1
|
Mansour RM, El-Sayyad GS, Rizk NI, Mageed SSA, Basiouny MS, El-Sayed SA, Fayez SZ, Abdelaziz MM, Abuelhaded K, Fahmy HA, Mohammed OA, Abdel-Reheim MA, Doghish AS. MicroRNAs in HIV infection: dual regulators of viral replication and host immunity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03893-7. [PMID: 40029387 DOI: 10.1007/s00210-025-03893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a crucial role in regulating gene expression by binding to target messenger RNAs (mRNAs), leading to their degradation or translational repression. Over the past few years, significant progress has been made in understanding the role of miRNAs in various biological processes, including viral infections such as human immunodeficiency virus (HIV). HIV infection is characterized by a complex interaction between the virus and the host's immune system, where miRNAs have emerged as key regulators. MiRNAs influence HIV infection by modulating both viral replication and the host immune response. Researchers have identified several host miRNAs that suppress or enhance HIV replication by targeting viral genes or host factors essential for the virus life cycle. Conversely, HIV has evolved mechanisms to manipulate the host's miRNA machinery to its advantage. The virus can downregulate or upregulate specific host miRNAs to create a more favorable environment for replication and persistence. Moreover, HIV infection can alter the expression profiles of various miRNAs in infected cells, which can contribute to immune dysregulation and disease progression. Dysregulation of miRNAs is associated with HIV-associated complications, such as neurocognitive disorders and cardiovascular diseases. Understanding the specific roles of miRNAs in HIV pathogenesis could lead to the development of novel therapeutic strategies, such as miRNA-based therapies, to control HIV infection and its associated comorbidities. Understanding the role of miRNAs in HIV infection reveals their significant influence on the complex interactions between the virus and the host, impacting the course of infection and disease progression. Also, continued research in miRNA-mediated mechanisms in HIV holds the potential for uncovering new insights into viral pathogenesis and developing innovative therapeutic approaches.
Collapse
Affiliation(s)
- Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | | | - Salma A El-Sayed
- Department of Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Salma Zaki Fayez
- Department of Molecular Biology, School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Moustafa Mahmoud Abdelaziz
- Department of Molecular Biology, School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Khaled Abuelhaded
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Haidy Adel Fahmy
- Department of Pharmaceutical Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
2
|
Abstract
Heat shock proteins (HSPs) are a kind of proteins which mostly found in bacterial, plant and animal cells, in which they are involved in the monitoring and regulation of cellular life activities. HSPs protect other proteins under environmental and cellular stress by regulating protein folding and supporting the correctly folded structure of proteins as chaperones. During viral infection, some HSPs can have an antiviral effect by inhibiting viral proliferation through interaction and activating immune pathways to protect the host cell. However, although the biological function of HSPs is to maintain the homeostasis of cells, some HSPs will also be hijacked by viruses to help their invasion, replication, and maturation, thereby increasing the chances of viral survival in unfavorable conditions inside the host cell. In this review, we summarize the roles of the heat shock protein family in various stages of viral infection and the potential uses of these proteins in antiviral therapy.
Collapse
Affiliation(s)
- Xizhen Zhang
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
- *Correspondence: Wei Yu,
| |
Collapse
|
3
|
Leo CG, Mincarone P, Tumolo MR, Panico A, Guido M, Zizza A, Guarino R, De Santis G, Sedile R, Sabina S. MiRNA expression profiling in HIV pathogenesis, disease progression and response to treatment: a systematic review. Epigenomics 2021; 13:1653-1671. [PMID: 34693727 DOI: 10.2217/epi-2021-0237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: A systematic review was conducted to identify the association of miRNA expression with HIV pathogenesis, progression and treatment. Methods: A search of articles was conducted in MEDLINE®, Cochrane Central Register of Controlled Trials and Global Health. Results: 35 articles were included. Due to the heterogeneity of HIV phenotypes, a harmonization based on key progression parameters was proposed. The hsa-miR-29 family, hsa-miR-146b-5p and hsa-miR-150-5p, are the most frequently differentially expressed in HIV. Direct comparison of studies was not possible due to heterogeneity in biological samples and miRNA analysis techniques. Conclusion: This is the first attempt to systematically identify miRNA's different expression in well-defined patient phenotypes and could represent a helpful way to increase general knowledge in this field.
Collapse
Affiliation(s)
- Carlo Giacomo Leo
- Institute of Clinical Physiology National Research Council, Branch of Lecce, 73100, Italy
| | - Pierpaolo Mincarone
- Institute for Research on Population & Social Policies National Research Council, Research Unit of Brindisi, 72100, Italy
| | - Maria Rosaria Tumolo
- Institute for Research on Population & Social Policies National Research Council, Research Unit of Brindisi, 72100, Italy
| | - Alessandra Panico
- University of Salento, Department of Biological & Environmental Sciences & Technologies, Lecce, 73039, Italy
| | - Marcello Guido
- University of Salento, Department of Biological & Environmental Sciences & Technologies, Lecce, 73039, Italy
| | - Antonella Zizza
- Institute of Clinical Physiology National Research Council, Branch of Lecce, 73100, Italy
| | - Roberto Guarino
- Institute of Clinical Physiology National Research Council, Branch of Lecce, 73100, Italy
| | - Giuseppe De Santis
- Department of Neurology, Card. G. Panico Hospital, Tricase, 73039, Italy
| | - Raffaella Sedile
- Institute of Clinical Physiology National Research Council, Branch of Lecce, 73100, Italy
| | - Saverio Sabina
- Institute of Clinical Physiology National Research Council, Branch of Lecce, 73100, Italy
| |
Collapse
|
4
|
Function of Host Protein Staufen1 in Rabies Virus Replication. Viruses 2021; 13:v13081426. [PMID: 34452292 PMCID: PMC8402631 DOI: 10.3390/v13081426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Rabies virus is a highly neurophilic negative-strand RNA virus with high lethality and remains a huge public health problem in developing countries to date. The double-stranded RNA-binding protein Staufen1 (STAU1) has multiple functions in RNA virus replication, transcription, and translation. However, its function in RABV infection and its mechanism of action are not clear. In this study, we investigated the role of host factor STAU1 in RABV infection of SH-SY-5Y cells. Immunofluorescence, TCID50 titers, confocal microscopy, quantitative real-time PCR and Western blotting were carried out to determine the molecular function and subcellular distribution of STAU1 in these cell lines. Expression of STAU1 in SH-SY-5Y cells was down-regulated by RNA interference or up-regulated by transfection of eukaryotic expression vectors. The results showed that N proficiently colocalized with STAU1 in SH-SY-5Y at 36 h post-infection, and the expression level of STAU1 was also proportional to the time of infection. Down-regulation of STAU1 expression increased the number of Negri body-like structures, enhanced viral replication, and a caused 10-fold increase in viral titers. Meanwhile, N protein and G protein mRNA levels also accumulated gradually with increasing infection time, which implied that STAU1 inhibited rabies virus infection of SH-SY-5Y cells in vitro. In conclusion, our results provide important clues for the detailed replication mechanism of rabies virus and the discovery of therapeutic targets.
Collapse
|
5
|
Al Bitar S, Ballouz T, Doughan S, Gali-Muhtasib H, Rizk N. Potential role of micro ribonucleic acids in screening for anal cancer in human papilloma virus and human immunodeficiency virus related malignancies. World J Gastrointest Pathophysiol 2021; 12:59-83. [PMID: 34354849 PMCID: PMC8316837 DOI: 10.4291/wjgp.v12.i4.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/24/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Despite advances in antiretroviral treatment (ART), human immunodeficiency virus (HIV) continues to be a major global public health issue owing to the increased mortality rates related to the prevalent oncogenic viruses among people living with HIV (PLWH). Human papillomavirus (HPV) is the most common sexually transmitted viral disease in both men and women worldwide. High-risk or oncogenic HPV types are associated with the development of HPV-related malignancies, including cervical, penile, and anal cancer, in addition to oral cancers. The incidence of anal squamous cell cancers is increasing among PLWH, necessitating the need for reliable screening methods in this population at risk. In fact, the currently used screening methods, including the Pap smear, are invasive and are neither sensitive nor specific. Investigators are interested in circulatory and tissue micro ribonucleic acids (miRNAs), as these small non-coding RNAs are ideal biomarkers for early detection and prognosis of cancer. Multiple miRNAs are deregulated during HIV and HPV infection and their deregulation contributes to the pathogenesis of disease. Here, we will review the molecular basis of HIV and HPV co-infections and focus on the pathogenesis and epidemiology of anal cancer in PLWH. The limitations of screening for anal cancer and the need for a reliable screening program that involves specific miRNAs with diagnostic and therapeutic values is also discussed.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Tala Ballouz
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology and Center for Drug Discovery, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nesrine Rizk
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| |
Collapse
|
6
|
Wang Z, Li Y, Yang X, Zhao J, Cheng Y, Wang J. Mechanism and Complex Roles of HSC70 in Viral Infections. Front Microbiol 2020; 11:1577. [PMID: 32849328 PMCID: PMC7396710 DOI: 10.3389/fmicb.2020.01577] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Heat shock cognate 71-kDa protein (HSC70), a constitutively expressed molecular chaperon within the heat shock protein 70 family, plays crucial roles in maintaining cellular environmental homeostasis through implicating in a wide variety of physiological processes, such as ATP metabolism, protein folding and transporting, antigen processing and presentation, endocytosis, and autophagy. Notably, HSC70 also participates in multiple non-communicable diseases and some pathogen-caused infectious diseases. It is known that virus is an obligatory intracellular parasite and heavily relies on host machineries to self-replication. Undoubtedly, HSC70 is a striking target manipulated by virus to ensure the successful propagation. In this review, we summarize the recent advances of the regulatory mechanisms of HSC70 during viral infections, which will be conducive to further study viral pathogenesis.
Collapse
Affiliation(s)
- Zeng Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yongtao Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xia Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jun Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yuening Cheng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jianke Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.,Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
7
|
López-Huertas MR, Morín M, Madrid-Elena N, Gutiérrez C, Jiménez-Tormo L, Santoyo J, Sanz-Rodríguez F, Moreno Pelayo MÁ, Bermejo LG, Moreno S. Selective miRNA Modulation Fails to Activate HIV Replication in In Vitro Latency Models. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:323-336. [PMID: 31288207 PMCID: PMC6614709 DOI: 10.1016/j.omtn.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
Abstract
HIV remains incurable because of viral persistence in latent reservoirs that are inaccessible to antiretroviral therapy. A potential curative strategy is to reactivate viral gene expression in latently infected cells. However, no drug so far has proven to be successful in vivo in reducing the reservoir, and therefore new anti-latency compounds are needed. We explored the role of microRNAs (miRNAs) in latency maintenance and their modulation as a potential anti-latency strategy. Latency models based on treating resting CD4 T cells with chemokine (C-C motif) ligand 19 (CCL19) or interleukin-7 (IL7) before HIV infection and next-generation sequencing were used to identify the miRNAs involved in HIV latency. We detected four upregulated miRNAs (miRNA-98, miRNA-4516, miRNA-4488, and miRNA-7974). Individual or combined inhibition of these miRNAs was performed by transfection into cells latently infected with HIV. Viral replication, assessed 72 h after transfection, did not increase after miRNA modulation, despite miRNA inhibition and lack of toxicity. Furthermore, the combined modulation of five miRNAs previously associated with HIV latency was not effective in these models. Our results do not support the modulation of miRNAs as a useful strategy for the reversal of HIV latency. As shown with other drugs, the potential of miRNA modulation as an HIV reactivation strategy could be dependent on the latency model used.
Collapse
Affiliation(s)
- María Rosa López-Huertas
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain.
| | - Matías Morín
- Servicio de Genética, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, CIBERER, 28034 Madrid, Spain
| | - Nadia Madrid-Elena
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Carolina Gutiérrez
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Laura Jiménez-Tormo
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Javier Santoyo
- Edinburgh Genomics, The Roslin Institute, University of Edinburgh, Scotland, UK
| | - Francisco Sanz-Rodríguez
- Fluorescence Imaging Group, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Miguel Ángel Moreno Pelayo
- Servicio de Genética, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, CIBERER, 28034 Madrid, Spain
| | - Laura García Bermejo
- Grupo de Biomarcadores y Dianas Terapéuticas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain.
| | - Santiago Moreno
- Servicio de Enfermedades Infecciosas, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá de Henares, 28871 Alcalá de Henares, Spain
| |
Collapse
|
8
|
Aedes aegypti microRNA, miR-2944b-5p interacts with 3'UTR of chikungunya virus and cellular target vps-13 to regulate viral replication. PLoS Negl Trop Dis 2019; 13:e0007429. [PMID: 31166953 PMCID: PMC6576790 DOI: 10.1371/journal.pntd.0007429] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 06/17/2019] [Accepted: 05/01/2019] [Indexed: 01/08/2023] Open
Abstract
Background RNA interference is among the most important mechanisms that serve to restrict virus replication within mosquitoes, where microRNAs (miRNAs) are important in regulating viral replication and cellular functions. These miRNAs function by binding to complementary sequences mostly in the untranslated regions of the target. Chikungunya virus (CHIKV) genome consists of two open reading frames flanked by 5′ and 3′ untranslated regions on the two sides. A recent study from our laboratory has shown that Aedes miRNAs are regulated during CHIKV infection. The present study was undertaken to further understand the role of these miRNAs in CHIKV replication. Methods/Findings We observe that miR-2944b-5p binds to the 3′ untranslated region of CHIKV and the binding is abated when the binding sites are abolished. Loss-of-function studies of miR-2944b-5p using antagomirs, both in vitro and in vivo, reveal an increase in CHIKV viral replication, thereby directly implying a role of miR-2944b-5p in CHIKV replication. We further showed that the mitochondrial membrane potential of the mosquito cells is maintained by this miRNA during CHIKV replication, and cellular factor vps-13 plays a contributing role. Conclusions Our study has opened new avenues to understand vector-virus interactions and provides novel insights into CHIKV replication in Aedes aegypti. Furthermore, our study has shown miR-2944b-5p to be playing role, where one of its target vps-13 also contributes, in maintaining mitochondrial membrane potential in Aedes aegypti. Aedes aegypti mosquito transmits pathogenic viruses like chikungunya virus (CHIKV). Inside the vector, the virus replicates in a way so that it is able to survive within the mosquito without causing damage to it. However, once in the mammalian host, it becomes pathogenic and induces death to the infected cells. Amongst several mosquito specific factors that allows or rejects the virus survival, microRNAs play a decisive role. In several studies, miRNAs have shown to be playing role in controlling virus replication either by binding to viral genome or to suppress the expression of any host factor. In the present study, we identified an Aedes miRNA, miR-2944b-5p, which binds to 3'UTR of CHIKV and regulates the replication of the virus in the mosquito. Analysis of the mode of action of this regulation revealed that miR-2944b-5p played a role in maintaining mitochondrial membrane potential during CHIKV replication by targeting cellular factor vps-13.
Collapse
|
9
|
Jia X, Zhou M, Zou Z, Lin P, Wang Y, Zhang Z. Identification and comparative analysis of the ovary and testis microRNAome of mud crab Scylla paramamosain. Mol Reprod Dev 2018; 85:519-531. [DOI: 10.1002/mrd.22989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Xiwei Jia
- Fisheries College; Jimei University; Xiamen China
| | - Mingcan Zhou
- Fisheries College; Jimei University; Xiamen China
| | - Zhihua Zou
- Fisheries College; Jimei University; Xiamen China
| | - Peng Lin
- Fisheries College; Jimei University; Xiamen China
| | - Yilei Wang
- Fisheries College; Jimei University; Xiamen China
| | - Ziping Zhang
- College of Animal Science; Fujian Agriculture and Forestry University; Fuzhou China
| |
Collapse
|
10
|
Zhang R, Liu C, Cao Y, Jamal M, Chen X, Zheng J, Li L, You J, Zhu Q, Liu S, Dai J, Cui M, Fu ZF, Cao G. Rabies viruses leader RNA interacts with host Hsc70 and inhibits virus replication. Oncotarget 2018; 8:43822-43837. [PMID: 28388579 PMCID: PMC5546443 DOI: 10.18632/oncotarget.16517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 03/13/2017] [Indexed: 12/25/2022] Open
Abstract
Viruses have been shown to be equipped with regulatory RNAs to evade host defense system. It has long been known that rabies virus (RABV) transcribes a small regulatory RNA, leader RNA (leRNA), which mediates the transition from viral RNA transcription to replication. However, the detailed molecular mechanism remains enigmatic. In the present study, we determined the genetic architecture of RABV leRNA and demonstrated its inhibitory effect on replication of wild-type rabies, DRV-AH08. The RNA immunoprecipitation results suggest that leRNA inhibits RABV replication via interfering the binding of RABV nucleoprotein with genomic RNA. Furthermore, we identified heat shock cognate 70 kDa protein (Hsc70) as a leRNA host cellular interacting protein, of which the expression level was dynamically regulated by RABV infection. Notably, our data suggest that Hsc70 was involved in suppressing RABV replication by leader RNA. Finally, our experiments imply that leRNA might be potentially useful as a novel drug in rabies post-exposure prophylaxis. Together, this study suggested leRNA in concert with its host interacting protein Hsc70, dynamically down-regulate RABV replication.
Collapse
Affiliation(s)
- Ran Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuangang Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunzi Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Jamal
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinfang Zheng
- Department of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing You
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyong Liu
- Department of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinxia Dai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Bargalló ME, Guardo AC, Maleno MJ, Miralles L, Egaña-Gorroño L, Escribà T, García F, Gatell JM, Arnedo M, Plana M. Utility of Systematic Isolation of immune cell subsets from HIV-infected individuals for miRNA profiling. J Immunol Methods 2016; 442:12-19. [PMID: 28039100 DOI: 10.1016/j.jim.2016.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/15/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Peripheral blood mononuclear cells (PBMCs) are frequently used for genomic analyses, but several factors can affect the yield and integrity of nucleic acids, including the methods of cell collection and isolation. The goal of this work was to analyze the utility of systematic isolation of different immune cell subsets by immunomagnetic separation and the RNA integrity after isolated cells from samples of HIV-infected patients. METHODS PBMC from Healthy Controls (HC, n=15), Elite Controllers (EC, n=15), Viremic Controllers (VC, n=15), Viremic Progressors (VP, n=15) and HIV-infected patients on therapy (ART, n=15) were isolated by Ficoll-Paque density gradient centrifugation. Subsets were separated with monoclonal antibodies (CD56, CD14, CD4, and CD8) conjugated to microbeads. We evaluated the yield and purity of each subset isolated from PBMCs under resting and activated conditions; LPS, anti-CD3/CD28 and anti-CD16 were used to activate monocytes, PBMC, T cells and NK cells, respectively. The quality of extracted RNA was tested by 2100 Bioanalyzer. RESULTS In resting conditions, the average yield of CD14+ (monocytes) was decreased (p=0.021) in HIV+ patients compared with healthy controls. CD56+ (Natural Killer-NKs; p=0.03) and CD8+ (Cytotoxic T lymphocytes-CTL p=0.001) cells were increased in HIV+ patients after 72h of activation. The purity assay detected significant differences in CD14+ (p≤0.001) and CD8+ (p=0.034) subpopulations when comparing PBMC isolated either from healthy controls or HIV+ patients. The number of activated cells in HIV+ presented differences in CD8 subset (p=0.003). Finally, similar quantities of high quality RNA were extracted from immune cells subsets obtained by our method. Specifically, we show that Bioanalyzer electrophenograms reveal optimal RIN values in HIV positive and negative patients in resting condition (EC:8;HC:6.5;VC:8.80;VP:8;HAART:7.5) and activated condition (EC:9;HC:6.7;VC:8.2;VP:7.2;HAART:8.6). CONCLUSION This method allowed us to obtain a sufficient quantity of different isolated immune cell subsets from HIV-infected individuals at different disease stages. Moreover, the assessed qualities of nucleic acids allow us to perform subsequent molecular studies, such as microRNA profiling.
Collapse
Affiliation(s)
- Manel E Bargalló
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Alberto C Guardo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Maria J Maleno
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Laia Miralles
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Lander Egaña-Gorroño
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Tuixent Escribà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Felipe García
- Infectious Diseases Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Jose M Gatell
- Infectious Diseases Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Mireia Arnedo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Montserrat Plana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic de Barcelona, Barcelona, Spain.
| |
Collapse
|
12
|
Coexpression Network Analysis of Benign and Malignant Phenotypes of SIV-Infected Sooty Mangabey and Rhesus Macaque. PLoS One 2016; 11:e0156170. [PMID: 27280726 PMCID: PMC4900581 DOI: 10.1371/journal.pone.0156170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/10/2016] [Indexed: 02/02/2023] Open
Abstract
To explore the differences between the extreme SIV infection phenotypes, nonprogression (BEN: benign) to AIDS in sooty mangabeys (SMs) and progression to AIDS (MAL: malignant) in rhesus macaques (RMs), we performed an integrated dual positive-negative connectivity (DPNC) analysis of gene coexpression networks (GCN) based on publicly available big data sets in the GEO database of NCBI. The microarray-based gene expression data sets were generated, respectively, from the peripheral blood of SMs and RMs at several time points of SIV infection. Significant differences of GCN changes in DPNC values were observed in SIV-infected SMs and RMs. There are three groups of enriched genes or pathways (EGPs) that are associated with three SIV infection phenotypes (BEN+, MAL+ and mixed BEN+/MAL+). The MAL+ phenotype in SIV-infected RMs is specifically associated with eight EGPs, including the protein ubiquitin proteasome system, p53, granzyme A, gramzyme B, polo-like kinase, Glucocorticoid receptor, oxidative phosyphorylation and mitochondrial signaling. Mitochondrial (endosymbiotic) dysfunction is solely present in RMs. Specific BEN+ pattern changes in four EGPs are identified in SIV-infected SMs, including the pathways contributing to interferon signaling, BRCA1/DNA damage response, PKR/INF induction and LGALS8. There are three enriched pathways (PRR-activated IRF signaling, RIG1-like receptor and PRR pathway) contributing to the mixed (BEN+/MAL+) phenotypes of SIV infections in RMs and SMs, suggesting that these pathways play a dual role in the host defense against viral infections. Further analysis of Hub genes in these GCNs revealed that the genes LGALS8 and IL-17RA, which positively regulate the barrier function of the gut mucosa and the immune homeostasis with the gut microbiota (exosymbiosis), were significantly differentially expressed in RMs and SMs. Our data suggest that there exists an exo- (dysbiosis of the gut microbiota) and endo- (mitochondrial dysfunction) symbiotic imbalance (EESI) in HIV/SIV infections. Dissecting the mechanisms of the exo-endo symbiotic balance (EESB) that maintains immune homeostasis and the EESI problems in HIV/SIV infections may lead to a better understanding of the pathogenesis of AIDS and the development of novel interventions for the rational control of this disease.
Collapse
|
13
|
Louten J, Beach M, Palermino K, Weeks M, Holenstein G. MicroRNAs Expressed during Viral Infection: Biomarker Potential and Therapeutic Considerations. Biomark Insights 2016; 10:25-52. [PMID: 26819546 PMCID: PMC4718089 DOI: 10.4137/bmi.s29512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short sequences of noncoding single-stranded RNAs that exhibit inhibitory effects on complementary target mRNAs. Recently, it has been discovered that certain viruses express their own miRNAs, while other viruses activate the transcription of cellular miRNAs for their own benefit. This review summarizes the viral and/or cellular miRNAs that are transcribed during infection, with a focus on the biomarker and therapeutic potential of miRNAs (or their antagomirs). Several human viruses of clinical importance are discussed, namely, herpesviruses, polyomaviruses, hepatitis B virus, hepatitis C virus, human papillomavirus, and human immunodeficiency virus.
Collapse
Affiliation(s)
- Jennifer Louten
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Michael Beach
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Kristina Palermino
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Maria Weeks
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Gabrielle Holenstein
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| |
Collapse
|
14
|
Roth WW, Huang MB, Addae Konadu K, Powell MD, Bond VC. Micro RNA in Exosomes from HIV-Infected Macrophages. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 13:ijerph13010032. [PMID: 26703692 PMCID: PMC4730423 DOI: 10.3390/ijerph13010032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022]
Abstract
Exosomes are small membrane-bound vesicles secreted by cells that function to shuttle RNA and proteins between cells. To examine the role of exosomal micro RNA (miRNA) during the early stage of HIV-1 infection we characterized miRNA in exosomes from HIV-infected macrophages, compared with exosomes from non-infected macrophages. Primary human monocytes from uninfected donors were differentiated to macrophages (MDM) which were either mock-infected or infected with the macrophage-tropic HIV-1 BaL strain. Exosomes were recovered from culture media and separated from virus particles by centrifugation on iodixanol density gradients. The low molecular weight RNA fraction was prepared from purified exosomes. After pre-amplification, RNA was hybridized to microarrays containing probes for 1200 miRNA species of known and unknown function. We observed 48 miRNA species in both infected and uninfected MDM exosomes. Additionally, 38 miRNAs were present in infected-cell exosomes but not uninfected-cell exosomes. Of these, 13 miRNAs were upregulated in exosomes from HIV-infected cells, including 4 miRNA species that were increased by more than 10-fold. Though numerous miRNA species have been identified in HIV-infected cells, relatively little is known about miRNA content in exosomes from these cells. In the future, we plan to investigate whether the upregulated miRNA species we identified are increased in exosomes from HIV-1-positive patients.
Collapse
Affiliation(s)
- William W Roth
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA.
| | - Ming Bo Huang
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA.
| | - Kateena Addae Konadu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA.
| | - Michael D Powell
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA.
| | - Vincent C Bond
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA.
| |
Collapse
|
15
|
Tyagi M, Weber J, Bukrinsky M, Simon GL. The effects of cocaine on HIV transcription. J Neurovirol 2015; 22:261-74. [PMID: 26572787 DOI: 10.1007/s13365-015-0398-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/01/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022]
Abstract
Illicit drug users are a high-risk population for infection with the human immunodeficiency virus (HIV). A strong correlation exists between prohibited drug use and an increased rate of HIV transmission. Cocaine stands out as one of the most frequently abused illicit drugs, and its use is correlated with HIV infection and disease progression. The central nervous system (CNS) is a common target for both drugs of abuse and HIV, and cocaine intake further accelerates neuronal injury in HIV patients. Although the high incidence of HIV infection in illicit drug abusers is primarily due to high-risk activities such as needle sharing and unprotected sex, several studies have demonstrated that cocaine enhances the rate of HIV gene expression and replication by activating various signal transduction pathways and downstream transcription factors. In order to generate mature HIV genomic transcript, HIV gene expression has to pass through both the initiation and elongation phases of transcription, which requires discrete transcription factors. In this review, we will provide a detailed analysis of the molecular mechanisms that regulate HIV transcription and discuss how cocaine modulates those mechanisms to upregulate HIV transcription and eventually HIV replication.
Collapse
Affiliation(s)
- Mudit Tyagi
- Division of Infectious Diseases, Department of Medicine, The George Washington University, 2300 Eye Street, N.W., Washington, DC, 20037, USA. .,Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, 20037, USA.
| | - Jaime Weber
- Division of Infectious Diseases, Department of Medicine, The George Washington University, 2300 Eye Street, N.W., Washington, DC, 20037, USA
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, 20037, USA
| | - Gary L Simon
- Division of Infectious Diseases, Department of Medicine, The George Washington University, 2300 Eye Street, N.W., Washington, DC, 20037, USA
| |
Collapse
|
16
|
Jadhav VS, Krause KH, Singh SK. HIV-1 Tat C modulates NOX2 and NOX4 expressions through miR-17 in a human microglial cell line. J Neurochem 2014; 131:803-15. [PMID: 25146963 DOI: 10.1111/jnc.12933] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 12/22/2022]
Abstract
HIV-1 invades CNS in the early course of infection, which can lead to the cascade of neuroinflammation. NADPH oxidases (NOXs) are the major producers of reactive oxygen species (ROS), which play important roles during pathogenic insults. The molecular mechanism of ROS generation via microRNA-mediated pathway in human microglial cells in response to HIV-1 Tat protein has been demonstrated in this study. Over-expression and knockdown of microRNAs, luciferase reporter assay, and site-directed mutagenesis are main molecular techniques used in this study. A significant reduction in miR-17 levels and increased NOX2, NOX4 expression levels along with ROS production were observed in human microglial cells upon HIV-1 Tat C exposure. The validation of NOX2 and NOX4 as direct targets of miR-17 was done by luciferase reporter assay. The over-expression and knockdown of miR-17 in human microglial cells showed the direct role of miR-17 in regulation of NOX2, NOX4 expression and intracellular ROS generation. We demonstrated the regulatory role of cellular miR-17 in ROS generation through over-expression and knockdown of miR-17 in human microglial cells exposed to HIV-1 Tat C protein. Activated microglial cells mediated neuroinflammatory events are observed in HIV-associated neurological disorders. The reduction in miR-17 levels was observed in microglial cells exposed to HIV-1 Tat C protein. miR-17 regulated the expression of NOX2 and NOX4, which in turn regulated the reactive oxygen species (ROS) production in microglial cells. Increased ROS production led to the activation of microglial cells and increased cytokine production. This study thus demonstrated a novel miR-17-mediated regulatory pathway of ROS production in microglial cells. HMC3 = human microglia clone 3 cell lines.
Collapse
Affiliation(s)
- Vaishnavi Sunil Jadhav
- Laboratory of Neurovirology and Inflammation Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | | | | |
Collapse
|
17
|
Jiang X, Kanda T, Wu S, Nakamura M, Miyamura T, Nakamoto S, Banerjee A, Yokosuka O. Regulation of microRNA by hepatitis B virus infection and their possible association with control of innate immunity. World J Gastroenterol 2014; 20:7197-7206. [PMID: 24966589 PMCID: PMC4064064 DOI: 10.3748/wjg.v20.i23.7197] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/11/2013] [Accepted: 01/03/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) chronically infects more than 350 million people worldwide. HBV causes acute and chronic hepatitis, and is one of the major causes of cirrhosis and hepatocellular carcinoma. There exist complex interactions between HBV and the immune system including adaptive and innate immunity. Toll-like receptors (TLRs) and TLR-signaling pathways are important parts of the innate immune response in HBV infections. It is well known that TLR-ligands could suppress HBV replication and that TLRs play important roles in anti-viral defense. Previous immunological studies demonstrated that HBV e antigen (HBeAg) is more efficient at eliciting T-cell tolerance, including production of specific cytokines IL-2 and interferon gamma, than HBV core antigen. HBeAg downregulates cytokine production in hepatocytes by the inhibition of MAPK or NF-κB activation through the interaction with receptor-interacting serine/threonine protein kinase. MicroRNAs (miRNAs) are also able to regulate various biological processes such as the innate immune response. When the expressions of approximately 1000 miRNAs were compared between human hepatoma cells HepG2 and HepG2.2.15, which could produce HBV virion that infects chimpanzees, using real-time RT-PCR, we observed several different expression levels in miRNAs related to TLRs. Although we and others have shown that HBV modulates the host immune response, several of the miRNAs seem to be involved in the TLR signaling pathways. The possibility that alteration of these miRNAs during HBV infection might play a critical role in innate immunity against HBV infection should be considered. This article is intended to comprehensively review the association between HBV and innate immunity, and to discuss the role of miRNAs in the innate immune response to HBV infection.
Collapse
|
18
|
Swaminathan G, Navas-Martín S, Martín-García J. MicroRNAs and HIV-1 infection: antiviral activities and beyond. J Mol Biol 2013; 426:1178-97. [PMID: 24370931 DOI: 10.1016/j.jmb.2013.12.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 12/03/2013] [Accepted: 12/17/2013] [Indexed: 02/07/2023]
Abstract
Cellular microRNAs (miRNAs) are an important class of small, non-coding RNAs that bind to host mRNAs based on sequence complementarity and regulate protein expression. They play important roles in controlling key cellular processes including cellular inception, differentiation and death. While several viruses have been shown to encode for viral miRNAs, controversy persists over the expression of a functional miRNA encoded in the human immunodeficiency virus type 1 (HIV-1) genome. However, it has been reported that HIV-1 infectivity is influenced by cellular miRNAs. Either through directly targeting the viral genome or by targeting host cellular proteins required for successful virus replication, multiple cellular miRNAs seem to modulate HIV-1 infection and replication. Perhaps as a survival strategy, HIV-1 may modulate proteins in the miRNA biogenesis pathway to subvert miRNA-induced antiviral effects. Global expression profiles of cellular miRNAs have also identified alterations of specific miRNAs post-HIV-1 infection both in vitro and in vivo (in various infected patient cohorts), suggesting potential roles for miRNAs in pathogenesis and disease progression. However, little attention has been devoted in understanding the roles played by these miRNAs at a cellular level. In this manuscript, we review past and current findings pertaining to the field of miRNA and HIV-1 interplay. In addition, we suggest strategies to exploit miRNAs therapeutically for curbing HIV-1 infectivity, replication and latency since they hold an untapped potential that deserves further investigation.
Collapse
Affiliation(s)
- Gokul Swaminathan
- Graduate Program in Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | - Sonia Navas-Martín
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | - Julio Martín-García
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
19
|
Biasin M, De Luca M, Gnudi F, Clerici M. The genetic basis of resistance to HIV infection and disease progression. Expert Rev Clin Immunol 2013; 9:319-34. [PMID: 23557268 DOI: 10.1586/eci.13.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Susceptibility to HIV infection and the modulation of disease progression are strictly dependent on inter-individual variability, much of which is secondary to host genetic heterogeneity. The study of host factors that control these phenomena relies not only on candidate gene approaches but also on unbiased genome-wide genetic and functional analyses. Additional new insights stem from the study of mechanisms that control the expression of host and viral genes, such as miRNA. The genetic host factors that have been suggested to be associated either with resistance to HIV-1 infection or with absent/delayed progression to AIDS are nevertheless unable to fully justify the phenomenon of differential susceptibility to HIV. Multidisciplinary approaches are needed to further analyze individuals who deviate from the expected response to HIV exposure/infection. Results of these analyses will facilitate the identification of novel targets that could be exploited in the setting up of innovative therapeutic or vaccine approaches.
Collapse
Affiliation(s)
- Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via GB Grassi 74, 20157 Milan, Italy.
| | | | | | | |
Collapse
|
20
|
Van Roosbroeck K, Pollet J, Calin GA. miRNAs and long noncoding RNAs as biomarkers in human diseases. Expert Rev Mol Diagn 2013; 13:183-204. [PMID: 23477558 DOI: 10.1586/erm.12.134] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Noncoding RNAs (ncRNAs) are transcripts that have no apparent protein-coding capacity; however, many ncRNAs have been found to play a major biological role in human physiology. Their deregulation is implicated in many human diseases, but their exact roles are only beginning to be elucidated. Nevertheless, ncRNAs are extensively studied as a novel source of biomarkers, and the fact that they can be detected in body fluids makes them extremely suitable for this purpose. The authors mainly focus on ncRNAs as biomarkers in cancer, but also touch on other human diseases such as cardiovascular diseases, autoimmune diseases, neurological disorders and infectious diseases. The authors discuss the established methods and provide a selection of emerging new techniques that can be used to detect and quantify ncRNAs. Finally, the authors discuss ncRNAs as a new strategy for therapeutic interventions.
Collapse
Affiliation(s)
- Katrien Van Roosbroeck
- Department of Experimental Therapeutics, Unit 1950, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054, USA
| | | | | |
Collapse
|
21
|
Gupta P, Saksena NK. miRNAs: small molecules with a big impact on HIV infection and pathogenesis. Future Virol 2013. [DOI: 10.2217/fvl.13.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
miRNAs belong to a class of small noncoding RNAs that regulate gene expression at the post-transcriptional level. These are approximately 22-nt long sequences and control expression of 30–60% of all human genes, which has considerable significance in HIV infection, especially the way in which host–virus interaction occurs in vivo. Over the course of human evolution, viruses too have evolved, but there is still controversy surrounding the presence of miRNAs encoded by HIV. Considering the wide involvement of miRNAs in host gene regulation during infection and their association with HIV, this review provides insights into miRNAs encoded by the host and their role in host–virus interactions in addition to controlling host gene expression.
Collapse
Affiliation(s)
- Priyanka Gupta
- Retroviral Genetics Division, Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Westmead, NSW 2145, Sydney, Australia
| | - Nitin K Saksena
- Retroviral Genetics Division, Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Westmead, NSW 2145, Sydney, Australia.
| |
Collapse
|
22
|
Holland B, Wong J, Li M, Rasheed S. Identification of human microRNA-like sequences embedded within the protein-encoding genes of the human immunodeficiency virus. PLoS One 2013; 8:e58586. [PMID: 23520522 PMCID: PMC3592801 DOI: 10.1371/journal.pone.0058586] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 02/05/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are highly conserved, short (18-22 nts), non-coding RNA molecules that regulate gene expression by binding to the 3' untranslated regions (3'UTRs) of mRNAs. While numerous cellular microRNAs have been associated with the progression of various diseases including cancer, miRNAs associated with retroviruses have not been well characterized. Herein we report identification of microRNA-like sequences in coding regions of several HIV-1 genomes. RESULTS Based on our earlier proteomics and bioinformatics studies, we have identified 8 cellular miRNAs that are predicted to bind to the mRNAs of multiple proteins that are dysregulated during HIV-infection of CD4+ T-cells in vitro. In silico analysis of the full length and mature sequences of these 8 miRNAs and comparisons with all the genomic and subgenomic sequences of HIV-1 strains in global databases revealed that the first 18/18 sequences of the mature hsa-miR-195 sequence (including the short seed sequence), matched perfectly (100%), or with one nucleotide mismatch, within the envelope (env) genes of five HIV-1 genomes from Africa. In addition, we have identified 4 other miRNA-like sequences (hsa-miR-30d, hsa-miR-30e, hsa-miR-374a and hsa-miR-424) within the env and the gag-pol encoding regions of several HIV-1 strains, albeit with reduced homology. Mapping of the miRNA-homologues of env within HIV-1 genomes localized these sequence to the functionally significant variable regions of the env glycoprotein gp120 designated V1, V2, V4 and V5. CONCLUSIONS We conclude that microRNA-like sequences are embedded within the protein-encoding regions of several HIV-1 genomes. Given that the V1 to V5 regions of HIV-1 envelopes contain specific, well-characterized domains that are critical for immune responses, virus neutralization and disease progression, we propose that the newly discovered miRNA-like sequences within the HIV-1 genomes may have evolved to self-regulate survival of the virus in the host by evading innate immune responses and therefore influencing persistence, replication and/or pathogenicity.
Collapse
Affiliation(s)
- Bryan Holland
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jonathan Wong
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Meng Li
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Suraiya Rasheed
- Laboratory of Viral Oncology and Proteomics Research, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Chen XY, Zhang HS, Wu TC, Sang WW, Ruan Z. Down-regulation of NAMPT expression by miR-182 is involved in Tat-induced HIV-1 long terminal repeat (LTR) transactivation. Int J Biochem Cell Biol 2013; 45:292-8. [DOI: 10.1016/j.biocel.2012.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 11/01/2012] [Accepted: 11/05/2012] [Indexed: 12/13/2022]
|
24
|
Abstract
MicroRNAs (miRNAs) are small RNAs that play important roles in the regulation of gene expression. First described as posttranscriptional gene regulators in eukaryotic hosts, virus-encoded miRNAs were later uncovered. It is now apparent that diverse virus families, most with DNA genomes, but at least some with RNA genomes, encode miRNAs. While deciphering the functions of viral miRNAs has lagged behind their discovery, recent functional studies are bringing into focus these roles. Some of the best characterized viral miRNA functions include subtle roles in prolonging the longevity of infected cells, evading the immune response, and regulating the switch to lytic infection. Notably, all of these functions are particularly important during persistent infections. Furthermore, an emerging view of viral miRNAs suggests two distinct groups exist. In the first group, viral miRNAs mimic host miRNAs and take advantage of conserved networks of host miRNA target sites. In the larger second group, viral miRNAs do not share common target sites conserved for host miRNAs, and it remains unclear what fraction of these targeted transcripts are beneficial to the virus. Recent insights from multiple virus families have revealed new ways of interacting with the host miRNA machinery including noncanonical miRNA biogenesis and new mechanisms of posttranscriptional cis gene regulation. Exciting challenges await the field, including determining the most relevant miRNA targets and parlaying our current understanding of viral miRNAs into new therapeutic strategies. To accomplish these goals and to better grasp miRNA function, new in vivo models that recapitulate persistent infections associated with viral pathogens are required.
Collapse
Affiliation(s)
- Rodney P. Kincaid
- The University of Texas at Austin, Molecular Genetics & Microbiology, Austin, Texas, United States of America
| | - Christopher S. Sullivan
- The University of Texas at Austin, Molecular Genetics & Microbiology, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Zhang HS, Chen XY, Wu TC, Sang WW, Ruan Z. MiR-34a is involved in Tat-induced HIV-1 long terminal repeat (LTR) transactivation through the SIRT1/NFκB pathway. FEBS Lett 2012; 586:4203-7. [PMID: 23103739 DOI: 10.1016/j.febslet.2012.10.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression and may contribute to HIV-1 infection. In this study, our goal was to investigate the mechanisms by which miR-34a influenced Tat-induced HIV-1 transactivation through the SIRT1/NFκB pathway. We showed that Tat induced up-regulation of miR-34a expression in TZM-bl cells. MiR-34a significantly inhibited SIRT1 expression. Overexpression of miR-34a increased Tat-induced LTR transactivation. Forced expression of miR-34a decreased SIRT1 protein expression and consequently diminished Tat-induced acetylation of p65, while treatment with a miR-34a inhibitor had the opposite effect. These results suggest that regulating SIRT1 by down-regulation of miR-34a levels may be a therapeutic strategy against HIV-1 replication.
Collapse
Affiliation(s)
- Hong-Sheng Zhang
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124, China.
| | | | | | | | | |
Collapse
|
26
|
Tyagi M, Bukrinsky M. Human immunodeficiency virus (HIV) latency: the major hurdle in HIV eradication. Mol Med 2012; 18:1096-108. [PMID: 22692576 DOI: 10.2119/molmed.2012.00194] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/07/2012] [Indexed: 12/11/2022] Open
Abstract
Failure of highly active antiretroviral therapy to eradicate the human immunodeficiency virus (HIV), even in patients who suppress the virus to undetectable levels for many years, underscores the problems associated with fighting this infection. The existence of persistent infection in certain cellular and anatomical reservoirs appears to be the major hurdle in HIV eradication. The development of therapeutic interventions that eliminate or limit the latent viral pools or prevent the reemergence of the viruses from producing cells will therefore be required to enhance the effectiveness of current antiretroviral strategies. To achieve this goal, there is a pressing need to understand HIV latency at the molecular level to design novel and improved therapies to either eradicate HIV or find a functional cure in which patients could maintain a manageable viral pool without AIDS in the absence of antiretroviral therapy. The integrated proviral genome remains transcriptionally silent for a long period in certain subsets of T cells. This ability to infect cells latently helps HIV to establish a persistent infection despite strong humoral and cellular immune responses against the viral proteins. The main purpose of this report is to provide a general overview of the HIV latency. We will describe the hurdles being faced in eradicating latent HIV proviruses. We will also briefly discuss the ongoing strategies aimed toward curing HIV infection.
Collapse
Affiliation(s)
- Mudit Tyagi
- National Center for Biodefense and Infectious Disease, George Mason University, Manassas, Virginia 20109, United States of America.
| | | |
Collapse
|
27
|
Tan Gana NH, Onuki T, Victoriano AFB, Okamoto T. MicroRNAs in HIV-1 infection: an integration of viral and cellular interaction at the genomic level. Front Microbiol 2012; 3:306. [PMID: 22936931 PMCID: PMC3426883 DOI: 10.3389/fmicb.2012.00306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/01/2012] [Indexed: 12/15/2022] Open
Abstract
The microRNA pathways govern complex interactions of the host and virus at the transcripts level that regulate cellular responses, viral replication and viral pathogenesis. As a group of single-stranded short non-coding ribonucleotides (ncRNAs), the microRNAs complement their messenger RNA (mRNA) targets to effect post-transcriptional or translational gene silencing. Previous studies showed the ability of human immunodeficiency virus 1 (HIV-1) to encode microRNAs which modify cellular defence mechanisms thus creating an environment favorable for viral invasion and replication. In corollary, cellular microRNAs were linked to the alteration of HIV-1 infection at different stages of replication and latency. As evidences further establish the regulatory involvement of both cellular and viral microRNA in HIV-1-host interactions, there is a necessity to organize this information. This paper would present current and emerging knowledge on these multi-dimensional interactions that may facilitate the design of microRNAs as effective antiretroviral reagents.
Collapse
Affiliation(s)
- Neil H Tan Gana
- Department of Molecular and Cell Biology, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan
| | | | | | | |
Collapse
|
28
|
Perrin S, Cremer J, Roll P, Faucher O, Ménard A, Reynes J, Dellamonica P, Naqvi A, Micallef J, Jouve E, Tamalet C, Solas C, Pissier C, Arnoux I, Nicolino-Brunet C, Espinosa L, Lévy N, Kaspi E, Robaglia-Schlupp A, Poizot-Martin I, Cau P. HIV-1 infection and first line ART induced differential responses in mitochondria from blood lymphocytes and monocytes: the ANRS EP45 "Aging" study. PLoS One 2012; 7:e41129. [PMID: 22829920 PMCID: PMC3400613 DOI: 10.1371/journal.pone.0041129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/18/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The ANRS EP45 "Aging" study investigates the cellular mechanisms involved in the accelerated aging of HIV-1 infected and treated patients. The data reported focus on mitochondria, organelles known to be involved in cell senescence. METHODS 49 HIV-1 infected patients untreated with antiretroviral therapy, together with 49 seronegative age- and sex-matched control subjects and 81 HIV-1 infected and treated patients, were recruited by 3 AIDS centres (Marseille, Montpellier, Nice; France; http://clinicaltrials.gov/, NCT01038999). In more than 88% of treated patients, the viral load was <40 copies/ml and the CD4+ cell count was >500/mm(3). ROS (reactive oxygen species) production and ΔΨm (inner membrane potential) were measured by flow cytometry in blood lymphocytes and monocytes (functional parameters). Three mitochondrial network quantitative morphological parameters were computed using confocal microscopy and image analysis. Three PBMC mitochondrial proteins (porin and subunits 2 and 4 of cytochrome C oxidase encoded by mtDNA or nuclear DNA, respectively) were analysed by western blotting. RESULTS Quantitative changes in PBMC mitochondrial proteins were not induced by either HIV-1 infection or ART. Discriminant analysis integrating functional (ROS production and ΔΨm) or morphological (network volume density, fragmentation and branching) parameters revealed HIV-1 infection and ART differential effects according to cell type. First line ART tended to rescue lymphocyte mitochondrial parameters altered by viral infection, but induced slight changes in monocytes. No statistical difference was found between the effects of three ART regimens on mitochondrial parameters. Correlations between functional parameters and viral load confirmed the damaging effects of HIV-1 in lymphocyte mitochondria. CONCLUSIONS In patients considered to be clinically stable, mitochondria exhibited functional and morphological modifications in PBMCs resulting from either direct or indirect effects of HIV-1 infection (lymphocytes), or from first line ART (monocytes). Together with other tissue impairments, these changes may contribute to global aging.
Collapse
Affiliation(s)
- Sophie Perrin
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Jonathan Cremer
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Patrice Roll
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Olivia Faucher
- Service d’Immuno-Hématologie Clinique, CHU (Centre Hospitalier Universitaire) Sainte Marguerite AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Amélie Ménard
- Service d’Immuno-Hématologie Clinique, CHU (Centre Hospitalier Universitaire) Sainte Marguerite AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Jacques Reynes
- Département des Maladies Infectieuses et Tropicales, CHRU (Centre Hospitalier Régional et Universitaire) Gui-de-Chauliac, Montpellier, France
| | - Pierre Dellamonica
- Service d’Infectiologie, CHU (Centre Hospitalier Universitaire) L’Archet 1, Nice, France
| | - Alissa Naqvi
- Service d’Infectiologie, CHU (Centre Hospitalier Universitaire) L’Archet 1, Nice, France
| | - Joëlle Micallef
- Centre d’Investigation Clinique - Unité de Pharmacologie Clinique et d’Evaluations Thérapeutiques (CIC-UPCET), CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Elisabeth Jouve
- Centre d’Investigation Clinique - Unité de Pharmacologie Clinique et d’Evaluations Thérapeutiques (CIC-UPCET), CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Catherine Tamalet
- Fédération de Microbiologie Clinique, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
- URMITE CNRS-IRD UMR 6236, Aix-Marseille Univ, Marseille, France
| | - Caroline Solas
- Laboratoire de Pharmacocinétique et de Toxicologie, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
- Inserm UMR U911, Aix-Marseille Univ, Marseille, France
| | - Christel Pissier
- Laboratoire de Pharmacocinétique et de Toxicologie, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
- Inserm UMR U911, Aix-Marseille Univ, Marseille, France
| | - Isabelle Arnoux
- Laboratoire d’Hématologie, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Corine Nicolino-Brunet
- Laboratoire d’Hématologie, CHU (Centre Hospitalier Universitaire) La Conception AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Léon Espinosa
- URMITE CNRS-IRD UMR 6236, Aix-Marseille Univ, Marseille, France
| | - Nicolas Lévy
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Génetique Moléculaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Elise Kaspi
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Andrée Robaglia-Schlupp
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Isabelle Poizot-Martin
- Service d’Immuno-Hématologie Clinique, CHU (Centre Hospitalier Universitaire) Sainte Marguerite AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
| | - Pierre Cau
- Inserm UMR 910, Aix-Marseille Univ, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique - Hôpitaux de Marseille), Marseille, France
- * E-mail:
| |
Collapse
|
29
|
Formisano-Tréziny C, de San Feliciano M, Gabert J. Development of plasmid calibrators for absolute quantification of miRNAs by using real-time qPCR. J Mol Diagn 2012; 14:314-21. [PMID: 22642897 DOI: 10.1016/j.jmoldx.2012.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/23/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs of approximately 18 to 25 nucleotides in length that negatively regulate gene expression via either the degradation or translational inhibition of their target mRNAs. Because miRNAs are essential for the regulation of critical physiological processes as well as a variety of pathological events, they have emerged as a novel class of molecular diagnostic biomarkers and therapeutic agents or targets. Accordingly, the need for novel methods for the quantification of miRNA has increased due to interest in their clinical implications. Currently, real-time quantitative polymerase chain reaction (qPCR) is considered the most robust technology for nucleic acid quantification. Different tools for miRNA quantification by using qPCR are now commercially available, but only relative quantification strategies have been reported. This situation may be partly due to the difficulty in obtaining an appropriate molecule with which to establish an miRNA calibration range. Here, we describe a rapid and convenient strategy for the development of a calibrator, which enables the absolute quantification of miRNAs by using qPCR and allows the cloning of a synthetic sequence of interest instead of a PCR product into a plasmid.
Collapse
Affiliation(s)
- Christine Formisano-Tréziny
- Transcriptomic Platform CRO2 INSERM, Faculty of Medicine, University of the Mediterranean (Aix-Marseille II), Marseille, France.
| | | | | |
Collapse
|
30
|
Le Douce V, Janossy A, Hallay H, Ali S, Riclet R, Rohr O, Schwartz C. Achieving a cure for HIV infection: do we have reasons to be optimistic? J Antimicrob Chemother 2012; 67:1063-74. [PMID: 22294645 PMCID: PMC3324423 DOI: 10.1093/jac/dkr599] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The introduction of highly active antiretroviral therapy (HAART) in 1996 has transformed a lethal disease to a chronic pathology with a dramatic decrease in mortality and morbidity of AIDS-related symptoms in infected patients. However, HAART has not allowed the cure of HIV infection, the main obstacle to HIV eradication being the existence of quiescent reservoirs. Several other problems have been encountered with HAART (such as side effects, adherence to medication, emergence of resistance and cost of treatment), and these motivate the search for new ways to treat these patients. Recent advances hold promise for the ultimate cure of HIV infection, which is the topic of this review. Besides these new strategies aiming to eliminate the virus, efforts must be made to improve current HAART. We believe that the cure of HIV infection will not be attained in the short term and that a strategy based on purging the reservoirs has to be associated with an aggressive HAART strategy.
Collapse
Affiliation(s)
- Valentin Le Douce
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Andrea Janossy
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Houda Hallay
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Sultan Ali
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Raphael Riclet
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
| | - Olivier Rohr
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
- IUT de Schiltigheim, 1 Allée d'Athènes, 67300 Schiltigheim, France
- Institut Universitaire de France, 103 Bd Saint Michel, Paris, France
| | - Christian Schwartz
- University of Strasbourg, EA4438, Institute of Parasitology, Strasbourg, France
- IUT de Schiltigheim, 1 Allée d'Athènes, 67300 Schiltigheim, France
| |
Collapse
|
31
|
Abstract
MicroRNAs (miRNAs) are small RNAs that play a regulatory role in numerous and diverse eukaryotic cellular processes. Virus-encoded miRNAs have garnered much interest, although the functions of most remain to be deciphered. To date, readily detectable, evolutionarily conserved natural miRNAs have only been identified from viruses with DNA genomes. Combined with the fact that most miRNAs are generated from endonucleolytic cleavage of longer transcripts, this finding has led to a common conception that naturally occurring RNA viruses will not encode miRNAs to avoid unproductive cleavage of their genomes or mRNAs. Here we demonstrate that the bovine leukemia virus (BLV), a retrovirus with an RNA genome, encodes a conserved cluster of miRNAs that are transcribed by RNA polymerase III (pol III). Thus, the BLV miRNAs avoid the conundrum of genome/mRNA cleavage because only the subgenomic pol III transcripts are efficiently processed into miRNAs. BLV infection is strongly associated with B-cell tumors in cattle. Because most cells in BLV-associated tumors express little viral mRNAs or proteins, exactly how BLV contributes to tumorigenesis has remained a decades-long unsolved mystery. One BLV miRNA, BLV-miR-B4, shares partial sequence identity and shared common targets with the host miRNA, miR-29. As miR-29 overexpression is associated with B-cell neoplasms that resemble BLV-associated tumors, our findings suggest a possible mechanism contributing to BLV-induced tumorigenesis.
Collapse
|
32
|
Circulating micro-RNAs as potential blood-based markers for early stage breast cancer detection. PLoS One 2012; 7:e29770. [PMID: 22242178 PMCID: PMC3252341 DOI: 10.1371/journal.pone.0029770] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/05/2011] [Indexed: 01/08/2023] Open
Abstract
Introduction MicroRNAs (miRNAs, miRs) are a class of small, non-coding RNA molecules with relevance as regulators of gene expression thereby affecting crucial processes in cancer development. MiRNAs offer great potential as biomarkers for cancer detection due to their remarkable stability in blood and their characteristic expression in many different diseases. We investigated whether microarray-based miRNA profiling on whole blood could discriminate between early stage breast cancer patients and healthy controls. Methods We performed microarray-based miRNA profiling on whole blood of 48 early stage breast cancer patients at diagnosis along with 57 healthy individuals as controls. This was followed by a real-time semi-quantitative Polymerase Chain Reaction (RT-qPCR) validation in a separate cohort of 24 early stage breast cancer patients from a breast cancer screening unit and 24 age matched controls using two differentially expressed miRNAs (miR-202, miR-718). Results Using the significance level of p<0.05, we found that 59 miRNAs were differentially expressed in whole blood of early stage breast cancer patients compared to healthy controls. 13 significantly up-regulated miRNAs and 46 significantly down-regulated miRNAs in our microarray panel of 1100 miRNAs and miRNA star sequences could be detected. A set of 240 miRNAs that was evaluated by radial basis function kernel support vector machines and 10-fold cross validation yielded a specificity of 78.8%, and a sensitivity of 92.5%, as well as an accuracy of 85.6%. Two miRNAs were validated by RT-qPCR in an independent cohort. The relative fold changes of the RT-qPCR validation were in line with the microarray data for both miRNAs, and statistically significant differences in miRNA-expression were found for miR-202. Conclusions MiRNA profiling in whole blood has potential as a novel method for early stage breast cancer detection, but there are still challenges that need to be addressed to establish these new biomarkers in clinical use.
Collapse
|