Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH, United States
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
20
|
Riveros AL, Eggeling C, Riquelme S, Adura C, López-Iglesias C, Guzmán F, Araya E, Almada M, Juárez J, Valdez MA, Fuentevilla IA, López O, Kogan MJ. Improving Cell Penetration of Gold Nanorods by Using an Amphipathic Arginine Rich Peptide. Int J Nanomedicine 2020; 15:1837-1851. [PMID: 32256063 PMCID: PMC7090188 DOI: 10.2147/ijn.s237820] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Gold nanorods are highly reactive, have a large surface-to-volume ratio, and can be functionalized with biomolecules. Gold nanorods can absorb infrared electromagnetic radiation, which is subsequently dispersed as local heat. Gold nanoparticles can be used as powerful tools for the diagnosis and therapy of different diseases. To improve the biological barrier permeation of nanoparticles with low cytotoxicity, in this study, we conjugated gold nanorods with cell-penetrating peptides (oligoarginines) and with the amphipathic peptide CLPFFD. Methods We studied the interaction of the functionalized gold nanorods with biological membrane models (liposomes) by dynamic light scattering, transmission electron microscopy and the Langmuir balance. Furthermore, we evaluated the effects on cell viability and permeability with an MTS assay and TEM. Results and Discussion The interaction study by DLS, the Langmuir balance and cryo-TEM support that GNR-Arg7CLPFFD enhances the interactions between GNRs and biological membranes. In addition, cells treated with GNR-Arg7CLPFFD internalized 80% more nanoparticles than cells treated with GNR alone and did not induce cell damage. Conclusion Our results indicate that incorporation of an amphipathic sequence into oligoarginines for the functionalization of gold nanorods enhances biological membrane nanoparticle interactions and nanoparticle cell permeability with respect to nanorods functionalized with oligoarginine. Overall, functionalized gold nanorods with amphipathic arginine rich peptides might be candidates for improving drug delivery by facilitating biological barrier permeation.
Collapse
Affiliation(s)
- Ana L Riveros
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Cynthia Eggeling
- Núcleo de Biotecnología Curauma (NBC), Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Sebastián Riquelme
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carolina Adura
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carmen López-Iglesias
- Microscopy CORE Lab, The Maastricht Multimodal Molecular Imaging Institute FHML, Maastricht University, Maastrich, Netherlands
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma (NBC), Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Mario Almada
- Departamento de Física, Universidad de Sonora, Hermosillo, Sonora, México
| | - Josué Juárez
- Departamento de Física, Universidad de Sonora, Hermosillo, Sonora, México
| | - Miguel A Valdez
- Departamento de Física, Universidad de Sonora, Hermosillo, Sonora, México
| | - Ignacio A Fuentevilla
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile.,Laboratorio de Investigación en nutrición funcional (LINF), Instituto de Nutrición y Tecnología de los alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Olga López
- Department Surfactants and Nanobiotechnology, Institute for advanced chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), Barcelona, Spain
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
21
|
Yamaguchi S, Ito S, Masuda T, Couraud PO, Ohtsuki S. Novel cyclic peptides facilitating transcellular blood-brain barrier transport of macromolecules in vitro and in vivo. J Control Release 2020; 321:744-755. [PMID: 32135226 DOI: 10.1016/j.jconrel.2020.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022]
Abstract
Brain delivery of nanoparticles and macromolecular drugs depends on blood-brain barrier (BBB)-permeable carriers. In this study, we searched for cyclic heptapeptides facilitating BBB permeation of M13 phages by phage library screening using a transcellular permeability assay with hCMEC/D3 cell monolayers, a human BBB model. The M13 phage, which is larger than macromolecular drugs and nanoparticles, served as a model macromolecule. The screen identified cyclic heptapeptide SLSHSPQ (SLS) as a human BBB-permeable peptide. The SLS-displaying phage (SLS-phage) exhibited improved permeation across the cell monolayer of monkey and rat BBB co-culture models. The SLS-phage internalized into hCMEC/D3 cells via macropinocytosis and externalized via the exosome excretion pathway. SLS-phage distribution into brain parenchyma was observed in mice after intravenous administration. Moreover, liposome permeated across the BBB as cyclic SLS peptide conjugates. In conclusion, the cyclic SLS heptapeptide is a novel carrier candidate for brain delivery of macromolecular drugs and nanoparticles.
Collapse
Affiliation(s)
- Shunsuke Yamaguchi
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Japan Society for the Promotion of Science, Research Fellowship for Young Scientists, Chiyoda-ku, Tokyo, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Pierre-Olivier Couraud
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
22
|
Morse SV, Boltersdorf T, Harriss BI, Chan TG, Baxan N, Jung HS, Pouliopoulos AN, Choi JJ, Long NJ. Neuron labeling with rhodamine-conjugated Gd-based MRI contrast agents delivered to the brain via focused ultrasound. Am J Cancer Res 2020; 10:2659-2674. [PMID: 32194827 PMCID: PMC7052893 DOI: 10.7150/thno.42665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022] Open
Abstract
Gadolinium-based magnetic resonance imaging contrast agents can provide information regarding neuronal function, provided that these agents can cross the neuronal cell membrane. Such contrast agents are normally restricted to extracellular domains, however, by attaching cationic fluorescent dyes, they can be made cell-permeable and allow for both optical and magnetic resonance detection. To reach neurons, these agents also need to cross the blood-brain barrier. Focused ultrasound combined with microbubbles has been shown to enhance the permeability of this barrier, allowing molecules into the brain non-invasively, locally and transiently. The goal of this study was to investigate whether combining fluorescent rhodamine with a gadolinium complex would form a dual-modal contrast agent that could label neurons in vivo when delivered to the mouse brain with focused ultrasound and microbubbles. Methods: Gadolinium complexes were combined with a fluorescent, cationic rhodamine unit to form probes with fluorescence and relaxivity properties suitable for in vivo applications. The left hemisphere of female C57bl/6 mice (8-10 weeks old; 19.07 ± 1.56 g; n = 16) was treated with ultrasound (centre frequency: 1 MHz, peak-negative pressure: 0.35 MPa, pulse length: 10 ms, repetition frequency: 0.5 Hz) while intravenously injecting SonoVue microbubbles and either the 1 kDa Gd(rhodamine-pip-DO3A) complex or a conventionally-used lysine-fixable Texas Red® 3 kDa dextran. The opposite right hemisphere was used as a non-treated control region. Brains were then extracted and either sectioned and imaged via fluorescence or confocal microscopy or imaged using a 9.4 T magnetic resonance imaging scanner. Brain slices were stained for neurons (NeuN), microglia (Iba1) and astrocytes (GFAP) to investigate the cellular localization of the probes. Results: Rhodamine fluorescence was detected in the left hemisphere of all ultrasound treated mice, while none was detected in the right control hemisphere. Cellular uptake of Gd(rhodamine-pip-DO3A) was observed in all the treated regions with a uniform distribution (coefficient of variation = 0.4 ± 0.05). Uptake was confirmed within neurons, whereas the probe did not co-localize with microglia and astrocytes. Compared to the dextran molecule, Gd(rhodamine-pip-DO3A) distributed more homogeneously and was less concentrated around blood vessels. Furthermore, the dextran molecule was found to accumulate unselectively in microglia as well as neurons, whereas our probe was only taken up by neurons. Gd(rhodamine-pip-DO3A) was detected via magnetic resonance imaging ex vivo in similar regions to where fluorescence was detected. Conclusion: We have introduced a method to image neurons with a dual-modal imaging agent delivered non-invasively and locally to the brain using focused ultrasound and microbubbles. When delivered to the mouse brain, the agent distributed homogeneously and was only uptaken by neurons; in contrast, conventionally used dextran distributed heterogeneously and was uptaken by microglia as well as neurons. This result indicates that our probe labels neurons without microglial involvement and in addition the probe was found to be detectable via both ex vivo MRI and fluorescence. Labeling neurons with such dual-modal agents could facilitate the study of neuronal morphology and physiology using the advantages of both imaging modalities.
Collapse
|
23
|
Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol Ther 2019; 27:710-728. [PMID: 30846391 PMCID: PMC6453548 DOI: 10.1016/j.ymthe.2019.02.012] [Citation(s) in RCA: 717] [Impact Index Per Article: 119.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022] Open
Abstract
mRNA has broad potential as a therapeutic. Current clinical efforts are focused on vaccination, protein replacement therapies, and treatment of genetic diseases. The clinical translation of mRNA therapeutics has been made possible through advances in the design of mRNA manufacturing and intracellular delivery methods. However, broad application of mRNA is still limited by the need for improved delivery systems. In this review, we discuss the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in biomaterials and delivery strategies, and we present an overview of the applications of mRNA-based delivery for protein therapy, gene editing, and vaccination.
Collapse
Affiliation(s)
- Piotr S Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Arnab Rudra
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Lei Miao
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Anesthesiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Combined Fluorimetric Caspase-3/7 Assay and Bradford Protein Determination for Assessment of Polycation-Mediated Cytotoxicity. Methods Mol Biol 2019. [PMID: 30838624 DOI: 10.1007/978-1-4939-9092-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cationic polyplexes and lipoplexes are widely used as artificial systems for nucleic acid delivery into the cells, but they can also induce cell death. Mechanistic understanding of cell toxicity and biological side effects of these cationic entities is essential for optimization strategies and design of safe and efficient nucleic acid delivery systems. Numerous methods are presently available to detect and delineate cytotoxicity and cell death-mediated signals in cell cultures. Activation of caspases is part of the classical apoptosis program and increased caspase activity is therefore a well-established hallmark of programmed cell death. Additional methods to monitor cell-death related signals must, however, also be carried out to fully define the type of cell toxicity in play. These may include methods that detect plasma membrane damage, loss of mitochondrial membrane potential, phosphatidylserine exposure, and cell morphological changes (e.g., membrane blebbing, nuclear changes, cytoplasmic swelling, cell rounding). Here we describe a 96-well format protocol for detection of caspase-3/7 activity in cell lysates, based on a fluorescent caspase-3 assay, combined with a method to simultaneously determine relative protein contents in the individual wells.
Collapse
|
25
|
Ho K, Morfin C, Slowinska K. The Limitations of Collagen/CPP Hybrid Peptides as Carriers for Cancer Drugs to FaDu Cells. Molecules 2019; 24:E676. [PMID: 30769789 PMCID: PMC6412366 DOI: 10.3390/molecules24040676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 01/20/2023] Open
Abstract
The in vitro efficacy of cancer prodrugs varies significantly between malignant cell lines. The most commonly identified problems relate to delivery: uptake mechanism, endosomal entrapment, and drug release. Here we present the study of collagen/cell penetrating hybrid (COL/CPP) peptide carriers intended to deliver paclitaxel to the hypopharyngeal carcinoma (FaDu) cells. Confocal microscopy imaging revealed the surprising response of FaDu cell to COL/CPP in comparison to previously studied cancer cell lines: hybrid peptides that carry both COL and CPP domain adsorb on the FaDu cell surface. While the CPP domain was design to facilitate the cellular uptake, in the case of FaDu cells, it also induced detrimental interactions with the cell membrane. Despite surface adsorption, the colocalization study with endosomal markers EEA1 and LAMP1 reveals that COL/CPP is internalized via endosomal pathway, peptides are able to escape before lysosome formation and release paclitaxel. Therefore, the main obstacle for paclitaxel delivery to FaDu cells appears to be related to cell surface properties. This behavior seems specific to FaDu cells, and could be linked to previously reported overexpression of T5, heparanase splice variants that produces protein lacking enzymatic activity of heparanase. This results in increased concentration of HSPG on FaDu cell surface, and possibly creates a barrier for cellular uptake of highly charged COL/CPP.
Collapse
Affiliation(s)
- Kevin Ho
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA.
| | - Cristobal Morfin
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA.
| | - Katarzyna Slowinska
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA.
| |
Collapse
|
26
|
Trazzi S, De Franceschi M, Fuchs C, Bastianini S, Viggiano R, Lupori L, Mazziotti R, Medici G, Lo Martire V, Ren E, Rimondini R, Zoccoli G, Bartesaghi R, Pizzorusso T, Ciani E. CDKL5 protein substitution therapy rescues neurological phenotypes of a mouse model of CDKL5 disorder. Hum Mol Genet 2019; 27:1572-1592. [PMID: 29474534 DOI: 10.1093/hmg/ddy064] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/17/2018] [Indexed: 11/13/2022] Open
Abstract
Cyclin-dependent kinase like-5 (CDKL5) disorder is a rare neurodevelopmental disease caused by mutations in the CDKL5 gene. The consequent misexpression of the CDKL5 protein in the nervous system leads to a severe phenotype characterized by intellectual disability, motor impairment, visual deficits and early-onset epilepsy. No therapy is available for CDKL5 disorder. It has been reported that a protein transduction domain (TAT) is able to deliver macromolecules into cells and even into the brain when fused to a given protein. We demonstrate that TAT-CDKL5 fusion protein is efficiently internalized by target cells and retains CDKL5 activity. Intracerebroventricular infusion of TAT-CDKL5 restored hippocampal development, hippocampus-dependent memory and breathing pattern in Cdkl5-null mice. Notably, systemically administered TAT-CDKL5 protein passed the blood-brain-barrier, reached the CNS, and rescued various neuroanatomical and behavioral defects, including breathing pattern and visual responses. Our results suggest that CDKL5 protein therapy may be an effective clinical tool for the treatment of CDKL5 disorder.
Collapse
Affiliation(s)
- Stefania Trazzi
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Marianna De Franceschi
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Claudia Fuchs
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefano Bastianini
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Rocchina Viggiano
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Leonardo Lupori
- BIO@SNS lab, Scuola Normale Superiore di Pisa, 56125 Pisa, Italy
| | | | - Giorgio Medici
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Viviana Lo Martire
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elisa Ren
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Clinical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giovanna Zoccoli
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Renata Bartesaghi
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Tommaso Pizzorusso
- BIO@SNS lab, Scuola Normale Superiore di Pisa, 56125 Pisa, Italy.,NEUROFARBA Department, University of Florence, 50139 Florence, Italy.,Institute of Neuroscience, CNR, 56125 Pisa, Italy
| | - Elisabetta Ciani
- 1Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
27
|
Tan X, Bruchez MP, Armitage BA. Efficient Cytoplasmic Delivery of Antisense Probes Assisted by Cyclized-Peptide-Mediated Photoinduced Endosomal Escape. Chembiochem 2019; 20:727-733. [PMID: 30452106 DOI: 10.1002/cbic.201800709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Indexed: 12/24/2022]
Abstract
Intracellular delivery and endosomal release of antisense oligonucleotides remain a significant challenge in the development of gene-targeted therapeutics. Previously, noncovalently cyclized TAT peptide (Cyc-TAT), in which the final ring-closing step is accomplished by hybridization of two short complementary γPNA segments, has been proven more efficient than its linear analogues at entering cells. As Cyc-TAT also readily accommodates a binding site, that is, an overhanging γPNA sequence, for codelivery of functional nucleic acid probes into cells, we were able to demonstrate that the overhang-Cyc-TAT penetrated into A549 cells when carrying an anti-telomerase γPNA that specifically reduced telomerase activity by over 97 %. Herein, we report that the cyclized TAT(FAM) can escape endosomes much more efficiently than the linear TAT(FAM) after LED illumination (490 nm). Based on this observation, the endosomal release of overhang-Cyc-TAT(FAM)/anti-telomerase γPNA complex can be greatly enhanced by photoactivation, thus shortening cell treatment time from 60 to 3 h, while keeping the same high efficiency in inhibiting telomerase activity inside A549 cells.
Collapse
Affiliation(s)
- Xiaohong Tan
- Departments of Chemistry, Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Marcel P Bruchez
- Departments of Chemistry, Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA.,Departments of Biological Sciences, Molecular Biosensor and Imaging Center, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Bruce A Armitage
- Departments of Chemistry, Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
28
|
Grogg M, Hilvert D, Ebert MO, Beck AK, Seebach D, Kurth F, Dittrich PS, Sparr C, Wittlin S, Rottmann M, Mäser P. Cell Penetration, Herbicidal Activity, and in-vivo-Toxicity of Oligo-Arginine Derivatives and of Novel Guanidinium-Rich Compounds Derived from the Biopolymer Cyanophycin. Helv Chim Acta 2018; 101:e1800112. [PMID: 30905972 PMCID: PMC6426238 DOI: 10.1002/hlca.201800112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/02/2018] [Indexed: 11/10/2022]
Abstract
Oligo-arginines are thoroughly studied cell-penetrating peptides (CPPs, Figures 1 and 2). Previous in-vitro investigations with the octaarginine salt of the phosphonate fosmidomycin (herbicide and anti-malaria drug) have shown a 40-fold parasitaemia inhibition with P. falciparum, compared to fosmidomycin alone (Figure 3). We have now tested this salt, as well as the corresponding phosphinate salt of the herbicide glufosinate, for herbicidal activity with whole plants by spray application, hoping for increased activities, i.e. decreased doses. However, both salts showed low herbicidal activity, indicating poor foliar uptake (Table 1). Another pronounced difference between in-vitro and in-vivo activity was demonstrated with various cell-penetrating octaarginine salts of fosmidomycin: intravenous injection to mice caused exitus of the animals within minutes, even at doses as low as 1.4 μmol/kg (Table 2). The results show that use of CPPs for drug delivery, for instance to cancer cells and tissues, must be considered with due care. The biopolymer cyanophycin is a poly-aspartic acid containing argininylated side chains (Figure 4); its building block is the dipeptide H-βAsp-αArg-OH (H-Adp-OH). To test and compare the biological properties with those of octaarginines we synthesized Adp8-derivatives (Figure 5). Intravenouse injection of H-Adp8-NH2 into the tail vein of mice with doses as high as 45 μmol/kg causes no symptoms whatsoever (Table 3), but H-Adp8-NH2 is not cell penetrating (HEK293 and MCF-7 cells, Figure 6). On the other hand, the fluorescently labeled octamers FAM-(Adp(OMe))8-NH2 and FAM-(Adp(NMe2))8-NH2 with ester and amide groups in the side chains exhibit mediocre to high cell-wall permeability (Figure 6), and are toxic (Table 3). Possible reasons for this behavior are discussed (Figure 7) and corresponding NMR spectra are presented (Figure 8).
Collapse
Affiliation(s)
- Marcel Grogg
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Donald Hilvert
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Marc-Olivier Ebert
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Albert K. Beck
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Dieter Seebach
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Felix Kurth
- Department of Biosystems Science and Engineering, ETH Zürich, BSD H 368, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, BSD H 368, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Christof Sparr
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland
| |
Collapse
|
29
|
Chen X, Zhang L, Wu Y, Wang L, Ma C, Xi X, Bininda-Emonds ORP, Shaw C, Chen T, Zhou M. Evaluation of the bioactivity of a mastoparan peptide from wasp venom and of its analogues designed through targeted engineering. Int J Biol Sci 2018; 14:599-607. [PMID: 29904274 PMCID: PMC6001651 DOI: 10.7150/ijbs.23419] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/21/2018] [Indexed: 12/15/2022] Open
Abstract
Mastoparan is a typical cationic and amphipathic tetradecapeptide found in wasp venom and exhibits potent biological activities. Yet, compared with other insect-derived peptides, such as melittin from the bee venom, this family have been underrated. Herein, we evaluated the biological activities of mastoparan-C (MP-C), which was identified from the venom of the European Hornet (Vespa crabro), and rationally designed two analogues (a skeleton-based cyclization by two cysteine residues and an N-terminal extension via tat-linked) for enhancing the stability of the biological activity and membrane permeability, respectively. Three peptides possessed broadly efficacious inhibiting capacities towards common pathogens, resistant strains, as well as microbial biofilm. Although, cyclized MP-C showed longer half-life time than the parent peptide, the lower potency of antimicrobial activity and higher degree of haemolysis were observed. The tat-linked MP-C exhibited more potent anticancer activity than the parent peptide, but it also loses the specificity. The study revealed that MP-C is good candidate for developing antimicrobial agents and the targeted-design could improve the stability and transmembrane delivery, but more investigation would be needed to adjust the side effects brought from the design.
Collapse
Affiliation(s)
- Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Luyao Zhang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Yue Wu
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Olaf R P Bininda-Emonds
- AG Systematik und Evolutionsbiologie, IBU-Faculty V, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
30
|
He S, Fan W, Wu N, Zhu J, Miao Y, Miao X, Li F, Zhang X, Gan Y. Lipid-Based Liquid Crystalline Nanoparticles Facilitate Cytosolic Delivery of siRNA via Structural Transformation. NANO LETTERS 2018; 18:2411-2419. [PMID: 29561622 DOI: 10.1021/acs.nanolett.7b05430] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
RNA interference (RNAi) technology has shown great promise for the treatment of cancer and other genetic disorders. Despite the efforts to increase the target tissue distribution, the safe and effective delivery of siRNA to the diseased cells with sufficient cytosolic transport is another critical factor for successful RNAi clinical application. Here, the constructed lipid-based liquid crystalline nanoparticles, called nano-Transformers, can transform thestructure in the intracellular acidic environment and perform high-efficient siRNA delivery for cancer treatment. The developed nano-Transformers have satisfactory siRNA loading efficiency and low cytotoxicity. Different from the traditional cationic nanocarriers, the endosomal membrane fusion induced by the conformational transition of lipids contributes to the easy dissociation of siRNA from nanocarriers and direct release of free siRNA into cytoplasm. We show that transfection with cyclin-dependent kinase 1 (CDK1)-siRNA-loaded nano-Transformers causes up to 95% reduction of relevant mRNA in vitro and greatly inhibits the tumor growth without causing any immunogenic response in vivo. This work highlights that the lipid-based nano-Transformers may become the next generation of siRNA delivery system with higher efficacy and improved safety profiles.
Collapse
Affiliation(s)
- Shufang He
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Weiwei Fan
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Na Wu
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Jingjing Zhu
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Yunqiu Miao
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Xiaran Miao
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201204 , China
| | - Feifei Li
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Xinxin Zhang
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| | - Yong Gan
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203 , China
| |
Collapse
|
31
|
Sawyer TK, Partridge AW, Kaan HYK, Juang YC, Lim S, Johannes C, Yuen TY, Verma C, Kannan S, Aronica P, Tan YS, Sherborne B, Ha S, Hochman J, Chen S, Surdi L, Peier A, Sauvagnat B, Dandliker PJ, Brown CJ, Ng S, Ferrer F, Lane DP. Macrocyclic α helical peptide therapeutic modality: A perspective of learnings and challenges. Bioorg Med Chem 2018; 26:2807-2815. [PMID: 29598901 DOI: 10.1016/j.bmc.2018.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 12/20/2022]
Abstract
Macrocyclic α-helical peptides have emerged as a compelling new therapeutic modality to tackle targets confined to the intracellular compartment. Within the scope of hydrocarbon-stapling there has been significant progress to date, including the first stapled α-helical peptide to enter into clinical trials. The principal design concept of stapled α-helical peptides is to mimic a cognate (protein) ligand relative to binding its target via an α-helical interface. However, it was the proclivity of such stapled α-helical peptides to exhibit cell permeability and proteolytic stability that underscored their promise as unique macrocyclic peptide drugs for intracellular targets. This perspective highlights key learnings as well as challenges in basic research with respect to structure-based design, innovative chemistry, cell permeability and proteolytic stability that are essential to fulfill the promise of stapled α-helical peptide drug development.
Collapse
|
32
|
Kebebe D, Liu Y, Wu Y, Vilakhamxay M, Liu Z, Li J. Tumor-targeting delivery of herb-based drugs with cell-penetrating/tumor-targeting peptide-modified nanocarriers. Int J Nanomedicine 2018; 13:1425-1442. [PMID: 29563797 PMCID: PMC5849936 DOI: 10.2147/ijn.s156616] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer has become one of the leading causes of mortality globally. The major challenges of conventional cancer therapy are the failure of most chemotherapeutic agents to accumulate selectively in tumor cells and their severe systemic side effects. In the past three decades, a number of drug delivery approaches have been discovered to overwhelm the obstacles. Among these, nanocarriers have gained much attention for their excellent and efficient drug delivery systems to improve specific tissue/organ/cell targeting. In order to enhance targeting efficiency further and reduce limitations of nanocarriers, nanoparticle surfaces are functionalized with different ligands. Several kinds of ligand-modified nanomedicines have been reported. Cell-penetrating peptides (CPPs) are promising ligands, attracting the attention of researchers due to their efficiency to transport bioactive molecules intracellularly. However, their lack of specificity and in vivo degradation led to the development of newer types of CPP. Currently, activable CPP and tumor-targeting peptide (TTP)-modified nanocarriers have shown dramatically superior cellular specific uptake, cytotoxicity, and tumor growth inhibition. In this review, we discuss recent advances in tumor-targeting strategies using CPPs and their limitations in tumor delivery systems. Special emphasis is given to activable CPPs and TTPs. Finally, we address the application of CPPs and/or TTPs in the delivery of plant-derived chemotherapeutic agents.
Collapse
Affiliation(s)
- Dereje Kebebe
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Yuanyuan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yumei Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Maikhone Vilakhamxay
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiawei Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
33
|
Identification of cyclic peptides for facilitation of transcellular transport of phages across intestinal epithelium in vitro and in vivo. J Control Release 2017; 262:232-238. [DOI: 10.1016/j.jconrel.2017.07.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/28/2017] [Accepted: 07/26/2017] [Indexed: 11/22/2022]
|
34
|
Gao W, Yang X, Lin Z, He B, Mei D, Wang D, Zhang H, Zhang H, Dai W, Wang X, Zhang Q. The use of electronic-neutral penetrating peptides cyclosporin A to deliver pro-apoptotic peptide: A possibly better choice than positively charged TAT. J Control Release 2017; 261:174-186. [PMID: 28662902 DOI: 10.1016/j.jconrel.2017.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/28/2017] [Accepted: 06/20/2017] [Indexed: 12/29/2022]
Abstract
Cell-penetrating peptides (CPPs) are increasingly important in transporting macromolecules across cell membranes, but their use remains confined to narrow clinical applications due to the systemic toxicity induced by their positive charges. Several newly discovered electronic neutral penetrating peptides are not attracting much attention because their penetrating capacity is normally far less powerful than cationic or amphiphilic CPPs. In this study, we found the electronic neutral cyclic peptide cyclosporin A (CsA) exhibited 5.6-fold and 19.1-fold stronger penetrating capacity, respectively, than two reported electronic neutral peptides PFVYLI (PFV) and pentapeptide VPTLQ (VPT) in MCF-7 human breast cancer cells. To systematically evaluate the efficiency and toxicity of CsA, we utilized CsA to deliver a membrane-impenetrable pro-apoptotic peptide (PAD) and compared this to the well-established cationic penetrating peptide TAT (RKKRRQRRR). By conjugating CsA to PAD, the internalization of PAD increased 2.2- to 4.7-fold in four different tumor cell lines, and that of CsA-PAD conjugate was significantly higher than TAT-PAD conjugate in MCF-7 and HeLa human cervical cancer cells. Cytotoxicity studies demonstrated that CsA-PAD exhibited a large increase in cell cytotoxicity compared to PAD in four different tumor cell lines, with the effect being similar or greater than the effect of TAT-PAD, depending upon the cell type. The mechanistic studies demonstrated that modifying CsA or TAT did not change the cytotoxicity mechanism of PAD, which occurred via mitochondrial membrane damage related to apoptosis. In vivo studies showed that CsA-PAD could achieve similar anti-tumor efficacy to TAT-PAD but with much lower systemic toxicity, especially to the heart and liver. In conclusion, our study demonstrates for the first time that the electronic-neutral penetrating peptide CsA can be used as a powerful tool to deliver peptide drugs with similar efficiency and less toxicity than the positively charged TAT peptide.
Collapse
Affiliation(s)
- Wei Gao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiucong Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | - Zhiqiang Lin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | - Dong Mei
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | - Dan Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | - Haoran Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China.
| |
Collapse
|
35
|
Abstract
During the three decades of cell-penetrating peptides era the superfamily of CPPs has rapidly expanded, and the quest for new sequences continues. CPPs have been well recognized by scientific community and they have been used for transduction of a wide variety of molecules and particles into cultured cells and in vivo. In parallel with application of CPPs for delivering of active payloads, the mechanisms that such peptides take advantage of for gaining access to cells' insides have been in the focus of intense studies. Although the common denominator "cell penetration" unites all CPPs, the interaction partners on the cell surface, evoked cellular responses and even the uptake mechanisms might greatly vary between different peptide types. Here we present some possibilities for classification of CPPs based on their type of origin, physical-chemical properties, and the extent of modifications and design efforts. We also briefly analyze the internalization mechanisms with regard to their classification into groups based on physical-chemical characteristics.
Collapse
|
36
|
Dinca A, Chien WM, Chin MT. Intracellular Delivery of Proteins with Cell-Penetrating Peptides for Therapeutic Uses in Human Disease. Int J Mol Sci 2016; 17:263. [PMID: 26907261 PMCID: PMC4783992 DOI: 10.3390/ijms17020263] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/04/2016] [Accepted: 02/16/2016] [Indexed: 12/19/2022] Open
Abstract
Protein therapy exhibits several advantages over small molecule drugs and is increasingly being developed for the treatment of disorders ranging from single enzyme deficiencies to cancer. Cell-penetrating peptides (CPPs), a group of small peptides capable of promoting transport of molecular cargo across the plasma membrane, have become important tools in promoting the cellular uptake of exogenously delivered proteins. Although the molecular mechanisms of uptake are not firmly established, CPPs have been empirically shown to promote uptake of various molecules, including large proteins over 100 kiloDaltons (kDa). Recombinant proteins that include a CPP tag to promote intracellular delivery show promise as therapeutic agents with encouraging success rates in both animal and human trials. This review highlights recent advances in protein-CPP therapy and discusses optimization strategies and potential detrimental effects.
Collapse
Affiliation(s)
- Ana Dinca
- Department of Pathology, University of Washington, Seattle, WA 98109, USA.
| | - Wei-Ming Chien
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, WA 98109, USA.
| | - Michael T Chin
- Department of Pathology, University of Washington, Seattle, WA 98109, USA.
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
37
|
Chae KH, Kim D, Cho TJ. N-terminal Extension of Coat Protein of Turnip Yellow Mosaic Virus has Variable Effects on Replication, RNA Packaging, and Virion Assembly Depending on the Inserted Sequence. ACTA ACUST UNITED AC 2016. [DOI: 10.4167/jbv.2016.46.1.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kwang-Hee Chae
- Department of Biochemistry, Chungbuk National University, Cheongju, Korea
| | - Doyeong Kim
- Department of Biochemistry, Chungbuk National University, Cheongju, Korea
| | - Tae-Ju Cho
- Department of Biochemistry, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
38
|
Roberts TC, Ezzat K, El Andaloussi S, Weinberg MS. Synthetic SiRNA Delivery: Progress and Prospects. Methods Mol Biol 2016; 1364:291-310. [PMID: 26472459 DOI: 10.1007/978-1-4939-3112-5_23] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Small interfering RNA (siRNA) is a powerful tool for modulating gene expression by RNA interference (RNAi). Duplex RNA oligonucleotides induce cleavage of homologous target transcripts, thereby enabling posttranscriptional silencing of potentially any gene. As such, siRNAs may have utility as novel pharmaceuticals for a wide range of diseases. However, a lack of "drug-likeness," physiological barriers, and potential toxicities have meant that systemic delivery of SiRNAs in vivo remains a major challenge. Here we discuss various strategies that have been employed to solve the problem of SiRNA delivery. These include chemical modification of the SiRNA, direct conjugation to bioactive moieties, and nanoparticle formulations.
Collapse
Affiliation(s)
- Thomas C Roberts
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kariem Ezzat
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Marc S Weinberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Johannesburg, WITS 2050, South Africa.
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Johannesburg, WITS 2050, South Africa.
| |
Collapse
|
39
|
Stalmans S, Bracke N, Wynendaele E, Gevaert B, Peremans K, Burvenich C, Polis I, De Spiegeleer B. Cell-Penetrating Peptides Selectively Cross the Blood-Brain Barrier In Vivo. PLoS One 2015; 10:e0139652. [PMID: 26465925 PMCID: PMC4605843 DOI: 10.1371/journal.pone.0139652] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/16/2015] [Indexed: 11/24/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are a group of peptides, which have the ability to cross cell membrane bilayers. CPPs themselves can exert biological activity and can be formed endogenously. Fragmentary studies demonstrate their ability to enhance transport of different cargoes across the blood-brain barrier (BBB). However, comparative, quantitative data on the BBB permeability of different CPPs are currently lacking. Therefore, the in vivo BBB transport characteristics of five chemically diverse CPPs, i.e. pVEC, SynB3, Tat 47-57, transportan 10 (TP10) and TP10-2, were determined. The results of the multiple time regression (MTR) analysis revealed that CPPs show divergent BBB influx properties: Tat 47-57, SynB3, and especially pVEC showed very high unidirectional influx rates of 4.73 μl/(g × min), 5.63 μl/(g × min) and 6.02 μl/(g × min), respectively, while the transportan analogs showed a negligible to low brain influx. Using capillary depletion, it was found that 80% of the influxed peptides effectively reached the brain parenchyma. Except for pVEC, all peptides showed a significant efflux out of the brain. Co-injection of pVEC with radioiodinated bovine serum albumin (BSA) did not enhance the brain influx of radiodionated BSA, indicating that pVEC does not itself significantly alter the BBB properties. A saturable mechanism could not be demonstrated by co-injecting an excess dose of non-radiolabeled CPP. No significant regional differences in brain influx were observed, with the exception for pVEC, for which the regional variations were only marginal. The observed BBB influx transport properties cannot be correlated with their cell-penetrating ability, and therefore, good CPP properties do not imply efficient brain influx.
Collapse
Affiliation(s)
- Sofie Stalmans
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Nathalie Bracke
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Bert Gevaert
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Kathelijne Peremans
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Christian Burvenich
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ingeborgh Polis
- Department of Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
40
|
Discovery of a non-cationic cell penetrating peptide derived from membrane-interacting human proteins and its potential as a protein delivery carrier. Sci Rep 2015; 5:11719. [PMID: 26114640 PMCID: PMC4481774 DOI: 10.1038/srep11719] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 06/03/2015] [Indexed: 12/21/2022] Open
Abstract
Cell penetrating peptides (CPPs) are peptides that can be translocated into cells and used as a carrier platform for the intracellular uptake of cargo molecules. Subject to the source of CPP sequences and their positively charged nature, the cytotoxicity and immunogenicity of conventional CPPs needs to be optimized to expand their utility for biomedical applications. In addition to these safety issues, the stability of CPPs needs to be addressed since their positively charged residues are prone to interact with the biological milieu. As an effort to overcome these limitations of the current CPP technology, we isolated CPP candidate sequences and synthesized peptides from twelve isoforms of annexin, a family of membrane-interacting human proteins. The candidate screen returned a CPP rich in hydrophobic residues that showed more efficient cellular uptake than TAT-CPP. We then investigated the uptake mechanism, subcellular localization, and biophysical properties of the newly found CPP, verifying low cytotoxicity, long-term serum stability, and non-immunogenicity. Finally, model proteins conjugated to this peptide were successfully delivered into mammalian cells both in vitro and in vivo, indicating a potential use of the peptide as a carrier for the delivery of macromolecular cargos.
Collapse
|
41
|
Ramos-Molina B, Lick AN, Nasrolahi Shirazi A, Oh D, Tiwari R, El-Sayed NS, Parang K, Lindberg I. Cationic Cell-Penetrating Peptides Are Potent Furin Inhibitors. PLoS One 2015; 10:e0130417. [PMID: 26110264 PMCID: PMC4482483 DOI: 10.1371/journal.pone.0130417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/20/2015] [Indexed: 12/30/2022] Open
Abstract
Cationic cell-penetrating peptides have been widely used to enhance the intracellular delivery of various types of cargoes, such as drugs and proteins. These reagents are chemically similar to the multi-basic peptides that are known to be potent proprotein convertase inhibitors. Here, we report that both HIV-1 TAT47-57 peptide and the Chariot reagent are micromolar inhibitors of furin activity in vitro. In agreement, HIV-1 TAT47-57 reduced HT1080 cell migration, thought to be mediated by proprotein convertases, by 25%. In addition, cyclic polyarginine peptides containing hydrophobic moieties which have been previously used as transfection reagents also exhibited potent furin inhibition in vitro and also inhibited intracellular convertases. Our finding that cationic cell-penetrating peptides exert potent effects on cellular convertase activity should be taken into account when biological effects are assessed.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, Baltimore, Maryland, United States of America
| | - Adam N. Lick
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, Baltimore, Maryland, United States of America
| | | | - Donghoon Oh
- Chapman University, School of Pharmacy, Irvine, California, United States of America
| | - Rakesh Tiwari
- Chapman University, School of Pharmacy, Irvine, California, United States of America
| | - Naglaa Salem El-Sayed
- Chapman University, School of Pharmacy, Irvine, California, United States of America
| | - Keykavous Parang
- Chapman University, School of Pharmacy, Irvine, California, United States of America
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, Baltimore, Maryland, United States of America
| |
Collapse
|
42
|
Lönn P, Dowdy SF. Cationic PTD/CPP-mediated macromolecular delivery: charging into the cell. Expert Opin Drug Deliv 2015; 12:1627-36. [PMID: 25994800 DOI: 10.1517/17425247.2015.1046431] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Macromolecular therapeutics, including enzymes, transcription factors, siRNAs, peptides and large synthetic molecules, can potentially be used to treat human diseases by targeting intracellular molecular pathways and modulating biological responses. However, large macromolecules have no ability to enter cells and require delivery vehicles. Protein transduction domains (PTDs), also known as cell-penetrating peptides (CPPs), are a diverse class of peptides that can deliver macromolecules into cells. AREAS COVERED In this review, we cover the uptake and usage of arginine-rich PTDs/CPPs (TAT-PTD, Penetratin/Antp and 8R). We review the endocytosis-mediated uptake of these peptides and highlight three important steps: i) cell association; ii) internalization and iii) endosomal escape. We also discuss the array of different cargos that have been delivered by cationic PTDs/CPPs as well as cellular processes and biological responses that have been modulated. EXPERT OPINION PTDs/CPPs have shown great potential to deliver otherwise undeliverable macromolecular therapeutics into cells for experimentation in cell culture and in animal disease models in vivo. Moreover, over 25 clinical trials have been performed predominantly using the TAT-PTD. However, more work is still needed. Endosomal escape and target-cell specificity remain two of the major future challenges.
Collapse
Affiliation(s)
- Peter Lönn
- a 1 UCSD School of Medicine, Department of Cellular and Molecular Medicine , 9500 Gilman Dr., La Jolla, CA 92093-0686, USA .,b 2 Uppsala University, Science for Life Laboratory, Department of Immunology, Genetics and Pathology , SE-751 08 Uppsala, Sweden
| | - Steven F Dowdy
- a 1 UCSD School of Medicine, Department of Cellular and Molecular Medicine , 9500 Gilman Dr., La Jolla, CA 92093-0686, USA
| |
Collapse
|
43
|
Jagani H, Kasinathan N, Meka SR, Josyula VR. Antiapoptotic Bcl-2 protein as a potential target for cancer therapy: A mini review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1212-21. [DOI: 10.3109/21691401.2015.1019668] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hitesh Jagani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Narayanan Kasinathan
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Sreenivasa Reddy Meka
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Venkata Rao Josyula
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| |
Collapse
|
44
|
Insights into the molecular mechanisms of action of bioportides: a strategy to target protein-protein interactions. Expert Rev Mol Med 2015; 17:e1. [DOI: 10.1017/erm.2014.24] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell-penetrating peptides (CPPs) are reliable vehicles for the target-selective intracellular delivery of therapeutic agents. The identification and application of numerous intrinsically bioactive CPPs, now designated as bioportides, is further endorsement of the tremendous clinical potential of CPP technologies. The refinement of proteomimetic bioportides, particularly sequences that mimic cationic α-helical domains involved in protein-protein interactions (PPIs), provides tremendous opportunities to modulate this emergent drug modality in a clinical setting. Thus, a number of CPP-based constructs are currently undergoing clinical trials as human therapeutics, with a particular focus upon anti-cancer agents. A well-characterised array of synthetic modifications, compatible with modern solid-phase synthesis, can be utilised to improve the biophysical and pharmacological properties of bioportides and so achieve cell-and tissue-selective targeting in vivo. Moreover, considering the recent successful development of stapled α-helical peptides as anti-cancer agents, we hypothesise that similar structural modifications are applicable to the design of bioportides that more effectively modulate the many interactomes known to underlie human diseases. Thus, we propose that stapled-helical bioportides could satisfy all of the clinical requirements for metabolically stable, intrinsically cell-permeable agents capable of regulating discrete PPIs by a dominant negative mode of action with minimal toxicity.
Collapse
|
45
|
Kwon SS, Kim SY, Kong BJ, Kim KJ, Noh GY, Im NR, Lim JW, Ha JH, Kim J, Park SN. Cell penetrating peptide conjugated liposomes as transdermal delivery system of Polygonum aviculare L. extract. Int J Pharm 2015; 483:26-37. [PMID: 25623491 DOI: 10.1016/j.ijpharm.2015.01.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/31/2014] [Accepted: 01/18/2015] [Indexed: 01/01/2023]
Abstract
In this study, Polygonum aviculare L. extract, which has superior antioxidative and cellular membrane protective activity, was loaded onto cell penetrating peptide (CPP) conjugated liposomes to enhance transdermal delivery. The physical characteristics of typical liposomes and CPP-conjugated liposomes containing P. aviculare extract were evaluated. The particle sizes of both liposomes were approximately 150 nm. Whereas the zeta potential of typical liposomes was -45 mV, that of CPP-conjugated liposomes was +42 mV. The loading efficiency of P. aviculare extract in both liposomes was calculated to be about 83%. Fluorescent-labeled liposomes were prepared to evaluate cellular uptake and skin permeation efficiency. Using flow cytometry, we found that CPP-conjugated liposomes improved cellular uptake of the fluorescent dye as compared with the typical liposomes. In addition, the skin permeation of CPP-conjugated liposomes was proved higher than that of typical liposomes by confocal laser scanning microscopy studies and Franz diffusion cell experiments. The improved cellular uptake and skin permeation of the CPP-conjugated liposomes were due to the cationic arginine-rich peptide. In vivo studies also determined that the CPP-conjugated liposomes were more effective in depigmentation and anti-wrinkle studies than typical liposomes. These results indicate that the CPP-conjugated liposomes could be effective for transdermal drug delivery of antioxidant and anti-aging therapeutics.
Collapse
Affiliation(s)
- Soon Sik Kwon
- Department of Fine Chemistry, College of Nature and Life Science & Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, South Korea
| | - Sun Young Kim
- Department of Fine Chemistry, College of Nature and Life Science & Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, South Korea
| | - Bong Ju Kong
- Department of Fine Chemistry, College of Nature and Life Science & Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, South Korea
| | - Kyeong Jin Kim
- Department of Fine Chemistry, College of Nature and Life Science & Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, South Korea
| | - Geun Young Noh
- Department of Fine Chemistry, College of Nature and Life Science & Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, South Korea
| | - Na Ri Im
- Department of Fine Chemistry, College of Nature and Life Science & Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, South Korea
| | - Ji Won Lim
- Department of Fine Chemistry, College of Nature and Life Science & Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, South Korea
| | - Ji Hoon Ha
- Department of Fine Chemistry, College of Nature and Life Science & Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, South Korea
| | - Junoh Kim
- R&D Unit, AMOREPACIFIC Co., Yongin-Si, Gyeonggi-Do 446-729, South Korea.
| | - Soo Nam Park
- Department of Fine Chemistry, College of Nature and Life Science & Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology, 232 Gongreung-ro, Nowon-gu, Seoul 139-743, South Korea.
| |
Collapse
|
46
|
Shim G, Lee J, Kim J, Lee HJ, Kim YB, Oh YK. Functionalization of nano-graphenes by chimeric peptide engineering. RSC Adv 2015. [DOI: 10.1039/c5ra03080c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
7F4D motif can be applied for non-covalent tethering of various functional peptides onto rGO nanosheets for protein delivery or biosensors.
Collapse
Affiliation(s)
- Gayong Shim
- College of Pharmacy
- Research Institute of Pharmaceutical Sciences
- Seoul National University
- Seoul
- Republic of Korea
| | - Jaiwoo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences
- Graduate School of Convergence Science
- Seoul National University
- Seoul
- Republic of Korea
| | - Jinyoung Kim
- College of Pharmacy
- Research Institute of Pharmaceutical Sciences
- Seoul National University
- Seoul
- Republic of Korea
| | - Hee-Jung Lee
- Department of Bio-industrial Technologies
- Konkuk University
- Seoul
- Republic of Korea
| | - Young Bong Kim
- Department of Bio-industrial Technologies
- Konkuk University
- Seoul
- Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy
- Research Institute of Pharmaceutical Sciences
- Seoul National University
- Seoul
- Republic of Korea
| |
Collapse
|
47
|
Shinde A, Feher KM, Hu C, Slowinska K. Peptide internalization enabled by folding: triple helical cell-penetrating peptides. J Pept Sci 2014; 21:77-84. [PMID: 25524829 DOI: 10.1002/psc.2725] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/14/2014] [Accepted: 11/26/2014] [Indexed: 11/11/2022]
Abstract
Cell-penetrating peptides (CPPs) are known as efficient transporters of molecular cargo across cellular membranes. Their properties make them ideal candidates for in vivo applications. However, challenges in the development of effective CPPs still exist: CPPs are often fast degraded by proteases and large concentration of CPPs required for cargo transporting can cause cytotoxicity. It was previously shown that restricting peptide flexibility can improve peptide stability against enzymatic degradation and limiting length of CPP peptide can lower cytotoxic effects. Here, we present peptides (30-mers) that efficiently penetrate cellular membranes by combining very short CPP sequences and collagen-like folding domains. The CPP domains are hexa-arginine (R6) or arginine/glycine (RRGRRG). Folding is achieved through multiple proline-hydroxyproline-glycine (POG [proline-hydroxyproline-glycine])n repeats that form a collagen-like triple helical conformation. The folded peptides with CPP domains are efficiently internalized, show stability against enzymatic degradation in human serum and have minimal toxicity. Peptides lacking correct folding (random coil) or CPP domains are unable to cross cellular membranes. These features make triple helical cell-penetrating peptides promising candidates for efficient transporters of molecular cargo across cellular membranes.
Collapse
Affiliation(s)
- Aparna Shinde
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, 90840, Canada
| | | | | | | |
Collapse
|
48
|
Multivalent presentation of the cell-penetrating peptide nona-arginine on a linear scaffold strongly increases its membrane-perturbing capacity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3097-106. [DOI: 10.1016/j.bbamem.2014.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/23/2014] [Accepted: 08/01/2014] [Indexed: 01/12/2023]
|
49
|
Cancino J, Capalbo A, Di Campli A, Giannotta M, Rizzo R, Jung JE, Di Martino R, Persico M, Heinklein P, Sallese M, Luini A. Control systems of membrane transport at the interface between the endoplasmic reticulum and the Golgi. Dev Cell 2014; 30:280-94. [PMID: 25117681 DOI: 10.1016/j.devcel.2014.06.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/08/2014] [Accepted: 06/23/2014] [Indexed: 10/24/2022]
Abstract
A fundamental property of cellular processes is to maintain homeostasis despite varying internal and external conditions. Within the membrane transport apparatus, variations in membrane fluxes from the endoplasmic reticulum (ER) to the Golgi complex are balanced by opposite fluxes from the Golgi to the ER to maintain homeostasis between the two organelles. Here we describe a molecular device that balances transport fluxes by integrating transduction cascades with the transport machinery. Specifically, ER-to-Golgi transport activates the KDEL receptor at the Golgi, which triggers a cascade that involves Gs and adenylyl cyclase and phosphodiesterase isoforms and then PKA activation and results in the phosphorylation of transport machinery proteins. This induces retrograde traffic to the ER and balances transport fluxes between the ER and Golgi. Moreover, the KDEL receptor activates CREB1 and other transcription factors that upregulate transport-related genes. Thus, a Golgi-based control system maintains transport homeostasis through both signaling and transcriptional networks.
Collapse
Affiliation(s)
- Jorge Cancino
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy; Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Quillota 980, Viña del Mar 2520000, Chile.
| | - Anita Capalbo
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Antonella Di Campli
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Monica Giannotta
- Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro (Chieti), Italy
| | - Riccardo Rizzo
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Juan E Jung
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Istituto di Ricerca Diagnostica e Nucleare (SDN), 80143 Napoli, Italy
| | - Rosaria Di Martino
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Maria Persico
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Istituto di Ricerca Diagnostica e Nucleare (SDN), 80143 Napoli, Italy
| | - Petra Heinklein
- Institut für Biochemie Charité, Universitätsmedizin Berlin, CrossOver Charitéplatz 1/Sitz, Virchowweg 6, 10117 Berlin, Germany
| | - Michele Sallese
- Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro (Chieti), Italy
| | - Alberto Luini
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy; Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
50
|
Sawyer TK, Guerlavais V, Darlak K, Feyfant E. Macrocyclic α-Helical Peptide Drug Discovery. MACROCYCLES IN DRUG DISCOVERY 2014. [DOI: 10.1039/9781782623113-00339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Macrocyclic α-helical peptides have emerged as a promising new drug class and within the scope of hydrocarbon-stapled peptides such molecules have advanced into the clinic. The overarching concept of designing proteomimetics of an α-helical ‘ligand’ which binds its cognate ‘target’ relative to α-helical interfacing protein-protein interactions has been well-validated and expanded through numerous investigations for a plethora of therapeutic targets oftentimes referred to as “undruggable” with respect to other modalities (e.g., small-molecule or proteins). This chapter highlights the evolution of macrocyclic α-helical peptides in terms of target space, biophysical and computational chemistry, structural diversity and synthesis, drug design and chemical biology. It is noteworthy that hydrocarbon-stapled peptides have successfully risen to the summit of such drug discovery campaigns.
Collapse
|