1
|
Currais A, Sanchez K, Soriano-Castell D, Dar NJ, Evensen KG, Soriano S, Maher P. Transcriptomic signatures of oxytosis/ferroptosis are enriched in Alzheimer's disease. BMC Biol 2025; 23:132. [PMID: 40369584 PMCID: PMC12080116 DOI: 10.1186/s12915-025-02235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Oxytosis/ferroptosis is a form of non-apoptotic regulated cell death characterized by specific changes in the redox balance that lead to lethal lipid peroxidation. It has been hypothesized recently that aging predisposes the brain to the activation of oxytosis/ferroptosis in Alzheimer's disease (AD), and consequently that inhibition of oxytosis/ferroptosis offers a path to develop a new class of therapeutics for the disease. The goal of the present study was to investigate the occurrence of oxytosis/ferroptosis in the AD brain by examining transcriptomic signatures of oxytosis/ferroptosis in cellular and animal models of AD as well as in human AD brain samples. RESULTS Since oxytosis/ferroptosis has been poorly defined at the RNA level, the publicly available datasets are limited. To address this limitation, we developed TrioSig, a gene signature generated from transcriptomic data of human microglia, astrocytes, and neurons treated with inducers of oxytosis/ferroptosis. It is shown that the different signatures of oxytosis/ferroptosis are enriched to varying extents in the brains of AD mice and human AD patients. The TrioSig signature was the most frequently found enriched, and bioinformatic analysis of its composition identified genes involved in the integrated stress response (ISR). It was confirmed in nerve cell culture that oxytosis/ferroptosis induces the ISR via phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) and activating transcription factor 4 (ATF4) signaling. CONCLUSIONS Our data support the involvement of oxytosis/ferroptosis in AD. The implications of the ISR for the progression and prevention of AD are discussed.
Collapse
Affiliation(s)
- Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA.
| | - Kayla Sanchez
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - David Soriano-Castell
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Nawab John Dar
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - K Garrett Evensen
- The Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Salvador Soriano
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
2
|
Adamis KS, Georgoulakis M, Angelonidis I, Korovesis D, Papadopoulos C, Kapsalis M, Tavernarakis N, Eleftheriadis N, Neochoritis CG. The Evolution of Fluorescein into A Potential Theranostic Tool. Chemistry 2025:e202501513. [PMID: 40317604 DOI: 10.1002/chem.202501513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Recent advances in drug discovery and development have been marked by the emergence of new modalities, including small molecule theranostic agents. While initial results from clinical trials have been promising, modern detectable inhibitors are still in an early stage of development. In this study, we present a strategy for chemically evolving a fluorescent imaging agent into a potent therapeutic entity, which not only retains its properties but also enhances its inhibition and detection applicability. By utilizing 15-LOX-1 as a model system, we leverage prior knowledge of its inhibitors to rationally functionalize fluorescein, enabling the targeted and highly efficient synthesis of over 20 derivatives across four different scaffolds. This approach ultimately led to the development of a potent, cell-permeable inhibitor that effectively engages its target in live cells and enables real-time visualization. These findings validate our new strategy for the development of small molecule diagnostic modulators, paving the way for application in other targets as well.
Collapse
Affiliation(s)
| | | | | | - Dimitris Korovesis
- Foundation for Research and Technology Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | | | - Michael Kapsalis
- Department of Chemistry, University of Crete, Voutes, Heraklion, Greece
| | - Nektarios Tavernarakis
- Foundation for Research and Technology Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
- Division of Basic Sciences, School of Medicine, University of Crete, Voutes, Heraklion, Greece
| | | | | |
Collapse
|
3
|
Direksunthorn T, T Ahmed A, Pluetrattanabha N, Uthirapathy S, Ballal S, Singh A, Al-Hetty HRAK, Devi A, Sharma GC, Yumashev A. Ferroptosis in immune chaos: Unraveling its impact on disease and therapeutic potential. J Physiol Biochem 2025:10.1007/s13105-025-01078-7. [PMID: 40237936 DOI: 10.1007/s13105-025-01078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
Since its introduction in 2012, ferroptosis has garnered significant attention from researchers over the past decade. Unlike autophagy and apoptosis, ferroptosis is an atypical iron-dependent programmed cell death that falls under necrosis. It is regulated by various cellular metabolic and signaling processes, which encompass amino acid, lipid, iron, and mitochondrial metabolism. The initiation of ferroptosis occurs through iron-dependent phospholipid peroxidation. Notably, ferroptosis exhibits a dual effect and is associated with various diseases. A significant challenge lies in managing autoimmune disorders with unknown origins that stem from the reactivation of the immune system. Two contributing factors to autoimmunity are the aberrant stimulation of cell death and the inadequate clearance of dead cells, which can expose or release intracellular components that activate the immune response. Ferroptosis is distinct from other forms of cell death, such as apoptosis, necroptosis, autophagy, and pyroptosis, due to its unique morphological, biochemical, and genetic characteristics and specific relationship with cellular iron levels. Recent studies indicate that immune cells can both induce and undergo ferroptosis. To better understand how ferroptosis influences immune responses and its imbalance in disease, a molecular understanding of the relationship between ferroptosis and immunity is essential. Consequently, further research is needed to develop immunotherapeutics that target ferroptosis. This review primarily focuses on the role of ferroptosis in immune-related disorders.
Collapse
Affiliation(s)
| | | | | | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | | | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
4
|
Borkowski K, Yin C, Kindt A, Liang N, de Lange E, Blach C, Newman JW, Kaddurah-Daouk R, Hankemeier T. Metabolic Alteration in Oxylipins and Endocannabinoids Point to an Important Role for Soluble Epoxide Hydrolase and Inflammation in Alzheimer's Disease - Finding from Alzheimer's Disease Neuroimaging Initiative. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646677. [PMID: 40236050 PMCID: PMC11996541 DOI: 10.1101/2025.04.01.646677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Mounting evidence implicates inflammation as a key factor in Alzheimer's disease (AD) development. We previously identified pro-inflammatory soluble epoxide hydrolase (sEH) metabolites to be elevated in plasma and CSF of AD patients and to be associated with lower cognition in non-AD subjects. Soluble epoxide hydrolase is a key enzyme converting anti-inflammatory epoxy fatty acids to pro-inflammatory diols, reported to be elevated in multiple cardiometabolic disorders. Here we analyzed over 700 fasting plasma samples from the baseline of Alzheimer's Disease Neuroimaging Initiative (ADNI) 2/GO study. We applied targeted mass spectrometry method to provide absolute quantifications of over 150 metabolites from oxylipin and endocannabinoids pathway, interrogating the role for inflammation/immune dysregulation and the key enzyme soluble epoxide hydrolase in AD. We provide further insights into the regulation of this pathway in different disease stages, APOE genotypes and between sexes. Additionally, we investigated in mild cognitive impaired (MCI) patients, metabolic signatures that inform about resilience to progression and conversion to AD. Key findings include I) confirmed disruption in this key central pathway of inflammation and pointed to dysregulation of sEH in AD with sex and disease stage differences; II) identified markers of disease progression and cognitive resilience using sex and ApoE genotype stratified analysis highlighting an important role for bile acids, lipid peroxidation and stress response hormone cortisol. In conclusion, we provide molecular insights into a central pathway of inflammation and links to cognitive dysfunction, suggesting novel therapeutic approaches that are based on targeting inflammation tailored for subgroups of individuals based on their sex, APOE genotype and their metabolic profile.
Collapse
|
5
|
Chen Z, Lu Y, Wang Y, Wang Q, Yu L, Liu J. Natural Products Targeting Tau Protein Phosphorylation: A Promising Therapeutic Avenue for Alzheimer's Disease. PLANTA MEDICA 2025. [PMID: 40086889 DOI: 10.1055/a-2536-8919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by tau protein hyperphosphorylation and neurofibrillary tangle formation, which are central to its pathogenesis. This review focuses on the therapeutic potential of natural products in targeting tau phosphorylation, a key factor in Alzheimer's disease progression. It comprehensively summarizes current research on various natural compounds, including flavonoids, alkaloids, saponins, polysaccharides, phenols, phenylpropanoids, and terpenoids, highlighting their multitarget mechanisms, such as modulating kinases and phosphatases. The ability of these compounds to mitigate oxidative stress, inflammation, and tau pathology while enhancing cognitive function underscores their value as potential anti-Alzheimer's disease therapeutics. By integrating recent advances in extraction methods, pharmacological studies, and artificial intelligence-driven screening technologies, this review provides a valuable reference for future research and development of natural product-based interventions for Alzheimer's disease.
Collapse
Affiliation(s)
- Ziying Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Lu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiyun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liangwen Yu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, China
| |
Collapse
|
6
|
Louka A, Spacho N, Korovesis D, Adamis K, Papadopoulos C, Kalaitzaki E, Tavernarakis N, Neochoritis CG, Eleftheriadis N. Crafting Molecular Tools for 15-Lipoxygenase-1 in a Single Step. Angew Chem Int Ed Engl 2025; 64:e202418291. [PMID: 39523872 PMCID: PMC11795718 DOI: 10.1002/anie.202418291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Small molecule modulators are powerful tools for selectively probing and manipulating proteins in native biological systems. However, the development of versatile modulators that exhibit desired properties is hindered by the lack of a rapid and robust synthetic strategy. Here, we develop a facile and reliable one-step methodology for the generation of multifunctional toolboxes encompassing a wide variety of chemical modulators with different desired features. These modulators bind irreversibly to the protein target via a selective warhead. Key elements are introduced onto the warhead in a single step using multi-component reactions. To illustrate the power of this new technology, we synthesized a library of diverse modulators designed to explore a highly challenging and poorly understood protein, human 15-lipoxygenase-1. Modulators made include; activity-based/photoaffinity probes, chemosensors, photocrosslinkers, as well as light-controlled and high-affinity inhibitors. The efficacy of our compounds was successfully established through the provision of on demand inhibition and labeling of our target protein in vitro, in cellulo and in vivo; thus, proving that this technology has promising potential for applications in many complex biological systems.
Collapse
Affiliation(s)
- Anastasia Louka
- Department of ChemistryUniversity of CreteVoutes70013 HeraklionGreece
| | - Ntaniela Spacho
- Department of ChemistryUniversity of CreteVoutes70013 HeraklionGreece
| | - Dimitris Korovesis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology-HellasNikolaou Plastira 10070013HeraklionGreece
| | | | | | | | - Nektarios Tavernarakis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology-HellasNikolaou Plastira 10070013HeraklionGreece
- Division of Basic SciencesSchool of MedicineUniversity of CreteVoutes70013 HeraklionGreece
| | | | | |
Collapse
|
7
|
Lee L, Okudaira N, Murase K, Kong R, Jones HM. Determination of Vatiquinone Drug-Drug Interactions, as CYP450 Perpetrator and Victim, Using Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulation. J Clin Pharmacol 2025; 65:160-169. [PMID: 39308341 PMCID: PMC11771645 DOI: 10.1002/jcph.6133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/26/2024] [Indexed: 01/30/2025]
Abstract
Vatiquinone, a 15-lipoxygenase inhibitor, is in development for patients with Friedreich's ataxia. Physiologically based pharmacokinetic (PBPK) modeling addressed drug-drug interaction gaps without additional studies. A PBPK model (Simcyp Simulator version 21, full model) was developed using parameters obtained from in vitro studies, in silico estimation and optimization, and two clinical studies. A venous blood dosing model best characterized vatiquinone lymphatic absorption. Apparent oral clearance (CL/F) was used to optimize intrinsic clearance (CLint). Intestinal availability (Fg) was estimated using the hybrid flow term (Qgut), unbound fraction in the enterocytes (fugut), and gut intrinsic metabolic clearance (CLuG,int). Renal clearance (CLR) was set to zero. Assuming an Fa of 1, CYP3A4 contribution (fmCYP3A4) was further optimized. The PBPK model was verified with two clinical studies and demonstrated that it adequately characterized vatiquinone PK. As a perpetrator, the model predicted no risk for vatiquinone to significantly alter the drug exposures of CYP3A4 and CYP1A2 substrates as evident bynegligible reduction in both midazolam and caffeine area under the curve (AUC)inf and Cmax. As a victim, the model predicted that vatiquinone exposures are weakly influenced by moderate CYP3A4 inhibitors and inducers. With fluconazole coadministration, vatiquinone AUCinf and Cmax increased by nearly 50% and 25%, respectively. With efavirenz coadministration, vatiquinone AUCinf and Cmax decreased by approximately 20% and 10%, respectively. Results suggested that vatiquinone does not significantly impact CYP3A4 and CYP1A2 substrates and that moderate CYP3A4 inhibitors and inducers weakly impact vatiquinone AUC.
Collapse
Affiliation(s)
- Lucy Lee
- PTC Therapeutics, Inc.WarrenNJUSA
| | | | | | | | | |
Collapse
|
8
|
Li X, Mao J. Research progress on the role of lipoxygenase and its inhibitors in prostate cancer. Future Oncol 2024; 20:3549-3568. [PMID: 39535136 PMCID: PMC11776861 DOI: 10.1080/14796694.2024.2419356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Prostate cancer (PCa) has become a common disease among middle-aged and elderly men. The lipoxygenase (LOX) pathway plays a crucial role in the occurrence, development, invasion and metastasis of PCa and is therefore considered a new target for the prevention and treatment of PCa. 5-LOX and 12-LOX have a promoting effect on the occurrence, development, invasion and metastasis of PCa. 15-LOX-2 has an inhibitory effect on PCa. LOX inhibitors can effectively inhibit the metabolic activity of LOX. The research aims to review the mechanism of action and inhibitors of LOX in PCa, in order to provide relevant references for the prevention and treatment of PCa.
Collapse
Affiliation(s)
- Xiaobing Li
- Chongqing Medical & Pharmaceutical College, Chongqing, 400030, China
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jingxin Mao
- Chongqing Medical & Pharmaceutical College, Chongqing, 400030, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|
9
|
Currais A, Kepchia D, Liang Z, Maher P. The Role of AMP-activated Protein Kinase in Oxytosis/Ferroptosis: Protector or Potentiator? Antioxid Redox Signal 2024; 41:e1173-e1186. [PMID: 35243895 PMCID: PMC11693968 DOI: 10.1089/ars.2022.0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/20/2023]
Abstract
Significance: Evidence for a role for the oxytosis/ferroptosis regulated cell death pathway in aging and neurodegenerative diseases has been growing over the past few years. Because of this, there is an increasing necessity to identify endogenous signaling pathways that can be modulated to protect cells from this form of cell death. Recent Advances: Recently, several studies have identified a protective role for the AMP-activated protein kinase (AMPK)/acetyl CoA carboxylase 1 (ACC1) pathway in oxytosis/ferroptosis. However, there are also a number of studies suggesting that this pathway contributes to cell death initiated by various inducers of oxytosis/ferroptosis. Critical Issues: The goals of this review are to provide an overview and analysis of the published studies and highlight specific areas where more research is needed. Future Directions: Much remains to be learned about AMPK signaling in oxytosis/ferroptosis, especially the conditions where it is protective. Furthermore, the role of AMPK signaling in the brain and especially the aging brain needs further investigation.
Collapse
Affiliation(s)
- Antonio Currais
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Devin Kepchia
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Zhibin Liang
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
10
|
Faraji P, Parandavar E, Kuhn H, Habibi-Rezaei M, Borchert A, Zahedi E, Ahmadian S. Oral administration of butylated hydroxytoluene induces neuroprotection in a streptozotocin-induced rat Alzheimer's disease model via inhibition of neuronal ferroptosis. Mol Med 2024; 30:204. [PMID: 39511487 PMCID: PMC11545178 DOI: 10.1186/s10020-024-00980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common human neurodegenerative disorder worldwide. Owing to its chronic nature, our limited understanding of its pathophysiological mechanisms, and because of the lack of effective anti-AD drugs, AD represents a significant socio-economic challenge for all industrialized countries. Neuronal cell death is a key factor in AD pathogenesis and recent studies have suggested that neuronal ferroptosis may play a major patho-physiological role. Since ferroptosis involves free radical-mediated lipid peroxidation, we hypothesized that enteral administration of the radical scavenger butylated hydroxytoluene (BHT) might slow down or even prevent the development of AD-related symptoms in an in vivo animal AD model. MATERIAL AND METHODS To test this hypothesis, we employed the rat model of streptozotocin-induced AD and administered butylated hydroxytoluene orally at a dose of 120 mg/kg body weight. Following BHT treatment, neuronal cell death was induced by bilateral stereotactic intraventricular injection of streptozotocin at a dose of 3.0 mg/kg body weight. Three weeks after surgery, we assessed the learning capabilities and the short-term memory of three experimental groups using the conventional y-maze test: (i) streptozotocin-treated rats (BHT pre-treatment), (ii) streptozotocin-treated rats (no BHT pre-treatment), (iii) sham-operated rats (BHT pre-treatment but no streptozotocin administration). After the y-maze test, the animals were sacrificed, hippocampal tissue was prepared and several biochemical (malonyl dialdehyde formation, glutathione homeostasis, gene expression patterns) and histochemical (Congo-red staining, Nissl staining, Perls staining) readout parameters were quantified. RESULTS Intraventricular streptozotocin injection induced the development of AD-related symptoms, elevated the degree of lipid peroxidation and upregulated the expression of ferroptosis-related genes. Histochemical analysis indicated neuronal cell death and neuroinflammation, which were paralleled by aberrant intraneuronal iron deposition. The streptozotocin-induced alterations were significantly reduced and sometimes even abolished by oral BHT treatment. CONCLUSION Our data indicate that oral BHT treatment attenuated the development of AD-related symptoms in an in vivo rat model, most probably via inhibiting neuronal ferroptosis. These findings suggest that BHT might constitute a promising candidate as anti-AD drug. However, more work is needed to explore the potential applicability of BHT in other models of neurodegeneration and in additional ferroptosis-related disorders.
Collapse
Affiliation(s)
- Parisa Faraji
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Elham Parandavar
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hartmut Kuhn
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | | | - Astrid Borchert
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, D-10117, Berlin, Germany
| | - Elham Zahedi
- Institute of Physiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
11
|
Miliano C, Natividad LA, Quello S, Stoolmiller M, Gregus AM, Buczynski MW, Mason BJ. The Predictive Value of Plasma Bioactive Lipids on Craving in Human Volunteers With Alcohol Use Disorder. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100368. [PMID: 39282655 PMCID: PMC11400622 DOI: 10.1016/j.bpsgos.2024.100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 09/19/2024] Open
Abstract
Background Alcohol use disorder (AUD) is a chronic relapsing disorder characterized by alcohol seeking and consumption despite negative consequences. Despite the availability of multiple treatments, patients continue to exhibit high relapse rates. Thus, biomarkers that can identify patients at risk for heightened craving are urgently needed. Mounting preclinical and clinical evidence implicates perturbations in bioactive lipid signaling in the neurobiology of craving in AUD. We hypothesize that these lipids are potential biomarkers for predicting alcohol craving in patients with AUD. Methods This study used archival deidentified clinical data and corresponding plasma specimens from 157 participants in 3 clinical studies of AUD. We evaluated plasma levels of 8 lipid species as predictors of craving in response to in vivo alcohol and affective cues during abstinence. Results Participants were 109 men and 48 women who met DSM-5 criteria for severe AUD. We found that plasma levels of 12- and 15-HETE, 12/15-lipoxygenase-produced proinflammatory lipids, and palmitoylethanolamide, an anti-inflammatory fatty acid amide hydrolase-regulated lipid metabolite, were differentially correlated with alcohol craving during abstinence, predicting higher craving independent of demographics, alcohol use history, and multiple therapeutic treatments. Conclusions Our findings highlight the promise of these lipid metabolites as biomarkers of heightened alcohol craving. The results open a novel opportunity for further research and clinical evaluation of these biomarkers to optimize existing treatments and develop new therapeutics for AUD.
Collapse
Affiliation(s)
- Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Luis A. Natividad
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas
| | - Susan Quello
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | | | - Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Matthew W. Buczynski
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Barbara J. Mason
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
12
|
Lee L, Flach S, Xue H, Arivelu L, Golden L, Kong R, Darpo B. Lack of Concentration-QTc Relationship and Cardiac Risk With Vatiquinone Therapeutic and Supratherapeutic Doses. Clin Pharmacol Drug Dev 2024; 13:1227-1238. [PMID: 39415654 DOI: 10.1002/cpdd.1476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Vatiquinone, a 15-lipoxygenase inhibitor, is in development for patients with Friedreich ataxia. The study determined the effect of vatiquinone on electrocardiogram parameters. This was a 2-part, single-center, randomized, double-blinded, and placebo-controlled study. Part 1 used an adaptive approach to identify a supratherapeutic dose, while Part 2 evaluated the effect of vatiquinone on Fridericia corrected QT interval (QTcF). A safe and tolerated supratherapeutic dose of 1400 mg was identified. Concentration-QTcF analysis confirmed there was no statistically significant relationship between vatiquinone concentration and QTcF. QTcF effect (ie, ΔΔQTcF) exceeding 10 milliseconds was excluded for concentrations up to approximately 11,500 ng/mL. By-time-point analysis confirmed that least-squares mean ΔΔQTcF was below 10 milliseconds. Largest least-squares mean ΔΔQTcF of 1.5 milliseconds was observed at 2 hours after dosing. Vatiquinone did not have a clinically relevant effect on heart rate nor on cardiac conduction (PR interval and QRS interval). No new safety signals were found, as safety data are consistent with the known safety profile of vatiquinone. These findings altogether demonstrated that there is a minimal cardiac risk for vatiquinone concentrations up to the supratherapeutic dose level.
Collapse
Affiliation(s)
- Lucy Lee
- PTC Therapeutics, Inc., Warren, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Spacho N, Casertano M, Imperatore C, Papadopoulos C, Menna M, Eleftheriadis N. Investigating the Catalytic Site of Human 15-Lipoxygenase-1 via Marine Natural Products. Chemistry 2024; 30:e202402279. [PMID: 39041705 DOI: 10.1002/chem.202402279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/24/2024]
Abstract
Human 15-lipoxygenase-1 (15-LOX-1) is a key enzyme that possesses an important role in (neuro)inflammatory diseases. The pocket of the enzyme plays the role of a chiral catalyst, and therefore chirality could be an important component for the design of effective enzyme inhibitors. To advance our knowledge on this concept, we developed a library of the identified chiral 15-LOX-1 inhibitors and applied cheminformatic tools. Our analysis highlighted specific structural elements, which we integrated them in small molecules, and employed them as "smart" tools to effectively navigate the chemical space of previously unexplored regions. To this purpose, we utilized the marine derived natural product phosphoeleganin (PE) among with a small library of synthetic fragment derivatives, including a certain degree of stereochemical diversity. Enzyme inhibition/kinetic and molecular modelling studies has been performed in order to characterize structurally novel PE-based inhibitors, which proved to present a different type of inhibition with low micromolar potency, according to their structural features. We demonstrate that different warheads work as anchor, and either guide specific stereochemistry, or causing a time-depended inhibition. Finally, we prove that the positioning of the chiral substituents or/and the favorable stereochemistry can be crucial, as it can lead from active to completely inactive compounds.
Collapse
Affiliation(s)
- Ntaniela Spacho
- Department of Chemistry, University of Crete, 70013, Voutes, Heraklion, Greece
| | - Marcello Casertano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Concetta Imperatore
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | | | - Marialuisa Menna
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | | |
Collapse
|
14
|
Lee L, Thoolen M, Ma J, Kaushik D, Golden L, Kong R. Effect of Itraconazole, a CYP3A4 Inhibitor, and Rifampin, a CYP3A4 Inducer, on the Pharmacokinetics of Vatiquinone. Clin Pharmacol Drug Dev 2024. [PMID: 39133029 DOI: 10.1002/cpdd.1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
Vatiquinone is a small molecule inhibitor of 15-lipoxygenase in development for patients with Friedreich's ataxia. The objective of this analysis was to determine the effect of a cytochrome P450 isoform 3A4 (CYP3A4) inhibitor and inducer on vatiquinone pharmacokinetics (PKs). The coadministration of 400 mg of vatiquinone with 200 mg of itraconazole (a CYP3A4 inhibitor) resulted in increased maximum observed concentration (Cmax) of vatiquinone and systemic exposure (AUC0-inf) by approximately 3.5- and 2.9-fold, respectively. The coadministration of 400 mg of vatiquinone with 600 mg of rifampin (a CYP3A4 inducer) resulted in decreased vatiquinone Cmax and AUC0-inf by approximately 0.64- and 0.54-fold, respectively. The terminal half-life of vatiquinone was not affected by itraconazole or rifampin. These clinical study results confirm the in vitro reaction phenotyping data that shows that CYP3A4 plays an important role in vatiquinone metabolism. The result of this analysis together with phase 3 efficacy and safety data, population PK analysis, and the exposure-response relationship will determine if the extent of vatiquinone changes in the presence of CYP3A4 inhibitors and inducers are considered clinically relevant.
Collapse
Affiliation(s)
- Lucy Lee
- PTC Therapeutics, Inc., Warren, NJ, USA
| | | | - Jiyuan Ma
- PTC Therapeutics, Inc., Warren, NJ, USA
| | | | | | | |
Collapse
|
15
|
Hacioglu C, Kar F, Sahin MC. Neurochemical Research of LOXBlock-1 and ZnSO 4 against Neurodegenerative Damage Induced by Amyloid Beta(1-42). Biol Trace Elem Res 2024; 202:3204-3214. [PMID: 37872362 DOI: 10.1007/s12011-023-03908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
Synaptosomes offer an intriguing ex vivo model system for investigating the molecular mechanisms of neurodegenerative processes. Lipoxygenases significantly affect the course of neurodegenerative diseases. Homeostasis of trace elements such as zinc is necessary for the continuity of brain functions. In this study, we purpose to determine whether LOXBlock-1, a 12/15 lipoxygenase inhibitor, and zinc sulfate (ZnSO4) provide any biochemical protection during neurodegenerative damage in synaptosomes induced by amyloid beta 1-42 (Aβ1-42). In this study, animals (30 Wistar Albino male rats 30) were divided into 5 groups (6 animals in each group): Control, 10µM Aβ1-42, 10µM Aβ1-42+25mM LOXBlock-1, 10µM Aβ1-42+10µM ZnSO4, and 10µM Aβ1-42+25mM LOXBlock-1+10µM ZnSO4. Synaptosomes were isolated from the rat cerebral cortex. Following, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, malondialdehyde (MDA) levels, adenosine deaminase (ADA) levels, reduced-glutathione (GSH) levels, neuronal nitric oxide synthase (nNOS) levels, acetylcholinesterase (AChE) activity, catalase (CAT) activity, and 8-OHdG levels in synaptosomes were detected according to the ELISA method. ADA and AChE expression and protein levels were analyzed. MDA, nNOS, AChE, and 8-OHdG levels in synaptosomes treated with Aβ1-42 resulted in an increase, while there was a decrease in ADA, GSH, and CAT levels (p<0.001 vs. control). Conversely, LOXBlock-1 and ZnSO4 treatments in synaptosomes treated with Aβ1-42 decreased MDA, nNOS, AChE, and 8-OHdG levels, while ADA, GSH, and CAT levels increased. Moreover, the most effective improvement was seen in the co-treatment group of LOXBlock-1 and ZnSO4. Our data showed that LOXBlock-1 and ZnSO4 co-treatment may protect against Aβ1-42 exposure in rat brain synaptosomes.
Collapse
Affiliation(s)
- Ceyhan Hacioglu
- Department of Biochemistry, Faculty of Pharmacy, Duzce University, Duzce, Turkey.
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey.
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Meryem Cansu Sahin
- Department of Medical Services and Techniques, Medical Imaging Techniques Program, Uşak University, Uşak, Turkey
| |
Collapse
|
16
|
Wang Y, Wang R, Zou J, Xie W, Chang J, Dong B, Yue T. Development of a turn-on fluorescent probe for the imaging of intracellular hypochlorous acid (HClO) during ferroptosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124123. [PMID: 38452460 DOI: 10.1016/j.saa.2024.124123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Ferroptosis is a burgeoning iron-dependent cell death form, and has close relation with hypochlorous acid (HClO). Exploring the fluctuation of the HClO level in living cells during ferroptosis could contribute to the profound study of the biological functions of HClO during ferroptosis. Here, we present a turn-on probe (RH-C) for the imaging of intracellular HClO during ferroptosis. The probe RH-C utilized the N,N-dimethylthiocarbamate group as a selective recognition site for HClO, and displayed desirable sensitivity and selectivity to HClO. The probe RH-C could detect the exogenous and endogenous HClO in living cells. Furthermore, RH-C was competent in monitoring the changes of endogenous HClO level during the process of ferroptosis. Biological imaging results suggested that erastin-induced ferroptosis can result in the excessive production of the endogenous HClO, and ferrostatin-1 (Fer-1) and vitamin E (VE) could block the massive accumulation of HClO in living cells.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Ruifei Wang
- Shandong Chemical Technology Academy, Qingdao University of Science and Technology (Jinan), Jinan, Shandong 250014, China
| | - Jidong Zou
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China.
| | - Wanru Xie
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Jia Chang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Baoli Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Tao Yue
- Shandong Chemical Technology Academy, Qingdao University of Science and Technology (Jinan), Jinan, Shandong 250014, China.
| |
Collapse
|
17
|
Chang J, Wang Y, Kong X, Dong B, Yue T. Golgi apparatus-targeting fluorescent probe for the imaging of superoxide anion (O 2•-) in living cells during ferroptosis. Anal Chim Acta 2024; 1298:342410. [PMID: 38462334 DOI: 10.1016/j.aca.2024.342410] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
Ferroptosis is an emerging iron-dependent oxidative cell death type, and recently has been demonstrated to show close relation with Golgi apparatus (GA). Exploring the fluctuation of superoxide anion (O2•-) level in GA during ferroptosis is of great significance to profoundly study the biological functions of GA in ferroptosis. Here, we present a GA-targeting probe (N-GA) to monitor cellular O2•- during ferroptosis. N-GA employed a triflate group and a tetradecanoic amide unit as the recognition site for O2•- and GA-targeting unit, respectively. After the response of N-GA to O2•-, the triflate unit of N-GA converted into hydroxyl group with strong electron-donating ability, generating bright green fluorescence under UV light. N-GA exhibited excellent sensitivity and selectivity towards O2•-. Fluorescence imaging results showed that N-GA could be applied as a GA-targeting probe to monitor cellular O2•-. The stimulation of cells with PMA and rotenone could result in the massive generation of endogenous O2•- in GA. Erastin-induced ferroptosis can markedly induce the increase of O2•- level in GA. Similar to Fer-1 and DFO, dihydrolipoic acid (DHLA) and rutin were demonstrated to inhibit the enormous production of O2•- in GA of the living cells during ferroptosis.
Collapse
Affiliation(s)
- Jia Chang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Yan Wang
- Shandong Chemical Technology Academy, Qingdao University of Science and Technology (Jinan), Jinan, Shandong, 250014, People's Republic of China
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Baoli Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Tao Yue
- Shandong Chemical Technology Academy, Qingdao University of Science and Technology (Jinan), Jinan, Shandong, 250014, People's Republic of China.
| |
Collapse
|
18
|
Li S, Mehmood AH, Tang X, Yue T, Dong B. Development of bishydrazide-based fluorescent probes for the imaging of cellular peroxynitrite (ONOO -) during ferroptosis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1409-1414. [PMID: 38369924 DOI: 10.1039/d4ay00022f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Peroxynitrite (ONOO-) is a critical ROS in living systems, and could induce lipid peroxidation which is the driver of ferroptotic cell death. Therefore, precise and rapid detection of cellular ONOO- is critical for the deep study of the biological functions of ONOO- during ferroptosis. Herein, we developed fluorescent probes (Rh-1, Rh-2 and Rh-3) for the rapid detection of intracellular ONOO- during ferroptosis. These probes used bishydrazide groups as the reactive sites for ONOO-. The response of these probes to ONOO- resulted in the production of the emissive xanthene fluorophore, providing a marked enhancement in the fluorescence intensity at 561 nm. The probe Rh-3 exhibited prominent selectivity and sensitivity towards ONOO-. Bioimaging experiments suggested that Rh-3 could be applied to image exogenous and endogenous ONOO- in living cells. By fluorescence imaging, it was demonstrated that erastin-induced ferroptosis caused increased levels of the endogenous ONOO-, and ferrostatin-1 (Fer-1) and vitamin E (VE) could markedly inhibit the excessive production of ONOO- during ferroptosis in living cells.
Collapse
Affiliation(s)
- Shijing Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Abdul Hadi Mehmood
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Xiaochan Tang
- Shandong Chemical Technology Academy, Qingdao University of Science and Technology (Jinan), Jinan, Shandong, 250014, China.
| | - Tao Yue
- Shandong Chemical Technology Academy, Qingdao University of Science and Technology (Jinan), Jinan, Shandong, 250014, China.
| | - Baoli Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.
| |
Collapse
|
19
|
Marmolejo-Garza A, Krabbendam IE, Luu MDA, Brouwer F, Trombetta-Lima M, Unal O, O'Connor SJ, Majerníková N, Elzinga CRS, Mammucari C, Schmidt M, Madesh M, Boddeke E, Dolga AM. Negative modulation of mitochondrial calcium uniporter complex protects neurons against ferroptosis. Cell Death Dis 2023; 14:772. [PMID: 38007529 PMCID: PMC10676387 DOI: 10.1038/s41419-023-06290-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
Ferroptosis is an iron- and reactive oxygen species (ROS)-dependent form of regulated cell death, that has been implicated in Alzheimer's disease and Parkinson's disease. Inhibition of cystine/glutamate antiporter could lead to mitochondrial fragmentation, mitochondrial calcium ([Ca2+]m) overload, increased mitochondrial ROS production, disruption of the mitochondrial membrane potential (ΔΨm), and ferroptotic cell death. The observation that mitochondrial dysfunction is a characteristic of ferroptosis makes preservation of mitochondrial function a potential therapeutic option for diseases associated with ferroptotic cell death. Mitochondrial calcium levels are controlled via the mitochondrial calcium uniporter (MCU), the main entry point of Ca2+ into the mitochondrial matrix. Therefore, we have hypothesized that negative modulation of MCU complex may confer protection against ferroptosis. Here we evaluated whether the known negative modulators of MCU complex, ruthenium red (RR), its derivative Ru265, mitoxantrone (MX), and MCU-i4 can prevent mitochondrial dysfunction and ferroptotic cell death. These compounds mediated protection in HT22 cells, in human dopaminergic neurons and mouse primary cortical neurons against ferroptotic cell death. Depletion of MICU1, a [Ca2+]m gatekeeper, demonstrated that MICU is protective against ferroptosis. Taken together, our results reveal that negative modulation of MCU complex represents a therapeutic option to prevent degenerative conditions, in which ferroptosis is central to the progression of these pathologies.
Collapse
Affiliation(s)
- Alejandro Marmolejo-Garza
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Inge E Krabbendam
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Minh Danh Anh Luu
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Famke Brouwer
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Marina Trombetta-Lima
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Osman Unal
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Shane J O'Connor
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Naďa Majerníková
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Carolina R S Elzinga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Cristina Mammucari
- Department of Biomedical Sciences, University of Padua, 35131, Padua, Italy
| | - Martina Schmidt
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Muniswamy Madesh
- Department of Medicine/Cardiology, Center for Mitochondrial Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Erik Boddeke
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
20
|
Xu J, Liu J, Li Q, Li G, Zhang G, Mi Y, Zhao T, Mu D, Wang D, Zeng K, Hou Y. Pterostilbene participates in TLR4- mediated inflammatory response and autophagy-dependent Aβ 1-42 endocytosis in Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155011. [PMID: 37562093 DOI: 10.1016/j.phymed.2023.155011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Alzheimer's disease (AD), the most prevalent form of dementia, remains untreatable. One of the factors that contributes to its progression is microglia-mediated inflammation. Pterostilbene, a compound isolated from Chinese dragon's blood, can reduce inflammation caused by overactive microglia. However, its effects on AD transgenic animals and the possible underlying mechanism remain unknown. METHODS We evaluated the effect of pterostilbene on learning and memory difficulties in transgenic APP/PS1 mice. We used immunofluorescence to detect microglial activation and Aβ aggregation. We explored the cellular mechanism of pterostilbene by establishing LPS- stimulated BV2 cells and oAβ1-42- exposed HEK 293T cells that overexpress TLR4 and/or MD2 via lentivirus. We applied flow cytometry and immunoprecipitation to examine how pterostilbene regulates TLR4 signaling. RESULTS Pterostilbene enhanced the learning and memory abilities of APP/PS1 mice and reduced microglial activation and Aβ aggregation in their hippocampus. Pterostilbene alleviated oAβ1-42-induced inflammation, which required the involvement of MD2. Pterostilbene disrupted the binding between TLR4 and MD2, which may further prevent TLR4 dimerization and subsequent inflammatory response. Moreover, pterostilbene restored the impaired endocytosis of oAβ1-42 through an autophagy-dependent mechanism. CONCLUSION This is the first demonstration that pterostilbene can potentially treat AD by blocking the interaction of TLR4 and MD2, thereby suppressing TLR4-mediated inflammation.
Collapse
Affiliation(s)
- Jikai Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Jingyu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Qing Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Guoxun Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Guijie Zhang
- College of Pharmacy, Guilin Medical University, Guilin, China
| | - Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ting Zhao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Danyang Mu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Dequan Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
21
|
Hosseini-Gerami L, Ficulle E, Humphryes-Kirilov N, Airey DC, Scherschel J, Kananathan S, Eastwood BJ, Bose S, Collier DA, Laing E, Evans D, Broughton H, Bender A. Mechanism of action deconvolution of the small-molecule pathological tau aggregation inhibitor Anle138b. Alzheimers Res Ther 2023; 15:52. [PMID: 36918909 PMCID: PMC10012450 DOI: 10.1186/s13195-023-01182-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND A key histopathological hallmark of Alzheimer's disease (AD) is the presence of neurofibrillary tangles of aggregated microtubule-associated protein tau in neurons. Anle138b is a small molecule which has previously shown efficacy in mice in reducing tau aggregates and rescuing AD disease phenotypes. METHODS In this work, we employed bioinformatics analysis-including pathway enrichment and causal reasoning-of an in vitro tauopathy model. The model consisted of cultured rat cortical neurons either unseeded or seeded with tau aggregates derived from human AD patients, both of which were treated with Anle138b to generate hypotheses for its mode of action. In parallel, we used a collection of human target prediction models to predict direct targets of Anle138b based on its chemical structure. RESULTS Combining the different approaches, we found evidence supporting the hypothesis that the action of Anle138b involves several processes which are key to AD progression, including cholesterol homeostasis and neuroinflammation. On the pathway level, we found significantly enriched pathways related to these two processes including those entitled "Superpathway of cholesterol biosynthesis" and "Granulocyte adhesion and diapedesis". With causal reasoning, we inferred differential activity of SREBF1/2 (involved in cholesterol regulation) and mediators of the inflammatory response such as NFKB1 and RELA. Notably, our findings were also observed in Anle138b-treated unseeded neurons, meaning that the inferred processes are independent of tau pathology and thus represent the direct action of the compound in the cellular system. Through structure-based ligand-target prediction, we predicted the intracellular cholesterol carrier NPC1 as well as NF-κB subunits as potential targets of Anle138b, with structurally similar compounds in the model training set known to target the same proteins. CONCLUSIONS This study has generated feasible hypotheses for the potential mechanism of action of Anle138b, which will enable the development of future molecular interventions aiming to reduce tau pathology in AD patients.
Collapse
Affiliation(s)
- Layla Hosseini-Gerami
- Centre for Molecular Informatics, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- AbsoluteAi Ltd, London, UK
| | - Elena Ficulle
- Eli Lilly and Company, Windlesham, UK
- Zifo RnD Solutions, London, UK
| | | | - David C Airey
- Eli Lilly and Company, Corporate Centre, Indianapolis, IN, USA
| | | | | | - Brian J Eastwood
- Eli Lilly and Company, Windlesham, UK
- Eli Lilly and Company, Bracknell, UK
- Eli Lilly and Company (Retired), Bracknell, UK
| | - Suchira Bose
- Eli Lilly and Company, Windlesham, UK
- Eli Lilly and Company, Bracknell, UK
| | - David A Collier
- Eli Lilly and Company, Windlesham, UK
- Eli Lilly and Company, Bracknell, UK
- Social, Genetic and Developmental Psychiatry Centre, IoPPN, Kings's College London and Genetic and Genomic Consulting Ltd, Farnham, UK
| | - Emma Laing
- Eli Lilly and Company, Windlesham, UK
- GSK, Stevenage, UK
| | - David Evans
- Eli Lilly and Company, Windlesham, UK
- DeepMind, London, UK
| | | | - Andreas Bender
- Centre for Molecular Informatics, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
22
|
Functionalised penetrating peptide-chondroitin sulphate‑gold nanoparticles: Synthesis, characterization, and applications as an anti-Alzheimer's disease drug. Int J Biol Macromol 2023; 230:123125. [PMID: 36603725 DOI: 10.1016/j.ijbiomac.2022.123125] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
The purpose of this study was to construct a transmembrane peptide-chondroitin sulphate‑gold nanoparticle (TAT-CS@Au) delivery system and investigate its activity as an anti-Alzheimer's disease (AD) drug. We successfully prepared TAT-CS@Au nanoparticles, investigated their anti-AD effects, and explored the possible mechanisms in in vitro models. TAT-CS@Au exhibited excellent cellular uptake and transport capacity, effectively inhibited the accumulation of Aβ1-40, and significantly reduced Aβ1-40-induced apoptosis in SH-SY5Y cells. Furthermore, TAT-CS@Au significantly reduced oxidative stress damage and cholinergic injury induced by Aβ1-40 by regulating intracellular concentrations of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and acetylcholine (ACh). Western blotting results demonstrated that TAT-CS@Au inhibited aberrant tau phosphorylation (Ser199, Thr205, Ser404, and Ser396) through GSK3β inactivation. TAT-CS@Au decreased the levels of inflammatory factors, specifically TNF-α, IL-6, and IL-1β, by inhibiting NF-κB nuclear translocation by activating MAPK signalling pathways. Overall, these results indicate that TAT-CS@Au exhibits excellent transmembrane ability, inhibits Aβ1-40 accumulation, antagonises oxidative stress, reduces aberrant tau phosphorylation, and suppresses the expression of inflammatory factors. TAT-CS@Au may be a multi-target anti-AD drug with good cell permeability, providing new insights into the design and research of anti-AD therapeutics.
Collapse
|
23
|
Lee L, Murase K, Ma J, Thoolen M. Clinical Drug-Drug Interaction Between Vatiquinone, a 15-Lipoxygenase Inhibitor, and Rosuvastatin, a Breast Cancer Resistance Protein Substrate. Clin Pharmacol Drug Dev 2023; 12:279-286. [PMID: 36478438 DOI: 10.1002/cpdd.1199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Vatiquinone is a small-molecule inhibitor of 15-lipoxygenase in phase 3 development for patients with mitochondrial disease and Friedreich ataxia. The objective of this analysis was to determine the effect of vatiquinone on the pharmacokinetic profile of rosuvastatin, a breast cancer resistance protein substrate. In vitro investigations demonstrated potential inhibition of BCRP by vatiquinone (half maximal inhibitory concentration, 3.8 µM). An open-label, fixed-sequence drug-drug interaction study in healthy volunteers was conducted to determine the clinical relevance of this finding. Subjects received a single dose of 20-mg rosuvastatin followed by a 7-day washout. On days 8 through 14, subjects received 400 mg of vatiquinone 3 times daily. On day 12, subjects concomitantly received a single dose of 20-mg rosuvastatin. The geometric mean ratio for maximum plasma concentration was 77.8%; however, the rosuvastatin disposition phase appeared unaffected. The geometric mean ratios for the area under the plasma concentration-time curve from time 0 to time t and from time 0 to infinity were 103.2% and 99.9%, respectively. Mean rosuvastatin apparent elimination half-life was similar between treatment groups. These results demonstrate that vatiquinone has no clinically relevant effect on the pharmacokinetics of rosuvastatin.
Collapse
Affiliation(s)
- Lucy Lee
- PTC Therapeutics, Inc., South Plainfield, New Jersey, USA
| | | | - Jiyuan Ma
- PTC Therapeutics, Inc., South Plainfield, New Jersey, USA
| | - Martin Thoolen
- PTC Therapeutics, Inc., South Plainfield, New Jersey, USA
| |
Collapse
|
24
|
da Silva BPM, Fanalli SL, Gomes JD, de Almeida VV, Fukumasu H, Freitas FAO, Moreira GCM, Silva-Vignato B, Reecy JM, Koltes JE, Koltes D, de Carvalho Balieiro JC, de Alencar SM, da Silva JPM, Coutinho LL, Afonso J, Regitano LCDA, Mourão GB, Luchiari Filho A, Cesar ASM. Brain fatty acid and transcriptome profiles of pig fed diets with different levels of soybean oil. BMC Genomics 2023; 24:91. [PMID: 36855067 PMCID: PMC9976441 DOI: 10.1186/s12864-023-09188-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND The high similarity in anatomical and neurophysiological processes between pigs and humans make pigs an excellent model for metabolic diseases and neurological disorders. Lipids are essential for brain structure and function, and the polyunsaturated fatty acids (PUFA) have anti-inflammatory and positive effects against cognitive dysfunction in neurodegenerative diseases. Nutrigenomics studies involving pigs and fatty acids (FA) may help us in better understanding important biological processes. In this study, the main goal was to evaluate the effect of different levels of dietary soybean oil on the lipid profile and transcriptome in pigs' brain tissue. RESULTS Thirty-six male Large White pigs were used in a 98-day study using two experimental diets corn-soybean meal diet containing 1.5% soybean oil (SOY1.5) and corn-soybean meal diet containing 3.0% soybean oil (SOY3.0). No differences were found for the brain total lipid content and FA profile between the different levels of soybean oil. For differential expression analysis, using the DESeq2 statistical package, a total of 34 differentially expressed genes (DEG, FDR-corrected p-value < 0.05) were identified. Of these 34 DEG, 25 are known-genes, of which 11 were up-regulated (log2 fold change ranging from + 0.25 to + 2.93) and 14 were down-regulated (log2 fold change ranging from - 3.43 to -0.36) for the SOY1.5 group compared to SOY3.0. For the functional enrichment analysis performed using MetaCore with the 34 DEG, four pathway maps were identified (p-value < 0.05), related to the ALOX15B (log2 fold change - 1.489), CALB1 (log2 fold change - 3.431) and CAST (log2 fold change + 0.421) genes. A "calcium transport" network (p-value = 2.303e-2), related to the CAST and CALB1 genes, was also identified. CONCLUSION The results found in this study contribute to understanding the pathways and networks associated with processes involved in intracellular calcium, lipid metabolism, and oxidative processes in the brain tissue. Moreover, these results may help a better comprehension of the modulating effects of soybean oil and its FA composition on processes and diseases affecting the brain tissue.
Collapse
Affiliation(s)
- Bruna Pereira Martins da Silva
- grid.11899.380000 0004 1937 0722Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Simara Larissa Fanalli
- grid.11899.380000 0004 1937 0722Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Julia Dezen Gomes
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Vivian Vezzoni de Almeida
- grid.411195.90000 0001 2192 5801College of Veterinary Medicine and Animal Science, Federal University of Goiás, Goiânia, Goiás Brazil
| | - Heidge Fukumasu
- grid.11899.380000 0004 1937 0722Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Felipe André Oliveira Freitas
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Bárbara Silva-Vignato
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - James Mark Reecy
- grid.34421.300000 0004 1936 7312College of Agriculture and Life Sciences, Iowa State University, Ames, IA USA
| | - James Eugene Koltes
- grid.34421.300000 0004 1936 7312College of Agriculture and Life Sciences, Iowa State University, Ames, IA USA
| | - Dawn Koltes
- grid.34421.300000 0004 1936 7312College of Agriculture and Life Sciences, Iowa State University, Ames, IA USA
| | - Júlio Cesar de Carvalho Balieiro
- grid.11899.380000 0004 1937 0722School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Severino Matias de Alencar
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Julia Pereira Martins da Silva
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Luiz Lehmann Coutinho
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Juliana Afonso
- grid.460200.00000 0004 0541 873XEmbrapa Pecuária Sudeste, São Carlos, São Paulo, Brazil
| | | | - Gerson Barreto Mourão
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Albino Luchiari Filho
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Aline Silva Mello Cesar
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil. .,Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
25
|
Huang HY, Tsai ST. Network pharmacology implicates traditional Chinese medicine in regulating systemic homeostasis to benefit Alzheimer's disease. Tzu Chi Med J 2023. [DOI: 10.4103/tcmj.tcmj_125_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
26
|
Sánchez-Martínez JD, Garcia AR, Alvarez-Rivera G, Valdés A, Brito MA, Cifuentes A. In Vitro Study of the Blood-Brain Barrier Transport of Natural Compounds Recovered from Agrifood By-Products and Microalgae. Int J Mol Sci 2022; 24:ijms24010533. [PMID: 36613976 PMCID: PMC9820279 DOI: 10.3390/ijms24010533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Agrifood by-products and microalgae represent a low-cost and valuable source of bioactive compounds with neuroprotective properties. However, the neuroprotective effectiveness of therapeutic molecules can be limited by their capacity to cross the blood-brain barrier (BBB) and reach the brain. In this research, various green extracts from Robinia pseudoacacia (ASFE), Cyphomandra betacea (T33), Coffea arabica (PPC1), Olea europaea L., (OL-SS), Citrus sinensis (PLE100) by-products and from the microalgae Dunaliella salina (DS) that have demonstrated in vitro neuroprotective potential were submitted to an in vitro BBB permeability and transport assay based on an immortalized human brain microvascular endothelial cells (HBMEC) model. Toxicity and BBB integrity tests were performed, and the transport of target bioactive molecules across the BBB were evaluated after 2 and 4 h of incubation using gas and liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (GC/LC-Q-TOF-MS). The HBMEC-BBB transport assay revealed a high permeability of representative neuroprotective compounds, such as mono- and sesquiterpenoids, phytosterols and some phenolic compounds. The obtained results from the proposed in vitro BBB cellular model provide further evidence of the neuroprotective potential of the target natural extracts, which represent a promising source of functional ingredients to be transferred into food supplements, food additives, or nutraceuticals with scientifically supported neuroprotective claims.
Collapse
Affiliation(s)
- José David Sánchez-Martínez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Ana Rita Garcia
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Gerardo Alvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (M.A.B.); (A.C.); Tel.: +351-217946449 (M.A.B.); Tel.: +34-910017955 (A.C.)
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, UAM-CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain
- Correspondence: (M.A.B.); (A.C.); Tel.: +351-217946449 (M.A.B.); Tel.: +34-910017955 (A.C.)
| |
Collapse
|
27
|
Zhang X, Lee W, Bian JS. Recent Advances in the Study of Na +/K +-ATPase in Neurodegenerative Diseases. Cells 2022; 11:cells11244075. [PMID: 36552839 PMCID: PMC9777075 DOI: 10.3390/cells11244075] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Na+/K+-ATPase (NKA), a large transmembrane protein, is expressed in the plasma membrane of most eukaryotic cells. It maintains resting membrane potential, cell volume and secondary transcellular transport of other ions and neurotransmitters. NKA consumes about half of the ATP molecules in the brain, which makes NKA highly sensitive to energy deficiency. Neurodegenerative diseases (NDDs) are a group of diseases characterized by chronic, progressive and irreversible neuronal loss in specific brain areas. The pathogenesis of NDDs is sophisticated, involving protein misfolding and aggregation, mitochondrial dysfunction and oxidative stress. The protective effect of NKA against NDDs has been emerging gradually in the past few decades. Hence, understanding the role of NKA in NDDs is critical for elucidating the underlying pathophysiology of NDDs and identifying new therapeutic targets. The present review focuses on the recent progress involving different aspects of NKA in cellular homeostasis to present in-depth understanding of this unique protein. Moreover, the essential roles of NKA in NDDs are discussed to provide a platform and bright future for the improvement of clinical research in NDDs.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weithye Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
28
|
Evaluation of vatiquinone drug-drug interaction potential in vitro and in a phase 1 clinical study with tolbutamide, a CYP2C9 substrate, and omeprazole, a CYP2C19 substrate, in healthy subjects. Eur J Clin Pharmacol 2022; 78:1823-1831. [PMID: 36166059 DOI: 10.1007/s00228-022-03393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE In this study, the drug-drug interaction potential of vatiquinone with cytochrome P450 (CYP) substrates was investigated in both in vitro and clinical studies. METHODS The inhibitory potential of vatiquinone on the activity of CYPs 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4/5 was assessed in vitro. In an open-label, drug-drug interaction study in 18 healthy human subjects, a single oral dose of 500 mg tolbutamide and 40 mg omeprazole was administered on day 1, followed by a washout of 7 days. Multiple oral doses of 400 mg vatiquinone (three times a day [TID]) were administered from day 8 to day 13 with coadministration of a single oral dose of 500 mg tolbutamide and 40 mg omeprazole on day 12. RESULTS In vitro, vatiquinone inhibited CYP2C9 (IC50 = 3.7 µM) and CYP2C19 (IC50 = 5.4 µM). In the clinical study, coadministration of vatiquinone did not affect the pharmacokinetic (PK) profile of tolbutamide and omeprazole. The 90% confidence intervals (CIs) of geometric least-square mean ratios for maximum plasma concentration (Cmax), areas under the plasma concentration-time curve (AUC0-t), and AUC0-inf of tolbutamide and omeprazole were entirely contained within the 80 to 125% no effect limit, except a minor excursion observed for Cmax of omeprazole (geometric mean ratio [GMR], 94.09; 90% CI, 78.70-112.50). Vatiquinone was generally well tolerated, and no clinically significant findings were reported. CONCLUSION The in vitro and clinical studies demonstrated vatiquinone has a low potential to affect the pharmacokinetics of concomitantly administered medications that are metabolized by CYP enzymes.
Collapse
|
29
|
Li W, Luo LX, Zhou QQ, Gong HB, Fu YY, Yan CY, Li E, Sun J, Luo Z, Ding ZJ, Zhang QY, Mu HL, Cao YF, Ouyang SH, Kurihara H, Li YF, Sun WY, Li M, He RR. Phospholipid peroxidation inhibits autophagy via stimulating the delipidation of oxidized LC3-PE. Redox Biol 2022; 55:102421. [PMID: 35964342 PMCID: PMC9389305 DOI: 10.1016/j.redox.2022.102421] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 01/18/2023] Open
Abstract
Phospholipid peroxidation of polyunsaturated fatty acids at the bis-allylic position drives ferroptosis. Here we identify a novel role for phospholipid peroxidation in the inhibition of autophagy. Using in vitro and in vivo models, we report that phospholipid peroxidation induced by glutathione peroxidase-4 inhibition and arachidonate 15-lipoxygenase overexpression leads to overload of peroxidized phospholipids and culminate in inhibition of autophagy. Functional and lipidomics analysis further demonstrated that inhibition of autophagy was associated with an increase of peroxidized phosphatidylethanolamine (PE) conjugated LC3. We further demonstrate that autophagy inhibition occurred due to preferential cleavage of peroxidized LC3-PE by ATG4B to yield delipidated LC3. Mouse models of phospholipid peroxidation and autophagy additionally supported a role for peroxidized PE in autophagy inhibition. Our results agree with the recognized role of endoplasmic reticulum as the primary source for autophagosomal membranes. In summary, our studies demonstrated that phospholipid peroxidation inhibited autophagy via stimulating the ATG4B-mediated delipidation of peroxidized LC3-PE.
Collapse
Affiliation(s)
- Wen Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lian-Xiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Qing-Qing Zhou
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Hai-Biao Gong
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yuan-Yuan Fu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chang-Yu Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - E Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jie Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhuo Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhao-Jun Ding
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Qiong-Yi Zhang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Han-Lu Mu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yun-Feng Cao
- Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, Guangzhou, 510632, China
| | - Shu-Hua Ouyang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, Guangzhou, 510632, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, Guangzhou, 510632, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, Guangzhou, 510632, China
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, Guangzhou, 510632, China.
| | - Min Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Joint Laboratory of Dalian Runsheng Kangtai and Jinan University, Jinan University, Guangzhou, 510632, China; School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
30
|
12/15-Lipoxygenase Regulation of Diabetic Cognitive Dysfunction Is Determined by Interfering with Inflammation and Cell Apoptosis. Int J Mol Sci 2022; 23:ijms23168997. [PMID: 36012263 PMCID: PMC9409421 DOI: 10.3390/ijms23168997] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
This study aimed to discuss the role of 12/15-lipoxygenase (12/15-LOX) regulation involved in diabetes cognitive dysfunction. First, Mini Mental State Examination (MMSE) test was used to evaluate cognitive ability in diabetic patients and normal controls. The plasma test showed that the plasma level of 12/15-LOX in patients with MMSE scores below 27 was significantly increased compared with that of the normal group. Second, 12/15-LOX inhibitor was administered to diabetic rats. Behavioral tests, biochemistry, enzyme-linked immunosorbent assays, and Western blotting were used in this study. We found that the levels of fasting and random blood glucose increased rapidly in diabetic rats, the levels of triglycerides and total cholesterol in the diabetic group increased, and insulin levels decreased significantly. In the Morris water maze test, the escape latency was prolonged, and the crossing times decreased in the diabetic group. Under the microscope, the apoptosis of hippocampal neurons in diabetic rats increased significantly. The levels of TNF-α, IL-6 and 12-hydroxyindoleic acid (12(S)-HETE) significantly increased, and the protein expression of 12/15-LOX, p38 MAPK, Aβ1-42, caspase-3, caspase-9 and cPLA2 increased, while that of Bcl-2 decreased. However, the use of 12/15-LOX inhibitor reversed these results. Third, 12/15-LOX shRNA and p38MAPK inhibitor were administered to HT22 cells in high-glucose medium. The results of the cell experiment were consistent with those of the animal experiment. Our results indicated that the 12/15-LOX pathway participates in diabetic brain damage by activating p38MAPK to promote inflammation and neuronal apoptosis, and intervention 12/15-LOX can improve diabetic cognitive dysfunction.
Collapse
|
31
|
Liu G, Yu Q, Tan B, Ke X, Zhang C, Li H, Zhang T, Lu Y. Gut dysbiosis impairs hippocampal plasticity and behaviors by remodeling serum metabolome. Gut Microbes 2022; 14:2104089. [PMID: 35876011 PMCID: PMC9327780 DOI: 10.1080/19490976.2022.2104089] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Accumulating evidence suggests that gut microbiota as a critical mediator of gut-brain axis plays an important role in human health. Altered gut microbial profiles have been implicated in increasing the vulnerability of psychiatric disorders, such as autism, depression, and schizophrenia. However, the cellular and molecular mechanisms underlying the association remain unknown. Here, we modified the gut microbiome with antibiotics in newborn mice, and found that gut microbial alteration induced behavioral impairment by decreasing adult neurogenesis and long-term potentiation of synaptic transmission, and altering the gene expression profile in hippocampus. Reconstitution with normal gut flora produced therapeutic effects against both adult neurogenesis and behavioral deficits in the dysbiosis mice. Furthermore, our results show that circulating metabolites changes mediate the effect of gut dysbiosis on hippocampal plasticity and behavior outcomes. Elevating the serum 4-methylphenol, a small aromatic metabolite produced by gut bacteria, was found to induce autism spectrum disorder (ASD)-like behavior impairment and hippocampal dysfunction. Together our finding demonstrates that early-life gut dysbiosis and its correlated metabolites change contribute to hippocampal dysfunction and behavior impairment, hence highlight the potential microbiome-mediated therapies for treating psychiatric disorders.
Collapse
Affiliation(s)
- Guoqiang Liu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China
| | - Quntao Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China
| | - Bo Tan
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China
| | - Xiao Ke
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China
| | - Chen Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China
| | - Hao Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China,Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China
| | - Tongmei Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China,Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,CONTACT Youming Lu Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan4030030, China
| |
Collapse
|
32
|
Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC. The key roles of organelles and ferroptosis in Alzheimer's disease. J Neurosci Res 2022; 100:1257-1280. [PMID: 35293012 DOI: 10.1002/jnr.25033] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disease, is a striking global health problem. Ferroptosis is a newly discovered form of cell death characterized by iron-dependent lipid peroxidation products and the accumulation of lethal reactive oxygen species. Strict regulation of iron metabolism is essential to ensure neuronal homeostasis. Excess and deficiency of iron are both associated with neurodegeneration. Studies have shown that oxidative stress caused by cerebral iron metabolism disorders in the body is involved in the process of AD, ferroptosis may play an important role in the pathogenesis of AD, and regulating ferroptosis is expected to be a new direction for the treatment of AD. Various organelles are closely related to ferroptosis: mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosome are involved in the regulation of ferroptosis from the aspects of iron metabolism and redox imbalance. In this review, the relationship between AD and the dysfunction of organelles (including mitochondria, endoplasmic reticulum, lysosome, and Golgi apparatus) and the role of organelles in ferroptosis of AD were reviewed to provide insights for understanding the relationship between organelles and ferroptosis in AD and the treatment of AD.
Collapse
Affiliation(s)
- Hui-Zhi Long
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Yan Cheng
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Dan-Dan Wen
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| |
Collapse
|
33
|
Soriano-Castell D, Liang Z, Maher P, Currais A. The search for anti-oxytotic/ferroptotic compounds in the plant world. Br J Pharmacol 2021; 178:3611-3626. [PMID: 33931859 DOI: 10.1111/bph.15517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
Oxytosis/ferroptosis is a form of non-apoptotic regulated cell death characterized by glutathione (GSH) depletion and dysregulated production of mitochondrial ROS that results in lethal lipid peroxidation. As the significance of oxytosis/ferroptosis to age-associated human diseases is now beginning to be appreciated, the development of innovative approaches to identify novel therapeutics that target the oxytosis/ferroptosis pathway could not be more timely. Due to their sessile nature, plants are exposed to a variety of stresses that trigger physiological changes similar to those found in oxytosis/ferroptosis. As such, they have evolved a rich array of chemical strategies to deal with those challenging conditions. This review details a drug discovery approach for identifying potent inhibitors of oxytosis/ferroptosis from plants for the treatment of Alzheimer's disease and related dementias, thereby highlighting the tremendous potential of plant-based research for developing new medicines while simultaneously being a catalyst for sustainability.
Collapse
Affiliation(s)
- David Soriano-Castell
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Zhibin Liang
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
34
|
Wang W, Wang J, Tang Q, Zhu X, Zhu R, Cui D, Wei C, Liu X, Liu X, Ran S, Pan Y, Yu J. CX3CR1 deficiency aggravates brain white matter injury and affects expression of the CD36/15LO/NR4A1 signal. Biochem Biophys Res Commun 2021; 549:47-53. [PMID: 33662668 DOI: 10.1016/j.bbrc.2021.02.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/12/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To study the effects of CX3CR1 on white matter injury, neurofunction, recognition, and expression of the CD36/15LO/NR4A1 signal in mice with traumatic brain injury (TBI). METHODS CX3CR1GFP/GFP, CX3CR1GFP/+ and C57BL/6 male mice were randomly divided into 3 groups. We used a controlled cortical impact (CCI) to establish a TBI model and T2wt MRI to detect the TBI lesion. FA and DTI allowed for quantitative evaluation of the structural integrity of white matter tracts. Several behavior tests were used to investigate nerve function; a computer-based tracing system was used to trace and analyze dendrites and cell bodies of microglia and astrocytes in the peri-lesional brain areas. We also used RT-PCR and western blot to detect the effect of CX3CL1/CX3CR1 axis on CD36/15LO/NR4A1 signal. RESULTS The fractional anisotropy (FA) at the corpus callosum area of brain was decreased at 3 days post TBI, the average lesion volume CX3CR1GFP/GFP group was increased, and the neurologic deficit scores of mice of Cx3Cr1GFP/+ and wild-type groups were significantly increased compared to Cx3Cr1GFP/GFP group mice. In the Corner turn test, TBI induced impairments in forelimb function that were more severe than Cx3Cr11GFP/+ and wild-type TBI mice. We operated the Y-maze at 3 days post-TBI and the NOR test at 28 days after TBI. There was a significant TBI effect induced in decreased percentage entries into the novel arm in Cx3Cr1GFP/+ and wild-type TBI mice, compared with Cx3Cr1GFP/GFP; Cx3Cr1GFP/+. Wild-type mice showed decreased exploration time in new objects compared with Cx3Cr1GFP/GFP. Those two behavior tests demonstrated that Cx3Cr1 knock-out increased the damage caused by TBI to memory. In the tail suspension and force swimming tests, there was no significant difference between those three groups. CD36 increased in Cx3Cr1GFP/GFP compared with the other three groups at 3 days after TBI. TBI inhibited the expression of NR4A1 at 3 d after damage. Cx3Cr1 deficiency can induce high expression of 15LO, this was unaffected by TBI. CONCLUSION CX3CR1 deletion can enhance white matter injury. It increased the expression of CD36 and 15LO and increased expression of NR4A1. The lack of CX3CR1 can affect the recovery of nerve function.
Collapse
Affiliation(s)
- Wenzhu Wang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jingbo Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Qing Tang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiwen Zhu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Cui
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunzhu Wei
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinjie Liu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingxing Liu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Ran
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzheng Pan
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China.
| | - Jintao Yu
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
35
|
Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, Lei P. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther 2021; 6:49. [PMID: 33536413 PMCID: PMC7858612 DOI: 10.1038/s41392-020-00428-9] [Citation(s) in RCA: 779] [Impact Index Per Article: 194.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is an iron-dependent cell death, which is different from apoptosis, necrosis, autophagy, and other forms of cell death. The process of ferroptotic cell death is defined by the accumulation of lethal lipid species derived from the peroxidation of lipids, which can be prevented by iron chelators (e.g., deferiprone, deferoxamine) and small lipophilic antioxidants (e.g., ferrostatin, liproxstatin). This review summarizes current knowledge about the regulatory mechanism of ferroptosis and its association with several pathways, including iron, lipid, and cysteine metabolism. We have further discussed the contribution of ferroptosis to the pathogenesis of several diseases such as cancer, ischemia/reperfusion, and various neurodegenerative diseases (e.g., Alzheimer's disease and Parkinson's disease), and evaluated the therapeutic applications of ferroptosis inhibitors in clinics.
Collapse
Affiliation(s)
- Hong-Fa Yan
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China
| | - Ting Zou
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Qing-Zhang Tuo
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China
| | - Shuo Xu
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Hua Li
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Abdel Ali Belaidi
- Melbourne Dementia Research Centre and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China.
| |
Collapse
|
36
|
Downregulation of autophagy by 12/15Lipoxygenase worsens the phenotype of an Alzheimer's disease mouse model with plaques, tangles, and memory impairments. Mol Psychiatry 2021; 26:604-613. [PMID: 30279460 DOI: 10.1038/s41380-018-0268-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/03/2018] [Accepted: 09/06/2018] [Indexed: 11/08/2022]
Abstract
Among the different initiating events in Alzheimer's disease (AD) pathogenesis, oxidative stress and neuroinflammation are some of the most iimportant. In the central nervous system, the 12/15Lipoxygenase (12/15LO) enzyme is the source of potent pro-oxidants and inflammatory lipid mediators. Previous works showed that this pathway is up-regulated in AD brains and that its pharmacological targeting modulates the phenotype of transgenic mouse models of the disease. Here we investigate the effect of brain 12/15LO gene delivery on the AD-like phenotype of a mouse model with plaques, tangles and behavioral deficits, the 3xTg mice. Compared with controls, mice over-expressing 12/15LO manifested an exacerbation of spatial learning and memory impairments, which was associated with significant increase in Aβ formation and deposition, and accumulation of hyper-phosphorylated insoluble tau secondary to a down-regulation of autophagy. In addition, the same mice manifested a worsening of neuroinflammation and synaptic pathology. Taken together our study supports the hypothesis that the 12/15LO enzymatic pathway by impairing neuronal autophagy plays a functional role in exacerbating AD-related neuropathologies and cognitive impairments. It provides further critical preclinical evidence to justify developing and testing new and selective 12/15LO inhibitors for AD treatment.
Collapse
|
37
|
Maher P, Currais A, Schubert D. Using the Oxytosis/Ferroptosis Pathway to Understand and Treat Age-Associated Neurodegenerative Diseases. Cell Chem Biol 2020; 27:1456-1471. [PMID: 33176157 PMCID: PMC7749085 DOI: 10.1016/j.chembiol.2020.10.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Oxytosis was first described over 30 years ago in nerve cells as a non-excitotoxic pathway for glutamate-induced cell death. The key steps of oxytosis, including glutathione depletion, lipoxygenase activation, reactive oxygen species accumulation, and calcium influx, were identified using a combination of chemical and genetic tools. A pathway with the same characteristics as oxytosis was identified in transformed fibroblasts in 2012 and named ferroptosis. Importantly, the pathophysiological changes seen in oxytosis and ferroptosis are also observed in multiple neurodegenerative diseases as well as in the aging brain. This led to the hypothesis that this pathway could be used as a screening tool to identify novel drug candidates for the treatment of multiple age-associated neurological disorders, including Alzheimer's disease (AD). Using this approach, we have identified several AD drug candidates, one of which is now in clinical trials, as well as new target pathways for AD.
Collapse
Affiliation(s)
- Pamela Maher
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Antonio Currais
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - David Schubert
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
38
|
Sánchez-Martínez JD, Bueno M, Alvarez-Rivera G, Tudela J, Ibañez E, Cifuentes A. In vitro neuroprotective potential of terpenes from industrial orange juice by-products. Food Funct 2020; 12:302-314. [PMID: 33300906 DOI: 10.1039/d0fo02809f] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Citrus sinensis (orange) by-products represent one of the most abundant citric residues from orange juice industrial production, and are a promising source of health-promoting compounds like terpenes. In this work, different extraction solvents have been employed to increase terpene extraction yield and selectivity from this orange juice by-product. A set of bioactivity assays including enzymatic (acetylcholinesterase (AChE), butylcholinesterase (BChE) and lipoxygenase (LOX)) as well as antioxidant (ABTS, reactive oxygen species (ROS) and reactive nitrogen species (RNS)) activity tests have been applied to investigate the neuroprotective potential of these compounds. New fluorescence-based methodologies were developed for AChE and BChE assays to overcome the drawbacks of these tests when used in vitro to determine the anticholinergic activity of colored extracts. Comprehensive phytochemical profiling based on gas chromatography coupled to quadrupole time of flight mass spectrometry (GC-qTOF-MS) analysis showed ahigh content of mono- and sesquiterpenes in the extracts obtained with ethyl acetate, whereas n-heptane extracts exhibited a large amount of triterpenes and carotenoids. From a neuroprotective activity point of view, ethyl acetate extract is the most promising due to its anticholinergic activity and antioxidant capacity. Finally, a multivariate data analysis revealed a good correlation between some monoterpenes (e.g. nerol or limonene) and the antioxidant capacity of the natural extract, while a group of sesquiterpenes (e.g.δ-Cadinene or nootkatone) showed correlation with the observed AChE, BChE and LOX inhibition capacity. Hydrocarbons mono- and sesquiterpenoids reveal high capacity in vitro to cross the blood-brain barrier (BBB).
Collapse
Affiliation(s)
- José David Sánchez-Martínez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Mónica Bueno
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Gerardo Alvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - José Tudela
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Espinardo, Murcia, Spain
| | - Elena Ibañez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
39
|
Merged Tacrine-Based, Multitarget-Directed Acetylcholinesterase Inhibitors 2015-Present: Synthesis and Biological Activity. Int J Mol Sci 2020; 21:ijms21175965. [PMID: 32825138 PMCID: PMC7504404 DOI: 10.3390/ijms21175965] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
Acetylcholinesterase is an important biochemical enzyme in that it controls acetylcholine-mediated neuronal transmission in the central nervous system, contains a unique structure with two binding sites connected by a gorge region, and it has historically been the main pharmacological target for treatment of Alzheimer's disease. Given the large projected increase in Alzheimer's disease cases in the coming decades and its complex, multifactorial nature, new drugs that target multiple aspects of the disease at once are needed. Tacrine, the first acetylcholinesterase inhibitor used clinically but withdrawn due to hepatotoxicity concerns, remains an important starting point in research for the development of multitarget-directed acetylcholinesterase inhibitors. This review highlights tacrine-based, multitarget-directed acetylcholinesterase inhibitors published in the literature since 2015 with a specific focus on merged compounds (i.e., compounds where tacrine and a second pharmacophore show significant overlap in structure). The synthesis of these compounds from readily available starting materials is discussed, along with acetylcholinesterase inhibition data, relative to tacrine, and structure activity relationships. Where applicable, molecular modeling, to elucidate key enzyme-inhibitor interactions, and secondary biological activity is highlighted. Of the numerous compounds identified, there is a subset with promising preliminary screening results, which should inspire further development and future research in this field.
Collapse
|
40
|
dos Santos Maia M, Rodrigues GCS, de Sousa NF, Scotti MT, Scotti L, Mendonça-Junior FJB. Identification of New Targets and the Virtual Screening of Lignans against Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3098673. [PMID: 32879651 PMCID: PMC7448245 DOI: 10.1155/2020/3098673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/22/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is characterized by the progressive disturbance in cognition and affects approximately 36 million people, worldwide. However, the drugs used to treat this disease are only moderately effective and do not alter the course of the neurodegenerative process. This is because the pathogenesis of AD is mainly associated with oxidative stress, and current drugs only target two enzymes involved in neurotransmission. Therefore, the present study sought to identify potential multitarget compounds for enzymes that are directly or indirectly involved in the oxidative pathway, with minimal side effects, for AD treatment. A set of 159 lignans were submitted to studies of QSAR and molecular docking. A combined analysis was performed, based on ligand and structure, followed by the prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. The results showed that the combined analysis was able to select 139 potentially active and multitarget lignans targeting two or more enzymes, among them are c-Jun N-terminal kinase 3 (JNK-3), protein tyrosine phosphatase 1B (PTP1B), nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1), NADPH quinone oxidoreductase 1 (NQO1), phosphodiesterase 5 (PDE5), nuclear factor erythroid 2-related factor 2 (Nrf2), cycloxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS). The authors conclude that compounds (06) austrobailignan 6, (11) anolignan c, (19) 7-epi-virolin, (64) 6-[(2R,3R,4R,5R)-3,4-dimethyl-5-(3,4,5-trimethoxyphenyl)oxolan-2-yl]-4-methoxy-1,3-benzodioxole, (116) ococymosin, and (135) mappiodoinin b have probabilities that confer neuroprotection and antioxidant activity and represent potential alternative AD treatment drugs or prototypes for the development of new drugs with anti-AD properties.
Collapse
Affiliation(s)
- Mayara dos Santos Maia
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Gabriela Cristina Soares Rodrigues
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Natália Ferreira de Sousa
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | |
Collapse
|
41
|
Orafaie A, Mousavian M, Orafai H, Sadeghian H. An overview of lipoxygenase inhibitors with approach of in vivo studies. Prostaglandins Other Lipid Mediat 2020; 148:106411. [DOI: 10.1016/j.prostaglandins.2020.106411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/27/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022]
|
42
|
Autophagy Dysfunction in Alzheimer's Disease: Mechanistic Insights and New Therapeutic Opportunities. Biol Psychiatry 2020; 87:797-807. [PMID: 31262433 DOI: 10.1016/j.biopsych.2019.05.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/24/2019] [Accepted: 05/11/2019] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss due to aberrant accumulation of misfolded proteins inside and outside neurons and glial cells, leading to a loss of cellular protein homeostasis. Today, no therapy is available to block or slow down AD progression, and the mechanisms of the disease are not fully understood. Autophagy is an intracellular degradation pathway crucial to maintaining cellular homeostasis by clearing damaged organelles, pathogens, and unwanted protein aggregates. In recent years, autophagy dysfunction has gained considerable attention in AD and other neurodegenerative diseases because it has been linked to the accumulation of misfolded proteins that ultimately causes neuronal death in many of these disorders. Interestingly, autophagy-activating compounds have also shown some promising results in both clinical trials and preclinical studies. This review aims at summarizing the current knowledge on autophagy dysfunction in the context of AD pathophysiology, providing recent mechanistic insights on AD-mediated autophagic flux disruption and highlighting potential and novel therapeutic opportunities that target this system for AD therapy.
Collapse
|
43
|
Ji D, Wu X, Li D, Liu P, Zhang S, Gao D, Gao F, Zhang M, Xiao Y. Protective effects of chondroitin sulphate nano-selenium on a mouse model of Alzheimer's disease. Int J Biol Macromol 2020; 154:233-245. [PMID: 32171837 DOI: 10.1016/j.ijbiomac.2020.03.079] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 01/19/2023]
Abstract
In this study, the effect of chondroitin sulphate nano-selenium (CS@Se) on Alzheimer's disease (AD) in mice was investigated. CS@Se alleviated anxiety and improved the spatial learning and memory impairment in AD mice. CS@Se significantly reduced cell oedema and pyknosis, protected the mitochondria, and improved abnormal changes in the ultrastructure of hippocampal neuron synapses of AD mice. Moreover, CS@Se significantly increased the levels of superoxide dismutase(SOD), glutathione peroxidase (GSH-Px), Na+/K+-ATPase assay (Na+/K+-ATPase) and acetyltransferase (ChAT), and decreased the levels of malondialdehyde (MDA) and acetylcholinesterase (ChAE) in AD mice. Western blot results showed that CS@Se can attenuate excessive phosphorylation of tau (Ser396/Ser404) by regulating the expression of glycogen synthase kinase-3 beta (GSK-3β). In addition, CS@Se can activate the extracellular signal-regulated kinase 1/2 (ERK 1/2) and p38 mitogen-activated protein kinase (p38 MAPK) signalling pathways to inhibit nuclear transcription factor kappa B (NF-κB) nuclear translocation, thereby regulating the expression of pro-inflammatory cytokines. In summary, CS@Se can reduce oxidative stress damage, inhibit excessive tau phosphorylation, reduce inflammation to delay AD development, and increase the learning and memory capacities of AD mice.
Collapse
Affiliation(s)
- Dongsheng Ji
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Xiaming Wu
- Department of Pharmacy, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, Shandong, China
| | - Delong Li
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Ping Liu
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China; Department of Pharmacy, Affiliated Hospital of Heze Medical College, Heze 274000, Shandong, China
| | - Sitao Zhang
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Debo Gao
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Fei Gao
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Mengxiao Zhang
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Yuliang Xiao
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong Key Laboratory of Cerebral Microcirculation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China.
| |
Collapse
|
44
|
Safety and Neuroprotective Efficacy of Palm Oil and Tocotrienol-Rich Fraction from Palm Oil: A Systematic Review. Nutrients 2020; 12:nu12020521. [PMID: 32085610 PMCID: PMC7071496 DOI: 10.3390/nu12020521] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/02/2023] Open
Abstract
Background: Several natural products have been reported to elicit beneficial effects against neurodegenerative disorders due to their vitamin E contents. However, the neuroprotective efficacy of palm oil or its tocotrienol-rich fraction (TRF) from the pre-clinical cell and animal studies have not been systematically reviewed. Methods: The protocol for this systematic review was registered in “PROSPERO” (CRD42019150408). This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The Medical Subject Heading (MeSH) descriptors of PubMed with Boolean operators were used to construct keywords, including (“Palm Oil”[Mesh]) AND “Nervous System”[Mesh], (“Palm Oil”[Mesh]) AND “Neurodegenerative Diseases”[Mesh], (“Palm Oil”[Mesh]) AND “Brain”[Mesh], and (“Palm Oil”[Mesh]) AND “Cognition”[Mesh], to retrieve the pertinent records from PubMed, Scopus, Web of Science and ScienceDirect from 1990 to 2019, while bibliographies, ProQuest and Google Scholar were searched to ensure a comprehensive identification of relevant articles. Two independent investigators were involved at every stage of the systematic review, while discrepancies were resolved through discussion with a third investigator. Results: All of the 18 included studies in this review (10 animal and eight cell studies) showed that palm oil and TRF enhanced the cognitive performance of healthy animals. In diabetes-induced rats, TRF and α-tocotrienol enhanced cognitive function and exerted antioxidant, anti-apoptotic and anti-inflammatory activities, while in a transgenic Alzheimer’s disease (AD) animal model, TRF enhanced the cognitive function and reduced the deposition of β-amyloid by altering the expression of several genes related to AD and neuroprotection. In cell studies, simultaneous treatment with α-tocotrienols and neurotoxins improved the redox status in neuronal cells better than γ- and δ-tocotrienols. Both pre-treatment and post-treatment with α-tocotrienol relative to oxidative insults were able to enhance the survival of neuronal cells via increased antioxidant responses. Conclusions: Palm oil and its TRF enhanced the cognitive functions of healthy animals, while TRF and α-tocotrienol enhanced the cognitive performance with attenuation of oxidative stress, neuroinflammation and apoptosis in diabetes-induced or transgenic AD animal models. In cell studies, TRF and α-tocotrienol exerted prophylactic neuroprotective effects, while α-tocotrienol exerted therapeutic neuroprotective effects that were superior to those of γ- and δ-tocotrienol isomers.
Collapse
|
45
|
Schäfer M, Fan Y, Gu T, Heydeck D, Stehling S, Ivanov I, Yao YG, Kuhn H. The lipoxygenase pathway of Tupaia belangeri representing Scandentia. Genomic multiplicity and functional characterization of the ALOX15 orthologs in the tree shrew. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158550. [PMID: 31676437 DOI: 10.1016/j.bbalip.2019.158550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 12/31/2022]
Abstract
The tree shrew (Tupaia belangeri) is a rat-sized mammal, which is more closely related to humans than mice and rats. However, the use of tree shrew to explore the patho-mechanisms of human inflammatory disorders has been limited since nothing is known about eicosanoid metabolism in this mammalian species. Eicosanoids are important lipid mediators exhibiting pro- and anti-inflammatory activities, which are biosynthesized via lipoxygenase and cyclooxygenase pathways. When we searched the tree shrew genome for the presence of cyclooxygenase and lipoxygenase isoforms we found copies of functional COX1, COX2 and LOX genes. Interestingly, we identified four copies of ALOX15 genes, which encode for four structurally distinct ALOX15 orthologs (tupALOX15a-d). To explore the catalytic properties of these enzymes we expressed tupALOX15a and tupALOX15c as catalytically active proteins and characterized their enzymatic properties. As predicted by the Evolutionary Hypothesis of ALOX15 specificity we found that the two enzymes converted arachidonic acid predominantly to 12S-HETE and they also exhibited membrane oxygenase activities. However, their reaction kinetic properties (KM for arachidonic acid and oxygen, T- and pH-dependence) and their substrate specificities were remarkably different. In contrast to mice and humans, tree shrew ALOX15 isoforms are highly expressed in the brain suggesting a role of these enzymes in cerebral function. The genomic multiplicity and the tissue expression patterns of tree shrew ALOX15 isoforms need to be considered when the results of in vivo inflammation studies obtained in this animal are translated into the human situation.
Collapse
Affiliation(s)
- Marjann Schäfer
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Tianle Gu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Sabine Stehling
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Igor Ivanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, Vernadskogo pr. 86, 119571 Moscow, Russia
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
46
|
Locachevic GA, Prado MKB, Zoccal KF, Pereira PAT, Sorgi CA, Bortolanza M, Peti APF, Fogaça MV, Guimarães FS, Del Bel E, Faccioli LH. Paradoxical Effect of LTB 4 on the Regulation of Stress-Induced Corticosterone Production. Front Behav Neurosci 2019; 13:73. [PMID: 31057373 PMCID: PMC6477085 DOI: 10.3389/fnbeh.2019.00073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/26/2019] [Indexed: 01/17/2023] Open
Abstract
Depression is a mental illness with a complex and multifactorial etiology, which has been associated with stress and inflammation. Infections, autoimmune diseases, envenomation, and trauma induce an inflammatory response that is characterized by increasing levels of circulating cytokines (e.g., IL-1β) and lipid mediators [e.g., PGE2 and leukotrienes B4 (LTB4)]. Recently, we showed that LTB4 production by the 5-lipoxygenase (5-LO) pathway regulates IL-1β and PGE2 release, reducing tissue damage in a model of sterile inflammation. Since IL-1β and PGE2 increase in serum of stressed patients and potentially trigger depression, we used an animal model of chronic unpredictable stress (CUS) to investigate the potential impact of LTB4 over depression-like symptoms. At basal conditions, 5-LO deficiency (Alox5−/−) reduces the preference for sucrose, while inducing a higher immobilization time on the tail suspension test when compared 129sv. Moreover, Alox5−/− mice present increased caspase-1 expression and elevated levels of IL-1β, IL-17 and PGE2 in the spleen, with increasing corticosterone levels in the frontal cortex but reducing systemic levels. Compared to 129sv mice, CUS induced higher levels of systemic, frontal cortex and hippocampal corticosterone, and also reduced sucrose preference, increased levels of splenic IL-1β, IL-17 and PGE2 and reduced levels of LTB4. Interestingly, CUS exposure did not alter the reduced sucrose preference shown by Alox5−/− mice but greatly enhanced splenic PGE2 production. Compared to Alox5−/− mice at basal conditions, CUS exposure also increased levels of systemic corticosterone, which remained lower than those of CUS-129sv animals. We also observed that treatment with LTB4 decreased caspase-1 expression and systemic levels of corticosterone in CUS-Alox5−/− mice but there was no significant impact on the reduced sucrose preference. Our results demonstrate that LTB4 controls the hypothalamic-pituitary-adrenal (HPA) axis by regulating levels of systemic corticosterone associated with the repression of caspase-1 expression and production of inflammatory mediators. One limitation of our study is that 129sv and Alox5−/− mice were not littermates, not sharing, therefore, the same intra-uterine and preweaning environment. Even so, taken together our results indicate that 5-LO activity is critical for the regulation of stress-induced symptoms, suggesting that the Alox5−/− mouse could be a natural model of corticosterone-independent reduced reward sensitivity.
Collapse
Affiliation(s)
- Gisele A Locachevic
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Morgana K B Prado
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Karina F Zoccal
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Priscilla A T Pereira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Carlos A Sorgi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Mariza Bortolanza
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula F Peti
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Manoela V Fogaça
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Francisco S Guimarães
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Elaine Del Bel
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Lúcia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
47
|
Madav Y, Wairkar S, Prabhakar B. Recent therapeutic strategies targeting beta amyloid and tauopathies in Alzheimer's disease. Brain Res Bull 2019; 146:171-184. [PMID: 30634016 DOI: 10.1016/j.brainresbull.2019.01.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) has been a global concern for years due to its severe implications that affects the quality of life of the patients. The available line of therapy for treating Alzheimer's includes acetylcholinesterase inhibitors, NMDA(N-methyl-D-aspartate) antagonists and their combination which gives only symptomatic relief rather than treating the root cause of AD. Senile plaques and neurofibrillary tangles are the characteristic features underlying Alzheimer's pathology. Several attempts have been made towards exploring the niceties of these hallmarks and targeting various aspects of amyloid and tau pathology at different stages to eliminate the ultimate cause. Approaches targeting cleavage and formation of toxic amyloid fragments by secretases, aggregation of amyloid monofilaments, and immunotherapy against amyloid deposits has been extensively studied to treat amyloid pathology. Similarly, for tau pathology, tau hyperphosphorylation, microtubule stabilization, anti-tau immunotherapy has been explored. This article focuses on AD pathology and current pharmacotherapy, precisely for amyloid and tau. Furthermore, preclinical and clinical studies along with potential leads discovered under these approaches have also been included in this article. However, despite extensive research in drug development, overcoming clinical barrier still remain a major challenge for Alzheimer's pharmacotherapy.
Collapse
Affiliation(s)
- Yamini Madav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
48
|
Mi Y, Gao X, Xu H, Cui Y, Zhang Y, Gou X. The Emerging Roles of Ferroptosis in Huntington's Disease. Neuromolecular Med 2019; 21:110-119. [PMID: 30600476 DOI: 10.1007/s12017-018-8518-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant and fatal neurodegenerative disorder, which is caused by an abnormal CAG repeat in the huntingtin gene. Despite its well-defined genetic origin, the molecular mechanisms of neuronal death are unclear yet, thus there are no effective strategies to block or postpone the process of HD. Ferroptosis, a recently identified iron-dependent cell death, attracts considerable attention due to its putative involvement in neurodegenerative diseases. Accumulative data suggest that ferroptosis is very likely to participate in HD, and inhibition of the molecules and signaling pathways involved in ferroptosis can significantly eliminate the symptoms and pathology of HD. This review first describes evidence for the close relevance of ferroptosis and HD in patients and mouse models, then summarizes advances for the mechanisms of ferroptosis involved in HD, finally outlines some therapeutic strategies targeted ferroptosis. Comprehensive understanding of the emerging roles of ferroptosis in the occurrence of HD will help us to explore effective therapies for slowing the progression of this disease.
Collapse
Affiliation(s)
- Yajing Mi
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Xingchun Gao
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Hao Xu
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Yuanyuan Cui
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Yuelin Zhang
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China.
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders, and Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
49
|
Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog Lipid Res 2019; 73:28-45. [PMID: 30472260 PMCID: PMC6338518 DOI: 10.1016/j.plipres.2018.11.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
12/15-lipoxygenase (12/15-LOX) is an enzyme, which oxidizes polyunsaturated fatty acids, particularly omega-6 and -3 fatty acids, to generate a number of bioactive lipid metabolites. A large number of studies have revealed the importance of 12/15-LOX role in oxidative and inflammatory responses. The in vitro studies have demonstrated the ability of 12/15-LOX metabolites in the expression of various genes and production of cytokine related to inflammation and resolution of inflammation. The studies with the use of knockout and transgenic animals for 12/15-LOX have further shown its involvement in the pathogenesis of a variety of human diseases, including cardiovascular, renal, neurological and metabolic disorders. This review summarizes our current knowledge on the role of 12/15-LOX in inflammation and various human diseases.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA.
| |
Collapse
|
50
|
Zhu M, Wang X, Sun L, Schultzberg M, Hjorth E. Can inflammation be resolved in Alzheimer's disease? Ther Adv Neurol Disord 2018; 11:1756286418791107. [PMID: 30116300 PMCID: PMC6088473 DOI: 10.1177/1756286418791107] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 05/24/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory loss and dementia. Accumulating evidence suggests that inflammation is involved in the pathogenesis of AD. Epidemiological studies suggest that use of anti-inflammatory drugs is associated with a lower incidence of AD. However, clinical trials with anti-inflammatory drugs have not been successful. Recent studies have shown that inflammation is resolved by a process that is mediated by a group of lipid mediators, so called specialized pro-resolving lipid mediators (SPMs). Unlike anti-inflammatory strategies, which usually involve inhibition of the synthesis of inflammatory mediators, stimulating the resolution of inflammation is aimed at ending inflammation in a similar fashion as under normal physiological conditions. We have previously shown that pathways of resolution are impaired in AD. Moreover, we found that SPMs can improve neuronal survival and increase microglial phagocytosis of amyloid beta (Aβ) in in vitro studies, indicating that stimulating resolution of inflammation may be a potential therapeutic target in AD. In this review, we summarize recent findings regarding resolution of inflammation in AD. We also discuss possible strategies to stimulate the resolution of inflammation in AD, specifically focusing on signaling pathways, including SPMs, their receptors and enzymes involved in their formation.
Collapse
Affiliation(s)
- Mingqin Zhu
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Xinmin Street No 71, Changchun 130000, China
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Marianne Schultzberg
- Department of Neurobiology, Care Sciences & Society, Section of Neurodegeneration, Karolinska Institutet, Center for Alzheimer Research, Sweden
| | - Erik Hjorth
- Department of Neurobiology, Care Sciences & Society, Section of Neurodegeneration, Karolinska Institutet, Center for Alzheimer Research, Sweden
| |
Collapse
|