1
|
Martín-Belmonte A, Aguado C, Alfaro-Ruíz R, Luján R. G protein-gated inwardly rectifying K + (GIRK/K ir3) channels: Molecular, cellular, and subcellular diversity. Histol Histopathol 2025; 40:597-620. [PMID: 39434650 DOI: 10.14670/hh-18-822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels are mainly expressed in excitable cells such as neurons and atrial myocytes, where they can respond to a wide variety of neurotransmitters. Four GIRK subunits have been found in mammals (GIRK1-4) and act as downstream targets for various Gαi/o-linked G protein-coupled receptors (GPCRs). Activation of GIRK channels produces a postsynaptic efflux of potassium from the cell, responsible for hyperpolarization/inhibition of the neuron. A growing body of evidence suggests that dysregulation of GIRK signalling can lead to excessive or deficient neuronal excitability, which contributes to neurological diseases and disorders. Therefore, GIRK channels are proposed as new pharmacological targets. The function of GIRK channels in neurons is not only determined by their biophysical properties but also by their cellular and subcellular localization patterns and densities on the neuronal surface. GIRK channels can be located within several subcellular compartments, where they have many different functional implications. This subcellular localization changes dynamically along the neuronal surface in response to drug intake. Ongoing research is focusing on determining the proteins that form macromolecular complexes with GIRK channels and are responsible for fast and precise signalling under physiological conditions, and how their alteration is implicated in pathological conditions. In this review, the distinct regional, cellular, and subcellular distribution of GIRK channel subunits in the brain will be discussed in view of their possible functional and pathological implications.
Collapse
Affiliation(s)
- Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB-UCLM), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB-UCLM), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Albacete, Spain
| | - Rocio Alfaro-Ruíz
- Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB-UCLM), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Albacete, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Biomedicina de la UCLM (IB-UCLM), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
- Laboratorio de Estructura Sináptica, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Albacete, Spain.
| |
Collapse
|
2
|
Nahid S, Rahman FI, Du Y, Spitznagel BD, Singh SK, Chhonker YS, Murry DJ, Weaver CD, Hopkins CR. Further Structure-Activity Relationship of G Protein-Gated Inwardly Rectifying Potassium Channels 1/2 Activators: Synthesis and Biological Characterization of In Vitro Tool Compounds. ChemMedChem 2025:e2500037. [PMID: 40238995 DOI: 10.1002/cmdc.202500037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
The work presented herein outlines the ongoing structure-activity relationship studies centered around a potent, efficacious, and selective activators of the G protein-gated inwardly rectifying potassium channels (GIRK)1/2 channel. Optimization studies centered around the pyrazole privileged scaffold, the N-1-position of the pyrazole, and the right-hand ether. The work confirms the necessity of the pyrazole, and a more potent GIRK1/2 activator is identified with ≈12-fold selectivity against GIRK1/4. The metabolite ID study is reported which shows the instability of the amide bond as the major site of metabolism (nonNADPH mediated). This work discovers another highly potent and selective GIRK1/2 activator for use as an in vitro tool compound.
Collapse
Affiliation(s)
- Sumaiya Nahid
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fahad Imtiaz Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yu Du
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Brittany D Spitznagel
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Sandeep K Singh
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- UNMC Center for Drug Design and Innovation, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
3
|
Goldberg LR, Baskin BM, Beierle JA, Adla Y, Kelliher JC, Yao EJ, Kirkpatrick SL, Reed ER, Jenkins DF, Cox J, Luong AM, Luttik KP, Scotellaro JA, Drescher TA, Crotts SB, Yazdani N, Ferris MT, Johnson WE, Mulligan MK, Bryant CD. Atp1a2 and Kcnj9 Are Candidate Genes Underlying Sensitivity to Oxycodone-Induced Locomotor Activation and Withdrawal-Induced Anxiety-Like Behaviors in C57BL/6 Substrains. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70009. [PMID: 39801366 PMCID: PMC11725984 DOI: 10.1111/gbb.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Opioid use disorder is heritable, yet its genetic etiology is largely unknown. C57BL/6J and C57BL/6NJ mouse substrains exhibit phenotypic diversity in the context of limited genetic diversity which together can facilitate genetic discovery. Here, we found C57BL/6NJ mice were less sensitive to oxycodone (OXY)-induced locomotor activation versus C57BL/6J mice in a conditioned place preference paradigm. Narrow-sense heritability of OXY-induced locomotor activity traits ranged from 0.22 to 0.31, implicating suitability for genetic analysis. Quantitative trait locus (QTL) mapping in an F2 cross identified a chromosome 1 QTL explaining 7%-12% of the variance in OXY locomotion and anxiety-like withdrawal in the elevated plus maze. A second QTL for EPM withdrawal behavior on chromosome 5 near Gabra2 (alpha-2 subunit of GABA-A receptor) explained 9% of the variance. To narrow the chromosome 1 locus, we generated recombinant lines spanning 163-181 Mb, captured the QTL for OXY locomotor traits and withdrawal, and fine-mapped a 2.45-Mb region (170.16-172.61 Mb). Transcriptome analysis identified five, localized striatal cis-eQTL transcripts and two were confirmed at the protein level (KCNJ9, ATP1A2). Kcnj9 codes for a potassium channel (GIRK3) that is a major effector of mu opioid receptor signaling. Atp1a2 codes for a subunit of a Na+/K+ ATPase enzyme that regulates neuronal excitability and shows functional adaptations following chronic opioid administration. To summarize, we identified two candidate genes underlying the physiological and behavioral properties of opioids, with direct preclinical relevance to investigators employing these widely used substrains and clinical relevance to human genetic studies of opioid use disorder.
Collapse
Affiliation(s)
- Lisa R. Goldberg
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & BiophysicsBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| | - Britahny M. Baskin
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
- T32 Training Program on Development of Medications for Substance Use Disorder, Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Jacob A. Beierle
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & BiophysicsBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
- Transformative Training Program in Addiction ScienceBoston UniversityBostonMassachusettsUSA
| | - Yahia Adla
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Julia C. Kelliher
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Emily J. Yao
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Stacey L. Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Eric R. Reed
- Graduate Program in BioinformaticsBoston UniversityBostonMassachusettsUSA
| | - David F. Jenkins
- Graduate Program in BioinformaticsBoston UniversityBostonMassachusettsUSA
| | - Jiayi Cox
- Genetics and Graduate Program in Genetics and Genomics, Program in Biomedical SciencesBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Alexander M. Luong
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Kimberly P. Luttik
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Julia A. Scotellaro
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
- Undergraduate Research Opportunity Program (UROP)Boston UniversityBostonMassachusettsUSA
| | - Timothy A. Drescher
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Sydney B. Crotts
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & BiophysicsBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
- Transformative Training Program in Addiction ScienceBoston UniversityBostonMassachusettsUSA
| | - Martin T. Ferris
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - W. Evan Johnson
- Division of Infectious Disease, Department of Medicine, Center for Data ScienceRutgers UniversityNew BrunswickNew JerseyUSA
| | - Megan K. Mulligan
- Department of Genetics, Genomics, and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
- T32 Training Program on Development of Medications for Substance Use Disorder, Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
4
|
Jaudon F, Cingolani LA. Unlocking mechanosensitivity: integrins in neural adaptation. Trends Cell Biol 2024; 34:1029-1043. [PMID: 38514304 DOI: 10.1016/j.tcb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Mechanosensitivity extends beyond sensory cells to encompass most neurons in the brain. Here, we explore recent research on the role of integrins, a diverse family of adhesion molecules, as crucial biomechanical sensors translating mechanical forces into biochemical and electrical signals in the brain. The varied biomechanical properties of neuronal integrins, including their force-dependent conformational states and ligand interactions, dictate their specific functions. We discuss new findings on how integrins regulate filopodia and dendritic spines, shedding light on their contributions to synaptic plasticity, and explore recent discoveries on how they engage with metabotropic receptors and ion channels, highlighting their direct participation in electromechanical transduction. Finally, to facilitate a deeper understanding of these developments, we present molecular and biophysical models of mechanotransduction.
Collapse
Affiliation(s)
- Fanny Jaudon
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenzo A Cingolani
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; Center for Synaptic Neuroscience and Technology (NSYN), Fondazione Istituto Italiano di Tecnologia (IIT), 16132 Genoa, Italy.
| |
Collapse
|
5
|
Littlepage-Saunders M, Hochstein MJ, Chang DS, Johnson KA. G protein-coupled receptor modulation of striatal dopamine transmission: Implications for psychoactive drug effects. Br J Pharmacol 2024; 181:4399-4413. [PMID: 37258878 PMCID: PMC10687321 DOI: 10.1111/bph.16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Dopamine transmission in the striatum is a critical mediator of the rewarding and reinforcing effects of commonly misused psychoactive drugs. G protein-coupled receptors (GPCRs) that bind a variety of neuromodulators including dopamine, endocannabinoids, acetylcholine and endogenous opioid peptides regulate dopamine release by acting on several components of dopaminergic circuitry. Striatal dopamine release can be driven by both somatic action potential firing and local mechanisms that depend on acetylcholine released from striatal cholinergic interneurons. GPCRs that primarily regulate somatic firing of dopamine neurons via direct effects or modulation of synaptic inputs are likely to affect distinct aspects of behaviour and psychoactive drug actions compared with those GPCRs that primarily regulate local acetylcholine-dependent dopamine release in striatal regions. This review will highlight mechanisms by which GPCRs modulate dopaminergic transmission and the relevance of these findings to psychoactive drug effects on physiology and behaviour.
Collapse
Affiliation(s)
- Mydirah Littlepage-Saunders
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Michael J Hochstein
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Doris S Chang
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Martínez-Romero R, González-Chávez SA, Urías-Rubí VR, Gómez-Moreno VM, Blanco-Cantero MF, Bernal-Velázquez HM, Luévano-González A, Pacheco-Tena C. Microarray Analysis of Visceral Adipose Tissue in Obese Women Reveals Common Crossroads Among Inflammation, Metabolism, Addictive Behaviors, and Cancer: AKT3 and MAPK1 Cross Point in Obesity. J Obes 2024; 2024:4541071. [PMID: 39484291 PMCID: PMC11527533 DOI: 10.1155/2024/4541071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/16/2024] [Indexed: 11/03/2024] Open
Abstract
Background: Visceral adipose tissue (VAT) abnormalities are directly associated with obesity-associated disorders. The underlying mechanisms that confer increased pathological risk to VAT in obesity have not been fully described. Methods: A case-control study was conducted that included 10 women with obesity (36.80 ± 7.39 years, BMI ≥ 30 kg/m2) and 10 women of normal weight (32.70 ± 9.45 years, BMI < 24.9 kg/m2). RNA was extracted from greater omentum biopsies, and, using a DNA microarray, differential transcriptomic expression of VAT in women with obesity was evaluated taking as a reference that of women with normal weight. The differentially expressed genes (DEGs) were classified into functional biological processes and signaling pathways; moreover, the protein-protein interaction (PPI) networks were integrated for a deeper analysis of the pathways and genes involved in the central obesity-associated disorders. The expression of TNF-α, MAPK, and AKT proteins was also quantified in VAT. Results: The VAT of women with obesity had 3808 DEGs, mainly associated with the cellular process of inflammation and carbohydrates and lipid metabolism. Overexpressed genes were associated with inflammatory, metabolic, hormonal, neuroendocrine, carcinogenic, and infectious pathways. Cellular processes related to addictive behaviors were notable. MAPK and PI3K-AKT pathways were overexpressed, and Mapk1 and Akt3 genes were common crossing points among obesity-associated disorders' pathways. The increased expression of MAPK, AKT, and TNF proteins was confirmed in the VAT of women with obesity. Conclusion: VAT confers a complex and blended pathogenic transcriptomic profile in obese patients, where abnormal processes are mainly controlled by activating intracellular signaling pathways that exhibit a high degree of redundancy. Identifying shared cross points between those pathways could allow specific targeting treatments to exert a widespread effect over multiple pathogenic processes.
Collapse
Affiliation(s)
- Rolando Martínez-Romero
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Susana Aideé González-Chávez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Victor Roberto Urías-Rubí
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | | | | | | | - Arturo Luévano-González
- Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - César Pacheco-Tena
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| |
Collapse
|
7
|
Goldberg LR, Baskin BM, Adla Y, Beierle JA, Kelliher JC, Yao EJ, Kirkpatrick SL, Reed ER, Jenkins DF, Cox J, Luong AM, Luttik KP, Scotellaro JA, Drescher TA, Crotts SB, Yazdani N, Ferris MT, Johnson WE, Mulligan MK, Bryant CD. Atp1a2 and Kcnj9 are candidate genes underlying sensitivity to oxycodone-induced locomotor activation and withdrawal-induced anxiety-like behaviors in C57BL/6 substrains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589731. [PMID: 38798314 PMCID: PMC11123399 DOI: 10.1101/2024.04.16.589731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Opioid use disorder is heritable, yet its genetic etiology is largely unknown. C57BL/6J and C57BL/6NJ mouse substrains exhibit phenotypic diversity in the context of limited genetic diversity which together can facilitate genetic discovery. Here, we found C57BL/6NJ mice were less sensitive to oxycodone (OXY)-induced locomotor activation versus C57BL/6J mice in a conditioned place preference paradigm. Narrow-sense heritability was estimated at 0.22-0.31, implicating suitability for genetic analysis. Quantitative trait locus (QTL) mapping in an F2 cross identified a chromosome 1 QTL explaining 7-12% of the variance in OXY locomotion and anxiety-like withdrawal in the elevated plus maze. A second QTL for EPM withdrawal behavior on chromosome 5 near Gabra2 (alpha-2 subunit of GABA-A receptor) explained 9% of the variance. To narrow the chromosome 1 locus, we generated recombinant lines spanning 163-181 Mb, captured the QTL for OXY locomotor traits and withdrawal, and fine-mapped a 2.45-Mb region (170.16-172.61 Mb). Transcriptome analysis identified five, localized striatal cis-eQTL transcripts and two were confirmed at the protein level (KCNJ9, ATP1A2). Kcnj9 codes for a potassium channel (GIRK3) that is a major effector of mu opioid receptor signaling. Atp1a2 codes for a subunit of a Na+/K+ ATPase enzyme that regulates neuronal excitability and shows functional adaptations following chronic opioid administration. To summarize, we identified two candidate genes underlying the physiological and behavioral properties of opioids, with direct preclinical relevance to investigators employing these widely used substrains and clinical relevance to human genetic studies of opioid use disorder.
Collapse
Affiliation(s)
- Lisa R. Goldberg
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
| | - Britahny M. Baskin
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- T32 Training Program on Development of Medications for Substance Use Disorder, Center for Drug Discovery, Northeastern University
| | - Yahia Adla
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Jacob A. Beierle
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University
| | - Julia C. Kelliher
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Emily J. Yao
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Stacey L. Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Eric R. Reed
- Graduate Program in Bioinformatics, Boston University, Boston, MA USA
| | - David F. Jenkins
- Graduate Program in Bioinformatics, Boston University, Boston, MA USA
| | - Jiayi Cox
- Genetics and Graduate Program in Genetics and Genomics, Program in Biomedical Sciences, Boston University Chobanian & Avedisian School of Medicine
| | - Alexander M. Luong
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Kimberly P. Luttik
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Julia A. Scotellaro
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Undergraduate Research Opportunity Program (UROP), Boston University
| | - Timothy A. Drescher
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Sydney B. Crotts
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC USA
| | - W. Evan Johnson
- Division of Infectious Disease, Department of Medicine, Center for Data Science, Rutgers University, New Jersey, USA
| | - Megan K. Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN USA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- T32 Training Program on Development of Medications for Substance Use Disorder, Center for Drug Discovery, Northeastern University
| |
Collapse
|
8
|
Li J, Mei S, Mao X, Wan L, Wang H, Xiao B, Song Y, Gu W, Liu Y, Long L. De novo variants in KCNJ3 are associated with early-onset epilepsy. J Med Genet 2024; 61:319-324. [PMID: 37963718 DOI: 10.1136/jmg-2023-109201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/14/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND KCNJ3 encodes a subunit of G-protein-coupled inwardly rectifying potassium channels, which are important for cellular excitability and inhibitory neurotransmission. However, the genetic basis of KCNJ3 in epilepsy has not been determined. This study aimed to identify the pathogenic KCNJ3 variants in patients with epilepsy. METHODS Trio exome sequencing was performed to determine potential variants of epilepsy. Individuals with KCNJ3 variants were recruited for this study. Detailed clinical information and genetic data were obtained and systematically reviewed. Whole-cell patch-clamp recordings were performed to evaluate the functional consequences of the identified variants. RESULTS Two de novo missense variants (c.998T>C (p.Leu333Ser) and c.938G>A (p. Arg313Gln)) in KCNJ3 were identified in two unrelated families with epilepsy. The variants were absent from the gnomAD database and were assumed to be damaging or probably damaging using multiple bioinformatics tools. They were both located in the C-terminal domain. The amino acid residues were highly conserved among various species. Clinically, the seizures occurred at a young age and were under control after combined treatment. Electrophysiological analysis revealed that the KCNJ3 Leu333Ser and Arg313Gln variants significantly compromised the current activities and exhibited loss-of-function (LOF) effects. CONCLUSION Our findings suggest that de novo LOF variants in KCNJ3 are associated with early-onset epilepsy. Genetic testing of KCNJ3 in patients with epilepsy may serve as a strategy for precision medicine.
Collapse
Affiliation(s)
- Juan Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, China
| | - Shiyue Mei
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao Mao
- Department of Medical Genetics, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Lily Wan
- Department of Anatomy & Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China
| | - Hua Wang
- Department of Medical Genetics, Hunan Children's Hospital, Changsha, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, China
| | - Yanmin Song
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center Co. Ltd, Beijing, China
| | - Yan Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Alexander SPH, Mathie AA, Peters JA, Veale EL, Striessnig J, Kelly E, Armstrong JF, Faccenda E, Harding SD, Davies JA, Aldrich RW, Attali B, Baggetta AM, Becirovic E, Biel M, Bill RM, Caceres AI, Catterall WA, Conner AC, Davies P, De Clerq K, Delling M, Di Virgilio F, Falzoni S, Fenske S, Fortuny-Gomez A, Fountain S, George C, Goldstein SAN, Grimm C, Grissmer S, Ha K, Hammelmann V, Hanukoglu I, Hu M, Ijzerman AP, Jabba SV, Jarvis M, Jensen AA, Jordt SE, Kaczmarek LK, Kellenberger S, Kennedy C, King B, Kitchen P, Liu Q, Lynch JW, Meades J, Mehlfeld V, Nicke A, Offermanns S, Perez-Reyes E, Plant LD, Rash L, Ren D, Salman MM, Sieghart W, Sivilotti LG, Smart TG, Snutch TP, Tian J, Trimmer JS, Van den Eynde C, Vriens J, Wei AD, Winn BT, Wulff H, Xu H, Yang F, Fang W, Yue L, Zhang X, Zhu M. The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. Br J Pharmacol 2023; 180 Suppl 2:S145-S222. [PMID: 38123150 PMCID: PMC11339754 DOI: 10.1111/bph.16178] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Alistair A Mathie
- School of Engineering, Arts, Science and Technology, University of Suffolk, Ipswich, IP4 1QJ, UK
| | - John A Peters
- Neurosci-ence Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Emma L Veale
- Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Jörg Striessnig
- Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Jane F Armstrong
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Elena Faccenda
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Simon D Harding
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Jamie A Davies
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | | | | | | | | | - Martin Biel
- Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | | | | | - Paul Davies
- Tufts University School of Medicine, Boston, USA
| | | | - Markus Delling
- University of California San Francisco, San Francisco, USA
| | | | | | | | | | | | - Chandy George
- Nanyang Technological University, Singapore, Singapore
| | | | | | | | - Kotdaji Ha
- University of California San Francisco, San Francisco, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Annette Nicke
- Ludwig Maximilian University of Munich, Munich, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research/JW Goethe University, Bad Nauheim/Frankfurt, Germany
| | | | | | | | - Dejian Ren
- University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | - Jinbin Tian
- University of Texas at Houston, Houston, USA
| | | | | | | | | | | | | | | | | | | | - Lixia Yue
- University of Connecticut, Farmington, USA
| | | | - Michael Zhu
- University of Texas at Houston, Houston, USA
| |
Collapse
|
10
|
Powell SK, O'Shea C, Townsley K, Prytkova I, Dobrindt K, Elahi R, Iskhakova M, Lambert T, Valada A, Liao W, Ho SM, Slesinger PA, Huckins LM, Akbarian S, Brennand KJ. Induction of dopaminergic neurons for neuronal subtype-specific modeling of psychiatric disease risk. Mol Psychiatry 2023; 28:1970-1982. [PMID: 34493831 PMCID: PMC8898985 DOI: 10.1038/s41380-021-01273-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 11/08/2022]
Abstract
Dopaminergic neurons are critical to movement, mood, addiction, and stress. Current techniques for generating dopaminergic neurons from human induced pluripotent stem cells (hiPSCs) yield heterogenous cell populations with variable purity and inconsistent reproducibility between donors, hiPSC clones, and experiments. Here, we report the rapid (5 weeks) and efficient (~90%) induction of induced dopaminergic neurons (iDANs) through transient overexpression of lineage-promoting transcription factors combined with stringent selection across five donors. We observe maturation-dependent increase in dopamine synthesis and electrophysiological properties consistent with midbrain dopaminergic neuron identity, such as slow-rising after- hyperpolarization potentials, an action potential duration of ~3 ms, tonic sub-threshold oscillatory activity, and spontaneous burst firing at a frequency of ~1.0-1.75 Hz. Transcriptome analysis reveals robust expression of genes involved in fetal midbrain dopaminergic neuron identity. Specifically expressed genes in iDANs, as well as those from isogenic induced GABAergic and glutamatergic neurons, were enriched in loci conferring heritability for cannabis use disorder, schizophrenia, and bipolar disorder; however, each neuronal subtype demonstrated subtype-specific heritability enrichments in biologically relevant pathways, and iDANs alone were uniquely enriched in autism spectrum disorder risk loci. Therefore, iDANs provide a critical tool for modeling midbrain dopaminergic neuron development and dysfunction in psychiatric disease.
Collapse
Affiliation(s)
- Samuel K Powell
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Callan O'Shea
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Kayla Townsley
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iya Prytkova
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristina Dobrindt
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Rahat Elahi
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marina Iskhakova
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tova Lambert
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aditi Valada
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Will Liao
- New York Genome Center, New York, NY, USA
| | - Seok-Man Ho
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Schahram Akbarian
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kristen J Brennand
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, USA.
| |
Collapse
|
11
|
Hou G, Jiang S, Chen G, Deng X, Li F, Xu H, Chen B, Zhu Y. Opioid Receptors Modulate Firing and Synaptic Transmission in the Paraventricular Nucleus of the Thalamus. J Neurosci 2023; 43:2682-2695. [PMID: 36898836 PMCID: PMC10089236 DOI: 10.1523/jneurosci.1766-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) is involved in drug addiction-related behaviors, and morphine is a widely used opioid for the relief of severe pain. Morphine acts via opioid receptors, but the function of opioid receptors in the PVT has not been fully elucidated. Here, we used in vitro electrophysiology to study neuronal activity and synaptic transmission in the PVT of male and female mice. Activation of opioid receptors suppresses the firing and inhibitory synaptic transmission of PVT neurons in brain slices. On the other hand, the involvement of opioid modulation is reduced after chronic morphine exposure, probably because of desensitization and internalization of opioid receptors in the PVT. Overall, the opioid system is essential for the modulation of PVT activities.SIGNIFICANCE STATEMENT Opioid receptors modulate the activities and synaptic transmission in the PVT by suppressing the firing rate and inhibitory synaptic inputs. These modulations were largely diminished after chronic morphine exposure.
Collapse
Affiliation(s)
- Guoqiang Hou
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shaolei Jiang
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Gaowei Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofei Deng
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fengling Li
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hua Xu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
12
|
Dysregulation of iron homeostasis and methamphetamine reward behaviors in Clk1-deficient mice. Acta Pharmacol Sin 2022; 43:1686-1698. [PMID: 34811513 PMCID: PMC9253021 DOI: 10.1038/s41401-021-00806-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/28/2021] [Indexed: 11/08/2022]
Abstract
Chronic administration of methamphetamine (METH) leads to physical and psychological dependence. It is generally accepted that METH exerts rewarding effects via competitive inhibition of the dopamine transporter (DAT), but the molecular mechanism of METH addiction remains largely unknown. Accumulating evidence shows that mitochondrial function is important in regulation of drug addiction. In this study, we investigated the role of Clk1, an essential mitochondrial hydroxylase for ubiquinone (UQ), in METH reward effects. We showed that Clk1+/- mutation significantly suppressed METH-induced conditioned place preference (CPP), accompanied by increased expression of DAT in plasma membrane of striatum and hippocampus due to Clk1 deficiency-induced inhibition of DAT degradation without influencing de novo synthesis of DAT. Notably, significantly decreased iron content in striatum and hippocampus was evident in both Clk1+/- mutant mice and PC12 cells with Clk1 knockdown. The decreased iron content was attributed to increased expression of iron exporter ferroportin 1 (FPN1) that was associated with elevated expression of hypoxia-inducible factor-1α (HIF-1α) in response to Clk1 deficiency both in vivo and in vitro. Furthermore, we showed that iron played a critical role in mediating Clk1 deficiency-induced alteration in DAT expression, presumably via upstream HIF-1α. Taken together, these data demonstrated that HIF-1α-mediated changes in iron homostasis are involved in the Clk1 deficiency-altered METH reward behaviors.
Collapse
|
13
|
Luo H, Marron Fernandez de Velasco E, Wickman K. Neuronal G protein-gated K + channels. Am J Physiol Cell Physiol 2022; 323:C439-C460. [PMID: 35704701 PMCID: PMC9362898 DOI: 10.1152/ajpcell.00102.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels exert a critical inhibitory influence on neurons. Neuronal GIRK channels mediate the G protein-dependent, direct/postsynaptic inhibitory effect of many neurotransmitters including γ-aminobutyric acid (GABA), serotonin, dopamine, adenosine, somatostatin, and enkephalin. In addition to their complex regulation by G proteins, neuronal GIRK channel activity is sensitive to PIP2, phosphorylation, regulator of G protein signaling (RGS) proteins, intracellular Na+ and Ca2+, and cholesterol. The application of genetic and viral manipulations in rodent models, together with recent progress in the development of GIRK channel modulators, has increased our understanding of the physiological and behavioral impact of neuronal GIRK channels. Work in rodent models has also revealed that neuronal GIRK channel activity is modified, transiently or persistently, by various stimuli including exposure drugs of abuse, changes in neuronal activity patterns, and aversive experience. A growing body of preclinical and clinical evidence suggests that dysregulation of GIRK channel activity contributes to neurological diseases and disorders. The primary goals of this review are to highlight fundamental principles of neuronal GIRK channel biology, mechanisms of GIRK channel regulation and plasticity, the nascent landscape of GIRK channel pharmacology, and the potential relevance of GIRK channels to the pathophysiology and treatment of neurological diseases and disorders.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
14
|
Akyuz E, Koklu B, Uner A, Angelopoulou E, Paudel YN. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res 2021; 100:413-443. [PMID: 34713909 DOI: 10.1002/jnr.24985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023]
Abstract
Epilepsy is a devastating neurological disorder characterized by recurrent seizures attributed to the disruption of the dynamic excitatory and inhibitory balance in the brain. Epilepsy has emerged as a global health concern affecting about 70 million people worldwide. Despite recent advances in pre-clinical and clinical research, its etiopathogenesis remains obscure, and there are still no treatment strategies modifying disease progression. Although the precise molecular mechanisms underlying epileptogenesis have not been clarified yet, the role of ion channels as regulators of cellular excitability has increasingly gained attention. In this regard, emerging evidence highlights the potential implication of inwardly rectifying potassium (Kir) channels in epileptogenesis. Kir channels consist of seven different subfamilies (Kir1-Kir7), and they are highly expressed in both neuronal and glial cells in the central nervous system. These channels control the cell volume and excitability. In this review, we discuss preclinical and clinical evidence on the role of the several subfamilies of Kir channels in epileptogenesis, aiming to shed more light on the pathogenesis of this disorder and pave the way for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Betul Koklu
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Arda Uner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
15
|
Bony AR, McArthur JR, Finol-Urdaneta RK, Adams DJ. Analgesic α-conotoxins modulate native and recombinant GIRK1/2 channels via activation of GABA B receptors and reduce neuroexcitability. Br J Pharmacol 2021; 179:179-198. [PMID: 34599513 DOI: 10.1111/bph.15690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Activation of GIRK channels via G protein-coupled GABAB receptors has been shown to attenuate nociceptive transmission. The analgesic α-conotoxin Vc1.1 activates GABAB receptors resulting in inhibition of Cav 2.2 and Cav 2.3 channels in mammalian primary afferent neurons. Here, we investigated the effects of analgesic α-conotoxins on recombinant and native GIRK-mediated K+ currents and on neuronal excitability. EXPERIMENTAL APPROACH The effects of analgesic α-conotoxins, Vc1.1, RgIA, and PeIA, were investigated on inwardly-rectifying K+ currents in HEK293T cells recombinantly co-expressing either heteromeric human GIRK1/2 or homomeric GIRK2 subunits, with GABAB receptors. The effects of α-conotoxin Vc1.1 and baclofen were studied on GIRK-mediated K+ currents and the passive and active electrical properties of adult mouse dorsal root ganglion neurons. KEY RESULTS Analgesic α-conotoxins Vc1.1, RgIA, and PeIA potentiate inwardly-rectifying K+ currents in HEK293T cells recombinantly expressing human GIRK1/2 channels and GABAB receptors. GABAB receptor-dependent GIRK channel potentiation by Vc1.1 and baclofen occurs via a pertussis toxin-sensitive G protein and is inhibited by the selective GABAB receptor antagonist CGP 55845. In adult mouse dorsal root ganglion neurons, GABAB receptor-dependent GIRK channel potentiation by Vc1.1 and baclofen hyperpolarizes the cell membrane potential and reduces excitability. CONCLUSIONS AND IMPLICATIONS This is the first report of GIRK channel potentiation via allosteric α-conotoxin Vc1.1-GABAB receptor agonism, leading to decreased neuronal excitability. Such action potentially contributes to the analgesic effects of Vc1.1 and baclofen observed in vivo.
Collapse
Affiliation(s)
- Anuja R Bony
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
16
|
Sharma S, Lesiak L, Aretz CD, Du Y, Kumar S, Gautam N, Alnouti Y, Dhuria NV, Chhonker YS, Weaver CD, Hopkins CR. Discovery, synthesis and biological characterization of a series of N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1 H-pyrazol-5-yl)acetamide ethers as novel GIRK1/2 potassium channel activators. RSC Med Chem 2021; 12:1366-1373. [PMID: 34458739 PMCID: PMC8372201 DOI: 10.1039/d1md00129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
The present study describes the discovery and characterization of a series of N-(1-(1,1-dioxidotetrahydrothiophen-3-yl)-3-methyl-1H-pyrazol-5-yl)acetamide ethers as G protein-gated inwardly-rectifying potassium (GIRK) channel activators. From our previous lead optimization efforts, we have identified a new ether-based scaffold and paired this with a novel sulfone-based head group to identify a potent and selective GIRK1/2 activator. In addition, we evaluated the compounds in tier 1 DMPK assays and have identified compounds that display nanomolar potency as GIRK1/2 activators with improved metabolic stability over the prototypical urea-based compounds.
Collapse
Affiliation(s)
- Swagat Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Lauren Lesiak
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Christopher D Aretz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Yu Du
- Department of Pharmacology, Vanderbilt University School of Medicine Nashville TN 37232 USA
| | - Sushil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Nikilesh V Dhuria
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University School of Medicine Nashville TN 37232 USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
17
|
Djebari S, Iborra-Lázaro G, Temprano-Carazo S, Sánchez-Rodríguez I, Nava-Mesa MO, Múnera A, Gruart A, Delgado-García JM, Jiménez-Díaz L, Navarro-López JD. G-Protein-Gated Inwardly Rectifying Potassium (Kir3/GIRK) Channels Govern Synaptic Plasticity That Supports Hippocampal-Dependent Cognitive Functions in Male Mice. J Neurosci 2021; 41:7086-7102. [PMID: 34261700 PMCID: PMC8372024 DOI: 10.1523/jneurosci.2849-20.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/11/2021] [Accepted: 06/04/2021] [Indexed: 01/17/2023] Open
Abstract
The G-protein-gated inwardly rectifying potassium (Kir3/GIRK) channel is the effector of many G-protein-coupled receptors (GPCRs). Its dysfunction has been linked to the pathophysiology of Down syndrome, Alzheimer's and Parkinson's diseases, psychiatric disorders, epilepsy, drug addiction, or alcoholism. In the hippocampus, GIRK channels decrease excitability of the cells and contribute to resting membrane potential and inhibitory neurotransmission. Here, to elucidate the role of GIRK channels activity in the maintenance of hippocampal-dependent cognitive functions, their involvement in controlling neuronal excitability at different levels of complexity was examined in C57BL/6 male mice. For that purpose, GIRK activity in the dorsal hippocampus CA3-CA1 synapse was pharmacologically modulated by two drugs: ML297, a GIRK channel opener, and Tertiapin-Q (TQ), a GIRK channel blocker. Ex vivo, using dorsal hippocampal slices, we studied the effect of pharmacological GIRK modulation on synaptic plasticity processes induced in CA1 by Schaffer collateral stimulation. In vivo, we performed acute intracerebroventricular (i.c.v.) injections of the two GIRK modulators to study their contribution to electrophysiological properties and synaptic plasticity of dorsal hippocampal CA3-CA1 synapse, and to learning and memory capabilities during hippocampal-dependent tasks. We found that pharmacological disruption of GIRK channel activity by i.c.v. injections, causing either function gain or function loss, induced learning and memory deficits by a mechanism involving neural excitability impairments and alterations in the induction and maintenance of long-term synaptic plasticity processes. These results support the contention that an accurate control of GIRK activity must take place in the hippocampus to sustain cognitive functions.SIGNIFICANCE STATEMENT Cognitive processes of learning and memory that rely on hippocampal synaptic plasticity processes are critically ruled by a finely tuned neural excitability. G-protein-gated inwardly rectifying K+ (GIRK) channels play a key role in maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Here, we demonstrate that modulation of GIRK channels activity, causing either function gain or function loss, transforms high-frequency stimulation (HFS)-induced long-term potentiation (LTP) into long-term depression (LTD), inducing deficits in hippocampal-dependent learning and memory. Together, our data show a crucial GIRK-activity-mediated mechanism that governs synaptic plasticity direction and modulates subsequent hippocampal-dependent cognitive functions.
Collapse
Affiliation(s)
- Souhail Djebari
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
| | - Guillermo Iborra-Lázaro
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
| | - Sara Temprano-Carazo
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
| | - Irene Sánchez-Rodríguez
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
| | - Mauricio O Nava-Mesa
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
- Neuroscience Research Group (NEUROS), Universidad del Rosario, Bogotá, Colombia 111711
| | - Alejandro Múnera
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
- Behavioral Neurophysiology Laboratory, Universidad Nacional de Colombia, Bogotá, Colombia 111321
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville, Spain 41013
| | | | - Lydia Jiménez-Díaz
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
| | - Juan D Navarro-López
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
| |
Collapse
|
18
|
Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications. Handb Exp Pharmacol 2021; 267:277-356. [PMID: 34345939 DOI: 10.1007/164_2021_501] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
For the past two decades several scholarly reviews have appeared on the inwardly rectifying potassium (Kir) channels. We would like to highlight two efforts in particular, which have provided comprehensive reviews of the literature up to 2010 (Hibino et al., Physiol Rev 90(1):291-366, 2010; Stanfield et al., Rev Physiol Biochem Pharmacol 145:47-179, 2002). In the past decade, great insights into the 3-D atomic resolution structures of Kir channels have begun to provide the molecular basis for their functional properties. More recently, computational studies are beginning to close the time domain gap between in silico dynamic and patch-clamp functional studies. The pharmacology of these channels has also been expanding and the dynamic structural studies provide hope that we are heading toward successful structure-based drug design for this family of K+ channels. In the present review we focus on placing the physiology and pharmacology of this K+ channel family in the context of atomic resolution structures and in providing a glimpse of the promising future of therapeutic opportunities.
Collapse
|
19
|
Abstract
K+ channels enable potassium to flow across the membrane with great selectivity. There are four K+ channel families: voltage-gated K (Kv), calcium-activated (KCa), inwardly rectifying K (Kir), and two-pore domain potassium (K2P) channels. All four K+ channels are formed by subunits assembling into a classic tetrameric (4x1P = 4P for the Kv, KCa, and Kir channels) or tetramer-like (2x2P = 4P for the K2P channels) architecture. These subunits can either be the same (homomers) or different (heteromers), conferring great diversity to these channels. They share a highly conserved selectivity filter within the pore but show different gating mechanisms adapted for their function. K+ channels play essential roles in controlling neuronal excitability by shaping action potentials, influencing the resting membrane potential, and responding to diverse physicochemical stimuli, such as a voltage change (Kv), intracellular calcium oscillations (KCa), cellular mediators (Kir), or temperature (K2P).
Collapse
|
20
|
An D, Peigneur S, Tytgat J. WIN55,212-2, a Dual Modulator of Cannabinoid Receptors and G Protein-Coupled Inward Rectifier Potassium Channels. Biomedicines 2021; 9:484. [PMID: 33924979 PMCID: PMC8146939 DOI: 10.3390/biomedicines9050484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
The coupling of cannabinoid receptors, CB1 and CB2, to G protein-coupled inward rectifier potassium channels, GIRK1 and GIRK2, modulates neuronal excitability in the human brain. The present study established and validated the functional expression in a Xenopus laevis oocyte expression system of CB1 and CB2 receptors, interacting with heteromeric GIRK1/2 channels and a regulator of G protein signaling, RGS4. This ex vivo system enables the discovery of a wide range of ligands interacting orthosterically or allosterically with CB1 and/or CB2 receptors. WIN55,212-2, a non-selective agonist of CB1 and CB2, was used to explore the CB1- or CB2-GIRK1/2-RGS4 signaling cascade. We show that WIN55,212-2 activates CB1 and CB2 at low concentrations whereas at higher concentrations it exerts a direct block of GIRK1/2. This illustrates a dual modulatory function, a feature not described before, which helps to explain the adverse effects induced by WIN55,212-2 in vivo. When comparing the effects with other typical cannabinoids such as Δ9-THC, CBD, CP55,940, and rimonabant, only WIN55,212-2 can significantly block GIRK1/2. Interestingly, the inward rectifier potassium channel, IRK1, a non-G protein-coupled potassium channel important for setting the resting membrane voltage and highly similar to GIRK1 and GIRK2, is not sensitive to WIN55,212-2, Δ9-THC, CBD, CP55,940, or rimonabant. From this, it is concluded that WIN55,212-2 selectively blocks GIRK1/2.
Collapse
Affiliation(s)
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O & N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium;
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O & N2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium;
| |
Collapse
|
21
|
Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol Ther 2021; 223:107808. [PMID: 33476640 DOI: 10.1016/j.pharmthera.2021.107808] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
G protein-gated inwardly rectifying potassium channels (Kir3/GirK) are important for maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Coupled to numerous G protein-coupled receptors (GPCRs), they mediate the effects of many neurotransmitters, neuromodulators and hormones contributing to the general homeostasis and particular synaptic plasticity processes, learning, memory and pain signaling. A growing number of behavioral and genetic studies suggest a critical role for the appropriate functioning of the central nervous system, as well as their involvement in many neurologic and psychiatric conditions, such as neurodegenerative diseases, mood disorders, attention deficit hyperactivity disorder, schizophrenia, epilepsy, alcoholism and drug addiction. Hence, GirK channels emerge as a very promising tool to be targeted in the current scenario where these conditions already are or will become a global public health problem. This review examines recent findings on the physiology, function, dysfunction, and pharmacology of GirK channels in the central nervous system and highlights the relevance of GirK channels as a worthful potential target to improve therapies for related diseases.
Collapse
|
22
|
Zhao Y, Gameiro-Ros I, Glaaser IW, Slesinger PA. Advances in Targeting GIRK Channels in Disease. Trends Pharmacol Sci 2021; 42:203-215. [PMID: 33468322 DOI: 10.1016/j.tips.2020.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
G protein-gated inwardly rectifying potassium (GIRK) channels are essential regulators of cell excitability in the brain. While they are implicated in a variety of neurological diseases in both human and animal model studies, their therapeutic potential has been largely untapped. Here, we review recent advances in the development of small molecule compounds that specifically modulate GIRK channels and compare them with first-generation compounds that exhibit off-target activity. We describe the method of discovery of these small molecule modulators, their chemical features, and their effects in vivo. These studies provide a promising outlook on the future development of subunit-specific GIRK modulators to regulate neuronal excitability in a brain region-specific manner.
Collapse
Affiliation(s)
- Yulin Zhao
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Isabel Gameiro-Ros
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ian W Glaaser
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul A Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
23
|
Mett A, Karbat I, Tsoory M, Fine S, Iwanir S, Reuveny E. Reduced activity of GIRK1-containing heterotetramers is sufficient to affect neuronal functions, including synaptic plasticity and spatial learning and memory. J Physiol 2020; 599:521-545. [PMID: 33124684 DOI: 10.1113/jp280434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS G-protein inwardly rectifying K+ (GIRK) channels consist of four homologous subunits (GIRK1-4) and are essential regulators of electrical excitability in the nervous system. GIRK2-null mice have been widely investigated for their distinct behaviour and altered depotentiation following long-term potentiation (LTP), whereas GIRK1 mice are less well characterized. Here we utilize a novel knockin mouse strain in which the GIRK1 subunit is fluorescently tagged with yellow fluorescent protein (YFP-GIRK1) and the GIRK1-null mouse line to investigate the role of GIRK1 in neuronal processes such as spatial learning and memory, locomotion and depotentiation following LTP. Neurons dissected from YFP-GIRK1 mice had significantly reduced potassium currents and this mouse line phenotypically resembled GIRK1-null mice, making it a 'functional knockdown' model of GIRK1-containing channels. YFP-GIRK1 and GIRK1-null mice had increased locomotion, reduced spatial learning and memory and blunted depotentiation following LTP. ABSTRACT GIRK channels are essential for the slow inhibition of electrical activity in the nervous system and heart rate regulation via the parasympathetic system. The implications of individual GIRK isoforms in specific physiological activities are based primarily on studies conducted with GIRK-null mouse lines. Here we utilize a novel knockin mouse line in which YFP was fused in-frame to the N-terminus of GIRK1 (YFP-GIRK1) to correlate GIRK1 spatial distribution with physiological activities. These mice, however, displayed spontaneous seizure-like activity and thus were investigated for the origin of such activity. We show that GIRK tetramers containing YFP-GIRK1 are correctly assembled and trafficked to the plasma membrane, but are functionally impaired. A battery of behavioural assays conducted on YFP-GIRK1 and GIRK1-null (GIRK1-/- ) mice revealed similar phenotypes, including impaired nociception, reduced anxiety and hyperactivity in an unfamiliar environment. However, YFP-GIRK1 mice exhibited increased home-cage locomotion while GIRK1-/- mice did not. In addition, we show that the GIRK1 subunit is essential for intact spatial learning and memory and synaptic plasticity in hippocampal brain slices. This study expands our knowledge regarding the role of GIRK1 in neuronal processes and underlines the importance of GIRK1-containing heterotetramers.
Collapse
Affiliation(s)
- Alice Mett
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Shachar Fine
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shachar Iwanir
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
24
|
Takahashi Y, Terada T, Muto Y. Systems Level Analysis and Identification of Pathways and Key Genes Associated with Delirium. Genes (Basel) 2020; 11:genes11101225. [PMID: 33086708 PMCID: PMC7590056 DOI: 10.3390/genes11101225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
Delirium is a complex pathophysiological process, and multiple contributing mechanisms have been identified. However, it is largely unclear how the genes associated with delirium contribute and which of them play key roles. In this study, the genes associated with delirium were retrieved from the Comparative Toxicogenomics Database (CTD) and integrated through a protein-protein interaction (PPI) network. Delirium-associated genes formed a highly interconnected PPI subnetwork, indicating a high tendency to interact and agglomerate. Using the Molecular Complex Detection (MCODE) algorithm, we identified the top two delirium-relevant network modules, M1 and M5, that have the most significant enrichments for the delirium-related gene sets. Functional enrichment analysis showed that genes related to neurotransmitter receptor activity were enriched in both modules. Moreover, analyses with genes located in human accelerated regions (HARs) provided evidence that HAR-Brain genes were overrepresented in the delirium-relevant network modules. We found that four of the HAR-Brain genes, namely APP, PLCB1, NPY, and HTR2A, in the M1 module were highly connected and appeared to exhibit hub properties, which might play vital roles in delirium development. Further understanding of the function of the identified modules and member genes could help to identify therapeutic intervention targets and diagnostic biomarkers for delirium.
Collapse
Affiliation(s)
- Yukiko Takahashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1194, Japan; (Y.T.); (T.T.)
- Department of Adult Nursing (Acute phase), Gifu University School of Medicine, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Tomoyoshi Terada
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1194, Japan; (Y.T.); (T.T.)
- Department of Functional Bioscience, Gifu University School of Medicine, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Yoshinori Muto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1194, Japan; (Y.T.); (T.T.)
- Department of Functional Bioscience, Gifu University School of Medicine, 1-1, Yanagido, Gifu 501-1193, Japan
- Correspondence: ; Tel.: +81-58-293-3241
| |
Collapse
|
25
|
Ikekubo Y, Ide S, Hagino Y, Ikeda K. Absence of methamphetamine-induced conditioned place preference in weaver mutant mice. Neuropsychopharmacol Rep 2020; 40:324-331. [PMID: 32812711 PMCID: PMC7722684 DOI: 10.1002/npr2.12130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/30/2022] Open
Abstract
Aims G protein‐activated inwardly rectifying potassium (GIRK) channels are related to rewarding effects of addictive drugs. The GIRK2 subunit is thought to play key roles in the reward system. Weaver mutant mice exhibit abnormal GIRK2 function and different behaviors that are caused by several addictive substances compared with wild‐type mice. However, mechanisms of reward‐related alterations in weaver mutant mice remain unclear. The present study investigated changes in the rewarding effects of methamphetamine (METH) in weaver mutant mice. Methods The rewarding effects of METH (4.0 mg/kg) were investigated using the conditioned place preference (CPP) paradigm. Extracellular dopamine level in the nucleus accumbens (NAc) was measured by in vivo microdialysis. To identify brain regions that were associated with these changes in rewarding effects, METH‐induced alterations of Fos expression were investigated by immunohistochemical analysis. Results Weaver mutant mice exhibited a significant decrease in METH‐induced CPP and dopamine release in the NAc. Methamphetamine significantly increased Fos expression in the posterior NAc (pNAc) shell in wild‐type but not in weaver mutant mice. Conclusions Methamphetamine did not induce rewarding effects in weaver mutant mice. The pNAc shell exhibited a significant difference in neuronal activity between wild‐type and weaver mutant mice. The present results suggest that the absence of METH‐induced CPP in weaver mutant mice is probably related to an innate reduction of dopamine and decreased neural activity in the pNAc shell that is partially attributable to the change of GIRK channel function. GIRK channels, especially those containing the GIRK2 subunit, appear to be involved in METH dependence. Methamphetamine did not induce rewarding effects in weaver mutant mice that possess a mutation in the GIRK2 subunit. The posterior nucleus accumbens shell exhibited a significant difference in neuronal activity between wild‐type and weaver mutant mice.
![]()
Collapse
Affiliation(s)
- Yuiko Ikekubo
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Molecular and Cellular Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Soichiro Ide
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoko Hagino
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Molecular and Cellular Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
26
|
Berlin S, Artzy E, Handklo-Jamal R, Kahanovitch U, Parnas H, Dascal N, Yakubovich D. A Collision Coupling Model Governs the Activation of Neuronal GIRK1/2 Channels by Muscarinic-2 Receptors. Front Pharmacol 2020; 11:1216. [PMID: 32903404 PMCID: PMC7435011 DOI: 10.3389/fphar.2020.01216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/24/2020] [Indexed: 01/14/2023] Open
Abstract
The G protein-activated Inwardly Rectifying K+-channel (GIRK) modulates heart rate and neuronal excitability. Following G-Protein Coupled Receptor (GPCR)-mediated activation of heterotrimeric G proteins (Gαβγ), opening of the channel is obtained by direct binding of Gβγ subunits. Interestingly, GIRKs are solely activated by Gβγ subunits released from Gαi/o-coupled GPCRs, despite the fact that all receptor types, for instance Gαq-coupled, are also able to provide Gβγ subunits. It is proposed that this specificity and fast kinetics of activation stem from pre-coupling (or pre-assembly) of proteins within this signaling cascade. However, many studies, including our own, point towards a diffusion-limited mechanism, namely collision coupling. Here, we set out to address this long-standing question by combining electrophysiology, imaging, and mathematical modeling. Muscarinic-2 receptors (M2R) and neuronal GIRK1/2 channels were coexpressed in Xenopus laevis oocytes, where we monitored protein surface expression, current amplitude, and activation kinetics. Densities of expressed M2R were assessed using a fluorescently labeled GIRK channel as a molecular ruler. We then incorporated our results, along with available kinetic data reported for the G-protein cycle and for GIRK1/2 activation, to generate a comprehensive mathematical model for the M2R-G-protein-GIRK1/2 signaling cascade. We find that, without assuming any irreversible interactions, our collision coupling kinetic model faithfully reproduces the rate of channel activation, the changes in agonist-evoked currents and the acceleration of channel activation by increased receptor densities.
Collapse
Affiliation(s)
- Shai Berlin
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Etay Artzy
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Reem Handklo-Jamal
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Uri Kahanovitch
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Hanna Parnas
- Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Nathan Dascal
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Daniel Yakubovich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel.,Department of Neonatology, Schneider Children's Hospital, Petah Tikva, Israel
| |
Collapse
|
27
|
Shepard RD, Langlois LD, Authement ME, Nugent FS. Histone deacetylase inhibition reduces ventral tegmental area dopamine neuronal hyperexcitability involving AKAP150 signaling following maternal deprivation in juvenile male rats. J Neurosci Res 2020; 98:1457-1467. [PMID: 32162391 DOI: 10.1002/jnr.24613] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 12/27/2022]
Abstract
Traumatic early life stress (ELS) is linked to dopamine (DA) dysregulation which increases the probability of developing psychiatric disorders in adolescence and adulthood. Our prior studies demonstrated that a severe early life stressor, a 24-hr maternal deprivation (MD) in juvenile male rats, could lead to altered DA signaling from the ventral tegmental area (VTA) due to impairment of GABAergic synaptic plasticity (promoting GABAergic long-term depression, LTD) with concomitant changes in the abundance of synaptic regulators including A-kinase anchoring protein (AKAP150). Importantly, these MD-induced synaptic changes in the VTA were accompanied by upregulation of histone deacetylase 2, histone hypoacetylation, and were reversible by HDAC inhibition. Using cell-attached and whole-cell patch clamp recordings, we found that MD stress also increased spontaneous VTA DA neuronal activity and excitability in juvenile male rats without affecting intrinsic excitability. Postsynaptic chemical disruption of AKAP150 and protein kinase A interaction increased VTA DA neuronal excitability in control non-MD rats mimicking the effects of MD on DA cell excitability with similar changes in membrane properties. Interestingly, this disruption decreased MD-induced VTA DA hyperexcitability. This MD-induced DA neuronal hyperexcitability could also be normalized at 24 hr after injection of the class 1 HDAC inhibitor, CI-994. Altogether, our data suggest that AKAP150 plays a critical role in the regulation of VTA DA neuronal excitability and that HDAC-mediated targeting of AKAP150 signaling could normalize VTA DA dysfunction following ELS thereby providing novel therapeutic targets for prevention of later life psychopathology.
Collapse
Affiliation(s)
- Ryan D Shepard
- Edward Hebert School of Medicine, Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ludovic D Langlois
- Edward Hebert School of Medicine, Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Michael E Authement
- Edward Hebert School of Medicine, Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Fereshteh S Nugent
- Edward Hebert School of Medicine, Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
28
|
Pierce ML, French JA, Murray TF. Comparison of the pharmacologic profiles of arginine vasopressin and oxytocin analogs at marmoset, titi monkey, macaque, and human oxytocin receptors. Biomed Pharmacother 2020; 125:109832. [PMID: 32018219 PMCID: PMC7196279 DOI: 10.1016/j.biopha.2020.109832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 11/27/2022] Open
Abstract
The oxytocin-arginine vasopressin (OT-AVP) ligand-receptor family influences a variety of physiological, behavioral, and social behavioral processes in the brain and periphery. The OT-AVP family is highly conserved in mammals, but recent discoveries have revealed remarkable diversity in OT ligands and receptors in New World Monkeys (NWMs) providing a unique opportunity to assess the effects of genetic variation on pharmacological signatures of peptide ligands. The consensus mammalian OT sequence has leucine in the 8th position (Leu8-OT), whereas a number of NWMs, including the marmoset, have proline in the 8th position (Pro8-OT) resulting in a more rigid tail structure. OT and AVP bind to OT’s cognate G-protein coupled receptor (OTR), which couples to various G-proteins (Gi/o, Gq, Gs) to stimulate diverse signaling pathways. CHO cells expressing marmoset (mOTR), titi monkey (tOTR), macaque (qOTR), or human (hOTR) OT receptors were used to compare AVP and OT analog-induced signaling. Assessment of Gq-mediated increase in intracellular calcium (Ca2+) demonstrated that AVP was less potent than OT analogs at OTRs from species whose endogenous ligand is Leu8-OT (tOTR, qOTR, hOTR), relative to Pro8-OT. Likewise, AVP-induced membrane hyperpolarization was less potent at these same OTRs. Evaluation of (Ca2+)-activated potassium (K+) channels using the inhibitors apamin, paxilline, and TRAM-34 demonstrated that both intermediate and large conductance Ca2+-activated K+ channels contributed to membrane hyperpolarization, with different pharmacological profiles identified for distinct ligand-receptor combinations. Understanding more fully the contributions of structure activity relationships for these peptide ligands at vasopressin and OT receptors will help guide the development of OT-mediated therapeutics.
Collapse
Affiliation(s)
- Marsha L Pierce
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA; Department of Pharmacology, Midwestern University, 555 31St., Downers Grove, IL, 60515, USA.
| | - Jeffrey A French
- Department of Psychology, University of Nebraska Omaha, 6001 Dodge St., Omaha, NE, 68182, USA.
| | - Thomas F Murray
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
29
|
Wei AD, Ramirez JM. Presynaptic Mechanisms and KCNQ Potassium Channels Modulate Opioid Depression of Respiratory Drive. Front Physiol 2019; 10:1407. [PMID: 31824331 PMCID: PMC6882777 DOI: 10.3389/fphys.2019.01407] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/31/2019] [Indexed: 01/02/2023] Open
Abstract
Opioid-induced respiratory depression (OIRD) is the major cause of death associated with opioid analgesics and drugs of abuse, but the underlying cellular and molecular mechanisms remain poorly understood. We investigated opioid action in vivo in unanesthetized mice and in in vitro medullary slices containing the preBötzinger Complex (preBötC), a locus critical for breathing and inspiratory rhythm generation. Although hypothesized as a primary mechanism, we found that mu-opioid receptor (MOR1)-mediated GIRK activation contributed only modestly to OIRD. Instead, mEPSC recordings from genetically identified Dbx1-derived interneurons, essential for rhythmogenesis, revealed a prevalent presynaptic mode of action for OIRD. Consistent with MOR1-mediated suppression of presynaptic release as a major component of OIRD, Cacna1a KO slices lacking P/Q-type Ca2+ channels enhanced OIRD. Furthermore, OIRD was mimicked and reversed by KCNQ potassium channel activators and blockers, respectively. In vivo whole-body plethysmography combined with systemic delivery of GIRK- and KCNQ-specific potassium channel drugs largely recapitulated these in vitro results, and revealed state-dependent modulation of OIRD. We propose that respiratory failure from OIRD results from a general reduction of synaptic efficacy, leading to a state-dependent collapse of rhythmic network activity.
Collapse
Affiliation(s)
- Aguan D. Wei
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| | - Jan-Marino Ramirez
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
30
|
Ethanol-induced conditioned place preference and aversion differentially alter plasticity in the bed nucleus of stria terminalis. Neuropsychopharmacology 2019; 44:1843-1854. [PMID: 30795004 PMCID: PMC6785142 DOI: 10.1038/s41386-019-0349-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/11/2023]
Abstract
Contextual cues associated with drugs of abuse, such as ethanol, can trigger craving and drug-seeking behavior. Pavlovian procedures, such as place conditioning, have been widely used to study the rewarding/aversive properties of drugs and the association between environmental cues and drug seeking. Previous research has shown that ethanol as an unconditioned stimulus can induce a strong conditioned place preference (CPP) or aversion (CPA) in rodents. However, the neural mechanisms underlying ethanol-induced reward and aversion have not been thoroughly investigated. The bed nucleus of the stria terminalis (BNST), an integral part of the extended amygdala, is engaged by both rewarding and aversive stimuli and plays a role in ethanol-seeking behavior. Here, we used ex-vivo slice physiology to probe learning-induced synaptic plasticity in the BNST following ethanol-induced CPP and CPA. Male DBA/2 J mice (2-3 months old) were conditioned using previously reported ethanol-induced CPP/CPA procedures. Ethanol-induced CPP was associated with increased neuronal excitability in the ventral BNST (vBNST). Conversely, ethanol-induced CPA resulted in a significant decrease in spontaneous glutamatergic transmission without alterations in GABAergic signaling. Ethanol-CPA also led to a significant increase in the paired-pulse ratio at excitatory synapses, suggestive of a decrease in presynaptic glutamate release. Collectively, these data demonstrate that the vBNST is involved in the modulation of contextual learning associated with both the rewarding and the aversive properties of ethanol in mice.
Collapse
|
31
|
Bernsteiner H, Zangerl-Plessl EM, Chen X, Stary-Weinzinger A. Conduction through a narrow inward-rectifier K + channel pore. J Gen Physiol 2019; 151:1231-1246. [PMID: 31511304 PMCID: PMC6785732 DOI: 10.1085/jgp.201912359] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/25/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
G-protein–gated inwardly rectifying potassium channels are important mediators of inhibitory neurotransmission. Based on microsecond-scale molecular dynamics simulations, Bernsteiner et al. propose novel gating details that may enable K+ flux via a direct knock-on mechanism. Inwardly rectifying potassium (Kir) channels play a key role in controlling membrane potentials in excitable and unexcitable cells, thereby regulating a plethora of physiological processes. G-protein–gated Kir channels control heart rate and neuronal excitability via small hyperpolarizing outward K+ currents near the resting membrane potential. Despite recent breakthroughs in x-ray crystallography and cryo-EM, the gating and conduction mechanisms of these channels are poorly understood. MD simulations have provided unprecedented details concerning the gating and conduction mechanisms of voltage-gated K+ and Na+ channels. Here, we use multi-microsecond–timescale MD simulations based on the crystal structures of GIRK2 (Kir3.2) bound to phosphatidylinositol-4,5-bisphosphate to provide detailed insights into the channel’s gating dynamics, including insights into the behavior of the G-loop gate. The simulations also elucidate the elementary steps that underlie the movement of K+ ions through an inward-rectifier K+ channel under an applied electric field. Our simulations suggest that K+ permeation might occur via direct knock-on, similar to the mechanism recently shown for Kv channels.
Collapse
Affiliation(s)
- Harald Bernsteiner
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | | - Xingyu Chen
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | |
Collapse
|
32
|
O'Donovan B, Adeluyi A, Anderson EL, Cole RD, Turner JR, Ortinski PI. Altered gating of K v1.4 in the nucleus accumbens suppresses motivation for reward. eLife 2019; 8:e47870. [PMID: 31487241 PMCID: PMC6728144 DOI: 10.7554/elife.47870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Deficient motivation contributes to numerous psychiatric disorders, including withdrawal from drug use, depression, schizophrenia, and others. Nucleus accumbens (NAc) has been implicated in motivated behavior, but it remains unclear whether motivational drive is linked to discrete neurobiological mechanisms within the NAc. To examine this, we profiled cohorts of Sprague-Dawley rats in a test of motivation to consume sucrose. We found that substantial variability in willingness to exert effort for reward was not associated with operant responding under low-effort conditions or stress levels. Instead, effort-based motivation was mirrored by a divergent NAc shell transcriptome with differential regulation at potassium and dopamine signaling genes. Functionally, motivation was inversely related to excitability of NAc principal neurons. Furthermore, neuronal and behavioral outputs associated with low motivation were linked to faster inactivation of a voltage-gated potassium channel, Kv1.4. These results raise the prospect of targeting Kv1.4 gating in psychiatric conditions associated with motivational dysfunction.
Collapse
Affiliation(s)
| | - Adewale Adeluyi
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of PharmacyUniversity of South CarolinaColumbiaUnited States
| | - Erin L Anderson
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of PharmacyUniversity of South CarolinaColumbiaUnited States
| | - Robert D Cole
- Department of NeuroscienceUniversity of KentuckyLexingtonUnited States
| | - Jill R Turner
- College of PharmacyUniversity of KentuckyLexingtonUnited States
| | - Pavel I Ortinski
- Department of NeuroscienceUniversity of KentuckyLexingtonUnited States
| |
Collapse
|
33
|
Morel C, Montgomery S, Han MH. Nicotine and alcohol: the role of midbrain dopaminergic neurons in drug reinforcement. Eur J Neurosci 2019; 50:2180-2200. [PMID: 30251377 PMCID: PMC6431587 DOI: 10.1111/ejn.14160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotine and alcohol addiction are leading causes of preventable death worldwide and continue to constitute a huge socio-economic burden. Both nicotine and alcohol perturb the brain's mesocorticolimbic system. Dopamine (DA) neurons projecting from the ventral tegmental area (VTA) to multiple downstream structures, including the nucleus accumbens, prefrontal cortex, and amygdala, are highly involved in the maintenance of healthy brain function. VTA DA neurons play a crucial role in associative learning and reinforcement. Nicotine and alcohol usurp these functions, promoting reinforcement of drug taking behaviors. In this review, we will first describe how nicotine and alcohol individually affect VTA DA neurons by examining how drug exposure alters the heterogeneous VTA microcircuit and network-wide projections. We will also examine how coadministration or previous exposure to nicotine or alcohol may augment the reinforcing effects of the other. Additionally, this review briefly summarizes the role of VTA DA neurons in nicotine, alcohol, and their synergistic effects in reinforcement and also addresses the remaining questions related to the circuit-function specificity of the dopaminergic system in mediating nicotine/alcohol reinforcement and comorbidity.
Collapse
Affiliation(s)
- Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
34
|
Pierce ML, Mehrotra S, Mustoe AC, French JA, Murray TF. A Comparison of the Ability of Leu 8- and Pro 8-Oxytocin to Regulate Intracellular Ca 2+ and Ca 2+-Activated K + Channels at Human and Marmoset Oxytocin Receptors. Mol Pharmacol 2019; 95:376-385. [PMID: 30739093 PMCID: PMC6402416 DOI: 10.1124/mol.118.114744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/30/2019] [Indexed: 02/02/2023] Open
Abstract
The neurohypophyseal hormone oxytocin (OT) regulates biologic functions in both peripheral tissues and the central nervous system. In the central nervous system, OT influences social processes, including peer relationships, maternal-infant bonding, and affiliative social relationships. In mammals, the nonapeptide OT structure is highly conserved with leucine in the eighth position (Leu8-OT). In marmosets (Callithrix), a nonsynonymous nucleotide substitution in the OXT gene codes for proline in the eighth residue position (Pro8-OT). OT binds to its cognate G protein-coupled receptor (OTR) and exerts diverse effects, including stimulation (Gs) or inhibition (Gi/o) of adenylyl cyclase, stimulation of potassium channel currents (Gi), and activation of phospholipase C (Gq). Chinese hamster ovary cells expressing marmoset or human oxytocin receptors (mOTRs or hOTRs, respectively) were used to characterize OT signaling. At the mOTR, Pro8-OT was more efficacious than Leu8-OT in measures of Gq activation, with both peptides displaying subnanomolar potencies. At the hOTR, neither the potency nor efficacy of Pro8-OT and Leu8-OT differed with respect to Gq signaling. In both mOTR- and hOTR-expressing cells, Leu8-OT was more potent and modestly more efficacious than Pro8-OT in inducing hyperpolarization. In mOTR cells, Leu8-OT-induced hyperpolarization was modestly inhibited by pretreatment with pertussis toxin (PTX), consistent with a minor role for Gi/o activation; however, the Pro8-OT response in mOTR and hOTR cells was PTX insensitive. These findings are consistent with membrane hyperpolarization being largely mediated by a Gq signaling mechanism leading to Ca2+-dependent activation of K+ channels. Evaluation of the influence of apamin, charybdotoxin, paxilline, and TRAM-34 demonstrated involvement of both intermediate and large conductance Ca2+-activated K+ channels.
Collapse
Affiliation(s)
- Marsha L Pierce
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| | - Suneet Mehrotra
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| | - Aaryn C Mustoe
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| | - Jeffrey A French
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| | - Thomas F Murray
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| |
Collapse
|
35
|
Sharma S, Kozek KA, Abney KK, Kumar S, Gautam N, Alnouti Y, David Weaver C, Hopkins CR. Discovery, synthesis and characterization of a series of (1-alkyl-3-methyl-1H-pyrazol-5-yl)-2-(5-aryl-2H-tetrazol-2-yl)acetamides as novel GIRK1/2 potassium channel activators. Bioorg Med Chem Lett 2019; 29:791-796. [PMID: 30718161 PMCID: PMC6398930 DOI: 10.1016/j.bmcl.2019.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
Abstract
The present study describes the discovery and characterization of a series of 5-aryl-2H-tetrazol-3-ylacetamides as G protein-gated inwardly-rectifying potassium (GIRK) channels activators. Working from an initial hit discovered during a high-throughput screening campaign, we identified a tetrazole scaffold that shifts away from the previously reported urea-based scaffolds while remaining effective GIRK1/2 channel activators. In addition, we evaluated the compounds in Tier 1 DMPK assays and have identified a (3-methyl-1H-pyrazol-1-yl)tetrahydrothiophene-1,1-dioxide head group that imparts interesting and unexpected microsomal stability compared to previously-reported pyrazole head groups.
Collapse
Affiliation(s)
- Swagat Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Krystian A Kozek
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kristopher K Abney
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| | - Sushil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Corey R Hopkins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA.
| |
Collapse
|
36
|
GIRK Channel Activity in Dopamine Neurons of the Ventral Tegmental Area Bidirectionally Regulates Behavioral Sensitivity to Cocaine. J Neurosci 2019; 39:3600-3610. [PMID: 30837265 DOI: 10.1523/jneurosci.3101-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Dopamine (DA) neurons of the VTA have been widely implicated in the cellular and behavioral responses to drugs of abuse. Inhibitory G protein signaling mediated by GABAB receptors (GABABRs) and D2 DA receptors (D2Rs) regulates the excitability of VTA DA neurons, DA neurotransmission, and behaviors modulated by DA. Most of the somatodendritic inhibitory effect of GABABR and D2R activation on DA neurons reflects the activation of G protein-gated inwardly rectifying K+ (GIRK) channels. Furthermore, GIRK-dependent signaling in VTA DA neurons can be weakened by exposure to psychostimulants and strengthened by phasic DA neuron firing. The objective of this study was to determine how the strength of GIRK channel activity in VTA DA neurons influences sensitivity to cocaine. We used a Cre-dependent viral strategy to overexpress the individual GIRK channel subunits in VTA DA neurons of male and female adult mice, leading to enhancement (GIRK2) or suppression (GIRK3) of GIRK channel activity. Overexpression of GIRK3 decreased somatodendritic GABABR- and D2R-dependent signaling and increased cocaine-induced locomotor activity, whereas overexpression of GIRK2 increased GABABR-dependent signaling and decreased cocaine-induced locomotion. Neither manipulation impacted anxiety- or depression-related behavior, despite the link between such behaviors and DA signaling. Together, these data show that behavioral sensitivity to cocaine in mice is inversely proportional to the strength of GIRK channel activity in VTA DA neurons and suggest that direct activators of the unique VTA DA neuron GIRK channel subtype (GIRK2/GIRK3 heteromer) could represent a promising therapeutic target for treatment of addiction.SIGNIFICANCE STATEMENT Inhibitory G protein signaling in dopamine (DA) neurons, including that mediated by G protein-gated inwardly rectifying K+ (GIRK) channels, has been implicated in behavioral sensitivity to cocaine. Here, we used a viral approach to bidirectionally manipulate GIRK channel activity in DA neurons of the VTA. We found that decreasing GIRK channel activity in VTA DA neurons increased behavioral sensitivity to cocaine, whereas increasing GIRK channel activity decreased behavioral sensitivity to cocaine. These manipulations did not alter anxiety- or depression-related behaviors. These data highlight the unique GIRK channel subtype in VTA DA neurons as a possible therapeutic target for addiction.
Collapse
|
37
|
Mutual action by Gγ and Gβ for optimal activation of GIRK channels in a channel subunit-specific manner. Sci Rep 2019; 9:508. [PMID: 30679535 PMCID: PMC6346094 DOI: 10.1038/s41598-018-36833-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/29/2018] [Indexed: 01/06/2023] Open
Abstract
The tetrameric G protein-gated K+ channels (GIRKs) mediate inhibitory effects of neurotransmitters that activate Gi/o-coupled receptors. GIRKs are activated by binding of the Gβγ dimer, via contacts with Gβ. Gγ underlies membrane targeting of Gβγ, but has not been implicated in channel gating. We observed that, in Xenopus oocytes, expression of Gγ alone activated homotetrameric GIRK1* and heterotetrameric GIRK1/3 channels, without affecting the surface expression of GIRK or Gβ. Gγ and Gβ acted interdependently: the effect of Gγ required the presence of ambient Gβ and was enhanced by low doses of coexpressed Gβ, whereas excess of either Gβ or Gγ imparted suboptimal activation, possibly by sequestering the other subunit “away” from the channel. The unique distal C-terminus of GIRK1, G1-dCT, was important but insufficient for Gγ action. Notably, GIRK2 and GIRK1/2 were not activated by Gγ. Our results suggest that Gγ regulates GIRK1* and GIRK1/3 channel’s gating, aiding Gβ to trigger the channel’s opening. We hypothesize that Gγ helps to relax the inhibitory effect of a gating element (“lock”) encompassed, in part, by the G1-dCT; GIRK2 acts to occlude the effect of Gγ, either by setting in motion the same mechanism as Gγ, or by triggering an opposing gating effect.
Collapse
|
38
|
Groos D, Zheng F, Rauh M, Quinger B, Kornhuber J, Müller CP, Alzheimer C. Chronic antipsychotic treatment targets GIRK current suppression, loss of long-term synaptic depression and behavioural sensitization in a mouse model of amphetamine psychosis. J Psychopharmacol 2018; 33:269881118812235. [PMID: 30488738 DOI: 10.1177/0269881118812235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND: Antipsychotic drugs (APDs) are the mainstay of the pharmacological treatment of psychotic disorders like schizophrenia. While the clinical efficacy of APDs has long since been established, the neurobiological mechanisms underlying their therapeutic benefits are still not well understood. METHODS: Here, we used an escalating amphetamine regimen to induce a psychosis-like state in mice. To achieve clinically relevant drug concentrations in amphetamine-pretreated mice, the typical APD haloperidol or the atypical APD olanzapine were chronically administered via subcutaneously implanted osmotic mini-pumps. RESULTS: Demonstrating their therapeutic efficacy, both drugs dampened amphetamine-induced hyperlocomotion and restored normal behaviour in the light-induced activity test. Whole-cell recordings from dopaminergic neurons of the ventral tegmental area (VTA) in ex vivo brain slices revealed two pronounced aberrations associated with the psychosis-like state: Strongly enhanced spontaneous firing and a substantial loss of G protein-gated inwardly rectifying potassium (GIRK) current upon activation of GABAB receptors with baclofen. Chronic haloperidol and olanzapine restored normal firing and partially rescued the GIRK current response to baclofen. In ex vivo slices containing the nucleus accumbens, which receives a dopaminergic projection from the VTA, abrogation of long-term synaptic depression (LTD) and enhanced excitatory drive onto medium spiny neurons were identified as synaptic consequences of amphetamine-induced psychosis. Again, both alterations proved amenable to chronic APD treatment. CONCLUSION: Our data provide evidence for aberrant neuronal function and plasticity in the mesolimbic dopamine system during an induced psychotic state and identify these alterations as targets of chronic APD treatment.
Collapse
Affiliation(s)
- Dominik Groos
- 1 Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Fang Zheng
- 1 Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Rauh
- 2 Department of Pediatrics and Adolescent Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Benedikt Quinger
- 3 Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Kornhuber
- 3 Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian P Müller
- 3 Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Alzheimer
- 1 Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
39
|
GIRK currents in VTA dopamine neurons control the sensitivity of mice to cocaine-induced locomotor sensitization. Proc Natl Acad Sci U S A 2018; 115:E9479-E9488. [PMID: 30228121 PMCID: PMC6176583 DOI: 10.1073/pnas.1807788115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
GABABR-dependent activation of G protein-gated inwardly rectifying potassium channels (GIRK or KIR3) provides a well-known source of inhibition in the brain, but the details on how this important inhibitory pathway affects neural circuits are lacking. We used sorting nexin 27 (SNX27), an endosomal adaptor protein that associates with GIRK2c and GIRK3 subunits, to probe the role of GIRK channels in reward circuits. A conditional knockout of SNX27 in both substantia nigra pars compacta and ventral tegmental area (VTA) dopamine neurons leads to markedly smaller GABABR- and dopamine D2R-activated GIRK currents, as well as to suprasensitivity to cocaine-induced locomotor sensitization. Expression of the SNX27-insensitive GIRK2a subunit in SNX27-deficient VTA dopamine neurons restored GIRK currents and GABABR-dependent inhibition of spike firing, while also resetting the mouse's sensitivity to cocaine-dependent sensitization. These results establish a link between slow inhibition mediated by GIRK channels in VTA dopamine neurons and cocaine addiction, revealing a therapeutic target for treating addiction.
Collapse
|
40
|
Li X, Carreria MB, Witonsky KR, Zeric T, Lofaro OM, Bossert JM, Zhang J, Surjono F, Richie CT, Harvey BK, Son H, Cowan CW, Nestler EJ, Shaham Y. Role of Dorsal Striatum Histone Deacetylase 5 in Incubation of Methamphetamine Craving. Biol Psychiatry 2018; 84:213-222. [PMID: 29397902 PMCID: PMC6026084 DOI: 10.1016/j.biopsych.2017.12.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/28/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Methamphetamine (meth) seeking progressively increases after withdrawal (incubation of meth craving). We previously demonstrated an association between histone deacetylase 5 (HDAC5) gene expression in the rat dorsal striatum and incubation of meth craving. Here we used viral constructs to study the causal role of dorsal striatum HDAC5 in this incubation. METHODS In experiment 1 (overexpression), we injected an adeno-associated virus bilaterally into dorsal striatum to express either green fluorescent protein (control) or a mutant form of HDAC5, which strongly localized to the nucleus. After training rats to self-administer meth (10 days, 9 hours/day), we tested the rats for relapse to meth seeking on withdrawal days 2 and 30. In experiment 2 (knockdown), we injected an adeno-associated virus bilaterally into the dorsal striatum to express a short hairpin RNA either against luciferase (control) or against HDAC5. After training rats to self-administer meth, we tested the rats for relapse on withdrawal days 2 and 30. We also measured gene expression of other HDACs and potential HDAC5 downstream targets. RESULTS We found that HDAC5 overexpression in dorsal striatum increased meth seeking on withdrawal day 30 but not day 2. In contrast, HDAC5 knockdown in the dorsal striatum decreased meth seeking on withdrawal day 30 but not on day 2; this manipulation also altered other HDACs (Hdac1 and Hdac4) and potential HDAC5 targets (Gnb4 and Suv39h1). CONCLUSIONS Results demonstrate a novel role of dorsal striatum HDAC5 in incubation of meth craving. These findings also set up future work to identify HDAC5 targets that mediate this incubation.
Collapse
Affiliation(s)
- Xuan Li
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland.
| | - Maria B Carreria
- Neuroscience Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kailyn R Witonsky
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Tamara Zeric
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Olivia M Lofaro
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Jennifer M Bossert
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Felicia Surjono
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Christopher T Richie
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| | - Hyeon Son
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - Eric J Nestler
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yavin Shaham
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland
| |
Collapse
|
41
|
Horvath GA, Zhao Y, Tarailo-Graovac M, Boelman C, Gill H, Shyr C, Lee J, Blydt-Hansen I, Drögemöller BI, Moreland J, Ross CJ, Wasserman WW, Masotti A, Slesinger PA, van Karnebeek CDM. Gain-of-function KCNJ6 Mutation in a Severe Hyperkinetic Movement Disorder Phenotype. Neuroscience 2018; 384:152-164. [PMID: 29852244 DOI: 10.1016/j.neuroscience.2018.05.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 01/13/2023]
Abstract
Here, we describe a fourth case of a human with a de novo KCNJ6 (GIRK2) mutation, who presented with clinical findings of severe hyperkinetic movement disorder and developmental delay, similar to the Keppen-Lubinsky syndrome but without lipodystrophy. Whole-exome sequencing of the patient's DNA revealed a heterozygous de novo variant in the KCNJ6 (c.512T>G, p.Leu171Arg). We conducted in vitro functional studies to determine if this Leu-to-Arg mutation alters the function of GIRK2 channels. Heterologous expression of the mutant GIRK2 channel alone produced an aberrant basal inward current that lacked G protein activation, lost K+ selectivity and gained Ca2+ permeability. Notably, the inward current was inhibited by the Na+ channel blocker QX-314, similar to the previously reported weaver mutation in murine GIRK2. Expression of a tandem dimer containing GIRK1 and GIRK2(p.Leu171Arg) did not lead to any currents, suggesting heterotetramers are not functional. In neurons expressing p.Leu171Arg GIRK2 channels, these changes in channel properties would be expected to generate a sustained depolarization, instead of the normal G protein-gated inhibitory response, which could be mitigated by expression of other GIRK subunits. The identification of the p.Leu171Arg GIRK2 mutation potentially expands the Keppen-Lubinsky syndrome phenotype to include severe dystonia and ballismus. Our study suggests screening for dominant KCNJ6 mutations in the evaluation of patients with severe movement disorders, which could provide evidence to support a causal role of KCNJ6 in neurological channelopathies.
Collapse
Affiliation(s)
- Gabriella A Horvath
- Division of Biochemical Diseases, Department of Pediatrics, B.C. Children's Hospital, University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.
| | - Yulin Zhao
- Dept. of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maja Tarailo-Graovac
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada; Institute of Physiology and Biochemistry, Faculty of Biology, The University of Belgrade, Belgrade, Serbia; Department of Biochemistry, Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Cyrus Boelman
- Division of Pediatric Neurology, Department of Pediatrics, B.C. Children's Hospital, University of British Columbia, Vancouver, Canada
| | - Harinder Gill
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Casper Shyr
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - James Lee
- Division of Pediatric Neurology, Department of Pediatrics, B.C. Children's Hospital, University of British Columbia, Vancouver, Canada
| | | | - Britt I Drögemöller
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada; Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Jacqueline Moreland
- Department of Biochemistry, Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Colin J Ross
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Wyeth W Wasserman
- BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Andrea Masotti
- Bambino Gesù Children's Hospital, IRCCS, Research Laboratories, Rome, Italy
| | - Paul A Slesinger
- Dept. of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Clara D M van Karnebeek
- Division of Biochemical Diseases, Department of Pediatrics, B.C. Children's Hospital, University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada; Department of Pediatrics and Clinical Genetics, Emma Children's Hospital, Academic Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|