1
|
Dai Y, Tian X, Ye X, Gong Y, Xu L, Jiao L. Role of the TME in immune checkpoint blockade resistance of non-small cell lung cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:52. [PMID: 39802954 PMCID: PMC11724356 DOI: 10.20517/cdr.2024.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Primary and secondary resistance to immune checkpoint blockade (ICB) reduces its efficacy. The mechanisms underlying immunotherapy resistance are highly complex. In non-small cell lung cancer (NSCLC), these mechanisms are primarily associated with the loss of programmed cell death-ligand 1 (PD-L1) expression, genetic mutations, circular RNA axis and transcription factor regulation, antigen presentation disorders, and dysregulation of signaling pathways. Additionally, alterations in the tumor microenvironment (TME) play a pivotal role in driving immunotherapy resistance. Primary resistance is mainly attributed to TME alterations, including mutations and co-mutations, modulation of T cell infiltration, enrichment of M2 tumor-associated macrophages (M2-TAMs) and mucosal-associated invariant T (MAIT) cells, vascular endothelial growth factor (VEGF), and pulmonary fibrosis. Acquired resistance mainly stems from changes in cellular infiltration patterns leading to "cold" or "hot" tumors, altered interferon (IFN) signaling pathway expression, involvement of extracellular vesicles (EVs), and oxidative stress responses, as well as post-treatment gene mutations and circadian rhythm disruption (CRD). This review presents an overview of various mechanisms underlying resistance to ICB, elucidates the alterations in the TME during primary, adaptive, and acquired resistance, and discusses existing strategies for overcoming ICB resistance.
Collapse
Affiliation(s)
- Yuening Dai
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xueqi Tian
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xuanting Ye
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yabin Gong
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ling Xu
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Translational Cancer Research for Integrated Chinese and Western Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Lijing Jiao
- Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Translational Cancer Research for Integrated Chinese and Western Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
2
|
Gajos-Michniewicz A, Czyz M. Therapeutic Potential of Natural Compounds to Modulate WNT/β-Catenin Signaling in Cancer: Current State of Art and Challenges. Int J Mol Sci 2024; 25:12804. [PMID: 39684513 DOI: 10.3390/ijms252312804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Targeted therapies and immunotherapies have improved the clinical outcome of cancer patients; however, the efficacy of treatment remains frequently limited due to low predictability of response and development of drug resistance. Therefore, novel therapeutic strategies for various cancer types are needed. Current research emphasizes the potential therapeutic value of targeting WNT/β-catenin dependent signaling that is deregulated in various cancer types. Targeting the WNT/β-catenin signaling pathway with diverse synthetic and natural agents is the subject of a number of preclinical studies and clinical trials for cancer patients. The usage of nature-derived agents is attributed to their health benefits, reduced toxicity and side effects compared to synthetic agents. The review summarizes preclinical studies and ongoing clinical trials that aim to target components of the WNT/β-catenin pathway across a diverse spectrum of cancer types, highlighting their potential to improve cancer treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
3
|
Zheng S, He S, Liang Y, Liu Q, Liu T, Tan Y, Peng T, Huang C, Gao H, Lu X. NME4 suppresses NFκB2-CCL5 axis, restricting CD8+ T cell tumour infiltration in oesophageal squamous cell carcinoma. Immunology 2024; 173:408-421. [PMID: 39016535 DOI: 10.1111/imm.13838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
Thought of as a metastasis-associated gene, however, NME/NM23 nucleoside diphosphate kinase 4 (NME4) has rarely been described in the context of the tumour microenvironment. To understand the immunological implications of NME4 in oesophageal squamous cell carcinoma (ESCC), we used multiplex immunohistochemistry to analyse the clinicopathological and prognostic importance of NME4 expression. Then, after establishing a syngeneic tumour model with a C57BL/6 mouse strain that can recapitulate the tumour microenvironment of humans, we examined the immunological involvement of NME4 expression. To explore the underlying molecular mechanism, via quantitative proteomics and protein microarray screening, we investigated the potential signalling pathways involved. The clinicopathological and prognostic importance of NME4 expression is limited in ESCC patients. In vivo, single-cell RNA sequencing showed that NME4 strikingly prevented CD8+ T cells from infiltrating the tumour microenvironment in murine ESCC. Mechanistically, we mapped out the NFκB2-CCL5 axis that was negatively controlled by NME4 in the murine ESCC cell line AKR. Collectively, these data demonstrated that regulation of NFκB2-CCL5 axis by NME4 prevents CD8+ T cells infiltration in ESCC.
Collapse
Affiliation(s)
- Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Shuo He
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Yan Liang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Yiyi Tan
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Tianyuan Peng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Conggai Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Haidong Gao
- Genepioneer Biotechnologies Co. Ltd., Nanjing, Jiangsu, People's Republic of China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| |
Collapse
|
4
|
Wang H, Zhang L, Hu C, Li H, Jiang M. Wnt signaling and tumors (Review). Mol Clin Oncol 2024; 21:45. [PMID: 38798312 PMCID: PMC11117032 DOI: 10.3892/mco.2024.2743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Wnt signaling is a highly conserved evolutionary pathway that plays a key role in regulation of embryonic development, as well as tissue homeostasis and regeneration. Abnormalities in Wnt signaling are associated with tumorigenesis and development, leading to poor prognosis in patients with cancer. However, the pharmacological effects and mechanisms underlying Wnt signaling and its inhibition in cancer treatment remain unclear. In addition, potential side effects of inhibiting this process are not well understood. Therefore, the present review outlines the role of Wnt signaling in tumorigenesis, development, metastasis, cancer stem cells, radiotherapy resistance and tumor immunity. The present review further identifies inhibitors that target Wnt signaling to provide a potential novel direction for cancer treatment. This may facilitate early application of safe and effective drugs targeting Wnt signaling in clinical settings. An in-depth understanding of the mechanisms underlying inhibition of Wnt signaling may improve the prognosis of patients with cancer.
Collapse
Affiliation(s)
- Huaishi Wang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Lihai Zhang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Chao Hu
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Mingyan Jiang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| |
Collapse
|
5
|
Zhang Z, Westover D, Tang Z, Liu Y, Sun J, Sun Y, Zhang R, Wang X, Zhou S, Hesilaiti N, Xia Q, Du Z. Wnt/β-catenin signaling in the development and therapeutic resistance of non-small cell lung cancer. J Transl Med 2024; 22:565. [PMID: 38872189 PMCID: PMC11170811 DOI: 10.1186/s12967-024-05380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Wnt/β-catenin signaling is a critical pathway that influences development and therapeutic response of non-small cell lung cancer (NSCLC). In recent years, many Wnt regulators, including proteins, miRNAs, lncRNAs, and circRNAs, have been found to promote or inhibit signaling by acting on Wnt proteins, receptors, signal transducers and transcriptional effectors. The identification of these regulators and their underlying molecular mechanisms provides important implications for how to target this pathway therapeutically. In this review, we summarize recent studies of Wnt regulators in the development and therapeutic response of NSCLC.
Collapse
Affiliation(s)
- Zixu Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - David Westover
- High-Throughput Analytics, Analytical Research and Development, Merck & Co. Inc., Rahway, NJ, USA
| | - Zhantong Tang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Yue Liu
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Jinghan Sun
- School of Life Science and Technology, Southeast University, Nanjing, 210018, China
| | - Yunxi Sun
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Runqing Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Xingyue Wang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Shihui Zhou
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Nigaerayi Hesilaiti
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Qi Xia
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Zhenfang Du
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China.
| |
Collapse
|
6
|
Song Y, Chen M, Wei Y, Ma X, Shi H. Signaling pathways in colorectal cancer implications for the target therapies. MOLECULAR BIOMEDICINE 2024; 5:21. [PMID: 38844562 PMCID: PMC11156834 DOI: 10.1186/s43556-024-00178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/29/2024] [Indexed: 06/09/2024] Open
Abstract
Colorectal carcinoma (CRC) stands as a pressing global health issue, marked by the unbridled proliferation of immature cells influenced by multifaceted internal and external factors. Numerous studies have explored the intricate mechanisms of tumorigenesis in CRC, with a primary emphasis on signaling pathways, particularly those associated with growth factors and chemokines. However, the sheer diversity of molecular targets introduces complexity into the selection of targeted therapies, posing a significant challenge in achieving treatment precision. The quest for an effective CRC treatment is further complicated by the absence of pathological insights into the mutations or alterations occurring in tumor cells. This study reveals the transfer of signaling from the cell membrane to the nucleus, unveiling recent advancements in this crucial cellular process. By shedding light on this novel dimension, the research enhances our understanding of the molecular intricacies underlying CRC, providing a potential avenue for breakthroughs in targeted therapeutic strategies. In addition, the study comprehensively outlines the potential immune responses incited by the aberrant activation of signaling pathways, with a specific focus on immune cells, cytokines, and their collective impact on the dynamic landscape of drug development. This research not only contributes significantly to advancing CRC treatment and molecular medicine but also lays the groundwork for future breakthroughs and clinical trials, fostering optimism for improved outcomes and refined approaches in combating colorectal carcinoma.
Collapse
Affiliation(s)
- Yanlin Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ming Chen
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuhao Wei
- West China School of Medicine, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Huashan Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
7
|
Syrnioti A, Petousis S, Newman LA, Margioula-Siarkou C, Papamitsou T, Dinas K, Koletsa T. Triple Negative Breast Cancer: Molecular Subtype-Specific Immune Landscapes with Therapeutic Implications. Cancers (Basel) 2024; 16:2094. [PMID: 38893213 PMCID: PMC11171372 DOI: 10.3390/cancers16112094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is characterized by distinct molecular subtypes with unique biological and clinical features. This systematic review aimed to identify articles examining the differences in the tumor immune microenvironment (TIME) across different TNBC molecular subtypes. Six studies meeting inclusion criteria were analyzed, utilizing gene expression profiling and bioinformatic analyses to classify TNBC samples into molecular subtypes, as well as immunohistochemistry and cell deconvolution methods to characterize the TIME. Results revealed significant heterogeneity in immune cell composition among TNBC subtypes, with the immunomodulatory (IM) subtype demonstrating robust immune infiltration, composed mainly of adaptive immune cells along with an increased density of CTLA-4+ and PD-1+ TILs, high PD-L1 tumor cell expression, and upregulation of FOXP3+ Tregs. A more immunosuppressive TIME with a predominance of innate immune cells and lower levels of tumor-infiltrating lymphocytes (TILs) was observed in luminal androgen receptor (LAR) tumors. In mesenchymal stem-like (MSL) tumors, the TIME was mainly composed of innate immune cells, with a high number of M2 tumor-associated macrophages (TAMs), while the BL and M tumors displayed poor adaptive and innate immune responses, indicating an "immune-cold" phenotype. Differential activation of signaling pathways, genomic diversity, and metabolic reprogramming were identified as contributors to TIME heterogeneity. Understanding this interplay is crucial for tailoring therapeutic strategies, especially regarding immunotherapy.
Collapse
Affiliation(s)
- Antonia Syrnioti
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stamatios Petousis
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.P.); (K.D.)
| | - Lisa A. Newman
- Department of Breast Surgery, New York Presbyterian-Weill Cornell Medicine, New York, NY 10065, USA;
| | - Chrysoula Margioula-Siarkou
- MSc Program in Gynaecologic Oncology and Breast Oncology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Theodora Papamitsou
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Konstantinos Dinas
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.P.); (K.D.)
| | - Triantafyllia Koletsa
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
8
|
Han YJ, Shao CY, Yao Y, Zhang Z, Fang MZ, Gong T, Zhang YJ, Li M. Immunotherapy of microsatellite stable colorectal cancer: resistance mechanisms and treatment strategies. Postgrad Med J 2024; 100:373-381. [PMID: 38211949 DOI: 10.1093/postmj/qgad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/11/2023] [Accepted: 12/03/2023] [Indexed: 01/13/2024]
Abstract
In recent years, immunotherapy strategies based on immune checkpoint inhibitors have yielded good efficacy in colorectal cancer (CRC)especially in colorectal cancer with microsatellite instability-high. However, microsatellite-stable (MSS) CRCs account for about 85% of CRCs and are resistant to immunotherapy. Previous studies have shown that compared with MSS CRC, high microsatellite instability CRC possesses a higher frequency of mutations and can generate more neoantigens. Therefore, improving the sensitivity of immunotherapy to MSS CRC is a hot topic which is crucial for the treatment of MSS CRC. This review aims to discuss the factors contributing to MSS CRC insensitivity to immunotherapy and explored potential solutions to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Yan-Jie Han
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210046, China
| | - Chi-Yun Shao
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210046, China
| | - Ying Yao
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210046, China
| | - Zhe Zhang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
- Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210046, China
| | - Ming-Zhi Fang
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
| | - Tao Gong
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
| | - Ya-Jie Zhang
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing, University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
- Department of Biobank, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
| | - Min Li
- Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Damin Road, Nanjing, Jiangsu 210001, China
| |
Collapse
|
9
|
Yuan Y, Wu D, Hou Y, Zhang Y, Tan C, Nie X, Zhao Z, Hou J. Wnt signaling: Modulating tumor-associated macrophages and related immunotherapeutic insights. Biochem Pharmacol 2024; 223:116154. [PMID: 38513742 DOI: 10.1016/j.bcp.2024.116154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Wnt signaling pathways are highly conserved cascades that mediate multiple biological processes through canonical or noncanonical pathways, from embryonic development to tissue maintenance, but they also contribute to the pathogenesis of numerous cancers. Recent studies have revealed that Wnt signaling pathways critically control the interplay between cancer cells and tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) and potentially impact the efficacy of cancer immunotherapy. In this review, we summarize the evidence that Wnt signaling pathways boost the maturation and infiltration of macrophages for immune surveillance in the steady state but also polarize TAMs toward immunosuppressive M2-like phenotypes for immune escape in the TME. Both cancer cells and TAMs utilize Wnt signaling to transmit signals, and this interaction is crucial for the carcinogenesis and progression of common solid cancers, such as colorectal, gastric, hepatocellular, breast, thyroid, prostate, kidney, and lung cancers; osteosarcoma; and glioma. Specifically, compared with those in solid cancers, Wnt signaling pathways play a distinct role in the pathogenesis of leukemia. Efforts to develop Wnt-based drugs for cancer treatment are still ongoing, and some indeed enhance the anticancer immune response. We believe that the combination of Wnt signaling-based therapy with conventional or immune therapies is a promising therapeutic approach and can facilitate personalized treatment for most cancers.
Collapse
Affiliation(s)
- Yimeng Yuan
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Dapeng Wu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yifan Hou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yi Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Cong Tan
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China; Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Henan University, Kaifeng, China.
| | - Zhenhua Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China; Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Henan University, Kaifeng, China.
| | - Junqing Hou
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng, China; Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Henan University, Kaifeng, China.
| |
Collapse
|
10
|
Nakagawa S, Yamaguchi K, Takane K, Tabata S, Ikenoue T, Furukawa Y. Wnt/β-catenin signaling regulates amino acid metabolism through the suppression of CEBPA and FOXA1 in liver cancer cells. Commun Biol 2024; 7:510. [PMID: 38684876 PMCID: PMC11058205 DOI: 10.1038/s42003-024-06202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Deregulation of the Wnt/β-catenin pathway is associated with the development of human cancer including colorectal and liver cancer. Although we previously showed that histidine ammonia lyase (HAL) was transcriptionally reduced by the β-catenin/TCF complex in liver cancer cells, the mechanism(s) of its down-regulation by the complex remain to be clarified. In this study, we search for the transcription factor(s) regulating HAL, and identify CEBPA and FOXA1, two factors whose expression is suppressed by the knockdown of β-catenin or TCF7L2. In addition, RNA-seq analysis coupled with genome-wide mapping of CEBPA- and FOXA1-binding regions reveals that these two factors also increase the expression of arginase 1 (ARG1) that catalyzes the hydrolysis of arginine. Metabolome analysis discloses that activated Wnt signaling augments intracellular concentrations of histidine and arginine, and that the signal also increases the level of lactic acid suggesting the induction of the Warburg effect in liver cancer cells. Further analysis reveals that the levels of metabolites of the urea cycle and genes coding its related enzymes are also modulated by the Wnt signaling. These findings shed light on the altered cellular metabolism in the liver by the Wnt/β-catenin pathway through the suppression of liver-enriched transcription factors including CEBPA and FOXA1.
Collapse
Affiliation(s)
- Saya Nakagawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| | - Kiyoko Takane
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Sho Tabata
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, 997-0052, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
11
|
Feng Y, Li Y, Ma F, Wu E, Cheng Z, Zhou S, Wang Z, Yang L, Sun X, Zhang J. Notoginsenoside Ft1 inhibits colorectal cancer growth by increasing CD8 + T cell proportion in tumor-bearing mice through the USP9X signaling pathway. Chin J Nat Med 2024; 22:329-340. [PMID: 38658096 DOI: 10.1016/s1875-5364(24)60623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Indexed: 04/26/2024]
Abstract
The management of colorectal cancer (CRC) poses a significant challenge, necessitating the development of innovative and effective therapeutics. Our research has shown that notoginsenoside Ft1 (Ng-Ft1), a small molecule, markedly inhibits subcutaneous tumor formation in CRC and enhances the proportion of CD8+ T cells in tumor-bearing mice, thus restraining tumor growth. Investigation into the mechanism revealed that Ng-Ft1 selectively targets the deubiquitination enzyme USP9X, undermining its role in shielding β-catenin. This leads to a reduction in the expression of downstream effectors in the Wnt signaling pathway. These findings indicate that Ng-Ft1 could be a promising small-molecule treatment for CRC, working by blocking tumor progression via the Wnt signaling pathway and augmenting CD8+ T cell prevalence within the tumor environment.
Collapse
Affiliation(s)
- Yutao Feng
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fen Ma
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Enjiang Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zewei Cheng
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiling Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xun Sun
- Gastrointestinal surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
12
|
Hasani-Sadrabadi MM, Majedi FS, Zarubova J, Thauland TJ, Arumugaswami V, Hsiai TK, Bouchard LS, Butte MJ, Li S. Harnessing Biomaterials to Amplify Immunity in Aged Mice through T Memory Stem Cells. ACS NANO 2024; 18:6908-6926. [PMID: 38381620 DOI: 10.1021/acsnano.3c08559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The durability of a protective immune response generated by a vaccine depends on its ability to induce long-term T cell immunity, which tends to decline in aging populations. The longest protection appears to arise from T memory stem cells (TMSCs) that confer high expandability and effector functions when challenged. Here we engineered artificial antigen presenting cells (aAPC) with optimized size, stiffness and activation signals to induce human and mouse CD8+ TMSCs in vitro. This platform was optimized as a vaccine booster of TMSCs (Vax-T) with prolonged release of small-molecule blockade of the glycogen synthase kinase-3β together with target antigens. By using SARS-CoV-2 antigen as a model, we show that a single injection of Vax-T induces durable antigen-specific CD8+ TMSCs in young and aged mice, and generates humoral responses at a level stronger than or similar to soluble vaccines. This Vax-T approach can boost long-term immunity to fight infectious diseases, cancer, and other diseases.
Collapse
Affiliation(s)
| | - Fatemeh S Majedi
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Jana Zarubova
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Timothy J Thauland
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Vaithilingaraja Arumugaswami
- Jonsson Comprehensive Cancer Center, University of California Los Angeles; Los Angeles, California 90095 United States
- Department of Molecular and Medical Pharmacology, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Tzung K Hsiai
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Louis-S Bouchard
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
- Jonsson Comprehensive Cancer Center, University of California Los Angeles; Los Angeles, California 90095 United States
- Department of Chemistry and Biochemistry, University of California Los Angeles; Los Angeles, California 90095 United States
- The Molecular Biology Institute, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Manish J Butte
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, University of California Los Angeles, Los Angeles, California 90095 United States
- Jonsson Comprehensive Cancer Center, University of California Los Angeles; Los Angeles, California 90095 United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Song Li
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
- Jonsson Comprehensive Cancer Center, University of California Los Angeles; Los Angeles, California 90095 United States
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles; Los Angeles, California 90095 United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles; Los Angeles, California 90095 United States
| |
Collapse
|
13
|
Wang X, Yuan Z, Li Z, He X, Zhang Y, Wang X, Su J, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Shen J, Yi T, Xiao Z. Key oncogenic signaling pathways affecting tumor-infiltrating lymphocytes infiltration in hepatocellular carcinoma: basic principles and recent advances. Front Immunol 2024; 15:1354313. [PMID: 38426090 PMCID: PMC10902128 DOI: 10.3389/fimmu.2024.1354313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) ranks first among primary liver cancers, and its mortality rate exhibits a consistent annual increase. The treatment of HCC has witnessed a significant surge in recent years, with the emergence of targeted immune therapy as an adjunct to early surgical resection. Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) has shown promising results in other types of solid tumors. This article aims to provide a comprehensive overview of the intricate interactions between different types of TILs and their impact on HCC, elucidate strategies for targeting neoantigens through TILs, and address the challenges encountered in TIL therapies along with potential solutions. Furthermore, this article specifically examines the impact of oncogenic signaling pathways activation within the HCC tumor microenvironment on the infiltration dynamics of TILs. Additionally, a concise overview is provided regarding TIL preparation techniques and an update on clinical trials investigating TIL-based immunotherapy in solid tumors.
Collapse
Affiliation(s)
- Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhengbo Li
- Department of Laboratory Medicine, The Longmatan District People’s Hospital, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
14
|
Chen J, Zhao Y, Wang X, Zang L, Yin D, Tan S. Hyperoside Inhibits RNF8-mediated Nuclear Translocation of β-catenin to Repress PD-L1 Expression and Prostate Cancer. Anticancer Agents Med Chem 2024; 24:464-476. [PMID: 38305391 DOI: 10.2174/0118715206289246240110044931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Hyperoside is a flavonol glycoside isolated from Hypericum perforatum L. that has inhibitory effects on cancer cells; however, its effects on prostate cancer (PCa) remain unclear. Therefore, we studied the anti-PCa effects of hyperoside and its underlying mechanisms in vitro and in vivo. AIM This study aimed to explore the mechanism of hyperoside in anti-PCa. METHODS 3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl Tetrazolium Bromide (MTT), transwell, and flow cytometry assays were used to detect PCa cell growth, invasion, and cell apoptosis. Immunoblot analysis, immunofluorescence, immunoprecipitation, and quantitative real-time PCR (qRT-PCR) were used to analyze the antitumor mechanism of hyperoside. RESULTS Hyperoside inhibited PCa cell growth, invasion, and cell cycle and induced cell apoptosis. Furthermore, RING finger protein 8 (RNF8), an E3 ligase that assembles K63 polyubiquitination chains, was predicted to be a direct target of hyperoside and was downregulated by hyperoside. Downregulation of RNF8 by hyperoside impeded the nuclear translocation of β-catenin and disrupted the Wnt/β-catenin pathway, which reduced the expression of the target genes c-myc, cyclin D1, and programmed death ligand 1 (PD-L1). Decreased PD-L1 levels contributed to induced immunity in Jurkat cells in vitro. Finally, in vivo studies demonstrated that hyperoside significantly reduced tumor size, inhibited PD-L1 and RNF8 expression, and induced apoptosis in tumor tissues of a subcutaneous mouse model. CONCLUSION Hyperoside exerts its anti-PCa effect by reducing RNF8 protein, inhibiting nuclear translocation of β-catenin, and disrupting the Wnt/β-catenin pathway, in turn reducing the expression of PD-L1 and improving Jurkat cell immunity.
Collapse
Affiliation(s)
- Jie Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yi Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Xiaoli Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Long Zang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Song Tan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| |
Collapse
|
15
|
Yin G, Zheng S, Zhang W, Dong X, Qi L, Li Y. Classification of bladder cancer based on immune cell infiltration and construction of a risk prediction model for prognosis. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 53:47-57. [PMID: 38229504 PMCID: PMC10945491 DOI: 10.3724/zdxbyxb-2023-0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
OBJECTIVES To classify bladder cancer based on immune cell infiltration score and to construct a prognosis assessment model of patients with bladder cancer. METHODS The transcriptome data and clinical data of breast cancer patients were obtained from the The Cancer Genome Atlas (TCGA) database. Single sample gene set enrichment analysis was used to calculate the infiltration scores of 16 immune cells. The classification of breast cancer patients was achieved by unsupervised clustering, and the sensitivity of patients with different types to immunotherapy and chemotherapy was analyzed. The key modules significantly related to the infiltration of key immune cells were identified by weighted correlation network analysis (WGCNA), and the key genes in the modules were identified. A risk scoring model and a nomogram for prognosis assessment of bladder cancer patients were constructed and verified. RESULTS B cells, mast cells, neutrophils, T helper cells and tumor infiltrating lymphocytes were determined to be the key immune cells of bladder cancer. The patients were clustered into two groups (Cluster 1 ´ and Custer 2) based on immune cell infiltration scores. Compared with patients with Cluster 1 ´, patients with Cluster 2 were more likely to benefit from immunotherapy (P<0.05), and patients with Cluster 2 were more sensitive to Enbeaten, Docetaxel, Cyclopamine, and Akadixin (P<0.05). 35 genes related to key immune cells were screened out by WGCNA and 4 genes (GPR171, HOXB3, HOXB5 and HOXB6) related to the prognosis of bladder cancer were further screened by LASSO Cox regression. The areas under the ROC curve (AUC) of the bladder cancer prognosis risk scoring model based on these 4 genes to predict the 1-, 3- and 5-year survival of patients were 0.735, 0.765 and 0.799, respectively. The nomogram constructed by combining risk score and clinical parameters has high accuracy in predicting the 1-, 3-, and 5-year overall survival of bladder cancer patients. CONCLUSIONS According to the immune cell infiltration score, bladder cancer patients can be classified. Furthermore, bladder cancer prognosis risk scoring model and nomogram based on key immune cell-related genes have high accuracy in predicting the prognosis of bladder cancer patients.
Collapse
Affiliation(s)
- Guicao Yin
- Department of Urology, the Affiliated Hospital of Yangzhou University, Yangzhou 225000, Jiangsu Province, China.
| | - Shengqi Zheng
- Department of Urology, the Affiliated Hospital of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Wei Zhang
- Department of Urology, the Affiliated Hospital of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Xin Dong
- School of Nursing, School of Public Health, Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Lezhong Qi
- Department of Urology, the Affiliated Hospital of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Yifan Li
- Department of Urology, the Affiliated Hospital of Yangzhou University, Yangzhou 225000, Jiangsu Province, China.
| |
Collapse
|
16
|
Chen L, Lv Y. Suspension state affects the stemness of breast cancer cells by regulating the glycogen synthase kinase-3β. Tissue Cell 2023; 85:102208. [PMID: 37683322 DOI: 10.1016/j.tice.2023.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Circulating tumor cells (CTCs) are considered an important factor involved in tumor metastasis and can overcome mechanical interactions to gain the ability to distant metastasis. The previous study had shown that the suspension state could regulate the stemness of breast cancer cells (BCCs). However, the specific molecular mechanisms involved have not yet been explored clearly. In this study, MCF-7 and MDA-MBA-231 BCCs were cultured in suspension and adherent. The effect of suspension state on BCCs was further elucidated by observing suspension cell clusters, sorting CD44+/CD24- cell subpopulation and detecting self-renewal ability. Furthermore, it was found that glycogen synthase kinase-3β (GSK-3β) was significantly down-regulated in MCF-7 suspension cells along with the activation of the Wnt/β-catenin signaling, but the converse was true for MDA-MB-231 cells. Subsequently, GSK-3β was differentially expressed in MCF-7 suspension cells. The activation of the Wnt/β-catenin signaling, epithelial-mesenchymal transition (EMT) and stemness were all inhibited when GSK-3 was overexpressed in suspension MCF-7 cells. While GSK-3β was down-regulated, it further promoted the Wnt/β-catenin signaling, mesenchymal characteristic and stemness of MCF-7 cells. This study demonstrated that suspension state could activate the Wnt/β-catenin signaling by inhibiting GSK-3β to promote the stemness of epithelial BCCs, providing a therapeutic strategy for targeted CTCs.
Collapse
Affiliation(s)
- Lini Chen
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
17
|
Perales-Linares R, Leli NM, Mohei H, Beghi S, Rivera OD, Kostopoulos N, Giglio A, George SS, Uribe-Herranz M, Costabile F, Pierini S, Pustylnikov S, Skoufos G, Barash Y, Hatzigeorgiou AG, Koumenis C, Maity A, Lotze MT, Facciabene A. Parkin Deficiency Suppresses Antigen Presentation to Promote Tumor Immune Evasion and Immunotherapy Resistance. Cancer Res 2023; 83:3562-3576. [PMID: 37578274 PMCID: PMC10618737 DOI: 10.1158/0008-5472.can-22-2499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/20/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Parkin is an E3 ubiquitin ligase, which plays a key role in the development of Parkinson disease. Parkin defects also occur in numerous cancers, and a growing body of evidence indicates that Parkin functions as a tumor suppressor that impedes a number of cellular processes involved in tumorigenesis. Here, we generated murine and human models that closely mimic the advanced-stage tumors where Parkin deficiencies are found to provide deeper insights into the tumor suppressive functions of Parkin. Loss of Parkin expression led to aggressive tumor growth, which was associated with poor tumor antigen presentation and limited antitumor CD8+ T-cell infiltration and activation. The effect of Parkin deficiency on tumor growth was lost following depletion of CD8+ T cells. In line with previous findings, Parkin deficiency was linked with mitochondria-associated metabolic stress, PTEN degradation, and enhanced Akt activation. Increased Akt signaling led to dysregulation of antigen presentation, and treatment with the Akt inhibitor MK2206-2HCl restored antigen presentation in Parkin-deficient tumors. Analysis of data from patients with clear cell renal cell carcinoma indicated that Parkin expression was downregulated in tumors and that low expression correlated with reduced overall survival. Furthermore, low Parkin expression correlated with reduced patient response to immunotherapy. Overall, these results identify a role for Parkin deficiency in promoting tumor immune evasion that may explain the poor prognosis associated with loss of Parkin across multiple types of cancer. SIGNIFICANCE Parkin prevents immune evasion by regulating tumor antigen processing and presentation through the PTEN/Akt network, which has important implications for immunotherapy treatments in patients with Parkin-deficient tumors.
Collapse
Affiliation(s)
- Renzo Perales-Linares
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nektaria Maria Leli
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hesham Mohei
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Silvia Beghi
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Osvaldo D. Rivera
- Graduate Group in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nektarios Kostopoulos
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Andrea Giglio
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Subin S. George
- Penn Bioinformatics Core, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mireia Uribe-Herranz
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Francesca Costabile
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Stefano Pierini
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sergei Pustylnikov
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Giorgos Skoufos
- Department of Computer Science and Biomedical Informatics, University of Thessaly - Hellenic Pasteur Institute, Athens, Greece
| | - Yoseph Barash
- Graduate Group in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Artemis G. Hatzigeorgiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly - Hellenic Pasteur Institute, Athens, Greece
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Amit Maity
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael T. Lotze
- Department of Surgery, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Andrea Facciabene
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
He A, Tian S, Kopper O, Horan DJ, Chen P, Bronson RT, Sheng R, Wu H, Sui L, Zhou K, Tao L, Wu Q, Huang Y, Shen Z, Han S, Chen X, Chen H, He X, Robling AG, Jin R, Clevers H, Xiang D, Li Z, Dong M. Targeted inhibition of Wnt signaling with a Clostridioides difficile toxin B fragment suppresses breast cancer tumor growth. PLoS Biol 2023; 21:e3002353. [PMID: 37943878 PMCID: PMC10635564 DOI: 10.1371/journal.pbio.3002353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
Wnt signaling pathways are transmitted via 10 homologous frizzled receptors (FZD1-10) in humans. Reagents broadly inhibiting Wnt signaling pathways reduce growth and metastasis of many tumors, but their therapeutic development has been hampered by the side effect. Inhibitors targeting specific Wnt-FZD pair(s) enriched in cancer cells may reduce side effect, but the therapeutic effect of narrow-spectrum Wnt-FZD inhibitors remains to be established in vivo. Here, we developed a fragment of C. difficile toxin B (TcdBFBD), which recognizes and inhibits a subclass of FZDs, FZD1/2/7, and examined whether targeting this FZD subgroup may offer therapeutic benefits for treating breast cancer models in mice. Utilizing 2 basal-like and 1 luminal-like breast cancer models, we found that TcdBFBD reduces tumor-initiating cells and attenuates growth of basal-like mammary tumor organoids and xenografted tumors, without damaging Wnt-sensitive tissues such as bones in vivo. Furthermore, FZD1/2/7-positive cells are enriched in chemotherapy-resistant cells in both basal-like and luminal mammary tumors treated with cisplatin, and TcdBFBD synergizes strongly with cisplatin in inhibiting both tumor types. These data demonstrate the therapeutic value of narrow-spectrum Wnt signaling inhibitor in treating breast cancers.
Collapse
Affiliation(s)
- Aina He
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Songhai Tian
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Oded Kopper
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Daniel J. Horan
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Barnhill, Indianapolis, United States of America
| | - Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Roderick T. Bronson
- Rodent Histopathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ren Sheng
- Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hao Wu
- Department of Vascular Biology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Lufei Sui
- Department of Vascular Biology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Kun Zhou
- Department of Vascular Biology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Liang Tao
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Quan Wu
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Central Laboratory of Medical Research Centre, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Yujing Huang
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Zan Shen
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Sen Han
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xueqing Chen
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hong Chen
- Department of Vascular Biology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Xi He
- Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexander G. Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Barnhill, Indianapolis, United States of America
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dongxi Xiang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
19
|
Zhang J, Liu Y, Xia L, Zhen J, Gao J, Atsushi T. Constructing heterogeneous single-cell landscape and identifying microenvironment molecular characteristics of primary and lymphatic metastatic head and neck squamous cell carcinoma. Comput Biol Med 2023; 165:107459. [PMID: 37713790 DOI: 10.1016/j.compbiomed.2023.107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/05/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) accounts for more than half of head and neck tumors, roughly 90%. This study focused on constructing the heterogeneous landscape using single-cell and bulk transcriptomic data to identify molecular characteristics of the microenvironment in primary and lymphatic metastatic head and neck squamous carcinomas. METHOD The study enrolled 23 HNSCC samples with scRNA-seq data and 546 HNSCC samples from TCGA. We used Monocle to sort the cells and used CellPhoneDB to explore the cell-cell interactions. Infercnv, which was used to infer cells with apparent copy number variation based on single-cell sequencing transcriptome data. We re-evaluated HNSCC bulk RNA transcriptome data to characterize the functions of different cell types in shaping the immune microenvironment of HNSCC. RESULTS We combined genealogical reconstruction, CNV inference, and cellular interactions to uncover the characteristics of distinct cell populations in different disease states, differences in cancer and immune cell lineages of differentiation trajectories, and interactions between non-immune and immune cell. PD-1 and PD-L1/PD-L2 expressed extremely rare in T cells, the immune checkpoint molecule KLRB1-CLEC2D achieved a high-level expression. We identified three microenvironment-based HNSCC subtypes associated with the prognosis of HNSCC patients. CONCLUSIONS In summary, the present study dissected the intratumoral heterogeneity and immune microenvironment of primary and metastatic HNSCC, which is crucial to reveal the mechanisms of resistance to immunotherapy in HNSCC in different disease states and is expected to assist in the further investigation of the mechanism of HNSCC cell metastasis and guide the treatment of clinical patients.
Collapse
Affiliation(s)
- Jiayuan Zhang
- Department of Restorative Dentistry, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 0608586, Japan
| | - Yunqing Liu
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Sapporo, 0608586, Japan
| | - Lianheng Xia
- Department of Peripheral Vascular Diseases, First Affiliated hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Jia Zhen
- Department of Peripheral Vascular Diseases, First Affiliated hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China
| | - Jie Gao
- Department of Peripheral Vascular Diseases, First Affiliated hospital, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, China.
| | - Tomokiyo Atsushi
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Sapporo, 0608586, Japan.
| |
Collapse
|
20
|
Toney NJ, Schlom J, Donahue RN. Phosphoflow cytometry to assess cytokine signaling pathways in peripheral immune cells: potential for inferring immune cell function and treatment response in patients with solid tumors. J Exp Clin Cancer Res 2023; 42:247. [PMID: 37741983 PMCID: PMC10517546 DOI: 10.1186/s13046-023-02802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/17/2023] [Indexed: 09/25/2023] Open
Abstract
Tumor biopsy is often not available or difficult to obtain in patients with solid tumors. Investigation of the peripheral immune system allows for in-depth and dynamic profiling of patient immune response prior to and over the course of treatment and disease. Phosphoflow cytometry is a flow cytometry‒based method to detect levels of phosphorylated proteins in single cells. This method can be applied to peripheral immune cells to determine responsiveness of signaling pathways in specific immune subsets to cytokine stimulation, improving on simply defining numbers of populations of cells based on cell surface markers. Here, we review studies using phosphoflow cytometry to (a) investigate signaling pathways in cancer patients' peripheral immune cells compared with healthy donors, (b) compare immune cell function in peripheral immune cells with the tumor microenvironment, (c) determine the effects of agents on the immune system, and (d) predict cancer patient response to treatment and outcome. In addition, we explore the use and potential of phosphoflow cytometry in preclinical cancer models. We believe this review is the first to provide a comprehensive summary of how phosphoflow cytometry can be applied in the field of cancer immunology, and demonstrates that this approach holds promise in exploring the mechanisms of response or resistance to immunotherapy both prior to and during the course of treatment. Additionally, it can help identify potential therapeutic avenues that can restore normal immune cell function and improve cancer patient outcome.
Collapse
Affiliation(s)
- Nicole J Toney
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Yang X, Du Y, Luo L, Xu X, Xiong S, Yang X, Guo L, Liang T. Deciphering the Enigmatic Influence: Non-Coding RNAs Orchestrating Wnt/β-Catenin Signaling Pathway in Tumor Progression. Int J Mol Sci 2023; 24:13909. [PMID: 37762212 PMCID: PMC10530696 DOI: 10.3390/ijms241813909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Dysregulated expression of specific non-coding RNAs (ncRNAs) has been strongly linked to tumorigenesis, cancer progression, and therapeutic resistance. These ncRNAs can act as either oncogenes or tumor suppressors, thereby serving as valuable diagnostic and prognostic markers. Numerous studies have implicated the participation of ncRNAs in the regulation of diverse signaling pathways, including the pivotal Wnt/β-catenin signaling pathway that is widely acknowledged for its pivotal role in embryogenesis, cellular proliferation, and tumor biology control. Recent emerging evidence has shed light on the capacity of ncRNAs to interact with key components of the Wnt/β-catenin signaling pathway, thereby modulating the expression of Wnt target genes in cancer cells. Notably, the activity of this pathway can reciprocally influence the expression levels of ncRNAs. However, comprehensive analysis investigating the specific ncRNAs associated with the Wnt/β-catenin signaling pathway and their intricate interactions in cancer remains elusive. Based on these noteworthy findings, this review aims to unravel the intricate associations between ncRNAs and the Wnt/β-catenin signaling pathway during cancer initiation, progression, and their potential implications for therapeutic interventions. Additionally, we provide a comprehensive overview of the characteristics of ncRNAs and the Wnt/β-catenin signaling pathway, accompanied by a thorough discussion of their functional roles in tumor biology. Targeting ncRNAs and molecules associated with the Wnt/β-catenin signaling pathway may emerge as a promising and effective therapeutic strategy in future cancer treatments.
Collapse
Affiliation(s)
- Xinbing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Yajing Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Lulu Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| | - Shizheng Xiong
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (X.Y.)
| | - Xueni Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (X.Y.)
| | - Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (S.X.); (X.Y.)
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China; (X.Y.); (Y.D.); (L.L.); (X.X.)
| |
Collapse
|
22
|
Chang LY, Shan J, Hou XX, Li DJ, Wang XQ. Synergy between Th1 and Th2 responses during endometriosis: A review of current understanding. J Reprod Immunol 2023; 158:103975. [PMID: 37331087 DOI: 10.1016/j.jri.2023.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Endometriosis is widely perceived as an estrogen-dependent chronic disorder with infertility and pelvic pain. Although the etiology of endometriosis has remained elusive, many studies have proclaimed the relevance of immune system disorders with endometriosis. With the discovery that the dysregulation of multiple biological functions in endometriosis is caused by the aberrant differentiation of T helper cells, a shift towards Th2 immune response may account for the disease progression. This review attempts to present mechanisms of cytokines, chemokines, signal pathways, transcription factors and some other factors related with the derivation of Th1/Th2 immune response involved in the development of endometriosis. The current understanding of treatment approaches and potential therapeutic targets will also be outlined with brief discussion.
Collapse
Affiliation(s)
- Ling-Yu Chang
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, China
| | - Jing Shan
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, China
| | - Xin-Xin Hou
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Da-Jin Li
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, China.
| | - Xiao-Qiu Wang
- Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, China.
| |
Collapse
|
23
|
Abu-Elfotuh K, Tolba AMA, Hussein FH, Hamdan AME, Rabeh MA, Alshahri SA, Ali AA, Mosaad SM, Mahmoud NA, Elsaeed MY, Abdelglil RM, El-Awady RR, Galal ERM, Kamal MM, Elsisi AMM, Darwish A, Gowifel AMH, Mahran YF. Anti-Alzheimer Activity of Combinations of Cocoa with Vinpocetine or Other Nutraceuticals in Rat Model: Modulation of Wnt3/β-Catenin/GSK-3β/Nrf2/HO-1 and PERK/CHOP/Bcl-2 Pathways. Pharmaceutics 2023; 15:2063. [PMID: 37631278 PMCID: PMC10457980 DOI: 10.3390/pharmaceutics15082063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating illness with limited therapeutic interventions. The aim of this study is to investigate the pathophysiological mechanisms underlying AD and explore the potential neuroprotective effects of cocoa, either alone or in combination with other nutraceuticals, in an animal model of aluminum-induced AD. Rats were divided into nine groups: control, aluminum chloride (AlCl3) alone, AlCl3 with cocoa alone, AlCl3 with vinpocetine (VIN), AlCl3 with epigallocatechin-3-gallate (EGCG), AlCl3 with coenzyme Q10 (CoQ10), AlCl3 with wheatgrass (WG), AlCl3 with vitamin (Vit) B complex, and AlCl3 with a combination of Vit C, Vit E, and selenium (Se). The animals were treated for five weeks, and we assessed behavioral, histopathological, and biochemical changes, focusing on oxidative stress, inflammation, Wnt/GSK-3β/β-catenin signaling, ER stress, autophagy, and apoptosis. AlCl3 administration induced oxidative stress, as evidenced by elevated levels of malondialdehyde (MDA) and downregulation of cellular antioxidants (Nrf2, HO-1, SOD, and TAC). AlCl3 also upregulated inflammatory biomarkers (TNF-α and IL-1β) and GSK-3β, leading to increased tau phosphorylation, decreased brain-derived neurotrophic factor (BDNF) expression, and downregulation of the Wnt/β-catenin pathway. Furthermore, AlCl3 intensified C/EBP, p-PERK, GRP-78, and CHOP, indicating sustained ER stress, and decreased Beclin-1 and anti-apoptotic B-cell lymphoma 2 (Bcl-2) expressions. These alterations contributed to the observed behavioral and histological changes in the AlCl3-induced AD model. Administration of cocoa, either alone or in combination with other nutraceuticals, particularly VIN or EGCG, demonstrated remarkable amelioration of all assessed parameters. The combination of cocoa with nutraceuticals attenuated the AD-mediated deterioration by modulating interrelated pathophysiological pathways, including inflammation, antioxidant responses, GSK-3β-Wnt/β-catenin signaling, ER stress, and apoptosis. These findings provide insights into the intricate pathogenesis of AD and highlight the neuroprotective effects of nutraceuticals through multiple signaling pathways.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Clinical Pharmacy Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Amina M. A. Tolba
- Anatomy Department, Faculty of Medicine, Girls Branch, Al-Azhar University, Cairo 11651, Egypt;
| | | | - Ahmed M. E. Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed A. Rabeh
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| | - Saad A. Alshahri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| | - Azza A. Ali
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (A.A.A.); (M.M.K.)
| | - Sarah M. Mosaad
- Research Unit, Egypt Healthcare Authority, Ismailia Branch, Ismailia 41522, Egypt;
| | - Nihal A. Mahmoud
- Physiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Magdy Y. Elsaeed
- Physiology Department, Faculty of Medicine (Boys), Al-Azhar University, Demietta 34517, Egypt;
| | - Ranya M. Abdelglil
- Department of Anatomy and Embryology, Faculty of Medicine (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Rehab R. El-Awady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (R.R.E.-A.); (E.R.M.G.)
| | - Eman Reda M. Galal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (R.R.E.-A.); (E.R.M.G.)
| | - Mona M. Kamal
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (A.A.A.); (M.M.K.)
| | - Ahmed M. M. Elsisi
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11651, Egypt;
- Biochemistry Department, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62521, Egypt
| | - Alshaymaa Darwish
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Ayah M. H. Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt;
| | - Yasmen F. Mahran
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
24
|
Bai M, Liu X. Diagnostic biomarker KIF23 is associated with immune infiltration and immunotherapy response in gastric cancer. Front Oncol 2023; 13:1191009. [PMID: 37483517 PMCID: PMC10361780 DOI: 10.3389/fonc.2023.1191009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Kinesin family member 23 (KIF23), an index of tumor proliferation, can serve as a prognostic marker in numerous tumors. However, the relationship between KIF23 expression and diagnostic value, immune infiltration, and immunotherapy response remains unclear in gastric cancer(GC). We primarily demonstrated that GC tissue had higher levels of KIF23 expression than the adjacent normal tissue on mRNA and protein levels. The ROC analysis revealed KIF23 had an outstanding diagnostic value of GC in the training and validation set (AUC = 0.958, and AUC = 0.86793, respectively). We discovered that KIF23 was positively associated with age, histological type, and H. pylori infection of GC. Subsequently, the KIF23 expression level was correlated with the gene mutation, function enrichment, immune cell infiltration, and immune cell marker of GC based on multiple online websites and R software. KIF23 expression was related to the infiltration of CD8+ T cells, CD4+T cells, macrophages, and dendritic cells in GC. Especially, KIF23 expression was positively significantly associated with the Th1 cell marker STAT1 (Signal transducer and activator of transcription 1). Patients with high KIF23 expression exhibited greater immune cell infiltrates, including T cell CD4+ memory helper, Treg, and M1 cells, which indicated that high KIF23 expression is more conducive to immunosuppression. Finally, KIF23 expression had a positive relationship with TMB and MSI, and affected the immune microenvironment in GC tissues by increased expression of ICPs such as CD274(PD-L1), CTLA4, HAVCR2, and LAG3. Our study uncovered that KIF23 can serve as an immune-related biomarker for diagnosis and immunotherapy response of GC.
Collapse
Affiliation(s)
- Maoshu Bai
- Department of Oncology, Dazhou Integrated Traditional Chinese Medicine and Western Medicine Hospital, Dazhou Second People’s Hospital, Dazhou, Sichuan, China
| | - Xin Liu
- Molecular Diagnosis Center, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
25
|
Wang Y, Yang S, Wan L, Ling W, Chen H, Wang J. New developments in the mechanism and application of immune checkpoint inhibitors in cancer therapy (Review). Int J Oncol 2023; 63:86. [PMID: 37326100 PMCID: PMC10308343 DOI: 10.3892/ijo.2023.5534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) has been demonstrated in the treatment of numerous types of cancer and ICIs have remained a key focus of cancer research. However, improvements in survival rates only occur in a subset of patients, due to the complexity of drug resistance. Therefore, further investigations are required to identify predictive biomarkers that distinguish responders and non‑responders. Combined therapeutics involving ICIs and other modalities demonstrate potential in overcoming resistance to ICIs; however, further preclinical and clinical trials are required. Concurrently, prompt recognition and intervention of immune‑related adverse events are crucial to optimize the use of ICIs in clinical treatment. The present study aimed to review the current literature surrounding the mechanisms and application of ICIs, with the aim of providing a theoretical basis for clinicians.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510062
| | - Shuo Yang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036
| | - Li Wan
- Department of Endocrinology and Metabolism, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060
| | - Wei Ling
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, P.R. China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080
| |
Collapse
|
26
|
Li Y, Chen B, Jiang X, Li Y, Wang X, Huang S, Wu X, Xiao Y, Shi D, Huang X, He L, Chen X, Ouyang Y, Li J, Song L, Lin C. A Wnt-induced lncRNA-DGCR5 splicing switch drives tumor-promoting inflammation in esophageal squamous cell carcinoma. Cell Rep 2023; 42:112542. [PMID: 37210725 DOI: 10.1016/j.celrep.2023.112542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/04/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
Alternative splicing (AS) is a critical mechanism for the aberrant biogenesis of long non-coding RNA (lncRNA). Although the role of Wnt signaling in AS has been implicated, it remains unclear how it mediates lncRNA splicing during cancer progression. Herein, we identify that Wnt3a induces a splicing switch of lncRNA-DGCR5 to generate a short variant (DGCR5-S) that correlates with poor prognosis in esophageal squamous cell carcinoma (ESCC). Upon Wnt3a stimulation, active nuclear β-catenin acts as a co-factor of FUS to facilitate the spliceosome assembly and the generation of DGCR5-S. DGCR5-S inhibits TTP's anti-inflammatory activity by protecting it from PP2A-mediated dephosphorylation, thus fostering tumor-promoting inflammation. Importantly, synthetic splice-switching oligonucleotides (SSOs) disrupt the splicing switch of DGCR5 and potently suppress ESCC tumor growth. These findings uncover the mechanism for Wnt signaling in lncRNA splicing and suggest that the DGCR5 splicing switch may be a targetable vulnerability in ESCC.
Collapse
Affiliation(s)
- Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Boyu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xingyu Jiang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yudong Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xin Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shumei Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuxia Wu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yunyun Xiao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dongni Shi
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xinjian Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Lixin He
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Institute of Oncology, Tumor Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
27
|
Antony F, Kang X, Pundkar C, Wang C, Mishra A, Chen P, Babu RJ, Suryawanshi A. Targeting β-catenin using XAV939 nanoparticle promotes immunogenic cell death and suppresses conjunctival melanoma progression. Int J Pharm 2023; 640:123043. [PMID: 37172631 PMCID: PMC10399699 DOI: 10.1016/j.ijpharm.2023.123043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Many tumors dysregulate Wnt/β-catenin pathway to promote stem-cell-like phenotype, tumorigenesis, immunosuppression, and resistance to targeted cancer immunotherapies. Therefore, targeting this pathway is a promising therapeutic approach to suppress tumor progression and elicit robust anti-tumor immunity. In this study, using a nanoparticle formulation for XAV939 (XAV-Np), a tankyrase inhibitor that promotes β-catenin degradation, we investigated the effect of β-catenin inhibition on melanoma cell viability, migration, and tumor progression using a mouse model of conjunctival melanoma. XAV-Nps were uniform and displayed near-spherical morphology with size stability for upto 5 days. We show that XAV-Np treatment of mouse melanoma cells significantly suppresses cell viability, tumor cell migration, and tumor spheroid formation compared to control nanoparticle (Con-Np) or free XAV939-treated groups. Further, we demonstrate that XAV-Np promotes immunogenic cell death (ICD) of tumor cells with a significant extracellular release or expression of ICD molecules, including high mobility group box 1 protein (HMGB1), calreticulin (CRT), and adenosine triphosphate (ATP). Finally, we show that local intra-tumoral delivery of XAV-Nps during conjunctival melanoma progression significantly suppresses tumor size and conjunctival melanoma progression compared to Con-Nps-treated animals. Collectively, our data suggest that selective inhibition of β-catenin in tumor cells using nanoparticle-based targeted delivery represents a novel approach to suppress tumor progression through increased tumor cell ICD.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Chuanyu Wang
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
28
|
Lin I, Wei A, Awamleh Z, Singh M, Ning A, Herrera A, REACH Biobank and Registry, Russell BE, Weksberg R, Arboleda VA. Multiomics of Bohring-Opitz syndrome truncating ASXL1 mutations identify canonical and noncanonical Wnt signaling dysregulation. JCI Insight 2023; 8:e167744. [PMID: 37053013 PMCID: PMC10322691 DOI: 10.1172/jci.insight.167744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
ASXL1 (additional sex combs-like 1) plays key roles in epigenetic regulation of early developmental gene expression. De novo protein-truncating mutations in ASXL1 cause Bohring-Opitz syndrome (BOS; OMIM #605039), a rare neurodevelopmental condition characterized by severe intellectual disabilities, distinctive facial features, hypertrichosis, increased risk of Wilms tumor, and variable congenital anomalies, including heart defects and severe skeletal defects giving rise to a typical BOS posture. These BOS-causing ASXL1 variants are also high-prevalence somatic driver mutations in acute myeloid leukemia. We used primary cells from individuals with BOS (n = 18) and controls (n = 49) to dissect gene regulatory changes caused by ASXL1 mutations using comprehensive multiomics assays for chromatin accessibility (ATAC-seq), DNA methylation, histone methylation binding, and transcriptome in peripheral blood and skin fibroblasts. Our data show that regardless of cell type, ASXL1 mutations drive strong cross-tissue effects that disrupt multiple layers of the epigenome. The data showed a broad activation of canonical Wnt signaling at the transcriptional and protein levels and upregulation of VANGL2, which encodes a planar cell polarity pathway protein that acts through noncanonical Wnt signaling to direct tissue patterning and cell migration. This multiomics approach identifies the core impact of ASXL1 mutations and therapeutic targets for BOS and myeloid leukemias.
Collapse
Affiliation(s)
- Isabella Lin
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Angela Wei
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, California, USA
| | - Zain Awamleh
- Department of Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Meghna Singh
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Aileen Ning
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | - Analeyla Herrera
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
| | | | - Bianca E. Russell
- Division of Genetics, Department of Pediatrics, UCLA, Los Angeles, California, USA
| | - Rosanna Weksberg
- Department of Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical & Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Valerie A. Arboleda
- Department of Human Genetics
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Computational Medicine, UCLA, Los Angeles, California, USA
- Interdepartmental BioInformatics Program, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
29
|
Chaudagar K, Hieromnimon HM, Khurana R, Labadie B, Hirz T, Mei S, Hasan R, Shafran J, Kelley A, Apostolov E, Al-Eryani G, Harvey K, Rameshbabu S, Loyd M, Bynoe K, Drovetsky C, Solanki A, Markiewicz E, Zamora M, Fan X, Schürer S, Swarbrick A, Sykes DB, Patnaik A. Reversal of Lactate and PD-1-mediated Macrophage Immunosuppression Controls Growth of PTEN/p53-deficient Prostate Cancer. Clin Cancer Res 2023; 29:1952-1968. [PMID: 36862086 PMCID: PMC10192075 DOI: 10.1158/1078-0432.ccr-22-3350] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE Phosphatase and tensin homolog (PTEN) loss of function occurs in approximately 50% of patients with metastatic castrate-resistant prostate cancer (mCRPC), and is associated with poor prognosis and responsiveness to standard-of-care therapies and immune checkpoint inhibitors. While PTEN loss of function hyperactivates PI3K signaling, combinatorial PI3K/AKT pathway and androgen deprivation therapy (ADT) has demonstrated limited anticancer efficacy in clinical trials. Here, we aimed to elucidate mechanism(s) of resistance to ADT/PI3K-AKT axis blockade, and to develop rational combinatorial strategies to effectively treat this molecular subset of mCRPC. EXPERIMENTAL DESIGN Prostate-specific PTEN/p53-deficient genetically engineered mice (GEM) with established 150-200 mm3 tumors, as assessed by ultrasound, were treated with either ADT (degarelix), PI3K inhibitor (copanlisib), or anti-PD-1 antibody (aPD-1), as single agents or their combinations, and tumors were monitored by MRI and harvested for immune, transcriptomic, and proteomic profiling, or ex vivo co-culture studies. Single-cell RNA sequencing on human mCRPC samples was performed using 10X Genomics platform. RESULTS Coclinical trials in PTEN/p53-deficient GEM revealed that recruitment of PD-1-expressing tumor-associated macrophages (TAM) thwarts ADT/PI3Ki combination-induced tumor control. The addition of aPD-1 to ADT/PI3Ki combination led to TAM-dependent approximately 3-fold increase in anticancer responses. Mechanistically, decreased lactate production from PI3Ki-treated tumor cells suppressed histone lactylation within TAM, resulting in their anticancer phagocytic activation, which was augmented by ADT/aPD-1 treatment and abrogated by feedback activation of Wnt/β-catenin pathway. Single-cell RNA-sequencing analysis in mCRPC patient biopsy samples revealed a direct correlation between high glycolytic activity and TAM phagocytosis suppression. CONCLUSIONS Immunometabolic strategies that reverse lactate and PD-1-mediated TAM immunosuppression, in combination with ADT, warrant further investigation in patients with PTEN-deficient mCRPC.
Collapse
Affiliation(s)
- Kiranj Chaudagar
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Hanna M. Hieromnimon
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Rimpi Khurana
- Department of Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Brian Labadie
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Taghreed Hirz
- Center for Regenerative Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Shenglin Mei
- Center for Regenerative Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Raisa Hasan
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Jordan Shafran
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anne Kelley
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Eva Apostolov
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Ghamdan Al-Eryani
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Kate Harvey
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Srikrishnan Rameshbabu
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Mayme Loyd
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Kaela Bynoe
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Catherine Drovetsky
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Ani Solanki
- Animal Resource Center, University of Chicago, Chicago, IL, USA
| | | | - Marta Zamora
- Department of Radiology, University of Chicago, Chicago IL, USA
| | - Xiaobing Fan
- Department of Radiology, University of Chicago, Chicago IL, USA
| | - Stephan Schürer
- Department of Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alex Swarbrick
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Akash Patnaik
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
30
|
Dong Y, Gao Q, Chen Y, Zhang Z, Du Y, Liu Y, Zhang G, Li S, Wang G, Chen X, Liu H, Han L, Ye Y. Identification of CircRNA signature associated with tumor immune infiltration to predict therapeutic efficacy of immunotherapy. Nat Commun 2023; 14:2540. [PMID: 37137884 PMCID: PMC10156742 DOI: 10.1038/s41467-023-38232-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Circular RNAs (circRNAs) play important roles in the regulation of cancer. However, the clinical implications and regulatory networks of circRNAs in cancer patients receiving immune checkpoint blockades (ICB) have not been fully elucidated. Here, we characterize circRNA expression profiles in two independent cohorts of 157 ICB-treated advanced melanoma patients and reveal overall overexpression of circRNAs in ICB non-responders in both pre-treatment and early during therapy. Then, we construct circRNA-miRNA-mRNA regulatory networks to reveal circRNA-related signaling pathways in the context of ICB treatment. Further, we construct an ICB-related circRNA signature (ICBcircSig) score model based on progression-free survival-related circRNAs to predict immunotherapy efficacy. Mechanistically, the overexpression of ICBcircSig circTMTC3 and circFAM117B could increase PD-L1 expression via the miR-142-5p/PD-L1 axis, thus reducing T cell activity and leading to immune escape. Overall, our study characterizes circRNA profiles and regulatory networks in ICB-treated patients, and highlights the clinical utility of circRNAs as predictive biomarkers of immunotherapy.
Collapse
Affiliation(s)
- Yu Dong
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Furong Laboratory, Changsha, Hunan, 410008, P. R. China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Lin Gang Laboratory, Shanghai, 200025, China
| | - Qian Gao
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Furong Laboratory, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, P. R. China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Chen
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MOE Key Laboratory of Metabolism and Molecular Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200433, P. R. China
| | - Yanhua Du
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuan Liu
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Guangxiong Zhang
- Lin Gang Laboratory, Shanghai, 200025, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, P. R. China
| | - Shengli Li
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, 201620, China
| | - Gaoyang Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiang Chen
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Furong Laboratory, Changsha, Hunan, 410008, P. R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, P. R. China.
| | - Hong Liu
- Department of Dermatology, Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Clinical Research Center for Cancer Immunotherapy, Furong Laboratory, Changsha, Hunan, 410008, P. R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, P. R. China.
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA.
| | - Youqiong Ye
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
31
|
Chang X, Liu J, Yang Q, Gao Y, Ding X, Zhao J, Li Y, Liu Z, Li Z, Wu Y, Zuo D. Targeting HMGA1 contributes to immunotherapy in aggressive breast cancer while suppressing EMT. Biochem Pharmacol 2023; 212:115582. [PMID: 37146833 DOI: 10.1016/j.bcp.2023.115582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Metastasis is an obstacle to the clinical treatment of aggressive breast cancer (BC). Studies have shown that high mobility group A1 (HMGA1) is abnormally expressed in various cancers and mediates tumor proliferation and metastasis. Here, we provided more evidence that HMGA1 mediated epithelial to mesenchymal transition (EMT) through the Wnt/β-catenin pathway in aggressive BC. More importantly, HMGA1 knockdown enhanced antitumor immunity and improved the response to immune checkpoint blockade (ICB) therapy by upregulating programmed cell death ligand 1 (PD-L1) expression. Simultaneously, we revealed a novel mechanism by which HMGA1 and PD-L1 were regulated by the PD-L1/HMGA1/Wnt/β-catenin negative feedback loop in aggressive BC. Taken together, we believe that HMGA1 can serve as a target for the dual role of anti-metastasis and enhancing immunotherapeutic responses.
Collapse
Affiliation(s)
- Xing Chang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jingang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Qian Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yu Gao
- Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, 116033, China
| | - Xiaofei Ding
- Department of pharmacology, School of Medicine, Taizhou University, 1139 Shi-Fu Avenue, Taizhou 318000, China
| | - Junjun Zhao
- Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, 116033, China
| | - Yang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zi Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
32
|
Pandey P, Khan F, Seifeldin SA, Alshaghdali K, Siddiqui S, Abdelwadoud ME, Vyas M, Saeed M, Mazumder A, Saeed A. Targeting Wnt/β-Catenin Pathway by Flavonoids: Implication for Cancer Therapeutics. Nutrients 2023; 15:2088. [PMID: 37432240 DOI: 10.3390/nu15092088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 07/12/2023] Open
Abstract
The Wnt pathway has been recognized for its crucial role in human development and homeostasis, but its dysregulation has also been linked to several disorders, including cancer. Wnt signaling is crucial for the development and metastasis of several kinds of cancer. Moreover, members of the Wnt pathway have been proven to be effective biomarkers and promising cancer therapeutic targets. Abnormal stimulation of the Wnt signaling pathway has been linked to the initiation and advancement of cancer in both clinical research and in vitro investigations. A reduction in cancer incidence rate and an improvement in survival may result from targeting the Wnt/β-catenin pathway. As a result, blocking this pathway has been the focus of cancer research, and several candidates that can be targeted are currently being developed. Flavonoids derived from plants exhibit growth inhibitory, apoptotic, anti-angiogenic, and anti-migratory effects against various malignancies. Moreover, flavonoids influence different signaling pathways, including Wnt, to exert their anticancer effects. In this review, we comprehensively evaluate the influence of flavonoids on cancer development and metastasis by focusing on the Wnt/β-catenin signaling pathway, and we provide evidence of their impact on a number of molecular targets. Overall, this review will enhance our understanding of these natural products as Wnt pathway modulators.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India
| | - Sara A Seifeldin
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail 55476, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Ha'il 55473, Saudi Arabia
| | - Khalid Alshaghdali
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail 55476, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Ha'il 55473, Saudi Arabia
| | - Samra Siddiqui
- Medical and Diagnostic Research Centre, University of Hail, Ha'il 55473, Saudi Arabia
- Department of Public Health, College of Health Sciences, University of Ha'il, Hail 55476, Saudi Arabia
| | - Mohamed Elfatih Abdelwadoud
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, University of Medical Sciences & Technology, Khartoum 11115, Sudan
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Ha'il 34464, Saudi Arabia
| | - Avijit Mazumder
- Department of Pharmacology, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida 201306, India
| | - Amir Saeed
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail 55476, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Ha'il 55473, Saudi Arabia
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Medical Sciences & Technology, Khartoum 11115, Sudan
| |
Collapse
|
33
|
Katanaev VL, Baldin A, Denisenko TV, Silachev DN, Ivanova AE, Sukhikh GT, Jia L, Ashrafyan LA. Cells of the tumor microenvironment speak the Wnt language. Trends Mol Med 2023; 29:468-480. [PMID: 37045723 DOI: 10.1016/j.molmed.2023.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
Wnt signaling plays numerous functions in cancer, from primary transformation and tumor growth to metastasis. In addition to these cancer cell-intrinsic functions, Wnt signaling emerges to critically control cross-communication among cancer cells and the tumor microenvironment (TME). Here, we summarize the evidence that not only multiple cancer cell types, but also cells constituting the TME 'speak the Wnt language'. Fibroblasts, macrophages, endothelia, and lymphocytes all use the Wnt language to convey messages to and from cancer cells and among themselves; these messages are important for tumor progression and fate. Decoding this language will advance our understanding of tumor biology and unveil novel therapeutic avenues.
Collapse
Affiliation(s)
- Vladimir L Katanaev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China.
| | - Alexey Baldin
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Tatiana V Denisenko
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Denis N Silachev
- Translational Research Centre in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia; Department of Functional Biochemistry of Biopolymers, A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna E Ivanova
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Gennadiy T Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| | - Lee Jia
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Lev A Ashrafyan
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 4 Akademika Oparina Str., Moscow 117997, Russia
| |
Collapse
|
34
|
Kothari N, Postwala H, Pandya A, Shah A, Shah Y, Chorawala MR. Establishing the applicability of cancer vaccines in combination with chemotherapeutic entities: current aspect and achievable prospects. Med Oncol 2023; 40:135. [PMID: 37014489 DOI: 10.1007/s12032-023-02003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Cancer immunotherapy is one of the recently developed cancer treatment modalities. When compared with conventional anticancer drug regimens, immunotherapy has shown significantly better outcomes in terms of quality of life and overall survival. It incorporates a wide range of immunomodulatory modalities that channel the effects of the immune system either by broadly modulating the host immune system or by accurately targeting distinct tumor antigens. One such treatment modality that has gained interest is cancer vaccine therapy which acts by developing antibodies against tumor cells. Cancer vaccines target individual peptides or groups of antigens that are released by tumor cells and presented by the APCs. This also initiates an effective process to activate the host immune responses. Studies on various types of cancer vaccines are conducted, out of which only few are approved by FDA for clinical uses. Despite of documented safety and efficacy of conventional chemotherapy and cancer vaccines, individually they did not produce substantial results in eradication of the cancer as a monotherapy. Hence, the combination approach holds the extensive potential to provide significant improvement in disease outcomes. Certain chemotherapy has immunomodulatory effects and is proven to synergize with cancer vaccines thereby enhancing their anti-tumor activities. Chemotherapeutic agents are known to have immunostimulatory mechanisms apart from its cytotoxic effect and intensify the anti-tumor activities of vaccines by various mechanisms. This review highlights various cancer vaccines, their mechanism, and how their activity gets affected by chemotherapeutic agents. It also aims at summarizing the evidence-based outcome of the combination approach of a cancer vaccine with chemotherapy and a brief on future aspects.
Collapse
Affiliation(s)
- Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, 380009, India.
| |
Collapse
|
35
|
Vitale C, Bottino C, Castriconi R. Monocyte and Macrophage in Neuroblastoma: Blocking Their Pro-Tumoral Functions and Strengthening Their Crosstalk with Natural Killer Cells. Cells 2023; 12:885. [PMID: 36980226 PMCID: PMC10047506 DOI: 10.3390/cells12060885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Over the past decade, immunotherapy has represented an enormous step forward in the fight against cancer. Immunotherapeutic approaches have increasingly become a fundamental part of the combined therapies currently adopted in the treatment of patients with high-risk (HR) neuroblastoma (NB). An increasing number of studies focus on the understanding of the immune landscape in NB and, since this tumor expresses low or null levels of MHC class I, on the development of new strategies aimed at enhancing innate immunity, especially Natural Killer (NK) cells and macrophages. There is growing evidence that, within the NB tumor microenvironment (TME), tumor-associated macrophages (TAMs), which mainly present an M2-like phenotype, have a crucial role in mediating NB development and immune evasion, and they have been correlated to poor clinical outcomes. Importantly, TAM can also impair the antibody-dependent cellular cytotoxicity (ADCC) mediated by NK cells upon the administration of anti-GD2 monoclonal antibodies (mAbs), the current standard immunotherapy for HR-NB patients. This review deals with the main mechanisms regulating the crosstalk among NB cells and TAMs or other cellular components of the TME, which support tumor development and induce drug resistance. Furthermore, we will address the most recent strategies aimed at limiting the number of pro-tumoral macrophages within the TME, reprogramming the TAMs functional state, thus enhancing NK cell functions. We also prospectively discuss new or unexplored aspects of human macrophage heterogeneity.
Collapse
Affiliation(s)
- Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
36
|
Chen R, Liu J, Hu J, Li C, Liu Y, Pan W. DLGAP5 knockdown inactivates the Wnt/β-catenin signal to repress endometrial cancer cell malignant activities. ENVIRONMENTAL TOXICOLOGY 2023; 38:685-693. [PMID: 36454672 DOI: 10.1002/tox.23720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Human discs large-associated protein 5 (DLGAP5), a microtubule-associated protein, has been reported to be upregulated in several tumors. However, the role of DLGAP5 in endometrial cancer (EC) progression and the related underlying mechanism were still unknown. A bioinformatics analysis was performed to analyze the expression and prognostic significance of DLGAP5 in EC tissues using TCGA, CPTAC, Human Protein Atlas, and GSE63678 databases, UALCAN web tool, and the Kaplan-Meier plotter. Effects of DLGAP on EC cell malignant properties were evaluated by CCK-8, flow cytometry analysis, TUNEL assay, caspase-3 activity assay, and Transwell invasion assay. The expression of DLGAP5, Wnt3, c-Myc, Ki67, and cleaved caspase-3 was detected by western blot analysis. DLGAP5 was highly expressed and correlated with poor prognosis in EC patients. DLGAP5 knockdown inhibited proliferation and invasion, triggered apoptosis, and increased caspase-3 activity in EC cells. Additionally, DLGAP5 knockdown inactivated the Wnt/β-catenin signaling pathway in EC cells. Moreover, β-catenin overexpression abolished the effects of DLGAP5 knockdown on the malignant phenotypes of EC cells. DLGAP5 silencing suppressed the malignant properties in EC cells by inactivating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ruipu Chen
- Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, Tibet, China
| | - Jing Liu
- Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, Tibet, China
| | - Jun Hu
- Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, Tibet, China
| | - Chunxia Li
- Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, Tibet, China
| | - Yanhua Liu
- Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, Tibet, China
| | - Weiwei Pan
- Department of Intensive Care Unit, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
37
|
Zhu Y, Li X. Advances of Wnt Signalling Pathway in Colorectal Cancer. Cells 2023; 12:cells12030447. [PMID: 36766788 PMCID: PMC9913588 DOI: 10.3390/cells12030447] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) represents one of the most common cancers worldwide, with a high mortality rate despite the decreasing incidence and new diagnostic and therapeutic strategies. CRC arises from both epidemiologic and molecular backgrounds. In addition to hereditary factor and genetic mutations, the strongly varying incidence of CRC is closely linked to chronic inflammatory disorders of the intestine and terrible dietary habits. The Wnt signalling pathway is a complex regulatory network that is implicated in many CRC physiological processes, including cancer occurrence, development, prognosis, invasion, and metastasis. It is currently believed to include classical Wnt/β-catenin, Wnt/PCP, and Wnt/Ca2+. In this review, we summarise the recent mechanisms and potential regulators of the three branches of the Wnt signalling pathway in CRC.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Marine College, Shandong University, Weihai 264200, China
| | - Xia Li
- Marine College, Shandong University, Weihai 264200, China
- Shandong Kelun Pharmaceutical Co., Ltd., Binzhou 256600, China
- Correspondence: ; Tel.: +86-0531-8838-2612
| |
Collapse
|
38
|
Zhang H, Liu C, Chen Q, Shen LA, Xiao W, Li J, Wang Y, Zhu D, Zhang Q, Li J. Discovery of Novel 3-Phenylpiperidine Derivatives Targeting the β-Catenin/B-Cell Lymphoma 9 Interaction as a Single Agent and in Combination with the Anti-PD-1 Antibody for the Treatment of Colorectal Cancer. J Med Chem 2023; 66:1349-1379. [PMID: 36630177 DOI: 10.1021/acs.jmedchem.2c01568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Direct disruption of the β-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction (PPI) is a potential strategy for colorectal cancer (CRC) treatment through inhibiting oncogenic Wnt activity. Herein, a series of 3-phenylpiperidine derivatives were synthesized and evaluated as β-catenin/BCL9 PPI inhibitors. Among them, compound 41 showed the best IC50 (0.72 μM) in a competitive fluorescence polarization assay and a KD value of 0.26 μM for the β-catenin protein. This compound selectively inhibited the growth of CRC cells, suppressed Wnt signaling transactivation, and downregulated oncogenic Wnt target gene expression. In vivo, 41 showed potent anti-CRC activity and promoted the infiltration and function of cytotoxic T lymphocytes while decreasing the infiltration of regulatory T-cells (Tregs). Furthermore, the combination of 41 and the anti-PD-1 antibody (Ab) efficiently enhanced anti-CRC efficacy, first verifying the in vivo efficacy of the small-molecule β-catenin/BCL9 PPI inhibitor and anti-PD-1 Ab in combination.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, 285 Gebai Ni Road, Shanghai 201203, China
| | - Chenglong Liu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Qiushi Chen
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, 285 Gebai Ni Road, Shanghai 201203, China
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Li-An Shen
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Wenting Xiao
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, 285 Gebai Ni Road, Shanghai 201203, China
| | - Jiayi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, 285 Gebai Ni Road, Shanghai 201203, China
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Yonghui Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Di Zhu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Department of Pharmacology, School of Basic Medical Science, Fudan University, 138 Yixue Yuan Road, Shanghai 201100, China
| | - Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, 285 Gebai Ni Road, Shanghai 201203, China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, 285 Gebai Ni Road, Shanghai 201203, China
| |
Collapse
|
39
|
Li K, Mao S, Li X, Zhao H, Wang J, Wang C, Wu L, Zhang K, Yang H, Jin M, Zhou Z, Wang J, Huang G, Xie W. Frizzled-7-targeting antibody (SHH002-hu1) potently suppresses non-small-cell lung cancer via Wnt/β-catenin signaling. Cancer Sci 2023; 114:2109-2122. [PMID: 36625184 PMCID: PMC10154902 DOI: 10.1111/cas.15721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is one of the deadliest cancers worldwide, and metastasis is considered one of the leading causes of treatment failure in NSCLC. Wnt/β-catenin signaling is crucially involved in epithelial-mesenchymal transition (EMT), a crucial factor in promoting metastasis, and also contributes to resistance developed by NSCLC to targeted agents. Frizzled-7 (Fzd7), a critical receptor of Wnt/β-catenin signaling, is aberrantly expressed in NSCLC and has been confirmed to be positively correlated with poor clinical outcomes. SHH002-hu1, a humanized antibody targeting Fzd7, was previously successfully generated by our group. Here, we studied the anti-tumor effects of SHH002-hu1 against NSCLC and revealed the underlying mechanism. First, immunofluorescence (IF) and near-infrared (NIR) imaging assays showed that SHH002-hu1 specifically binds Fzd7+ NSCLC cells and targets NSCLC tissues. Wound healing and transwell invasion assays indicated that SHH002-hu1 significantly inhibits the migration and invasion of NSCLC cells. Subsequently, TOP-FLASH/FOP-FLASH luciferase reporter, IF, and western blot assays validated that SHH002-hu1 effectively suppresses the activation of Wnt/β-catenin signaling, and further attenuates the EMT of NSCLC cells. Finally, the subcutaneous xenotransplanted tumor model of A549/H1975, as well as the popliteal lymph node (LN) metastasis model, was established, and SHH002-hu1 was demonstrated to inhibit the growth of NSCLC xenografts and suppress LN metastasis of NSCLC. Above all, SHH002-hu1 with selectivity toward Fzd7+ NSCLC and the potential of inhibiting invasion and metastasis of NSCLC via disrupting Wnt/β-catenin signaling, is indicated as a good candidate for the targeted therapy of NSCLC.
Collapse
Affiliation(s)
- Kanghua Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuyang Mao
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xingxing Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Huijie Zhao
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jingyi Wang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Chenyue Wang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lisha Wu
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Kunchi Zhang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Zhaoli Zhou
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jin Wang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wei Xie
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.,School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
40
|
Du W, Menjivar RE, Donahue KL, Kadiyala P, Velez-Delgado A, Brown KL, Watkoske HR, He X, Carpenter ES, Angeles CV, Zhang Y, Pasca di Magliano M. WNT signaling in the tumor microenvironment promotes immunosuppression in murine pancreatic cancer. J Exp Med 2023; 220:e20220503. [PMID: 36239683 PMCID: PMC9577101 DOI: 10.1084/jem.20220503] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/06/2022] [Accepted: 09/07/2022] [Indexed: 01/16/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is associated with activation of WNT signaling. Whether this signaling pathway regulates the tumor microenvironment has remained unexplored. Through single-cell RNA sequencing of human pancreatic cancer, we discovered that tumor-infiltrating CD4+ T cells express TCF7, encoding for the transcription factor TCF1. We conditionally inactivated Tcf7 in CD4 expressing T cells in a mouse model of pancreatic cancer and observed changes in the tumor immune microenvironment, including more CD8+ T cells and fewer regulatory T cells, but also compensatory upregulation of PD-L1. We then used a clinically available inhibitor of Porcupine, a key component of WNT signaling, and observed similar reprogramming of the immune response. WNT signaling inhibition has limited therapeutic window due to toxicity, and PD-L1 blockade has been ineffective in PDA. Here, we show that combination targeting reduces pancreatic cancer growth in an experimental model and might benefit the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Rosa E. Menjivar
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| | | | - Padma Kadiyala
- Immunology Program, University of Michigan, Ann Arbor, MI
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | | | | | - Xi He
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI
| | - Eileen S. Carpenter
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Christina V. Angeles
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
41
|
Recent and Future Strategies to Overcome Resistance to Targeted Therapies and Immunotherapies in Metastatic Colorectal Cancer. J Clin Med 2022; 11:jcm11247523. [PMID: 36556139 PMCID: PMC9783354 DOI: 10.3390/jcm11247523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide, and 20% of patients with CRC present at diagnosis with metastases. The treatment of metastatic CRC is based on a fluoropyrimidine-based chemotherapy plus additional agents such as oxaliplatin and irinotecan. To date, on the basis of the molecular background, targeted therapies (e.g., monoclonal antibodies against epidermal growth factor receptor or inhibiting angiogenesis) are administered to improve the treatment of metastatic CRC. In addition, more recently, immunological agents emerged as effective in patients with a defective mismatch repair system. The administration of targeted therapies and immunotherapy lead to a significant increase in the survival of patients; however these drugs do not always prove effective. In most cases the lack of effectiveness is due to the development of primary resistance, either a resistance-inducing factor is already present before treatment or resistance is acquired when it occurs after treatment initiation. In this review we describe the most relevant targeted therapies and immunotherapies and expand on the reasons for resistance to the different approved or under development targeted drugs. Then we showed the possible mechanisms and drugs that may lead to overcoming the primary or acquired resistance in metastatic CRC.
Collapse
|
42
|
Intelligent nanotherapeutic strategies for the delivery of CRISPR system. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
43
|
Marín-Jiménez JA, García-Mulero S, Matías-Guiu X, Piulats JM. Facts and Hopes in Immunotherapy of Endometrial Cancer. Clin Cancer Res 2022; 28:4849-4860. [PMID: 35789264 DOI: 10.1158/1078-0432.ccr-21-1564] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 01/24/2023]
Abstract
Immunotherapy with checkpoint inhibitors has changed the paradigm of treatment for many tumors, and endometrial carcinoma is not an exception. Approved treatment options are pembrolizumab or dostarlimab for mismatch repair deficient tumors, pembrolizumab for tumors with high mutational load, and, more recently, pembrolizumab/lenvatinib for all patients with endometrial cancer. Endometrial cancer is a heterogeneous disease with distinct molecular subtypes and different prognoses. Differences between molecular subgroups regarding antigenicity and immunogenicity should be relevant to develop more tailored immunotherapeutic approaches. In this review, we aim to summarize and discuss the current evidence-Facts, and future opportunities-Hopes-of immunotherapy for endometrial cancer, focusing on relevant molecular and tumor microenvironment features of The Cancer Genome Atlas endometrial cancer subtypes.
Collapse
Affiliation(s)
- Juan A Marín-Jiménez
- Cancer Immunotherapy (CIT) Group - iPROCURE, Bellvitge Biomedical Research Institute (IDIBELL) - OncoBell, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sandra García-Mulero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program (ODAP), IDIBELL-OncoBell, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Xavier Matías-Guiu
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL-OncoBell, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Pathology and Molecular Genetics, Hospital Universitari Arnau de Vilanova - IRBLLEIDA, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer - CIBERONC, Madrid, Spain
| | - Josep M Piulats
- Cancer Immunotherapy (CIT) Group - iPROCURE, Bellvitge Biomedical Research Institute (IDIBELL) - OncoBell, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer - CIBERONC, Madrid, Spain
| |
Collapse
|
44
|
Li JH, Huang LJ, Zhou HL, Shan YM, Chen FM, Lehto VP, Xu WJ, Luo LQ, Yu HJ. Engineered nanomedicines block the PD-1/PD-L1 axis for potentiated cancer immunotherapy. Acta Pharmacol Sin 2022; 43:2749-2758. [PMID: 35484402 PMCID: PMC9622913 DOI: 10.1038/s41401-022-00910-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Immunotherapy, in particular immune checkpoint blockade (ICB) therapy targeting the programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis, has remarkably revolutionized cancer treatment in the clinic. Anti-PD-1/PD-L1 therapy is designed to restore the antitumor response of cytotoxic T cells (CTLs) by blocking the interaction between PD-L1 on tumour cells and PD-1 on CTLs. Nevertheless, current anti-PD-1/PD-L1 therapy suffers from poor therapeutic outcomes in a large variety of solid tumours due to insufficient tumour specificity, severe cytotoxic effects, and the occurrence of immune resistance. In recent years, nanosized drug delivery systems (NDDSs), endowed with highly efficient tumour targeting and versatility for combination therapy, have paved a new avenue for cancer immunotherapy. In this review article, we summarized the recent advances in NDDSs for anti-PD-1/PD-L1 therapy. We then discussed the challenges and further provided perspectives to promote the clinical application of NDDS-based anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Jun-Hao Li
- College of Sciences, Shanghai University, Shanghai, 200444, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lu-Jia Huang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hui-Ling Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi-Ming Shan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang-Min Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, 70211, Kuopio, Finland
| | - Wu-Jun Xu
- Department of Applied Physics, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Li-Qiang Luo
- College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Hai-Jun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
45
|
Flanagan DJ, Woodcock SA, Phillips C, Eagle C, Sansom OJ. Targeting ligand-dependent wnt pathway dysregulation in gastrointestinal cancers through porcupine inhibition. Pharmacol Ther 2022; 238:108179. [PMID: 35358569 PMCID: PMC9531712 DOI: 10.1016/j.pharmthera.2022.108179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
Gastrointestinal cancers are responsible for more cancer deaths than any other system of the body. This review summarises how Wnt pathway dysregulation contributes to the development of the most common gastrointestinal cancers, with a particular focus on the nature and frequency of upstream pathway aberrations. Tumors with upstream aberrations maintain a dependency on the presence of functional Wnt ligand, and are predicted to be tractable to inhibitors of Porcupine, an enzyme that plays a key role in Wnt secretion. We summarise available pre-clinical efficacy data from Porcupine inhibitors in vitro and in vivo, as well as potential toxicities and the data from early phase clinical trials. We appraise the rationale for biomarker-defined targeted approaches, as well as outlining future opportunities for combination with other therapeutics.
Collapse
Affiliation(s)
- Dustin J Flanagan
- Cancer Research UK Beatson Institute, Glasgow, UK; Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | | | | | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
46
|
Liu JC, Zhang CL, Dong KY, Li MJ, Sun SG, Li CR. Advances in the research of plant-derived natural products against retinoblastoma. Int J Ophthalmol 2022; 15:1391-1400. [PMID: 36017045 DOI: 10.18240/ijo.2022.08.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
Retinoblastoma (RB) is a highly aggressive ocular tumor, and due to socioeconomic and medical constraints, many children receive treatment only in the metaphase and advanced clinical stages, resulting in high rates of blindness and disability. Although several approaches exist in the treatment of RB, some children with the disease do not have satisfactory results because of various factors. Plant-derived natural products have shown definite therapeutic effects in the treatment of various tumors and are also widely used in the study of RB. We review plant-derived natural products used in the study of anti-RB to provide ideas for the clinical application of these drugs and the development of new therapeutic drugs.
Collapse
Affiliation(s)
- Jing-Chen Liu
- Department of Ophthalmology, Jiangxi Provincial Hospital of Integrated Traditional Chinese and Western Medicine, the Fourth Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330003, Jiangxi Province, China.,School of Clinical Medicine, Dali University, Dali 671000, Yunnan Province, China.,School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, Jiangxi Province, China
| | - Chun-Li Zhang
- Department of Ophthalmology, General Hospital of Southern Theatre Command, Guangzhou 510010, Guangdong Province, China
| | - Kai-Ye Dong
- Department of Ophthalmology, the First Affiliated Hospital of Dali University, Dali 671000, Yunnan Province, China
| | - Ming-Jun Li
- School of Clinical Medicine, Dali University, Dali 671000, Yunnan Province, China
| | - Shu-Guang Sun
- School of Clinical Medicine, Dali University, Dali 671000, Yunnan Province, China.,Department of Endocrinology, the First Affiliated Hospital of Dali University, Dali 671000, Yunnan Province, China
| | - Cai-Rui Li
- School of Clinical Medicine, Dali University, Dali 671000, Yunnan Province, China.,Department of Ophthalmology, the First Affiliated Hospital of Dali University, Dali 671000, Yunnan Province, China
| |
Collapse
|
47
|
Lüke F, Harrer DC, Pantziarka P, Pukrop T, Ghibelli L, Gerner C, Reichle A, Heudobler D. Drug Repurposing by Tumor Tissue Editing. Front Oncol 2022; 12:900985. [PMID: 35814409 PMCID: PMC9270020 DOI: 10.3389/fonc.2022.900985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The combinatory use of drugs for systemic cancer therapy commonly aims at the direct elimination of tumor cells through induction of apoptosis. An alternative approach becomes the focus of attention if biological changes in tumor tissues following combinatory administration of regulatorily active drugs are considered as a therapeutic aim, e.g., differentiation, transdifferentiation induction, reconstitution of immunosurveillance, the use of alternative cell death mechanisms. Editing of the tumor tissue establishes new biological 'hallmarks' as a 'pressure point' to attenuate tumor growth. This may be achieved with repurposed, regulatorily active drug combinations, often simultaneously targeting different cell compartments of the tumor tissue. Moreover, tissue editing is paralleled by decisive functional changes in tumor tissues providing novel patterns of target sites for approved drugs. Thus, agents with poor activity in non-edited tissue may reveal new clinically meaningful outcomes. For tissue editing and targeting edited tissue novel requirements concerning drug selection and administration can be summarized according to available clinical and pre-clinical data. Monoactivity is no pre-requisite, but combinatory bio-regulatory activity. The regulatorily active dose may be far below the maximum tolerable dose, and besides inhibitory active drugs stimulatory drug activities may be integrated. Metronomic scheduling often seems to be of advantage. Novel preclinical approaches like functional assays testing drug combinations in tumor tissue are needed to select potential drugs for repurposing. The two-step drug repurposing procedure, namely establishing novel functional systems states in tumor tissues and consecutively providing novel target sites for approved drugs, facilitates the systematic identification of drug activities outside the scope of any original clinical drug approvals.
Collapse
Affiliation(s)
- Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Dennis Christoph Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Pan Pantziarka
- The George Pantziarka TP53 Trust, London, United Kingdom
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| | - Lina Ghibelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
48
|
Chen X, Yang M, Yin J, Li P, Zeng S, Zheng G, He Z, Liu H, Wang Q, Zhang F, Chen D. Tumor-associated macrophages promote epithelial-mesenchymal transition and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/β-catenin signaling. Cell Commun Signal 2022; 20:92. [PMID: 35715860 PMCID: PMC9205034 DOI: 10.1186/s12964-022-00888-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer with poor prognosis and limited treatment. As a major component of the tumor microenvironment, tumor-associated macrophages (TAMs) play an important role in facilitating the aggressive behavior of TNBC. This study aimed to explore the novel mechanism of TAMs in the regulation of epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties in TNBC. METHODS Expression of the M2-like macrophage marker CD163 was evaluated by immunohistochemistry in human breast cancer tissues. The phenotype of M2 macrophages polarized from Tohoku-Hospital-Pediatrics-1 (THP1) cells was verified by flow cytometry. Transwell assays, wound healing assays, western blotting, flow cytometry, ELISA, quantitative polymerase chain reaction (qPCR), luciferase reporter gene assays, and immunofluorescence assays were conducted to investigate the mechanism by which TAMs regulate EMT and CSC properties in BT549 and HCC1937 cells. RESULTS Clinically, we observed a high infiltration of M2-like tumor-associated macrophages in TNBC tissues and confirmed that TAMs were associated with unfavorable prognosis in TNBC patients. Moreover, we found that conditioned medium from M2 macrophages (M2-CM) markedly promoted EMT and CSC properties in BT549 and HCC1937 cells. Mechanistically, we demonstrated that chemokine (C-C motif) ligand 2 (CCL2) secretion by TAMs activated Akt signaling, which in turn increased the expression and nuclear localization of β-catenin. Furthermore, β-catenin knockdown reversed TAM-induced EMT and CSC properties. CONCLUSIONS This study provides a novel mechanism by which TAMs promote EMT and enhance CSC properties in TNBC via activation of CCL2/AKT/β-catenin signaling, which may offer new strategies for the diagnosis and treatment of TNBC. Video Abstract.
Collapse
Affiliation(s)
- Xiangzhou Chen
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Mingqiang Yang
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Jiang Yin
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Pan Li
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Shanshan Zeng
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Guopei Zheng
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Zhimin He
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Hao Liu
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China
| | - Qian Wang
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China.
| | - Fan Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, No.99 Zhangzhidong Road, Wuhan, 430000, Hubei, China.
| | - Danyang Chen
- Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, Guangdong, China.
| |
Collapse
|
49
|
Xu Y, Chen C, Guo Y, Hu S, Sun Z. Effect of CRISPR/Cas9-Edited PD-1/PD-L1 on Tumor Immunity and Immunotherapy. Front Immunol 2022; 13:848327. [PMID: 35300341 PMCID: PMC8920996 DOI: 10.3389/fimmu.2022.848327] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease9 (CRISPR/Cas9) gene editing technology implements precise programming of the human genome through RNA guidance. At present, it has been widely used in the construction of animal tumor models, the study of drug resistance regulation mechanisms, epigenetic control and innovation in cancer treatment. Tumor immunotherapy restores the normal antitumor immune response by restarting and maintaining the tumor-immune cycle. CRISPR/Cas9 technology has occupied a central position in further optimizing anti-programmed cell death 1(PD-1) tumor immunotherapy. In this review, we summarize the recent progress in exploring the regulatory mechanism of tumor immune PD-1 and programmed death ligand 1(PD-L1) based on CRISPR/Cas9 technology and its clinical application in different cancer types. In addition, CRISPR genome-wide screening identifies new drug targets and biomarkers to identify potentially sensitive populations for anti-PD-1/PD-L1 therapy and maximize antitumor effects. Finally, the strong potential and challenges of CRISPR/Cas9 for future clinical applications are discussed.
Collapse
Affiliation(s)
- Yanxin Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaxin Guo
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
50
|
Wang B, Wang T, Zhu H, Yan R, Li X, Zhang C, Tao W, Ke X, Hao P, Qu Y. Neddylation is essential for β-catenin degradation in Wnt signaling pathway. Cell Rep 2022; 38:110538. [PMID: 35320710 DOI: 10.1016/j.celrep.2022.110538] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 10/30/2021] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
β-Catenin is a central component in the Wnt signaling pathway; its degradation has been tightly connected to ubiquitylation, but it is rarely examined by loss-of-function assays. Here we observe that endogenous β-catenin is not stabilized upon ubiquitylation depletion by a ubiquitylation inhibitor, TAK-243. We demonstrate that N-terminal phosphorylated β-catenin is quickly and strongly stabilized by a specific neddylation inhibitor, MLN4924, in all examined cell types, and that β-catenin and TCF4 interaction is strongly enhanced by inhibition of neddylation but not ubiquitylation. We also confirm that the E3 ligase β-TrCP2, but not β-TrCP1, is associated with neddylation and destruction of β-catenin. GSK3β and adenomatous polyposis coli (APC) are not required for β-catenin neddylation but essential for its subsequent degradation. Our findings not only clarify the process of β-catenin modification and degradation in the Wnt signaling pathway but also highlight the importance of reassessing previously identified ubiquitylation substrates.
Collapse
Affiliation(s)
- Bojun Wang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200, Cailun Road, Shanghai 201203, P.R. China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tiantian Wang
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200, Cailun Road, Shanghai 201203, P.R. China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huimin Zhu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200, Cailun Road, Shanghai 201203, P.R. China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rong Yan
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200, Cailun Road, Shanghai 201203, P.R. China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinru Li
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200, Cailun Road, Shanghai 201203, P.R. China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chengqian Zhang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Wanyu Tao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200, Cailun Road, Shanghai 201203, P.R. China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| | - Yi Qu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No.1200, Cailun Road, Shanghai 201203, P.R. China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|