1
|
Martins A, Judák F, Farkas Z, Szili P, Grézal G, Csörgő B, Czikkely MS, Maharramov E, Daruka L, Spohn R, Balogh D, Daraba A, Juhász S, Vágvölgyi M, Hunyadi A, Cao Y, Sun Z, Li X, Papp B, Pál C. Antibiotic candidates for Gram-positive bacterial infections induce multidrug resistance. Sci Transl Med 2025; 17:eadl2103. [PMID: 39772773 DOI: 10.1126/scitranslmed.adl2103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 06/17/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Several antibiotic candidates are in development against Gram-positive bacterial pathogens, but their long-term utility is unclear. To investigate this issue, we studied the laboratory evolution of resistance to antibiotics that have not yet reached the market. We found that, with the exception of compound SCH79797, antibiotic resistance generally readily evolves in Staphylococcus aureus. Cross-resistance was detected between such candidates and antibiotics currently in clinical use, including vancomycin, daptomycin, and the promising antibiotic candidate teixobactin. These patterns were driven by overlapping molecular mechanisms through mutations in regulatory systems. In particular, teixobactin-resistant bacteria displayed clinically relevant multidrug resistance and retained their virulence in an invertebrate infection model, raising concerns. More generally, we demonstrate that putative resistance mutations against candidate antibiotics are already present in natural bacterial populations. Therefore, antibiotic resistance in nature may evolve readily from the selection of preexisting genetic variants. Our work highlights the importance of predicting future evolution of resistance to antibiotic candidates at an early stage of drug development.
Collapse
Affiliation(s)
- Ana Martins
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged HU-6720, Hungary
| | - Fanni Judák
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Szeged, Szeged HU-6720, Hungary
| | - Zoltán Farkas
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Petra Szili
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged HU-6726, Hungary
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Márton Simon Czikkely
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged HU-6722, Hungary
- Department of Forensic Medicine, Albert-Szent-Györgyi Medical School, University of Szeged, Szeged HU-6722, Hungary
| | - Elvin Maharramov
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Doctoral School of Biology, University of Szeged, Szeged HU-6726, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Dávid Balogh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Andreea Daraba
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Szilvia Juhász
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Cancer Microbiome Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged HU-6728, Hungary
| | - Máté Vágvölgyi
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged HU-6720, Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged HU-6720, Hungary
- HUN-REN-SZTE Biologically Active Natural Products Research Group, Szeged HU-6720, Hungary
| | - Yihui Cao
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhenquan Sun
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged HU-6726, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| |
Collapse
|
2
|
Akhter J, Bakht P, Gupta R, Pathania R. Unveiling the Antibacterial Efficacy of a Benzonitrile Small Molecule, IITR00210, in Shigella Infection. ACS Infect Dis 2024; 10:4167-4181. [PMID: 39610198 DOI: 10.1021/acsinfecdis.4c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The escalating prevalence of bacterial infections and the rapid emergence of multidrug-resistant Gram-negative bacterial pathogens highlight an urgent demand for effective antibacterial agents. In this study, we report our findings on IITR00210, a small molecule belonging to the nitrile class. The small molecule demonstrates broad-spectrum activity against bacterial pathogens, specifically against enteric pathogens, and exhibits antibiofilm activity. IITR00210 displays potent bactericidal activity against enteropathogens, resulting in a reduction of bacterial counts greater than 3 Log10 CFU in time-kill kinetic assays. Mechanistic investigations revealed that IITR00210 induces bacterial cell envelope stress, leading to the alteration of the overall proton motive force (PMF). The disruption of PMF causes intracellular ATP dissipation and ultimately promotes cell death. The cell envelope stress generated in the presence of IITR00210 leads to a translational aberration. Importantly, IITR00210 exhibits a safe profile in in vitro and in vivo settings. The small molecule further showed potent intracellular antibacterial activity in polymorphonuclear cells infected with enteric pathogens and antiadhesion activity in mammalian cell lines. IITR00210 proves to be a promising therapeutic candidate, displaying a lack of stable resistance development, and it exhibited efficacy in the treatment of bacterial infections in a shigellosis murine model.
Collapse
Affiliation(s)
- Jawed Akhter
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Perwez Bakht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
3
|
Silva KPT, Khare A. Antibiotic resistance mediated by gene amplifications. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:35. [PMID: 39843582 PMCID: PMC11721125 DOI: 10.1038/s44259-024-00052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/26/2024] [Indexed: 01/24/2025]
Abstract
Apart from horizontal gene transfer and sequence-altering mutational events, antibiotic resistance can emerge due to the formation of tandem repeats of genomic regions. This phenomenon, also known as gene amplification, has been implicated in antibiotic resistance in both laboratory and clinical scenarios, where the evolution of resistance via amplifications can affect treatment efficacy. Antibiotic resistance mediated by gene amplifications is unstable and consequently can be difficult to detect, due to amplification loss in the absence of the selective pressure of the antibiotic. Further, due to variable copy numbers in a population, amplifications result in heteroresistance, where only a subpopulation is resistant to an antibiotic. While gene amplifications typically lead to resistance by increasing the expression of resistance determinants due to the higher copy number, the underlying mechanisms of resistance are diverse. In this review article, we describe the various pathways by which gene amplifications cause antibiotic resistance, from efflux and modification of the antibiotic, to target modification and bypass. We also discuss how gene amplifications can engender resistance by alternate mutational outcomes such as altered regulation and protein structure, in addition to just an increase in copy number and expression. Understanding how amplifications contribute to bacterial survival following antibiotic exposure is critical to counter their role in the rise of antimicrobial resistance.
Collapse
Affiliation(s)
- Kalinga Pavan T Silva
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Yang A, Song J, Li J, Li Y, Bai S, Zhou C, Wang M, Zhou Y, Wen K, Luo M, Chen P, Liu B, Yang H, Bai Y, Wong WL, Cai Q, Pu H, Qian Y, Hu W, Huang W, Wan M, Zhang C, Feng X. Ligand-Receptor Interaction-Induced Intracellular Phase Separation: A Global Disruption Strategy for Resistance-Free Lethality of Pathogenic Bacteria. J Am Chem Soc 2024; 146:23121-23137. [PMID: 38980064 DOI: 10.1021/jacs.4c04749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Addressing the global challenge of bacterial resistance demands innovative approaches, among which multitargeting is a widely used strategy. Current strategies of multitargeting, typically achieved through drug combinations or single agents inherently aiming at multiple targets, face challenges such as stringent pharmacokinetic and pharmacodynamic requirements and cytotoxicity concerns. In this report, we propose a bacterial-specific global disruption approach as a vastly expanded multitargeting strategy that effectively disrupts bacterial subcellular organization. This effect is achieved through a pioneering chemical design of ligand-receptor interaction-induced aggregation of small molecules, i.e., DNA-induced aggregation of a diarginine peptidomimetic within bacterial cells. These intracellular aggregates display affinity toward various proteins and thus substantially interfere with essential bacterial functions and rupture bacterial cell membranes in an "inside-out" manner, leading to robust antibacterial activities and suppression of drug resistance. Additionally, biochemical analysis of macromolecule binding affinity, cytoplasmic localization patterns, and bacterial stress responses suggests that this bacterial-specific intracellular aggregation mechanism is fundamentally different from nonselective classic DNA or membrane binding mechanisms. These mechanistic distinctions, along with the peptidomimetic's selective permeation of bacterial membranes, contribute to its favorable biocompatibility and pharmacokinetic properties, enabling its in vivo antimicrobial efficacy in several animal models, including mice-based superficial wound models, subcutaneous abscess models, and septicemia infection models. These results highlight the great promise of ligand-receptor interaction-induced intracellular aggregation in achieving a globally disruptive multitargeting effect, thereby offering potential applications in the treatment of malignant cells, including pathogens, tumor cells, and infected tissues.
Collapse
Affiliation(s)
- Anming Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Junfeng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jiaqi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Youzhi Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Silei Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Cailing Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yu Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Kang Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Miaomiao Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Peiren Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Bo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Huan Yang
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Yu Qian
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai 201203, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
5
|
Zhang Y, Luo M, Shi X, Li A, Zhou W, Yin Y, Wang H, Wong WL, Feng X, He Q. Pyrgos[ n]cages: Redefining antibacterial strategy against drug resistance. SCIENCE ADVANCES 2024; 10:eadp4872. [PMID: 39058779 PMCID: PMC11277403 DOI: 10.1126/sciadv.adp4872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Amid rising antibiotic resistance, the quest for advanced antibacterial agents to surpass microbial adaptation is paramount. This study introduces Pyrgos[n]cages (n = 1 to 4), pioneering multidecker cationic covalent organic cages engineered to combat drug-resistant bacteria via a dual-targeting approach. Synthesized through successive photocatalytic bromination and cage-forming reactions, these architectures stand out for their dense positive charge distribution, exceptional stability, and substantial rigidity. Pyrgos[n]cages exhibit potent bactericidal activity by disrupting bacterial membrane potential and binding to DNA. Notably, these structures show unparalleled success in eradicating both extracellular and intracellular drug-resistant pathogens in diverse infection scenarios, with antibacterial efficiency markedly increasing over 100-fold as the decker number rises from 1 to 3. This study provides an advance in antibacterial tactics and underscores the transformative potential of covalent organic cages in devising enduring countermeasures against antibiotic-resistant microbial threats.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Miaomiao Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiangling Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Aimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wei Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Li J, Liu Q, Li S, Zeng L, Yao J, Li H, Shen Z, Lu F, Wu Z, Song B, Song R. Design, Synthesis, Antibacterial Activity, and Mechanisms of Novel Benzofuran Derivatives Containing Disulfide Moieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10195-10205. [PMID: 38662962 DOI: 10.1021/acs.jafc.3c08392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
The unsatisfactory effects of conventional bactericides and antimicrobial resistance have increased the challenges in managing plant diseases caused by bacterial pests. Here, we report the successful design and synthesis of benzofuran derivatives using benzofuran as the core skeleton and splicing the disulfide moieties commonly seen in natural substances with antibacterial properties. Most of our developed benzofurans displayed remarkable antibacterial activities to frequently encountered pathogens, including Xanthomonas oryzae pv oryzae (Xoo), Xanthomonas oryzae pv oryzicola (Xoc), and Xanthomonas axonopodis pv citri (Xac). With the assistance of the three-dimensional quantitative constitutive relationship (3D-QSAR) model, the optimal compound V40 was obtained, which has better in vitro antibacterial activity with EC50 values of 0.28, 0.56, and 10.43 μg/mL against Xoo, Xoc, and Xac, respectively, than those of positive control, TC (66.41, 78.49, and 120.36 μg/mL) and allicin (8.40, 28.22, and 88.04 μg/mL). Combining the results of proteomic analysis and enzyme activity assay allows the antibacterial mechanism of V40 to be preliminarily revealed, suggesting its potential as a versatile bactericide in combating bacterial pests in the future.
Collapse
Affiliation(s)
- Jianzhuan Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Qiu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Sha Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Lu Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Jiahui Yao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Hongde Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Zhongjie Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Funeng Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Zengxue Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Runjiang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
7
|
Chen J, Bhat V, Hawker CJ. High-Throughput Synthesis, Purification, and Application of Alkyne-Functionalized Discrete Oligomers. J Am Chem Soc 2024; 146:8650-8658. [PMID: 38489842 PMCID: PMC10979451 DOI: 10.1021/jacs.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024]
Abstract
The development of synthetic oligomers as discrete single molecular entities with accurate control over the number and nature of functional groups along the backbone has enabled a variety of new research opportunities. From fundamental studies of self-assembly in materials science to understanding efficacy and safety profiles in biology and pharmaceuticals, future directions are significantly impacted by the availability of discrete, multifunctional oligomers. However, the preparation of diverse libraries of discrete and stereospecific oligomers remains a significant challenge. We report a novel strategy for accelerating the synthesis and isolation of discrete oligomers in a high-throughput manner based on click chemistry and simplified bead-based purification. The resulting synthetic platform allows libraries of discrete polyether oligomers to be prepared and the impact of variables such as chain length, number, and nature of side chain functionalities and molecular dispersity on antibacterial behavior examined. Significantly, discrete oligomers were shown to exhibit enhanced activity with lower toxicity compared with traditional disperse samples. This work provides a practical and scalable methodology for nonexperts to prepare libraries of multifunctional discrete oligomers and demonstrates the advantages of discrete materials in biological applications.
Collapse
Affiliation(s)
- Junfeng Chen
- Materials
Department, Materials Research Laboratory, and Department of Chemistry
and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Vittal Bhat
- Materials
Department, Materials Research Laboratory, and Department of Chemistry
and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Craig J. Hawker
- Materials
Department, Materials Research Laboratory, and Department of Chemistry
and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Zamudio-Chávez L, Suesca E, López GD, Carazzone C, Manrique-Moreno M, Leidy C. Staphylococcus aureus Modulates Carotenoid and Phospholipid Content in Response to Oxygen-Restricted Growth Conditions, Triggering Changes in Membrane Biophysical Properties. Int J Mol Sci 2023; 24:14906. [PMID: 37834354 PMCID: PMC10573160 DOI: 10.3390/ijms241914906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
Staphylococcus aureus membranes contain carotenoids formed during the biosynthesis of staphyloxanthin. These carotenoids are considered virulence factors due to their activity as scavengers of reactive oxygen species and as inhibitors of antimicrobial peptides. Here, we show that the growth of S. aureus under oxygen-restricting conditions downregulates carotenoid biosynthesis and modifies phospholipid content in biofilms and planktonic cells analyzed using LC-MS. At oxygen-restrictive levels, the staphyloxanthin precursor 4,4-diapophytofluene accumulates, indicating that the dehydrogenation reaction catalyzed by 4,4'-diapophytoene desaturases (CrtN) is inhibited. An increase in lysyl-phosphatidylglycerol is observed under oxygen-restrictive conditions in planktonic cells, and high levels of cardiolipin are detected in biofilms compared to planktonic cells. Under oxygen-restriction conditions, the biophysical parameters of S. aureus membranes show an increase in lipid headgroup spacing, as measured with Laurdan GP, and decreased bilayer core order, as measured with DPH anisotropy. An increase in the liquid-crystalline to gel phase melting temperature, as measured with FTIR, is also observed. S. aureus membranes are therefore less condensed under oxygen-restriction conditions at 37 °C. However, the lack of carotenoids leads to a highly ordered gel phase at low temperatures, around 15 °C. Carotenoids are therefore likely to be low in S. aureus found in tissues with low oxygen levels, such as abscesses, leading to altered membrane biophysical properties.
Collapse
Affiliation(s)
- Laura Zamudio-Chávez
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111211, Colombia; (L.Z.-C.); (E.S.)
| | - Elizabeth Suesca
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111211, Colombia; (L.Z.-C.); (E.S.)
| | - Gerson-Dirceu López
- PhysCheMath Research Group, Chemistry Department, Universidad de América, Bogotá 111211, Colombia;
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111211, Colombia;
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin 050010, Colombia;
| | - Chad Leidy
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111211, Colombia; (L.Z.-C.); (E.S.)
| |
Collapse
|
9
|
Veldman LBM, Belt-Van Zoen E, Baars EW. Mechanistic Evidence of Andrographis paniculata (Burm. f.) Wall. ex Nees, Pelargonium sidoides DC., Echinacea Species and a Combination of Hedera helix L., Primula veris L./ Primula elatior L. and Thymus vulgaris L./ Thymus zygis L. in the Treatment of Acute, Uncomplicated Respiratory Tract Infections: A Systematic Literature Review and Expert Interviews. Pharmaceuticals (Basel) 2023; 16:1206. [PMID: 37765014 PMCID: PMC10537612 DOI: 10.3390/ph16091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Reducing inappropriate antibiotic (AB) use by using effective non-antibiotic treatments is one strategy to prevent and reduce antimicrobial resistance (AMR). Andrographis paniculata (Burm. f.) Wall. ex Nees, Pelargonium sidoides DC., Echinacea species and a combination of ivy (Hedera helix L.), primrose (Primula veris L./Primula elatior L.) and thyme (Thymus vulgaris L./Thymus zygis L.) have promising clinical effects in uncomplicated, acute upper respiratory tract infections (URTI) treatment. However, mechanistic evidence of these herbal treatments is lacking. The objective of this Pstudy is to provide an overview of mechanistic evidence for these effects. Thirty-eight databases were searched. Included studies were mechanistic studies (in vitro, animal, and human studies and reviews) on these herbs; published before June 2021. Non-mechanistic studies or studies on combinations of herbs other than ivy/primrose/thyme were excluded. Furthermore, three experts in traditional, complementary and integrative healthcare (TCIH) research and pharmacognosy were interviewed to collect additional expert knowledge. The results show that A. paniculata acts through immunomodulation and antiviral activity, possibly supplemented by antibacterial and antipyretic effects. P. sidoides acts through antiviral, indirect antibacterial, immunomodulatory and expectorant effects. Echinacea species likely act through immunomodulation. The combination of ivy/primrose/thyme combines secretolytic and spasmolytic effects from ivy with antibacterial effects from thyme. Studies on primrose were lacking. This mechanistic evidence supports the difference-making evidence from clinical studies, contributes to evidence-based recommendations for their use in URTI treatment, and guides future mechanistic studies on URTI treatments.
Collapse
Affiliation(s)
- Liesbeth B. M. Veldman
- Faculty of Healthcare, University of Applied Sciences Leiden, 2333 Leiden, The Netherlands
| | - Eefje Belt-Van Zoen
- Faculty of Healthcare, University of Applied Sciences Leiden, 2333 Leiden, The Netherlands
| | - Erik W. Baars
- Faculty of Healthcare, University of Applied Sciences Leiden, 2333 Leiden, The Netherlands
- Louis Bolk Institute, 3981 Bunnik, The Netherlands
| |
Collapse
|
10
|
Silva KPT, Sundar G, Khare A. Efflux pump gene amplifications bypass necessity of multiple target mutations for resistance against dual-targeting antibiotic. Nat Commun 2023; 14:3402. [PMID: 37296157 PMCID: PMC10256781 DOI: 10.1038/s41467-023-38507-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/05/2023] [Indexed: 06/12/2023] Open
Abstract
Antibiotics that have multiple cellular targets theoretically reduce the frequency of resistance evolution, but adaptive trajectories and resistance mechanisms against such antibiotics are understudied. Here we investigate these in methicillin resistant Staphylococcus aureus (MRSA) using experimental evolution upon exposure to delafloxacin (DLX), a novel fluoroquinolone that targets both DNA gyrase and topoisomerase IV. We show that selection for coding sequence mutations and genomic amplifications of the gene encoding a poorly characterized efflux pump, SdrM, leads to high DLX resistance, circumventing the requirement for mutations in both target enzymes. In the evolved populations, sdrM overexpression due to genomic amplifications containing sdrM and two adjacent genes encoding efflux pumps results in high DLX resistance, while the adjacent hitchhiking efflux pumps contribute to streptomycin cross-resistance. Further, lack of sdrM necessitates mutations in both target enzymes to evolve DLX resistance, and sdrM thus increases the frequency of resistance evolution. Finally, sdrM mutations and amplifications are similarly selected in two diverse clinical isolates, indicating the generality of this DLX resistance mechanism. Our study highlights that instead of reduced rates of resistance, evolution of resistance to multi-targeting antibiotics can involve alternate high-frequency evolutionary paths, that may cause unexpected alterations of the fitness landscape, including antibiotic cross-resistance.
Collapse
Affiliation(s)
- Kalinga Pavan T Silva
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ganesh Sundar
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anupama Khare
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Stern N, Gacs A, Tátrai E, Flachner B, Hajdú I, Dobi K, Bágyi I, Dormán G, Lőrincz Z, Cseh S, Kígyós A, Tóvári J, Goldblum A. Dual Inhibitors of AChE and BACE-1 for Reducing Aβ in Alzheimer's Disease: From In Silico to In Vivo. Int J Mol Sci 2022; 23:13098. [PMID: 36361906 PMCID: PMC9655245 DOI: 10.3390/ijms232113098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a complex and widespread condition, still not fully understood and with no cure yet. Amyloid beta (Aβ) peptide is suspected to be a major cause of AD, and therefore, simultaneously blocking its formation and aggregation by inhibition of the enzymes BACE-1 (β-secretase) and AChE (acetylcholinesterase) by a single inhibitor may be an effective therapeutic approach, as compared to blocking one of these targets or by combining two drugs, one for each of these targets. We used our ISE algorithm to model each of the AChE peripheral site inhibitors and BACE-1 inhibitors, on the basis of published data, and constructed classification models for each. Subsequently, we screened large molecular databases with both models. Top scored molecules were docked into AChE and BACE-1 crystal structures, and 36 Molecules with the best weighted scores (based on ISE indexes and docking results) were sent for inhibition studies on the two enzymes. Two of them inhibited both AChE (IC50 between 4-7 μM) and BACE-1 (IC50 between 50-65 μM). Two additional molecules inhibited only AChE, and another two molecules inhibited only BACE-1. Preliminary testing of inhibition by F681-0222 (molecule 2) on APPswe/PS1dE9 transgenic mice shows a reduction in brain tissue of soluble Aβ42.
Collapse
Affiliation(s)
- Noa Stern
- Molecular Modeling and Drug Design Lab, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Alexandra Gacs
- Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary
| | - Enikő Tátrai
- Department of Experimental Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary
- KINETO Lab Ltd., H-1032 Budapest, Hungary
| | | | - István Hajdú
- TargetEx Ltd., H-2120 Dunakeszi, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary
| | | | | | | | | | | | | | - József Tóvári
- KINETO Lab Ltd., H-1032 Budapest, Hungary
- Department of Tumor Biology, National Korányi Institute of TB and Pulmonology, H-1121 Budapest, Hungary
| | - Amiram Goldblum
- Molecular Modeling and Drug Design Lab, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
12
|
Oselusi S, Fadaka AO, Wyckoff GJ, Egieyeh SA. Computational Target-Based Screening of Anti-MRSA Natural Products Reveals Potential Multitarget Mechanisms of Action through Peptidoglycan Synthesis Proteins. ACS OMEGA 2022; 7:37896-37906. [PMID: 36312373 PMCID: PMC9609086 DOI: 10.1021/acsomega.2c05061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/06/2022] [Indexed: 05/22/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of bacterial infections in both healthcare and community settings. MRSA can acquire resistance to any current antibiotic, which has major implications for its current and future treatment options. As such, it is globally a major focus for infection control efforts. The mechanical rigidity provided by peptidoglycans in the bacteria cell walls makes it a promising target for broad-spectrum antibacterial drug discovery. The development of drugs that can target different stages of the synthesis of peptidoglycan in MRSA may compromise the integrity of its cell wall and consequently result in the rapid decline of diseases associated with this drug-resistant bacteria. The present study is aimed at screening natural products with known in vitro activities against MRSA to identify their potential to inhibit the proteins involved in the biosynthesis of the peptidoglycan cell wall. A total of 262 compounds were obtained when a literature survey was conducted on anti-MRSA natural products (AMNPs). Virtual screening of the AMNPs was performed against various proteins (targets) that are involved in the biosynthesis of the peptidoglycan (PPC) cell wall using Schrödinger software (release 2020-3) to determine their binding affinities. Nine AMNPs were identified as potential multitarget inhibitors against peptidoglycan biosynthesis proteins. Among these compounds, DB211 showed the strongest binding affinity and interactions with six protein targets, representing three stages of peptidoglycan biosynthesis, and thus was selected as the most promising compound. The MD simulation results for DB211 and its proteins indicated that the protein-ligand complexes were relatively stable over the simulation period of 100 ns. In conclusion, DB211 showed the potential to inhibit six proteins involved in the biosynthesis of the peptidoglycan cell wall in MRSA, thus reducing the chance of MRSA developing resistance to this compound. Therefore, DB211 provided a starting point for the design of new compounds that can inhibit multiple targets in the biosynthesis of the peptidoglycan layer in MRSA.
Collapse
Affiliation(s)
- Samson
Olaitan Oselusi
- University
of the Western Cape, School of Pharmacy,
Faculty of Natural Sciences, Robert Sobukwe Road, Bellville, Cape Town, Western Cape ZA 7535, South Africa
| | - Adewale Oluwaseun Fadaka
- University
of the Western Cape, Science and Innovation/Mintek
Nanotechnology Innovation Centre, Department of Biotechnology, Faculty
of Natural Sciences, Robert
Sobukwe Road, Bellville, Cape Town, Western Cape ZA 7535, South Africa
| | - Gerald J. Wyckoff
- University
of Missouri Kansas City, School of Pharmacy,
Division of Pharmacology and Pharmaceutical Sciences, 5000 Holmes Street, Kansas
City, Missouri 64110-2446, United States
| | - Samuel Ayodele Egieyeh
- University
of the Western Cape, School of Pharmacy,
Faculty of Natural Sciences, Robert Sobukwe Road, Bellville, Cape Town, Western Cape ZA 7535, South Africa
| |
Collapse
|
13
|
Stennett HL, Back CR, Race PR. Derivation of a Precise and Consistent Timeline for Antibiotic Development. Antibiotics (Basel) 2022; 11:1237. [PMID: 36140015 PMCID: PMC9495031 DOI: 10.3390/antibiotics11091237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Antibiotic resistance is a global health crisis. New classes of antibiotics that can treat drug-resistant infections are urgently needed. To communicate this message, researchers have used antibiotic development timelines, but these are often contradictory or imprecise. We conducted a systematic literature review to produce an antibiotic timeline that incorporates the dates of discovery, first use, and initial reports of the emergence of resistance for the 38 classes of clinically used antibiotics. From our timeline, we derive lessons for identifying new antibiotics that are less prone to resistance. These include a required focus on molecules that exhibit multiple modes of action, possess unusually long 'resistance windows', or those that engage cellular targets whose molecular architectures are at least in part decoupled from evolutionary pressures. Our analysis also further highlights the importance of safeguarding antibiotics as a mechanism for mitigating the development of resistance. We have made our data and sources freely available so that the research community can adapt them to their own needs.
Collapse
Affiliation(s)
- Henry L. Stennett
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
- BrisSynBio Synthetic Biology Research Centre, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Catherine R. Back
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Paul R. Race
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
- BrisSynBio Synthetic Biology Research Centre, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
14
|
Kadri S, Direm A, Athmani H, El Bali B, Parlak C, Hebbachi R. Dual inhibition of S. aureus TyrRS and S. aureus gyrase by two 4-amino-4′-acetyldiphenyl sulfide-based Schiff bases: Structural features, DFT study, Hirshfeld surface analysis and molecular docking. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Mackie ERR, Barrow AS, Christoff RM, Abbott BM, Gendall AR, Soares da Costa TP. A dual-target herbicidal inhibitor of lysine biosynthesis. eLife 2022; 11:78235. [PMID: 35723913 PMCID: PMC9208756 DOI: 10.7554/elife.78235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022] Open
Abstract
Herbicides with novel modes of action are urgently needed to safeguard global agricultural industries against the damaging effects of herbicide-resistant weeds. We recently developed the first herbicidal inhibitors of lysine biosynthesis, which provided proof-of-concept for a promising novel herbicide target. In this study, we expanded upon our understanding of the mode of action of herbicidal lysine biosynthesis inhibitors. We previously postulated that these inhibitors may act as proherbicides. Here, we show this is not the case. We report an additional mode of action of these inhibitors, through their inhibition of a second lysine biosynthesis enzyme, and investigate the molecular determinants of inhibition. Furthermore, we extend our herbicidal activity analyses to include a weed species of global significance.
Collapse
Affiliation(s)
- Emily R R Mackie
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia.,School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, Australia
| | - Andrew S Barrow
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Rebecca M Christoff
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Anthony R Gendall
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Bundoora, Australia.,Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia.,School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Waite Campus, Glen Osmond, Australia
| |
Collapse
|
16
|
Chen X, Zhou C, Wang J, Wu T, Lei E, Wang Y, Huang G, Yu Y, Cai Q, Pu H, Feng X, Bai Y. Improving the Hemocompatibility of Antimicrobial Peptidomimetics through Amphiphilicity Masking Using a Secondary Amphiphilic Polymer. Adv Healthc Mater 2022; 11:e2200546. [PMID: 35545965 DOI: 10.1002/adhm.202200546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/05/2022] [Indexed: 12/19/2022]
Abstract
Antimicrobial peptidomimetics (AMPMs) have received widespread attention as potentially powerful weapons against antibiotic resistance. However, AMPMs' membrane disruption mechanism not only brings resistance-resistant nature, but also nonspecific binding and disruption toward eukaryotic cell membranes, and consequently, their hemolytic activity is the primary concern on clinical applications. Here, the preparation and screening of an AMPM library is reported, through which a best-performing hit, PT-b1, can be obtained. To further improve PT-b1's hemocompatibility, a strategy is devised to mask the amphiphilicity of the AMPM using a charge-free, FDA-approved amphiphilic polymer, Pluronic F-127 (PF127). A PF127 solution containing PT-b1 can form a temperature-sensitive, absorbable hydrogel at higher concentration, but dissolve and complex with PT-b1 through hydrophobic interactions at lower concentration or lower temperature. The complexation from PF127 can mask the amphiphilicity of PT-b1 and render it extremely hemocompatible, yet the reversibility in such nanocomplexation and the existence of a secondary mechanism of action ensure that the AMPM's potency remains unchanged. The in vivo effectiveness of this antimicrobial hydrogel system is demonstrated using a mice wound infection model established with Methicillin-resistant Staphylococcus aureus, and observations indicate the hydrogel can promote wound healing and suppress bacteria-caused inflammation even when resistant pathogens are involved.
Collapse
Affiliation(s)
- Xianhui Chen
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Cailing Zhou
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Jianxue Wang
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Tong Wu
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - E Lei
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Yi Wang
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Guopu Huang
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Yue Yu
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Qingyun Cai
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies National University of Defense Technology Changsha 410073 China
| | - Xinxin Feng
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Yugang Bai
- State Key Laboratory of Chem‐/Bio‐Sensing and Chemometrics and School of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| |
Collapse
|
17
|
Celastrol mitigates staphyloxanthin biosynthesis and biofilm formation in Staphylococcus aureus via targeting key regulators of virulence; in vitro and in vivo approach. BMC Microbiol 2022; 22:106. [PMID: 35421933 PMCID: PMC9011992 DOI: 10.1186/s12866-022-02515-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/01/2022] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
Staphylococcus aureus is a leading cause of human infections. The spread of antibiotic-resistant staphylococci has driven the search for novel strategies to supersede antibiotics use. Thus, targeting bacterial virulence rather than viability could be a possible alternative.
Results
The influence of celastrol on staphyloxanthin (STX) biosynthesis, biofilm formation, antibiotic susceptibility and host pathogenesis in S. aureus has been investigated. Celastrol efficiently reduced STX biosynthesis in S. aureus. Liquid chromatography-mass spectrometry (LC–MS) and molecular docking revealed that celastrol inhibits STX biosynthesis through its effect on CrtM. Quantitative measurement of STX intermediates showed a significant pigment inhibition via interference of celastrol with CrtM and accumulation of its substrate, farnesyl diphosphate. Importantly, celastrol-treated S. aureus was more sensitive to environmental stresses and human blood killing than untreated bacteria. Similarly, inhibition of STX upon celastrol treatment rendered S. aureus more susceptible to membrane targeting antibiotics. In addition to its anti-pigment capability, celastrol exhibits significant anti-biofilm activity against S. aureus as indicated by crystal violet assay and microscopy. Celastrol-treated cells showed deficient exopolysaccharide production and cell hydrophobicity. Moreover, celastrol markedly synergized the action of conventional antibiotics against S. aureus and reduced bacterial pathogenesis in vivo using mice infection model. These findings were further validated using qRT-PCR, demonstrating that celastrol could alter the expression of STX biosynthesis genes as well as biofilm formation related genes and bacterial virulence.
Conclusions
Celastrol is a novel anti-virulent agent against S. aureus suggesting, a prospective therapeutic role for celastrol as a multi-targeted anti-pathogenic agent.
Collapse
|
18
|
Serral F, Pardo AM, Sosa E, Palomino MM, Nicolás MF, Turjanski AG, Ramos PIP, Fernández Do Porto D. Pathway Driven Target Selection in Klebsiella pneumoniae: Insights Into Carbapenem Exposure. Front Cell Infect Microbiol 2022; 12:773405. [PMID: 35174104 PMCID: PMC8841789 DOI: 10.3389/fcimb.2022.773405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-KP) represents an emerging threat to public health. CR-KP infections result in elevated morbidity and mortality. This fact, coupled with their global dissemination and increasingly limited number of therapeutic options, highlights the urgency of novel antimicrobials. Innovative strategies linking genome-wide interrogation with multi-layered metabolic data integration can accelerate the early steps of drug development, particularly target selection. Using the BioCyc ontology, we generated and manually refined a metabolic network for a CR-KP, K. pneumoniae Kp13. Converted into a reaction graph, we conducted topological-based analyses in this network to prioritize pathways exhibiting druggable features and fragile metabolic points likely exploitable to develop novel antimicrobials. Our results point to the aptness of previously recognized pathways, such as lipopolysaccharide and peptidoglycan synthesis, and casts light on the possibility of targeting less explored cellular functions. These functions include the production of lipoate, trehalose, glycine betaine, and flavin, as well as the salvaging of methionine. Energy metabolism pathways emerged as attractive targets in the context of carbapenem exposure, targeted either alone or in conjunction with current therapeutic options. These results prompt further experimental investigation aimed at controlling this highly relevant pathogen.
Collapse
Affiliation(s)
- Federico Serral
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Agustin M. Pardo
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ezequiel Sosa
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Mercedes Palomino
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Buenos Aires, Argentina
| | - Marisa F. Nicolás
- Laboratório de Bioinformática (LABINFO), Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Brazil
| | - Adrian G. Turjanski
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Buenos Aires, Argentina
| | - Pablo Ivan P. Ramos
- Centro de Integração de Dados e Conhecimentos para a Saúde (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz - Bahia), Salvador, Brazil
- *Correspondence: Darío Fernández Do Porto, ; Pablo Ivan P. Ramos,
| | - Darío Fernández Do Porto
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Buenos Aires, Argentina
- *Correspondence: Darío Fernández Do Porto, ; Pablo Ivan P. Ramos,
| |
Collapse
|
19
|
Huang G, Shen H, Chen X, Wu T, Chen Z, Chen Y, Song J, Cai Q, Bai Y, Pu H, Feng X. A Degradable, Broad-Spectrum and Resistance-Resistant Antimicrobial Oligoguanidine as Disinfecting and Therapeutic Agent in Aquaculture. Polym Chem 2022. [DOI: 10.1039/d2py00183g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The threat of antibiotic resistance to community healthcare and global economy has raised extensive concern, and the over-use of antibiotics in animal husbandry plays a significant role in the occurrence...
Collapse
|
20
|
Jezewski AJ, Lin YH, Reisz JA, Culp-Hill R, Barekatain Y, Yan VC, D'Alessandro A, Muller FL, Odom John AR. Targeting Host Glycolysis as a Strategy for Antimalarial Development. Front Cell Infect Microbiol 2021; 11:730413. [PMID: 34604112 PMCID: PMC8482815 DOI: 10.3389/fcimb.2021.730413] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Glycolysis controls cellular energy, redox balance, and biosynthesis. Antiglycolytic therapies are under investigation for treatment of obesity, cancer, aging, autoimmunity, and microbial diseases. Interrupting glycolysis is highly valued as a therapeutic strategy, because glycolytic disruption is generally tolerated in mammals. Unfortunately, anemia is a known dose-limiting side effect of these inhibitors and presents a major caveat to development of antiglycolytic therapies. We developed specific inhibitors of enolase – a critical enzyme in glycolysis – and validated their metabolic and cellular effects on human erythrocytes. Enolase inhibition increases erythrocyte susceptibility to oxidative damage and induces rapid and premature erythrocyte senescence, rather than direct hemolysis. We apply our model of red cell toxicity to address questions regarding erythrocyte glycolytic disruption in the context of Plasmodium falciparum malaria pathogenesis. Our study provides a framework for understanding red blood cell homeostasis under normal and disease states and clarifies the importance of erythrocyte reductive capacity in malaria parasite growth.
Collapse
Affiliation(s)
- Andrew J Jezewski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Yu-Hsi Lin
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, Aurora, CO, United States
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, Aurora, CO, United States
| | - Yasaman Barekatain
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Victoria C Yan
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, Aurora, CO, United States
| | - Florian L Muller
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Neuro-Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Audrey R Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
21
|
Haywood J, Vadlamani G, Stubbs KA, Mylne JS. Antibiotic resistance lessons for the herbicide resistance crisis. PEST MANAGEMENT SCIENCE 2021; 77:3807-3814. [PMID: 33682995 DOI: 10.1002/ps.6357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 05/26/2023]
Abstract
The challenges of resistance to antibiotics and resistance to herbicides have much in common. Antibiotic resistance became a risk in the 1950s, but a concerted global effort to manage it did not begin until after 2000. Widespread herbicide use began during the 1950s and was soon followed by an unabated rise in resistance. Here, we examine what lessons for combatting herbicide resistance could be learnt from the global, coordinated efforts of all stakeholders to avert the antibiotic resistance crisis. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Joel Haywood
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Grishma Vadlamani
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Australia
| |
Collapse
|
22
|
López GD, Suesca E, Álvarez-Rivera G, Rosato AE, Ibáñez E, Cifuentes A, Leidy C, Carazzone C. Carotenogenesis of Staphylococcus aureus: New insights and impact on membrane biophysical properties. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158941. [PMID: 33862238 DOI: 10.1016/j.bbalip.2021.158941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Staphyloxanthin (STX) is a saccharolipid derived from a carotenoid in Staphylococcus aureus involved in oxidative-stress tolerance and antimicrobial peptide resistance. STX influences the biophysical properties of the bacterial membrane and has been associated to the formation of lipid domains in the regulation of methicillin-resistance. In this work, a targeted metabolomics and biophysical characterization study was carried out to investigate the biosynthetic pathways of carotenoids, and their impact on the membrane biophysical properties. Five different S. aureus strains were investigated, including three wild-type strains containing the crtM gene related to STX biosynthesis, a crtM-deletion mutant, and a crtMN plasmid-complemented variant. LC-DAD-MS/MS analysis of extracts allowed the identification of 34 metabolites related to carotenogenesis in S. aureus at different growth phases (8, 24 and 48 h), showing the progression of these metabolites as the bacteria advances into the stationary phase. For the first time, 22 members of a large family of carotenoids were identified, including STX and STX-homologues, as well as Dehydro-STX and Dehydro-STX-homologues. Moreover, thermotropic behavior of the CH2 stretch of lipid acyl chains in live cells by FTIR, show that the presence of STX increases acyl chain order at the bacterial growth temperature. Indeed, the cooperative melting event of the bacterial membrane, which occurs around 15 °C in the native strains, shifts with increased carotenoid content. These results show the diversity biosynthetic of carotenoids in S. aureus, and their influence on membrane biophysical properties.
Collapse
Affiliation(s)
- Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá D.C., Colombia; Laboratory of Biophysics, Physics Department, Universidad de los Andes, Bogotá D.C., Colombia; Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Elizabeth Suesca
- Laboratory of Biophysics, Physics Department, Universidad de los Andes, Bogotá D.C., Colombia
| | | | - Adriana E Rosato
- Molecular Microbiology Diagnostics-Research, Riverside University Health System, Professor Loma Linda University, Moreno Valley, CA, USA
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Madrid, Spain
| | - Chad Leidy
- Laboratory of Biophysics, Physics Department, Universidad de los Andes, Bogotá D.C., Colombia.
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá D.C., Colombia.
| |
Collapse
|
23
|
Labana P, Dornan MH, Lafrenière M, Czarny TL, Brown ED, Pezacki JP, Boddy CN. Armeniaspirols inhibit the AAA+ proteases ClpXP and ClpYQ leading to cell division arrest in Gram-positive bacteria. Cell Chem Biol 2021; 28:1703-1715.e11. [PMID: 34293284 DOI: 10.1016/j.chembiol.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/22/2021] [Accepted: 06/29/2021] [Indexed: 01/16/2023]
Abstract
Multi-drug-resistant bacteria present an urgent threat to modern medicine, creating a desperate need for antibiotics with new modes of action. As natural products remain an unsurpassed source for clinically viable antibiotic compounds, we investigate the mechanism of action of armeniaspirol. The armeniaspirols are a structurally unique class of Gram-positive antibiotic discovered from Streptomyces armeniacus for which resistance cannot be readily obtained. We show that armeniaspirol inhibits the ATP-dependent proteases ClpXP and ClpYQ in vitro and in the model Gram-positive Bacillus subtilis. This inhibition dysregulates the divisome and elongasome supported by an upregulation of key proteins FtsZ, DivIVA, and MreB inducing cell division arrest. The inhibition of ClpXP and ClpYQ to dysregulate cell division represents a unique antibiotic mechanism of action and armeniaspirol is the only known natural product inhibitor of the coveted anti-virulence target ClpP. Thus, armeniaspirol possesses a promising lead scaffold for antibiotic development with unique pharmacology.
Collapse
Affiliation(s)
- Puneet Labana
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Mark H Dornan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Matthew Lafrenière
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Tomasz L Czarny
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - John P Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
24
|
Bhando T, Bhattacharyya T, Gaurav A, Akhter J, Saini M, Gupta VK, Srivastava SK, Sen H, Navani NK, Gupta V, Biswas D, Chaudhry R, Pathania R. Antibacterial properties and in vivo efficacy of a novel nitrofuran, IITR06144, against MDR pathogens. J Antimicrob Chemother 2021; 75:418-428. [PMID: 31665357 DOI: 10.1093/jac/dkz428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES The emergence of MDR Gram-negative pathogens and increasing prevalence of chronic infections presents an unmet need for the discovery of novel antibacterial agents. The aim of this study was to evaluate the biological properties of a small molecule, IITR06144, identified in a phenotypic screen against the Gram-negative model organism Escherichia coli. METHODS A small-molecule library of 10956 compounds was screened for growth inhibition against E. coli ATCC 25922 at concentration 50 μM. MICs of lead compounds were determined by the broth microdilution method. Time-kill kinetics, anti-persister activity, spontaneous frequency of resistance, biofilm inhibition and disruption were assessed by standard protocols. Resistant mutants were generated by serial passaging followed by WGS. In vitro toxicity studies were carried out via the MTT assay. In vivo toxicity and efficacy in a mouse model were also evaluated. RESULTS IITR06144 was identified as the most promising candidate amongst 29 other potential antibacterial leads, exhibiting the lowest MIC, 0.5 mg/L. IITR06144 belongs to the nitrofuran class and exhibited broad-spectrum bactericidal activity against most MDR bacteria, including the 'priority pathogen', carbapenem-resistant Acinetobacter baumannii. IITR06144 retained its potency against nitrofurantoin-resistant clinical isolates. It displayed anti-persister, anti-biofilm activity and lack of spontaneous resistance development. IITR06144 demonstrated a large therapeutic index with no associated in vitro and in vivo toxicity. CONCLUSIONS In the light of excellent in vitro properties displayed by IITR06144 coupled with its considerable in vivo efficacy, further evaluation of IITR06144 as a therapeutic lead against antibiotic-resistant infections is warranted.
Collapse
Affiliation(s)
- Timsy Bhando
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Tapas Bhattacharyya
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Amit Gaurav
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Jawed Akhter
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Mahak Saini
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Vivek Kumar Gupta
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | | | - Himanshu Sen
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Naveen K Navani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Varsha Gupta
- Department of Microbiology, Government Medical College & Hospital, Chandigarh, India
| | - Debasis Biswas
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ranjana Pathania
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
25
|
Khodaparast L, Wu G, Khodaparast L, Schmidt BZ, Rousseau F, Schymkowitz J. Bacterial Protein Homeostasis Disruption as a Therapeutic Intervention. Front Mol Biosci 2021; 8:681855. [PMID: 34150852 PMCID: PMC8206779 DOI: 10.3389/fmolb.2021.681855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cells have evolved a complex molecular network, collectively called the protein homeostasis (proteostasis) network, to produce and maintain proteins in the appropriate conformation, concentration and subcellular localization. Loss of proteostasis leads to a reduction in cell viability, which occurs to some degree during healthy ageing, but is also the root cause of a group of diverse human pathologies. The accumulation of proteins in aberrant conformations and their aggregation into specific beta-rich assemblies are particularly detrimental to cell viability and challenging to the protein homeostasis network. This is especially true for bacteria; it can be argued that the need to adapt to their changing environments and their high protein turnover rates render bacteria particularly vulnerable to the disruption of protein homeostasis in general, as well as protein misfolding and aggregation. Targeting bacterial proteostasis could therefore be an attractive strategy for the development of novel antibacterial therapeutics. This review highlights advances with an antibacterial strategy that is based on deliberately inducing aggregation of target proteins in bacterial cells aiming to induce a lethal collapse of protein homeostasis. The approach exploits the intrinsic aggregation propensity of regions residing in the hydrophobic core regions of the polypeptide sequence of proteins, which are genetically conserved because of their essential role in protein folding and stability. Moreover, the molecules were designed to target multiple proteins, to slow down the build-up of resistance. Although more research is required, results thus far allow the hope that this strategy may one day contribute to the arsenal to combat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Laleh Khodaparast
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Ladan Khodaparast
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Béla Z Schmidt
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, Leuven, Belgium
| |
Collapse
|
26
|
Chen Z, Zhou C, Xu Y, Wen K, Song J, Bai S, Wu C, Huang W, Cai Q, Zhou K, Wang H, Wang Y, Feng X, Bai Y. An alternatingly amphiphilic, resistance-resistant antimicrobial oligoguanidine with dual mechanisms of action. Biomaterials 2021; 275:120858. [PMID: 34044257 DOI: 10.1016/j.biomaterials.2021.120858] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022]
Abstract
The increasing number of infections caused by multi-drug resistance (MDR) bacteria is an omen of a new global challenge. As one of the countermeasures under development, antimicrobial peptides (AMPs) and AMP mimics have emerged as a new family of antimicrobial agents with high potential, due to their low resistance generation rate and effectiveness against MDR bacterial strains resulted from their membrane-disrupting mechanism of action. However, most reported AMPs and AMP mimics have facially amphiphilic structures, which may lead to undesired self-aggregation and non-specific binding, as well as increased cytotoxicity toward mammalian cells, all of which put significant limits on their applications. Here, we report an oligomer with the size of short AMPs, with both hydrophobic carbon chain and cationic groups placed on its backbone, giving an alternatingly amphiphilic structure that brings better selectivity between mammalian and bacterial cell membranes. In addition, the oligomer shows affinity toward DNA, thus it can utilize bacterial DNA located in the vulnerable nucleoid as the second drug target. Benefiting from these designs, the oligomer shows higher therapeutic index and synergistic effect with other antibiotics, while its low resistance generation rate and effectiveness on multi-drug resistant bacterial strains can be maintained. We demonstrate that this alternatingly amphiphilic, DNA-binding oligomer is not only resistance-resistant, but is also able to selectively eliminate bacteria at the presence of mammalian cells. Importantly, the oligomer exhibits good in vivo activity: it cleans all bacteria on Caenorhabditis elegans without causing apparent toxicity, and significantly improves the survival rate of mice with severely infected wounds in a mice excision wound model study.
Collapse
Affiliation(s)
- Zhiyong Chen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Cailing Zhou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; School of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Yangfan Xu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China; School of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Kang Wen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Junfeng Song
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Silei Bai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Chenxuan Wu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Wei Huang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Qingyun Cai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong, 518035, China; The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, China
| | - Hui Wang
- Department of Clinical Laboratories, Peking University People's Hospital, Beijing, 100044, China
| | - Yingjie Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518055, China
| | - Xinxin Feng
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yugang Bai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, And School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
27
|
Morshedtalab Z, Rahimi G, Emami-Nejad A, Farasat A, Mohammadbeygi A, Ghaedamini N, Negahdary M. Antibacterial Assessment of Zinc Sulfide Nanoparticles against Streptococcus pyogenes and Acinetobacter baumannii. Curr Top Med Chem 2021; 20:1042-1055. [PMID: 32250224 DOI: 10.2174/1381612826666200406095246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/13/2019] [Accepted: 03/06/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Due to the appearance of resistant bacterial strains against the antimicrobial drugs and the reduced efficiency of these valuable resources, the health of a community and the economies of countries have been threatened. OBJECTIVE In this study, the antibacterial assessment of zinc sulfide nanoparticles (ZnS NPs) against Streptococcus pyogenes and Acinetobacter baumannii has been performed. METHODS ZnS NPs were synthesized through a co-precipitation method using polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA) and polyethylene glycol (PEG-4000). The size and morphology of the synthesized ZnS NPs were determined by a scanning electron microscope (SEM) and it was found that the average size of the applied NPs was about 70 nm. In order to evaluate the antibacterial effect of the synthesized ZnS NPs, various concentrations (50μg/mL, 100 μg/mL and 150 μg/mL) of ZnS NPs were prepared. Antibacterial assessments were performed through the disc diffusion method in Mueller Hinton Agar (MHA) culture medium and also the optical density (OD) method was performed by a UV-Vis spectrophotometer in Trypticase™ Soy Broth (TSB) medium. Then, in order to compare the antibacterial effects of the applied NPs, several commercial antibiotics including penicillin, amikacin, ceftazidime and primaxin were used. RESULTS The achieved results indicated that the antibacterial effects of ZnS NPs had a direct relation along with the concentrations and the concentration of 150 μg/mL showed the highest antibacterial effect in comparison with others. In addition, the ZnS NPs were more effective on Acinetobacter baumannii. CONCLUSION The findings of this research suggest a novel approach against antibiotic resistance.
Collapse
Affiliation(s)
| | - Ghasem Rahimi
- Agro Industrial Complex of Medicinal Plants ( SPAD), Shiraz, Iran
| | - Asieh Emami-Nejad
- Department of Biology, Payame Noor University (PNU), P.O.Box 19395-3697, Tehran, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for prevention of Non- Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Azita Mohammadbeygi
- Department of Immunology, Shahid Beheshti International University, Tehran, Iran
| | - Nahid Ghaedamini
- Department of Biology, Payame Noor University (PNU), P.O.Box 19395-3697, Tehran, Iran
| | - Masoud Negahdary
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
28
|
Mosselhy DA, Assad M, Sironen T, Elbahri M. Nanotheranostics: A Possible Solution for Drug-Resistant Staphylococcus aureus and their Biofilms? NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E82. [PMID: 33401760 PMCID: PMC7824312 DOI: 10.3390/nano11010082] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a notorious pathogen that colonizes implants (orthopedic and breast implants) and wounds with a vicious resistance to antibiotic therapy. Methicillin-resistant S. aureus (MRSA) is a catastrophe mainly restricted to hospitals and emerged to community reservoirs, acquiring resistance and forming biofilms. Treating biofilms is problematic except via implant removal or wound debridement. Nanoparticles (NPs) and nanofibers could combat superbugs and biofilms and rapidly diagnose MRSA. Nanotheranostics combine diagnostics and therapeutics into a single agent. This comprehensive review is interpretative, utilizing mainly recent literature (since 2016) besides the older remarkable studies sourced via Google Scholar and PubMed. We unravel the molecular S. aureus resistance and complex biofilm. The diagnostic properties and detailed antibacterial and antibiofilm NP mechanisms are elucidated in exciting stories. We highlight the challenges of bacterial infections nanotheranostics. Finally, we discuss the literature and provide "three action appraisals". (i) The first appraisal consists of preventive actions (two wings), avoiding unnecessary hospital visits, hand hygiene, and legislations against over-the-counter antibiotics as the general preventive wing. Our second recommended preventive wing includes preventing the adverse side effects of the NPs from resistance and toxicity by establishing standard testing procedures. These standard procedures should provide breakpoints of bacteria's susceptibility to NPs and a thorough toxicological examination of every single batch of synthesized NPs. (ii) The second appraisal includes theranostic actions, using nanotheranostics to diagnose and treat MRSA, such as what we call "multifunctional theranostic nanofibers. (iii) The third action appraisal consists of collaborative actions.
Collapse
Affiliation(s)
- Dina A. Mosselhy
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
- Microbiological Unit, Fish Diseases Department, Animal Health Research Institute, Dokki, Giza 12618, Egypt
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland;
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Mhd Assad
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
| | - Tarja Sironen
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland;
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Mady Elbahri
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
- Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Center for Nanotechnology, Zewail City of Science and Technology, Sheikh Zayed District, Giza 12588, Egypt
| |
Collapse
|
29
|
Bai S, Wang J, Yang K, Zhou C, Xu Y, Song J, Gu Y, Chen Z, Wang M, Shoen C, Andrade B, Cynamon M, Zhou K, Wang H, Cai Q, Oldfield E, Zimmerman SC, Bai Y, Feng X. A polymeric approach toward resistance-resistant antimicrobial agent with dual-selective mechanisms of action. SCIENCE ADVANCES 2021; 7:eabc9917. [PMID: 33571116 PMCID: PMC7840121 DOI: 10.1126/sciadv.abc9917] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/08/2020] [Indexed: 05/19/2023]
Abstract
Antibiotic resistance is now a major threat to human health, and one approach to combating this threat is to develop resistance-resistant antibiotics. Synthetic antimicrobial polymers are generally resistance resistant, having good activity with low resistance rates but usually with low therapeutic indices. Here, we report our solution to this problem by introducing dual-selective mechanisms of action to a short amidine-rich polymer, which can simultaneously disrupt bacterial membranes and bind to bacterial DNA. The oligoamidine shows unobservable resistance generation but high therapeutic indices against many bacterial types, such as ESKAPE strains and clinical isolates resistant to multiple drugs, including colistin. The oligomer exhibited excellent effectiveness in various model systems, killing extracellular or intracellular bacteria in the presence of mammalian cells, removing all bacteria from Caenorhabditis elegans, and rescuing mice with severe infections. This "dual mechanisms of action" approach may be a general strategy for future development of antimicrobial polymers.
Collapse
Affiliation(s)
- Silei Bai
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jianxue Wang
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Kailing Yang
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Cailing Zhou
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yangfan Xu
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Junfeng Song
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yuanxin Gu
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zheng Chen
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Carolyn Shoen
- Veterans Affairs Medical Center, Syracuse, NY 13210, USA
| | - Brenda Andrade
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518035, China
- The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China
| | - Hui Wang
- Department of Clinical Laboratories, Peking University People's Hospital, Beijing, 100044, China
| | - Qingyun Cai
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yugang Bai
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China.
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, Hunan 410082, China.
- State Key Laboratory of Chem/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, Hunan 410082, China
- School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
30
|
Singh KS, Sharma R, Reddy PAN, Vonteddu P, Good M, Sundarrajan A, Choi H, Muthumani K, Kossenkov A, Goldman AR, Tang HY, Totrov M, Cassel J, Murphy ME, Somasundaram R, Herlyn M, Salvino JM, Dotiwala F. RETRACTED ARTICLE: IspH inhibitors kill Gram-negative bacteria and mobilize immune clearance. Nature 2020; 589:597-602. [PMID: 33361818 PMCID: PMC8776033 DOI: 10.1038/s41586-020-03074-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023]
Abstract
Isoprenoids are vital to all organisms in supporting core functions of life, like respiration and membrane stability.1 IspH, an enzyme in the methyl erythritol phosphate pathway of isoprenoid synthesis, is essential to gram-negative bacteria, mycobacteria and apicomplexans.2,3 The IspH substrate, HMBPP, is not produced in humans and other metazoans and activates cytotoxic Vγ9Vδ2 T-cells in humans and primates at extremely low concentrations.4-6 We describe novel IspH inhibitors and through structure-guided analog design, refine their potency to nanomolar levels. We have modified these into prodrugs for delivery into bacteria and report that they kill clinical isolates of several multidrug resistant bacterial species such as Acinetobacter, Pseudomonas, Klebsiella, Enterobacter, Vibrio, Shigella, Salmonella, Yersinia, Mycobacterium and Bacillus, while being relatively non-toxic to mammalian cells. Proteomic analysis reveals that bacteria treated with prodrugs resemble those with conditional IspH knockdown. Notably, these prodrugs also cause expansion and activation of human Vγ9Vδ2 T-cells in a humanized mouse model of bacterial infection. These IspH prodrugs synergize direct antibiotic killing with a simultaneous rapid immune response by cytotoxic γδ T-cells, which may limit the rise of antibiotic resistant bacterial populations.
Collapse
|
31
|
Hall CJ, Mackie ER, Gendall AR, Perugini MA, Soares da Costa TP. Review: amino acid biosynthesis as a target for herbicide development. PEST MANAGEMENT SCIENCE 2020; 76:3896-3904. [PMID: 32506606 DOI: 10.1002/ps.5943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
There are three amino acid biosynthesis pathways that are targeted by current herbicides, namely those leading to the production of aromatic amino acids, branched chain amino acids and glutamine. However, their efficacy is diminishing as a result of the increasing number of resistant weeds. Indeed, resistance to most classes of herbicides is on the rise, posing a significant threat to the utility of current herbicides to sustain effective weed management. This review provides an overview of potential herbicide targets within amino acid biosynthesis that remain unexploited commercially, and recent inhibitor discovery efforts. Despite contemporary approaches to herbicide discovery, such as chemical repurposing and the use of omics technologies, there have been no new products introduced to the market that inhibit amino acid biosynthesis over the past three decades. This highlights the chasm that exists between identifying a potent inhibitor and introducing a commercial herbicide. The unpredictability of a mode of action at the systemic level, as well as poor physicochemical properties, often contribute to a lack of progression beyond the target inhibition stage. Nevertheless, it will be important to overcome these obstacles for the development of new herbicides to protect our agricultural industry and ensure food security for an increasing world population. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cody J Hall
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Emily Rr Mackie
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Bundoora, VIC, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
32
|
|
33
|
Guevara Salazar JA, Morán Díaz JR, Ramírez Segura E, Trujillo Ferrara JG. What are the origins of growing microbial resistance? Both Lamarck and Darwin were right. Expert Rev Anti Infect Ther 2020; 19:563-569. [PMID: 33073640 DOI: 10.1080/14787210.2021.1839418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Microorganisms of clinical importance frequently develop resistance to drug therapy, now a growing problem. The experience with Mycobacterium tuberculosis is a representative example of increasing multi-drug resistance. To avoid reaching a crisis in which patients could be left without adequate treatment, a new strategy is needed. Anti-microbial therapy has historically targeted the mechanisms rather than origin of drug resistance, thus allowing microorganisms to adapt and survive. AREAS COVERED This contribution analyses the historical development (1943-2020) of the evolution of multi-drug resistance by M. tuberculosis strains in light of Darwin's and Lamarck's theories of evolution. EXPERT OPINION Regarding the molecular origin of microbial drug resistance, genetic mutations and epigenetic modifications are known to participate. The analysis of the history of drug resistance by M. tuberculosis evidences a gradual development of resistance to some antibiotics, undoubtedly due to random mutations together with natural selection based on environmental pressures (e.g., antibiotics), representing Darwin's idea. More rapid adaptation of M. tuberculosis to new antibiotic treatments has also occurred, probably because of heritable acquired characteristics, evidencing Lamarck's proposal. Therefore, microbial infections should be treated with an antibiotic producing null or low mutagenic activity along with a resistance inhibitor, preferably in a single medication.
Collapse
Affiliation(s)
- Juan Alberto Guevara Salazar
- Departamento De Farmacología, Escuela Superior De Medicina, Instituto Politécnico Nacional, Ciudad De México, CDMX, Mexico
| | - Jessica Rubí Morán Díaz
- Departamento De Farmacología, Escuela Superior De Medicina, Instituto Politécnico Nacional, Ciudad De México, CDMX, Mexico
| | - Enrique Ramírez Segura
- Laboratorio De Bioquímica Médica, Escuela Superior De Medicina, Instituto Politécnico Nacional, Ciudad De México, CDMX, Mexico
| | - José Guadalupe Trujillo Ferrara
- Laboratorio De Bioquímica Médica, Escuela Superior De Medicina, Instituto Politécnico Nacional, Ciudad De México, CDMX, Mexico
| |
Collapse
|
34
|
Nyerges A, Tomašič T, Durcik M, Revesz T, Szili P, Draskovits G, Bogar F, Skok Ž, Zidar N, Ilaš J, Zega A, Kikelj D, Daruka L, Kintses B, Vasarhelyi B, Foldesi I, Kata D, Welin M, Kimbung R, Focht D, Mašič LP, Pal C. Rational design of balanced dual-targeting antibiotics with limited resistance. PLoS Biol 2020; 18:e3000819. [PMID: 33017402 PMCID: PMC7561186 DOI: 10.1371/journal.pbio.3000819] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/15/2020] [Accepted: 08/26/2020] [Indexed: 12/02/2022] Open
Abstract
Antibiotics that inhibit multiple bacterial targets offer a promising therapeutic strategy against resistance evolution, but developing such antibiotics is challenging. Here we demonstrate that a rational design of balanced multitargeting antibiotics is feasible by using a medicinal chemistry workflow. The resultant lead compounds, ULD1 and ULD2, belonging to a novel chemical class, almost equipotently inhibit bacterial DNA gyrase and topoisomerase IV complexes and interact with multiple evolutionary conserved amino acids in the ATP-binding pockets of their target proteins. ULD1 and ULD2 are excellently potent against a broad range of gram-positive bacteria. Notably, the efficacy of these compounds was tested against a broad panel of multidrug-resistant Staphylococcus aureus clinical strains. Antibiotics with clinical relevance against staphylococcal infections fail to inhibit a significant fraction of these isolates, whereas both ULD1 and ULD2 inhibit all of them (minimum inhibitory concentration [MIC] ≤1 μg/mL). Resistance mutations against these compounds are rare, have limited impact on compound susceptibility, and substantially reduce bacterial growth. Based on their efficacy and lack of toxicity demonstrated in murine infection models, these compounds could translate into new therapies against multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Akos Nyerges
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Tamas Revesz
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Petra Szili
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Gabor Draskovits
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Ferenc Bogar
- MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, University of Szeged, Hungary
| | - Žiga Skok
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Anamarija Zega
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Balint Kintses
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
- HCEMM-BRC Translational Microbiology Lab, Szeged, Hungary
| | - Balint Vasarhelyi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Imre Foldesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Diána Kata
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | - Martin Welin
- SARomics Biostructures, Medicon Village, Lund, Sweden
| | | | - Dorota Focht
- SARomics Biostructures, Medicon Village, Lund, Sweden
| | | | - Csaba Pal
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| |
Collapse
|
35
|
Abstract
This article describes 20 years of research that investigated a second novel target for ribosomal antibiotics, the biogenesis of the two subunits. Over that period, we have examined the effect of 52 different antibiotics on ribosomal subunit formation in six different microorganisms. Most of the antimicrobials we have studied are specific, preventing the formation of only the subunit to which they bind. A few interesting exceptions have also been observed. Forty-one research publications and a book chapter have resulted from this investigation. This review will describe the methodology we used and the fit of our results to a hypothetical model. The model predicts that inhibition of subunit assembly and translation are equivalent targets for most of the antibiotics we have investigated.
Collapse
Affiliation(s)
- W Scott Champney
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
36
|
Shantier SW. Review on the Characteristic, Properties and Analytical Methods of Cefquinomesulphate: ß-lactam Veterinary Drug. Infect Disord Drug Targets 2020; 20:27-32. [PMID: 30277168 DOI: 10.2174/1871526518666181001122010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/06/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Chemotherapy as a science began within the 1st decade of the twentieth century with understanding of the principles of selective toxicity, the particular chemical relationships between microorganism pathogens and medicines, the event of drug resistance, and also the role of combined medical aid. OBJECTIVES This review aims to highlight the characteristics, specifically the pharmacokinetic parameters and the analytical methods reported in literature for the determination of Cefquinome, a fourth generation cephalosporine used to treat Gram-positive and Gram-negative caused infections. CONCLUSION Analysis of such drugs, whether used for the treatment of human or animal illness, is essential in understanding the bioavailability and therapeutic control which will ensure their activity and safety.
Collapse
|
37
|
Galeas-Pena M, McLaughlin N, Pociask D. The role of the innate immune system on pulmonary infections. Biol Chem 2019; 400:443-456. [PMID: 29604208 DOI: 10.1515/hsz-2018-0304] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
Inhalation is required for respiration and life in all vertebrates. This process is not without risk, as it potentially exposes the host to environmental pathogens with every breath. This makes the upper respiratory tract one of the most common routes of infection and one of the leading causes of morbidity and mortality in the world. To combat this, the lung relies on the innate immune defenses. In contrast to the adaptive immune system, the innate immune system does not require sensitization, previous exposure or priming to attack foreign particles. In the lung, the innate immune response starts with the epithelial barrier and mucus production and is reinforced by phagocytic cells and T cells. These cells are vital for the production of cytokines, chemokines and anti-microbial peptides that are critical for clearance of infectious agents. In this review, we discuss all aspects of the innate immune response, with a special emphasis on ways to target aspects of the immune response to combat antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Michelle Galeas-Pena
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Nathaniel McLaughlin
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Derek Pociask
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| |
Collapse
|
38
|
A Repurposing Approach for Uncovering the Anti-Tubercular Activity of FDA-Approved Drugs with Potential Multi-Targeting Profiles. Molecules 2019; 24:molecules24234373. [PMID: 31795400 PMCID: PMC6930672 DOI: 10.3390/molecules24234373] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is one of the top 10 causes of death worldwide. This scenario is further complicated by the insurgence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB. The identification of appropriate drugs with multi-target affinity profiles is considered to be a widely accepted strategy to overcome the rapid development of resistance. The aim of this study was to discover Food and Drug Administration (FDA)-approved drugs possessing antimycobacterial activity, potentially coupled to an effective multi-target profile. An integrated screening platform was implemented based on computational procedures (high-throughput docking techniques on the target enzymes peptide deformylase and Zmp1) and in vitro phenotypic screening assays using two models to evaluate the activity of the selected drugs against Mycobacterium tuberculosis (Mtb), namely, growth of Mtb H37Rv and of two clinical isolates in axenic media, and infection of peripheral blood mononuclear cells with Mtb. Starting from over 3000 FDA-approved drugs, we selected 29 marketed drugs for submission to biological evaluation. Out of 29 drugs selected, 20 showed antimycobacterial activity. Further characterization suggested that five drugs possessed promising profiles for further studies. Following a repurposing strategy, by combining computational and biological efforts, we identified marketed drugs with relevant antimycobacterial profiles.
Collapse
|
39
|
Abrusán G, Marsh JA. Ligands and Receptors with Broad Binding Capabilities Have Common Structural Characteristics: An Antibiotic Design Perspective. J Med Chem 2019; 62:9357-9374. [PMID: 31188598 PMCID: PMC6858282 DOI: 10.1021/acs.jmedchem.9b00220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Indexed: 01/08/2023]
Abstract
The spread of antibiotic resistance is one of the most serious global public-health problems. Here we show that a particular class of homomers with binding sites spanning multiple protein chains is particularly suitable for targeting by broad-spectrum antibacterial agents because due to the slow evolutionary change of such binding pockets, ligands of such homomers are much more likely to bind their homologs than ligands of monomers, or homomers with a single-chain binding site. Additionally, using de novo ligand design and deep learning, we show that the chemical compounds that can bind several different receptors have common structural characteristics and that halogens and fragments similar to the building blocks existing antimicrobials are overrepresented in them. Finally, we show that binding multiple receptors selects for flexible compounds, which are less likely to accumulate in Gram-negative bacteria; thus there is trade-off between reducing the emergence of resistance by multitargeting and broad-spectrum antibacterial activity.
Collapse
Affiliation(s)
- György Abrusán
- MRC Human Genetics Unit, Institute
of Genetics and Molecular Medicine, University
of Edinburgh, Crewe Road, Edinburgh EH4 2XU, U.K.
| | - Joseph A. Marsh
- MRC Human Genetics Unit, Institute
of Genetics and Molecular Medicine, University
of Edinburgh, Crewe Road, Edinburgh EH4 2XU, U.K.
| |
Collapse
|
40
|
Saigal, Irfan M, Khan P, Abid M, Khan MM. Design, Synthesis, and Biological Evaluation of Novel Fused Spiro-4 H-Pyran Derivatives as Bacterial Biofilm Disruptor. ACS OMEGA 2019; 4:16794-16807. [PMID: 31646225 PMCID: PMC6796888 DOI: 10.1021/acsomega.9b01571] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/13/2019] [Indexed: 10/07/2023]
Abstract
This study aims to synthesize novel fused spiro-4H-pyran derivatives under green conditions to develop agents having antimicrobial activity. The synthesized compounds were initially screened for in vitro antibacterial activity against two Gram-positive and three Gram-negative bacterial strains, and all the compounds exhibited moderate to potent antibacterial activity. However, compound 4l showed significant inhibition toward all the bacterial strains, particularly against Streptococcus pneumoniae and Escherichia coli with minimum inhibitory concentration values of 125 μg/mL for each. The toxicity studies of selected compounds (4c, 4e, 4l, and 4m) using human red blood cells as well as human embryonic kidney (HEK-293) cells showed nontoxic behavior at desired concentration. Growth kinetic and time-kill curve studies of 4l against S. pneumoniae and E. coli supported its bactericidal nature. Interestingly, compound 4l showed a synergistic effect when used in combination with ciprofloxacin against selected strains. Biofilm formation in the presence of a lead compound, as assessed by XTT assay, showed complete disruption of the bacterial biofilm visualized by scanning electron microscopy. Overall, the findings suggest 4l to be considered as a promising lead for further development as an antibacterial agent.
Collapse
Affiliation(s)
- Saigal
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohammad Irfan
- Department of Biosciences and Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Parvez Khan
- Department of Biosciences and Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohammad Abid
- Department of Biosciences and Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md. Musawwer Khan
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| |
Collapse
|
41
|
Nikolayevskiy H, Robello M, Scerba MT, Pasternak EH, Saha M, Hartman TL, Buchholz CA, Buckheit RW, Durell SR, Appella DH. The structure-activity profile of mercaptobenzamides' anti-HIV activity suggests that thermodynamics of metabolism is more important than binding affinity to the target. Eur J Med Chem 2019; 178:818-837. [PMID: 31252286 PMCID: PMC8132308 DOI: 10.1016/j.ejmech.2019.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 01/06/2023]
Abstract
Mercaptobenzamide thioesters and thioethers are chemically simple HIV-1 maturation inhibitors with a unique mechanism of action, low toxicity, and a high barrier to viral resistance. A structure-activity relationship (SAR) profile based on 39 mercaptobenzamide prodrug analogs exposed divergent activity/toxicity roles for the internal and terminal amides. To probe the relationship between antiviral activity and toxicity, we generated an improved computational model for the binding of mercaptobenzamide thioesters (SAMTs) to the HIV-1 NCp7 C-terminal zinc finger, revealing the presence of a second low-energy binding orientation, hitherto undisclosed. Finally, using NMR-derived thiol-thioester exchange equilibrium constants, we propose that thermodynamics plays a role in determining the antiviral activity observed in the SAR profile.
Collapse
Affiliation(s)
- Herman Nikolayevskiy
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, 8 Center Drive, Room 404, Bethesda, MD, 20892, USA
| | - Marco Robello
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, 8 Center Drive, Room 404, Bethesda, MD, 20892, USA
| | - Michael T Scerba
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, 8 Center Drive, Room 404, Bethesda, MD, 20892, USA
| | - Evan H Pasternak
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, 8 Center Drive, Room 404, Bethesda, MD, 20892, USA
| | - Mrinmoy Saha
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, 8 Center Drive, Room 404, Bethesda, MD, 20892, USA
| | - Tracy L Hartman
- ImQuest Biosciences, 7340 Executive Way, Suite R, Frederick, MD, 21704, USA
| | - Caitlin A Buchholz
- ImQuest Biosciences, 7340 Executive Way, Suite R, Frederick, MD, 21704, USA
| | - Robert W Buckheit
- ImQuest Biosciences, 7340 Executive Way, Suite R, Frederick, MD, 21704, USA
| | - Stewart R Durell
- Laboratory of Cell Biology, NCI, NIH, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Daniel H Appella
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, 8 Center Drive, Room 404, Bethesda, MD, 20892, USA.
| |
Collapse
|
42
|
Teran R, Guevara R, Mora J, Dobronski L, Barreiro-Costa O, Beske T, Pérez-Barrera J, Araya-Maturana R, Rojas-Silva P, Poveda A, Heredia-Moya J. Characterization of Antimicrobial, Antioxidant, and Leishmanicidal Activities of Schiff Base Derivatives of 4-Aminoantipyrine. Molecules 2019; 24:E2696. [PMID: 31344947 PMCID: PMC6696115 DOI: 10.3390/molecules24152696] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/26/2023] Open
Abstract
Our main interest is the characterization of compounds to support the development of alternatives to currently marketed drugs that are losing effectiveness due to the development of resistance. Schiff bases are promising biologically interesting compounds having a wide range of pharmaceutical properties, including anti-inflammatory, antipyretic, and antimicrobial activities, among others. In this work, we have synthesized 12 Schiff base derivatives of 4-aminoantipyrine. In vitro antimicrobial, antioxidant, and cytotoxicity properties are analyzed, as well as in silico predictive adsorption, distribution, metabolism, and excretion (ADME) and bioactivity scores. Results identify two potential Schiff bases: one effective against E. faecalis and the other with antioxidant activity. Both have reasonable ADME scores and provides a scaffold for developing more effective compounds in the future. Initial studies are usually limited to laboratory in vitro approaches, and following these initial studies, much research is needed before a drug can reach the clinic. Nevertheless, these laboratory approaches are mandatory and constitute a first filter to discriminate among potential drug candidates and chemical compounds that should be discarded.
Collapse
Affiliation(s)
- Rommy Teran
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Rommel Guevara
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Jessica Mora
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Lizeth Dobronski
- Centro de Investigación Traslacional, Universidad De Las Américas, Quito 170503, Ecuador
| | - Olalla Barreiro-Costa
- Centro de Investigación Traslacional, Universidad De Las Américas, Quito 170503, Ecuador
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Timo Beske
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador
- Facultad de Medicina Veterinaria, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Jorge Pérez-Barrera
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca 3460000, Chile
| | - Patricio Rojas-Silva
- Centro de Investigación Traslacional, Universidad De Las Américas, Quito 170503, Ecuador
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Ana Poveda
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador.
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador.
| | - Jorge Heredia-Moya
- Centro de Investigación Traslacional, Universidad De Las Américas, Quito 170503, Ecuador.
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador.
| |
Collapse
|
43
|
Xue L, Chen YY, Yan Z, Lu W, Wan D, Zhu H. Staphyloxanthin: a potential target for antivirulence therapy. Infect Drug Resist 2019; 12:2151-2160. [PMID: 31410034 PMCID: PMC6647007 DOI: 10.2147/idr.s193649] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/13/2019] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus is an important and common Gram-positive bacteria which causes clinical infections and food-poisoning cases. Therapeutic schedules for treatment of S. aureus infections are facing a challenge because of the emergence of multidrug resistance strains. It is urgent to find new antiinfective drugs to control S. aureus infection. S. aureus strains are capable of producing the golden carotenoid pigment: staphyloxanthin, which acts as an important virulence factor and a potential target for antivirulence drug design. This review is aimed at presenting an updated overview of this golden carotenoid pigment of S. aureus from the biosynthesis of staphyloxanthin, its function, and the genes involved in pigment production to staphyloxanthin: a novel target for antivirulence therapy.
Collapse
Affiliation(s)
- Lijun Xue
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, People's Republic of China.,College of Pharmaceutical Engineering, Chongqing Chemical Industry Vocational College, Chongqing, 400020, People's Republic of China
| | - Yang Yizhi Chen
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhiyun Yan
- Wuhan Wusteel Good Life Service Co. LTD, Wuhan, 430000, People's Republic of China
| | - Wei Lu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Dong Wan
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Huifeng Zhu
- College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
44
|
Ni S, Li B, Xu Y, Mao F, Li X, Lan L, Zhu J, Li J. Targeting virulence factors as an antimicrobial approach: Pigment inhibitors. Med Res Rev 2019; 40:293-338. [PMID: 31267561 DOI: 10.1002/med.21621] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022]
Abstract
The fascinating and dangerous colored pathogens contain unique chemically pigmented molecules, which give varied and efficient assistance as virulence factors to the crucial reproduction and growth of microbes. Therefore, multiple novel strategies and inhibitors have been developed in recent years that target virulence factor pigments. However, despite the importance and significance of this topic, it has not yet been comprehensively reviewed. Moreover, research groups around the world have made successful progress against antibacterial infections by targeting pigment production, including our serial works on the discovery of CrtN inhibitors against staphyloxanthin production in Staphylococcus aureus. On the basis of the previous achievements and recent progress of our group in this field, this article will be the first comprehensive review of pigment inhibitors against colored pathogens, especially S. aureus infections, and this article includes design strategies, representative case studies, advantages, limitations, and perspectives to guide future research.
Collapse
Affiliation(s)
- Shuaishuai Ni
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baoli Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
45
|
Capping of silver nanoparticles by anti-inflammatory ligands: Antibacterial activity and superoxide anion generation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:100-108. [PMID: 30826583 DOI: 10.1016/j.jphotobiol.2019.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/19/2019] [Accepted: 02/17/2019] [Indexed: 11/21/2022]
Abstract
Silver nanoparticles (AgNPs) have been widely recognized as antibacterial agents. However, its stability and activity over time have been poorly studied. In this work, the properties and characteristics of differently stabilized AgNPs were evaluated during a span of time. The surface capping agents were diclofenac (d), and ketorolac (k), which currently are used as anti-inflammatory in human medicine. On evaluating the size variation over time, it was observed that the AgNPs-k are the most stable, unlike the non-capped nanoparticles agglomerate and precipitate. UV-Vis spectroscopy analysis showed that the absorbance during time decreases for the three types of nanoparticles, but the decrease is less marked for the two types of anti-inflammatory-capped AgNPs. The rapid loss of the optical prop- erties of bare AgNPs, is mainly due to oxidation, agglomeration, and precipitation of this nanoparticles. The potential cytotoxicity of the AgNPs, evaluated through the formation of the superoxide anion using XXT, showed that both, AgNPs-k and AgNPs-d, generate the radical anion when the samples are irradiated with UV light at 365 nm. This effect appears associated with the capping agents, since the bare nanoparticles did not promote the formation of the superoxide anion. The antibacterial activity of the AgNPs throughout time, against two microorganisms (Escherichia coli and Staphylococcus aureus), was also evaluated. The results showed that capping agents played a decisive role in the antibacterial ability of AgNPs and also in enhancing the antibacterial activity over time.
Collapse
|
46
|
Crawford CL, Dalecki AG, Narmore WT, Hoff J, Hargett AA, Renfrow MB, Zhang M, Kalubowilage M, Bossmann SH, Queern SL, Lapi SE, Hunter RN, Bao D, Augelli-Szafran CE, Kutsch O, Wolschendorf F. Pyrazolopyrimidinones, a novel class of copper-dependent bactericidal antibiotics against multi-drug resistant S. aureus. Metallomics 2019; 11:784-798. [DOI: 10.1039/c8mt00316e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pyrazolopyrimidinones traffic copper into S. aureus, depleting ATP and altering essential ion concentrations, resulting in the death of the bacteria.
Collapse
Affiliation(s)
| | - Alex G. Dalecki
- Department of Medicine
- University of Alabama at Birmingham
- Birmingham
- USA
| | | | - Jessica Hoff
- Department of Medicine
- University of Alabama at Birmingham
- Birmingham
- USA
| | - Audra A. Hargett
- Department of Biochemistry and Molecular Genetics
- University of Alabama at Birmingham
- Birmingham
- USA
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics
- University of Alabama at Birmingham
- Birmingham
- USA
| | - Man Zhang
- Department of Chemistry
- Kansas State University
- Manhattan
- USA
| | | | | | - Stacy L. Queern
- Department of Radiology
- University of Alabama at Birmingham
- Birmingham
- USA
- Department of Chemistry
| | - Suzanne E. Lapi
- Department of Radiology
- University of Alabama at Birmingham
- Birmingham
- USA
- Department of Chemistry
| | - Robert N. Hunter
- Department of Chemistry
- Drug Discovery Division
- Southern Research
- Birmingham
- USA
| | - Donghui Bao
- Department of Chemistry
- Drug Discovery Division
- Southern Research
- Birmingham
- USA
| | | | - Olaf Kutsch
- Department of Medicine
- University of Alabama at Birmingham
- Birmingham
- USA
| | | |
Collapse
|
47
|
Vinh NB, Drinkwater N, Malcolm TR, Kassiou M, Lucantoni L, Grin PM, Butler GS, Duffy S, Overall CM, Avery VM, Scammells PJ, McGowan S. Hydroxamic Acid Inhibitors Provide Cross-Species Inhibition of Plasmodium M1 and M17 Aminopeptidases. J Med Chem 2018; 62:622-640. [DOI: 10.1021/acs.jmedchem.8b01310] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Natalie B. Vinh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, VIC 3052, Australia
| | - Nyssa Drinkwater
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Tess R. Malcolm
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Michael Kassiou
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Leonardo Lucantoni
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | | | | | - Sandra Duffy
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | | | - Vicky M. Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Peter J. Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, VIC 3052, Australia
| | - Sheena McGowan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC 3800, Australia
| |
Collapse
|
48
|
Dhanda G, Sarkar P, Samaddar S, Haldar J. Battle against Vancomycin-Resistant Bacteria: Recent Developments in Chemical Strategies. J Med Chem 2018; 62:3184-3205. [DOI: 10.1021/acs.jmedchem.8b01093] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Geetika Dhanda
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Paramita Sarkar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Sandip Samaddar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
49
|
Aksakal B, Demirel M. In vitro study of antimicrobial and cell viability on newly synthesized bioglass-based bone grafts: Effects of selenium and silver additions. Proc Inst Mech Eng H 2018; 232:1039-1047. [PMID: 30191754 DOI: 10.1177/0954411918797968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Selenium (Se)- and Silver (Ag)-doped Bioglass®-based biografts were synthesized using the sol-gel method. Fourier-transform infrared spectroscopy, inductively coupled plasma mass spectrometry, scanning electron microscopy and energy-dispersive X-ray analyses were carried out in order to examine mechanostructure of synthesized bioglass-based bioceramics. The effects of Se and Ag additions on cell viability were investigated via cytotoxicity and antibacterial activity analysis, respectively. The bacteria of Escherichia coli ( E. coli, JM103) and Gram-positive Staphylococcus aureus ( S. aureus, ATCC29293) were used to perform the antibacterial tests. Moreover, cell viability studies were conducted using the Saos-2 osteoblast cells by performing dimethylthiazol diphenyltetrazolium bromide assay. It was observed that while (PO4)3- and (CO3)2- peaks were observed in Fourier-transform infrared spectroscopy analyses, crystallinity also increased with increasing amount of AgNO3 addition into the Bioglass®. In addition, it was determined from scanning electron microscopy images that small irregular thin lamellar grain distribution was formed in synthesized B45Ag5Se20 and B30Ag10Se15 biografts. From antibacterial activity tests, it was determined that while some grafts was affected by E. coli, which is a Gram-negative, however, some did not affect the Gram-positive S. aureus and had antimicrobial activity on E. coli and S. aureus. According to the cell viability tests, it was found that the synthesized grafts did not have toxic effect on living cells. While the cell growth was greater for some grafts, however, some others had lower growth.
Collapse
Affiliation(s)
- B Aksakal
- 1 Department of Metallurgical and Materials Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, Istanbul, Turkey
| | - M Demirel
- 2 Vocational School of Technical Sciences, Adıyaman University, Adıyaman, Turkey
| |
Collapse
|
50
|
Harada LK, Silva EC, Campos WF, Del Fiol FS, Vila M, Dąbrowska K, Krylov VN, Balcão VM. Biotechnological applications of bacteriophages: State of the art. Microbiol Res 2018; 212-213:38-58. [DOI: 10.1016/j.micres.2018.04.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023]
|