1
|
Duan Y, Liu Z, Wang Q, Zhang J, Liu J, Zhang Z, Li C. Targeting MYC: Multidimensional regulation and therapeutic strategies in oncology. Genes Dis 2025; 12:101435. [PMID: 40290126 PMCID: PMC12022651 DOI: 10.1016/j.gendis.2024.101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/25/2024] [Indexed: 04/30/2025] Open
Abstract
MYC is dysregulated in approximately 70% of human cancers, strongly suggesting its essential function in cancer. MYC regulates many biological processes, such as cell cycle, metabolism, cellular senescence, apoptosis, angiogenesis, and immune escape. MYC plays a central role in carcinogenesis and is a key regulator of tumor development and drug resistance. Therefore, MYC is one of the most alluring therapeutic targets for developing cancer drugs. Although the search for direct inhibitors of MYC is challenging, MYC cannot simply be assumed to be undruggable. Targeting the MYC-MAX complex has been an effective method for directly targeting MYC. Alternatively, indirect targeting of MYC represents a more pragmatic therapeutic approach, mainly including inhibition of the transcriptional or translational processes of MYC, destabilization of the MYC protein, and blocking genes that are synthetically lethal with MYC overexpression. In this review, we delineate the multifaceted roles of MYC in cancer progression, highlighting a spectrum of therapeutic strategies and inhibitors for cancer therapy that target MYC, either directly or indirectly.
Collapse
Affiliation(s)
- Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jiaxin Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Ziyi Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
2
|
Sun Z, Wu R, Liang X, Shi T, Zhang Y, Pan Z, Zhang W, Luan X. MLCK inhibition induces synthetic lethality in MYC-driven cancer. Cancer Lett 2025; 625:217803. [PMID: 40381685 DOI: 10.1016/j.canlet.2025.217803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/08/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
The dysregulation of MYC is widely implicated in human cancers, yet MYC remains an 'undruggable' target. Here, we performed a CRISPR-based loss-of-function screen focusing on kinases, most of which are 'druggable,' to identify genes essential for MYChigh but not MYClow cells. Using an isogenic pair of nonmalignant cells with and without ectopic MYC expression, we uncovered novel MYC synthetic lethal (MYC-SL) interactions, including Myosin Light-Chain Kinase (MLCK) as the most potent MYC-SL target. Inhibition of MLCK induced MYC-dependent cell death, significantly suppressing tumor growth in MYC-driven xenografts, the ApcMin/+ mouse model of colon cancer, and the MYC-transgenic hepatocellular carcinoma (HCC) model, without apparent toxicity. This cell death is attributed to selective DNA damage and p53-mediated apoptosis. Mechanistically, MYC activation promotes nuclear accumulation of myosin II at stalled replication forks, where it resolves replication stress and supports survival. MLCK inhibition disrupts myosin II activity, leading to unresolved replication stress, DNA damage, and activation of the p53-mediated apoptosis pathway. Our findings suggest that targeting MLCK offers a promising therapeutic strategy for MYC-driven cancers.
Collapse
Affiliation(s)
- Zhe Sun
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Rui Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaohui Liang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tiezhu Shi
- Precise Genome Engineering Centre, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yuan Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangdong, 510006, China
| | - Zelin Pan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Cristóbal-Vargas S, Cuadrado M, Gutiérrez NC. MYC alterations in multiple myeloma: Genetic insights and prognostic impact. Neoplasia 2025; 66:101177. [PMID: 40375408 DOI: 10.1016/j.neo.2025.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/02/2025] [Accepted: 05/08/2025] [Indexed: 05/18/2025]
Abstract
Multiple myeloma (MM) is a hematologic malignancy with high genetic complexity. The genetic alterations that drive MM have classically been classified as primary abnormalities, including IGH translocations and hyperdiploidy, and secondary abnormalities, mainly composed of 1q gains, 17p deletions and MYC rearrangements. Dysregulation of the MYC oncogene has been proposed as a key factor in disease progression from monoclonal gammopathy of undetermined significance (MGUS), smoldering MM and overt MM. MYC, a multifunctional transcription factor, is frequently activated in MM through various mechanisms, including translocations, amplifications, and overexpression, thereby contributing to the growth and survival of malignant plasma cells. The role of MYC abnormalities in the prognosis of MM remains controversial and continues to be overlooked in current prognostic indices for MM. The different methodologies used to detect MYC lesions may hinder the interpretation of the apparently contradictory results between studies analyzing the impact of these alterations on the survival of MM patients. On the other hand, the mouse models that best mimic the characteristics of human MM are those driven by MYC. In this review, we provide an overview of the MYC alterations described in MM, indicating the methodologies used to detect them and discussing their influence on patient prognosis. We also summarize the main characteristics of the genetically engineered mouse models driven by MYC. Finally, we assess the therapeutic potential of MYC inhibition in MM and the strategies currently approved for clinic use.
Collapse
Affiliation(s)
- Sara Cristóbal-Vargas
- Hematology Department, University Hospital of Salamanca, IBSAL, Salamanca, Spain; Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.
| | - Myriam Cuadrado
- Hematology Department, University Hospital of Salamanca, IBSAL, Salamanca, Spain; Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain.
| | - Norma C Gutiérrez
- Hematology Department, University Hospital of Salamanca, IBSAL, Salamanca, Spain; Cancer Research Center-IBMCC (USAL-CSIC), Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, CB16/12/00233), Salamanca, Spain.
| |
Collapse
|
4
|
Toure MA, Motoyama K, Xiang Y, Urgiles J, Kabinger F, Koglin AS, Iyer RS, Gagnon K, Kumar A, Ojeda S, Harrison DA, Rees MG, Roth JA, Ott CJ, Schiavoni R, Whittaker CA, Levine SS, White FM, Calo E, Richters A, Koehler AN. Targeted degradation of CDK9 potently disrupts the MYC-regulated network. Cell Chem Biol 2025; 32:542-555.e10. [PMID: 40154489 PMCID: PMC12042413 DOI: 10.1016/j.chembiol.2025.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/01/2024] [Accepted: 03/08/2025] [Indexed: 04/01/2025]
Abstract
CDK9 coordinates signaling events that regulate transcription and is implicated in oncogenic pathways, making it an actionable target for drug development. While numerous CDK9 inhibitors have been developed, success in the clinic has been limited. Targeted degradation offers a promising alternative. A comprehensive evaluation of degradation versus inhibition is needed to assess when degradation might offer superior therapeutic outcomes. We report a selective and potent CDK9 degrader with rapid kinetics, comparing its downstream effects to those of a conventional inhibitor. We validated that CDK9 inhibition triggers a compensatory feedback mechanism that dampens its anticipated effect on MYC expression and found that this was absent when degraded. Importantly, degradation is more effective at disrupting MYC transcriptional regulation and subsequently destabilizing nucleolar homeostasis, likely by abrogation of both enzymatic and scaffolding functions of CDK9. These findings suggest that CDK9 degradation offers a more robust strategy to overcome limitations associated with its inhibition.
Collapse
Affiliation(s)
- Mohammed A Toure
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA
| | - Keisuke Motoyama
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA
| | - Yichen Xiang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA
| | - Julie Urgiles
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA; Harvard-MIT Health Sciences and Technology, Boston, MA 02115, USA
| | - Florian Kabinger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA
| | - Ann-Sophie Koglin
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ramya S Iyer
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kaitlyn Gagnon
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Amruth Kumar
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel Ojeda
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Drew A Harrison
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew G Rees
- Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA
| | - Christopher J Ott
- Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA; Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Richard Schiavoni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Charles A Whittaker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Stuart S Levine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; MIT BioMicro Center, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eliezer Calo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andre Richters
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 04142, USA.
| |
Collapse
|
5
|
Whitfield JR, Soucek L. MYC in cancer: from undruggable target to clinical trials. Nat Rev Drug Discov 2025:10.1038/s41573-025-01143-2. [PMID: 39972241 DOI: 10.1038/s41573-025-01143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2025] [Indexed: 02/21/2025]
Abstract
MYC is among the most infamous oncogenes in cancer. A notable feature that distinguishes it from other common oncogenes is that its deregulation is not usually due to direct mutation, but instead to its relentless activation by other oncogenic lesions. These signalling pathways funnel through MYC to execute the transcriptional programmes that eventually lead to the uncontrolled proliferation of cancer cells. Indeed, deregulated MYC activity may be linked to most - if not all - human cancers. Despite this unquestionable role of MYC in tumour development and maintenance, no MYC inhibitor has yet been approved for clinical use. The main reason is that MYC has long fallen into the category of 'undruggable' or 'difficult-to-drug' targets, mainly because of its intrinsically disordered structure, which is not amenable to traditional drug development strategies. However, in recent years, attempts to develop MYC inhibitors have multiplied, and the first clinical trials have been testing their efficacy in patients. We are finally reaching the point at which its inhibition seems clinically viable. This Review provides an overview of the various strategies to inhibit MYC, focusing on the most recently described inhibitors and those that have reached clinical trials.
Collapse
Affiliation(s)
- Jonathan R Whitfield
- Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
- Peptomyc S.L., Barcelona, Spain.
| |
Collapse
|
6
|
Nada H, Choi Y, Kim S, Jeong KS, Meanwell NA, Lee K. New insights into protein-protein interaction modulators in drug discovery and therapeutic advance. Signal Transduct Target Ther 2024; 9:341. [PMID: 39638817 PMCID: PMC11621763 DOI: 10.1038/s41392-024-02036-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to cellular signaling and transduction which marks them as attractive therapeutic drug development targets. What were once considered to be undruggable targets have become increasingly feasible due to the progress that has been made over the last two decades and the rapid technological advances. This work explores the influence of technological innovations on PPI research and development. Additionally, the diverse strategies for discovering, modulating, and characterizing PPIs and their corresponding modulators are examined with the aim of presenting a streamlined pipeline for advancing PPI-targeted therapeutics. By showcasing carefully selected case studies in PPI modulator discovery and development, we aim to illustrate the efficacy of various strategies for identifying, optimizing, and overcoming challenges associated with PPI modulator design. The valuable lessons and insights gained from the identification, optimization, and approval of PPI modulators are discussed with the aim of demonstrating that PPI modulators have transitioned beyond early-stage drug discovery and now represent a prime opportunity with significant potential. The selected examples of PPI modulators encompass those developed for cancer, inflammation and immunomodulation, as well as antiviral applications. This perspective aims to establish a foundation for the effective targeting and modulation of PPIs using PPI modulators and pave the way for future drug development.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sungdo Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kwon Su Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Nicholas A Meanwell
- Baruch S. Blumberg Institute, Doylestown, PA, USA
- School of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Ernest Mario School of Pharmacy, Rutgers University New Brunswick, New Brunswick, NJ, USA
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
7
|
Thompson PE, Shortt J. Defeating MYC with drug combinations or dual-targeting drugs. Trends Pharmacol Sci 2024; 45:490-502. [PMID: 38782688 DOI: 10.1016/j.tips.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Members of the MYC family of proteins are a major target for cancer drug discovery, but the development of drugs that block MYC-driven cancers has not yet been successful. Approaches to achieve success may include the development of combination therapies or dual-acting drugs that target MYC at multiple nodes. Such treatments hold the possibility of additive or synergistic activity, potentially reducing side effect profiles and the emergence of resistance. In this review, we examine the prominent MYC-related targets and highlight those that have been targeted in combination and/or dual-target approaches. Finally, we explore the challenges of combination and dual-target approaches from a drug development perspective.
Collapse
Affiliation(s)
- Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Jake Shortt
- Blood Cancer Therapeutics Laboratory, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Victoria 3168, Australia; Monash Hematology, Monash Health, Melbourne, Victoria 3168, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3000, Australia
| |
Collapse
|
8
|
Toure MA, Motoyama K, Xiang Y, Urgiles J, Kabinger F, Koglin AS, Iyer RS, Gagnon K, Kumar A, Ojeda S, Harrison DA, Rees MG, Roth JA, Ott CJ, Schiavoni R, Whittaker CA, Levine SS, White FM, Calo E, Richters A, Koehler AN. Targeted Degradation of CDK9 Potently Disrupts the MYC Transcriptional Network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.593352. [PMID: 38952800 PMCID: PMC11216368 DOI: 10.1101/2024.05.14.593352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Cyclin-dependent kinase 9 (CDK9) coordinates signaling events that regulate RNA polymerase II (Pol II) pause-release states. It is an important co-factor for transcription factors, such as MYC, that drive aberrant cell proliferation when their expression is deregulated. CDK9 modulation offers an approach for attenuating dysregulation in such transcriptional programs. As a result, numerous drug development campaigns to inhibit CDK9 kinase activity have been pursued. More recently, targeted degradation has emerged as an attractive approach. However, comprehensive evaluation of degradation versus inhibition is still critically needed to assess the biological contexts in which degradation might offer superior therapeutic benefits. We validated that CDK9 inhibition triggers a compensatory mechanism that dampens its effect on MYC expression and found that this feedback mechanism was absent when the kinase is degraded. Importantly, CDK9 degradation is more effective than its inhibition for disrupting MYC transcriptional regulatory circuitry likely through the abrogation of both enzymatic and scaffolding functions of CDK9. Highlights - KI-CDK9d-32 is a highly potent and selective CDK9 degrader. - KI-CDK9d-32 leads to rapid downregulation of MYC protein and mRNA transcripts levels. - KI-CDK9d-32 represses canonical MYC pathways and leads to a destabilization of nucleolar homeostasis. - Multidrug resistance ABCB1 gene emerged as the strongest resistance marker for the CDK9 PROTAC degrader.
Collapse
|
9
|
Turpin R, Liu R, Munne PM, Peura A, Rannikko JH, Philips G, Boeckx B, Salmelin N, Hurskainen E, Suleymanova I, Aung J, Vuorinen EM, Lehtinen L, Mutka M, Kovanen PE, Niinikoski L, Meretoja TJ, Mattson J, Mustjoki S, Saavalainen P, Goga A, Lambrechts D, Pouwels J, Hollmén M, Klefström J. Respiratory complex I regulates dendritic cell maturation in explant model of human tumor immune microenvironment. J Immunother Cancer 2024; 12:e008053. [PMID: 38604809 PMCID: PMC11015234 DOI: 10.1136/jitc-2023-008053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Combining cytotoxic chemotherapy or novel anticancer drugs with T-cell modulators holds great promise in treating advanced cancers. However, the response varies depending on the tumor immune microenvironment (TIME). Therefore, there is a clear need for pharmacologically tractable models of the TIME to dissect its influence on mono- and combination treatment response at the individual level. METHODS Here we establish a patient-derived explant culture (PDEC) model of breast cancer, which retains the immune contexture of the primary tumor, recapitulating cytokine profiles and CD8+T cell cytotoxic activity. RESULTS We explored the immunomodulatory action of a synthetic lethal BCL2 inhibitor venetoclax+metformin drug combination ex vivo, discovering metformin cannot overcome the lymphocyte-depleting action of venetoclax. Instead, metformin promotes dendritic cell maturation through inhibition of mitochondrial complex I, increasing their capacity to co-stimulate CD4+T cells and thus facilitating antitumor immunity. CONCLUSIONS Our results establish PDECs as a feasible model to identify immunomodulatory functions of anticancer drugs in the context of patient-specific TIME.
Collapse
Affiliation(s)
- Rita Turpin
- Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | - Ruixian Liu
- Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | - Pauliina M Munne
- Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | - Aino Peura
- Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | | | | | - Bram Boeckx
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Natasha Salmelin
- Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | - Elina Hurskainen
- Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | - Ilida Suleymanova
- Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | - July Aung
- University of Helsinki Faculty of Medicine, Helsinki, Finland
| | | | | | - Minna Mutka
- Department of Pathology, Helsinki University Central Hospital, Helsinki, Finland
| | - Panu E Kovanen
- Department of Pathology, HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| | - Laura Niinikoski
- Breast Surgery Unit, Helsinki University Central Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Tuomo J Meretoja
- Breast Surgery Unit, Helsinki University Central Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Johanna Mattson
- Department of oncology, Helsinki University Central Hospital, Helsinki, Finland
| | - Satu Mustjoki
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- University of Helsinki Helsinki Institute of Life Sciences, Helsinki, Finland
| | | | - Andrei Goga
- Department of Cell & Tissue Biology, UCSF, San Francisco, California, USA
| | | | - Jeroen Pouwels
- Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | | | - Juha Klefström
- Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
- Finnish Cancer Institute, Helsinki, Finland
| |
Collapse
|
10
|
Gupta D, Kumar M, Saifi S, Rawat S, Ethayathulla AS, Kaur P. A comprehensive review on role of Aurora kinase inhibitors (AKIs) in cancer therapeutics. Int J Biol Macromol 2024; 265:130913. [PMID: 38508544 DOI: 10.1016/j.ijbiomac.2024.130913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Aurora kinases (AURKs) are a family of serine /threonine protein kinases that have a crucial role in cell cycle process mainly in the event of chromosomal segregation, centrosome maturation and cytokinesis. The family consists of three members including Aurora kinase A (AURK-A), Aurora kinase B (AURK-B) and Aurora kinase C (AURK-C). All AURKs contain a conserved kinase domain for their activity but differ in their cellular localization and functions. AURK-A and AURK-B are expressed mainly in somatic cells while the expression of AURK-C is limited to germ cells. AURK-A promotes G2 to M transition of cell cycle by controlling centrosome maturation and mitotic spindle assembly. AURK-B and AURK-C form the chromosome passenger complex (CPC) that ensures proper chromosomal alignments and segregation. Aberrant expression of AURK-A and AURK-B has been detected in several solid tumours and malignancies. Hence, they have become an attractive therapeutic target against cancer. The first part of this review focuses on AURKs structure, functions, subcellular localization, and their role in tumorigenesis. The review also highlights the functional and clinical impact of selective as well as pan kinase inhibitors. Currently, >60 compounds that target AURKs are in preclinical and clinical studies. The drawbacks of existing inhibitors like selectivity, drug resistance and toxicity have also been addressed. Since, majority of inhibitors are Aurora kinase inhibitor (AKI) type-1 that bind to the active (DFGin and Cin) conformation of the kinase, this information may be utilized to design highly selective kinase inhibitors that can be combined with other therapeutic agents for better clinical outcomes.
Collapse
Affiliation(s)
- Deepali Gupta
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Sana Saifi
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Shivani Rawat
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - A S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, Delhi 110029, India.
| |
Collapse
|
11
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
12
|
Chi ZC. Progress in understanding of relationship between inflammation and tumors. Shijie Huaren Xiaohua Zazhi 2024; 32:23-40. [DOI: 10.11569/wcjd.v32.i1.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Over the past decade, there has been clear evidence that inflammation plays a key role in tumorigenesis. Tumor extrinsic inflammation is caused by many factors, including bacterial and viral infections, autoimmune diseases, obesity, smoking, excessive alcohol consumption, etc., all of which can increase cancer risk and stimulate malignant progression. Conversely, inflammation inherent in cancer or caused by cancer can be triggered by cancer-initiating mutations and can promote malignant progression through recruitment and activation of inflammatory cells. Both exogenous and endogenous inflammation can lead to immunosuppression, thus providing a preferred opportunity for tumor development. Studies have confirmed that chronic inflammation is involved in various steps of tumorigenesis, including cell transformation, promotion, survival, prolifer-ation, invasion, angiogenesis, and metastasis. Recent research has shed new light on the molecular and cellular circuits between inflammation and cancer. Two pathways have been preliminarily identified: Intrinsic and extrinsic. In the intrinsic pathway, genetic events leading to tumors initiate the expression of inflammatory related programs and guide the construction of the inflammatory microenvironment. In the extrinsic pathway, inflammatory conditions promote the development of cancer. This article reviews the recent progress in the understanding of the relationship between inflammation and tumors.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
13
|
Lin P, Lourenco C, Cruickshank J, Palomero L, van Leeuwen JE, Tong AHY, Chan K, El Ghamrasni S, Pujana MA, Cescon DW, Moffat J, Penn LZ. Topoisomerase 1 Inhibition in MYC-Driven Cancer Promotes Aberrant R-Loop Accumulation to Induce Synthetic Lethality. Cancer Res 2023; 83:4015-4029. [PMID: 37987734 PMCID: PMC10722143 DOI: 10.1158/0008-5472.can-22-2948] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 07/31/2023] [Accepted: 10/05/2023] [Indexed: 11/21/2023]
Abstract
UNLABELLED MYC is a central regulator of gene transcription and is frequently dysregulated in human cancers. As targeting MYC directly is challenging, an alternative strategy is to identify specific proteins or processes required for MYC to function as a potent cancer driver that can be targeted to result in synthetic lethality. To identify potential targets in MYC-driven cancers, we performed a genome-wide CRISPR knockout screen using an isogenic pair of breast cancer cell lines in which MYC dysregulation is the switch from benign to transformed tumor growth. Proteins that regulate R-loops were identified as a potential class of synthetic lethal targets. Dysregulated MYC elevated global transcription and coincident R-loop accumulation. Topoisomerase 1 (TOP1), a regulator of R-loops by DNA topology, was validated to be a vulnerability in cells with high MYC activity. Genetic knockdown of TOP1 in MYC-transformed cells resulted in reduced colony formation compared with control cells, demonstrating synthetic lethality. Overexpression of RNaseH1, a riboendonuclease that specifically degrades R-loops, rescued the reduction in clonogenicity induced by TOP1 deficiency, demonstrating that this vulnerability is driven by aberrant R-loop accumulation. Genetic and pharmacologic TOP1 inhibition selectively reduced the fitness of MYC-transformed tumors in vivo. Finally, drug response to TOP1 inhibitors (i.e., topotecan) significantly correlated with MYC levels and activity across panels of breast cancer cell lines and patient-derived organoids. Together, these results highlight TOP1 as a promising target for MYC-driven cancers. SIGNIFICANCE CRISPR screening reveals topoisomerase 1 as an immediately actionable vulnerability in cancers harboring MYC as a driver oncoprotein that can be targeted with clinically approved inhibitors.
Collapse
Affiliation(s)
- Peter Lin
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Corey Lourenco
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | - Luis Palomero
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Jenna E. van Leeuwen
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | | | - Samah El Ghamrasni
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - David W. Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Canada
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Linda Z. Penn
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
14
|
Liu F, Liao Z, Zhang Z. MYC in liver cancer: mechanisms and targeted therapy opportunities. Oncogene 2023; 42:3303-3318. [PMID: 37833558 DOI: 10.1038/s41388-023-02861-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
MYC, a major oncogenic transcription factor, regulates target genes involved in various pathways such as cell proliferation, metabolism and immune evasion, playing a critical role in the tumor initiation and development in multiple types of cancer. In liver cancer, MYC and its signaling pathways undergo significant changes, exerting a profound impact on liver cancer progression, including tumor proliferation, metastasis, dedifferentiation, metabolism, immune microenvironment, and resistance to comprehensive therapies. This makes MYC an appealing target, despite it being previously considered an undruggable protein. In this review, we discuss the role and mechanisms of MYC in liver physiology, chronic liver diseases, hepatocarcinogenesis, and liver cancer progression, providing a theoretical basis for targeting MYC as an ideal therapeutic target for liver cancer. We also summarize and prospect the strategies for targeting MYC, including direct and indirect approaches to abolish the oncogenic function of MYC in liver cancer.
Collapse
Affiliation(s)
- Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
15
|
Thng DKH, Hooi L, Toh CCM, Lim JJ, Rajagopalan D, Syariff IQC, Tan ZM, Rashid MBMA, Zhou L, Kow AWC, Bonney GK, Goh BKP, Kam JH, Jha S, Dan YY, Chow PKH, Toh TB, Chow EK. Histone-lysine N-methyltransferase EHMT2 (G9a) inhibition mitigates tumorigenicity in Myc-driven liver cancer. Mol Oncol 2023; 17:2275-2294. [PMID: 36896891 PMCID: PMC10620125 DOI: 10.1002/1878-0261.13417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/30/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third deadliest and sixth most common cancer in the world. Histone-lysine N-methyltransferase EHMT2 (also known as G9a) is a histone methyltransferase frequently overexpressed in many cancer types, including HCC. We showed that Myc-driven liver tumours have a unique H3K9 methylation pattern with corresponding G9a overexpression. This phenomenon of increased G9a was further observed in our c-Myc-positive HCC patient-derived xenografts. More importantly, we showed that HCC patients with higher c-Myc and G9a expression levels portend a poorer survival with lower median survival months. We demonstrated that c-Myc interacts with G9a in HCC and cooperates to regulate c-Myc-dependent gene repression. In addition, G9a stabilises c-Myc to promote cancer development, contributing to the growth and invasive capacity in HCC. Furthermore, combination therapy between G9a and synthetic-lethal target of c-Myc, CDK9, demonstrates strong efficacy in patient-derived avatars of Myc-driven HCC. Our work suggests that targeting G9a could prove to be a potential therapeutic avenue for Myc-driven liver cancer. This will increase our understanding of the underlying epigenetic mechanisms of aggressive tumour initiation and lead to improved therapeutic and diagnostic options for Myc-driven hepatic tumours.
Collapse
Affiliation(s)
- Dexter Kai Hao Thng
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Lissa Hooi
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Clarissa Chin Min Toh
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Jhin Jieh Lim
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Deepa Rajagopalan
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Imran Qamar Charles Syariff
- Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Zher Min Tan
- Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | | | - Lei Zhou
- Department of Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Alfred Wei Chieh Kow
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, University Surgical ClusterNational University Health SystemSingaporeSingapore
| | - Glenn Kunnath Bonney
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, University Surgical ClusterNational University Health SystemSingaporeSingapore
| | - Brian Kim Poh Goh
- Department of Hepatopancreatobiliary (HPB) and Transplant SurgerySingapore General Hospital and National Cancer Centre SingaporeSingaporeSingapore
| | - Juinn Huar Kam
- Department of Hepatopancreatobiliary (HPB) and Transplant SurgerySingapore General Hospital and National Cancer Centre SingaporeSingaporeSingapore
| | - Sudhakar Jha
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Physiological Sciences, College of Veterinary MedicineOklahoma State UniversityStillwaterOKUSA
| | - Yock Young Dan
- Department of Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Pierce Kah Hoe Chow
- Department of Hepatopancreatobiliary (HPB) and Transplant SurgerySingapore General Hospital and National Cancer Centre SingaporeSingaporeSingapore
- Academic Clinical Programme for SurgeryDuke‐NUS Medical SchoolSingaporeSingapore
| | - Tan Boon Toh
- The N.1 Institute for Health (N.1)National University of SingaporeSingaporeSingapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Edward Kai‐Hua Chow
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- The N.1 Institute for Health (N.1)National University of SingaporeSingaporeSingapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
16
|
Pouliou M, Koutsi MA, Champezou L, Giannopoulou AI, Vatsellas G, Piperi C, Agelopoulos M. MYCN Amplifications and Metabolic Rewiring in Neuroblastoma. Cancers (Basel) 2023; 15:4803. [PMID: 37835497 PMCID: PMC10571721 DOI: 10.3390/cancers15194803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer is a disease caused by (epi)genomic and gene expression abnormalities and characterized by metabolic phenotypes that are substantially different from the normal phenotypes of the tissues of origin. Metabolic reprogramming is one of the key features of tumors, including those established in the human nervous system. In this work, we emphasize a well-known cancerous genomic alteration: the amplification of MYCN and its downstream effects in neuroblastoma phenotype evolution. Herein, we extend our previous computational biology investigations by conducting an integrative workflow applied to published genomics datasets and comprehensively assess the impact of MYCN amplification in the upregulation of metabolism-related transcription factor (TF)-encoding genes in neuroblastoma cells. The results obtained first emphasized overexpressed TFs, and subsequently those committed in metabolic cellular processes, as validated by gene ontology analyses (GOs) and literature curation. Several genes encoding for those TFs were investigated at the mechanistic and regulatory levels by conducting further omics-based computational biology assessments applied on published ChIP-seq datasets retrieved from MYCN-amplified- and MYCN-enforced-overexpression within in vivo systems of study. Hence, we approached the mechanistic interrelationship between amplified MYCN and overexpression of metabolism-related TFs in neuroblastoma and showed that many are direct targets of MYCN in an amplification-inducible fashion. These results illuminate how MYCN executes its regulatory underpinnings on metabolic processes in neuroblastoma.
Collapse
Affiliation(s)
- Marialena Pouliou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Marianna A. Koutsi
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Lydia Champezou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Angeliki-Ioanna Giannopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527 Athens, Greece;
| | - Giannis Vatsellas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street Bldg 16, 11527 Athens, Greece;
| | - Marios Agelopoulos
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou St., 11527 Athens, Greece; (M.P.); (M.A.K.); (L.C.); (G.V.)
| |
Collapse
|
17
|
Lee JE, Kim KT, Shin SJ, Cheong JH, Choi YY. Genomic and evolutionary characteristics of metastatic gastric cancer by routes. Br J Cancer 2023; 129:672-682. [PMID: 37422528 PMCID: PMC10421927 DOI: 10.1038/s41416-023-02338-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND In gastric cancer (GC) patients, metastatic progression through the lymphatic, hematogenous, peritoneal, and ovarian routes, is the ultimate cause of death. However, the genomic and evolutionary characteristics of metastatic GC have not been widely evaluated. METHODS Whole-exome sequencing data were analyzed for 99 primary and paired metastatic gastric cancers from 15 patients who underwent gastrectomy and metastasectomy. RESULTS Hematogenous metastatic tumors were associated with increased chromosomal instability and de novo gain/amplification in cancer driver genes, whereas peritoneal/ovarian metastasis was linked to sustained chromosomal stability and de novo somatic mutations in driver genes. The genomic distance of the hematogenous and peritoneal metastatic tumors was found to be closer to the primary tumors than lymph node (LN) metastasis, while ovarian metastasis was closer to LN and peritoneal metastasis than the primary tumor. Two migration patterns for metastatic GCs were identified; branched and diaspora. Both molecular subtypes of the metastatic tumors, rather than the primary tumor, and their migration patterns were related to patient survival. CONCLUSIONS Genomic characteristics of metastatic gastric cancer is distinctive by routes and associated with patients' prognosis along with genomic evolution pattenrs, indicating that both primary and metastatic gastric cancers require genomic evaluation.
Collapse
Affiliation(s)
- Jae Eun Lee
- Portrai Inc., Seoul, Korea
- Department of Surgery, Yonsei University Health System, Yonsei University College of Medicine, Seoul, South Korea
| | - Ki Tae Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry, Seoul National University, Seoul, South Korea
- Dental Research Institute and Dental Multi-omics Center, Seoul National University, Seoul, South Korea
| | - Su-Jin Shin
- Department of Pathology, Yonsei University Health System, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University Health System, Yonsei University College of Medicine, Seoul, South Korea.
| | - Yoon Young Choi
- Department of Surgery, Soonchunhyang Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, South Korea.
| |
Collapse
|
18
|
Griger J, Widholz SA, Jesinghaus M, de Andrade Krätzig N, Lange S, Engleitner T, Montero JJ, Zhigalova E, Öllinger R, Suresh V, Winkler W, Lier S, Baranov O, Trozzo R, Ben Khaled N, Chakraborty S, Yu J, Konukiewitz B, Steiger K, Pfarr N, Rajput A, Sailer D, Keller G, Schirmacher P, Röcken C, Fagerstedt KW, Mayerle J, Schmidt-Supprian M, Schneider G, Weichert W, Calado DP, Sommermann T, Klöppel G, Rajewsky K, Saur D, Rad R. An integrated cellular and molecular model of gastric neuroendocrine cancer evolution highlights therapeutic targets. Cancer Cell 2023:S1535-6108(23)00208-8. [PMID: 37352862 DOI: 10.1016/j.ccell.2023.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/14/2023] [Accepted: 06/01/2023] [Indexed: 06/25/2023]
Abstract
Gastric neuroendocrine carcinomas (G-NEC) are aggressive malignancies with poorly understood biology and a lack of disease models. Here, we use genome sequencing to characterize the genomic landscapes of human G-NEC and its histologic variants. We identify global and subtype-specific alterations and expose hitherto unappreciated gains of MYC family members in a large part of cases. Genetic engineering and lineage tracing in mice delineate a model of G-NEC evolution, which defines MYC as a critical driver and positions the cancer cell of origin to the neuroendocrine compartment. MYC-driven tumors have pronounced metastatic competence and display defined signaling addictions, as revealed by large-scale genetic and pharmacologic screening of cell lines and organoid resources. We create global maps of G-NEC dependencies, highlight critical vulnerabilities, and validate therapeutic targets, including candidates for clinical drug repurposing. Our study gives comprehensive insights into G-NEC biology.
Collapse
Affiliation(s)
- Joscha Griger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), Heidelberg 69120, Germany
| | - Sebastian A Widholz
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), Heidelberg 69120, Germany
| | - Moritz Jesinghaus
- Institute of Pathology, School of Medicine, Technische Universität München, Munich 81675, Germany; Institute of Pathology, Philipps University Marburg and University Hospital Marburg (UKGM), Marburg, Germany; Institute for Experimental Cancer Therapy, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Niklas de Andrade Krätzig
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), Heidelberg 69120, Germany
| | - Sebastian Lange
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany; Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Juan José Montero
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Ekaterina Zhigalova
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Veveeyan Suresh
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Wiebke Winkler
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Svenja Lier
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Olga Baranov
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Riccardo Trozzo
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Najib Ben Khaled
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), Heidelberg 69120, Germany; Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Shounak Chakraborty
- Institute of Pathology, School of Medicine, Technische Universität München, Munich 81675, Germany
| | - Jiakun Yu
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Björn Konukiewitz
- Institute of Pathology, School of Medicine, Technische Universität München, Munich 81675, Germany; Institute of Pathology, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technische Universität München, Munich 81675, Germany
| | - Nicole Pfarr
- Institute of Pathology, School of Medicine, Technische Universität München, Munich 81675, Germany
| | - Ashish Rajput
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - David Sailer
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), Heidelberg 69120, Germany
| | - Gisela Keller
- Institute of Pathology, School of Medicine, Technische Universität München, Munich 81675, Germany
| | - Peter Schirmacher
- Institute of Pathology, Universitätsklinikum Heidelberg, Heidelberg 69120, Germany
| | - Christoph Röcken
- Institute of Pathology, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | | | - Julia Mayerle
- German Cancer Consortium (DKTK), Heidelberg 69120, Germany; Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Marc Schmidt-Supprian
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), Heidelberg 69120, Germany; Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich 81675, Germany
| | - Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany; Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technische Universität München, Munich 81675, Germany
| | - Dinis P Calado
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Immunity and Cancer, Francis Crick Institute, NW1 1AT London, UK
| | - Thomas Sommermann
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Günter Klöppel
- Institute of Pathology, School of Medicine, Technische Universität München, Munich 81675, Germany
| | - Klaus Rajewsky
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), Heidelberg 69120, Germany; Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany; Institute for Experimental Cancer Therapy, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany; German Cancer Consortium (DKTK), Heidelberg 69120, Germany; Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany.
| |
Collapse
|
19
|
Xin Y, Zhang Y. Paralog-based synthetic lethality: rationales and applications. Front Oncol 2023; 13:1168143. [PMID: 37350942 PMCID: PMC10282757 DOI: 10.3389/fonc.2023.1168143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
Tumor cells can result from gene mutations and over-expression. Synthetic lethality (SL) offers a desirable setting where cancer cells bearing one mutated gene of an SL gene pair can be specifically targeted by disrupting the function of the other genes, while leaving wide-type normal cells unharmed. Paralogs, a set of homologous genes that have diverged from each other as a consequence of gene duplication, make the concept of SL feasible as the loss of one gene does not affect the cell's survival. Furthermore, homozygous loss of paralogs in tumor cells is more frequent than singletons, making them ideal SL targets. Although high-throughput CRISPR-Cas9 screenings have uncovered numerous paralog-based SL pairs, the unclear mechanisms of targeting these gene pairs and the difficulty in finding specific inhibitors that exclusively target a single but not both paralogs hinder further clinical development. Here, we review the potential mechanisms of paralog-based SL given their function and genetic combination, and discuss the challenge and application prospects of paralog-based SL in cancer therapeutic discovery.
Collapse
|
20
|
Donati G, Nicoli P, Verrecchia A, Vallelonga V, Croci O, Rodighiero S, Audano M, Cassina L, Ghsein A, Binelli G, Boletta A, Mitro N, Amati B. Oxidative stress enhances the therapeutic action of a respiratory inhibitor in MYC-driven lymphoma. EMBO Mol Med 2023:e16910. [PMID: 37158102 DOI: 10.15252/emmm.202216910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
MYC is a key oncogenic driver in multiple tumor types, but concomitantly endows cancer cells with a series of vulnerabilities that provide opportunities for targeted pharmacological intervention. For example, drugs that suppress mitochondrial respiration selectively kill MYC-overexpressing cells. Here, we unravel the mechanistic basis for this synthetic lethal interaction and exploit it to improve the anticancer effects of the respiratory complex I inhibitor IACS-010759. In a B-lymphoid cell line, ectopic MYC activity and treatment with IACS-010759 added up to induce oxidative stress, with consequent depletion of reduced glutathione and lethal disruption of redox homeostasis. This effect could be enhanced either with inhibitors of NADPH production through the pentose phosphate pathway, or with ascorbate (vitamin C), known to act as a pro-oxidant at high doses. In these conditions, ascorbate synergized with IACS-010759 to kill MYC-overexpressing cells in vitro and reinforced its therapeutic action against human B-cell lymphoma xenografts. Hence, complex I inhibition and high-dose ascorbate might improve the outcome of patients affected by high-grade lymphomas and potentially other MYC-driven cancers.
Collapse
Affiliation(s)
- Giulio Donati
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Paola Nicoli
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | | | | | - Ottavio Croci
- Center for Genomic Science of IIT@SEMM, Milan, Italy
| | | | - Matteo Audano
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Laura Cassina
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Aya Ghsein
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| | - Giorgio Binelli
- Dipartimento di Biotecnologie e Scienze della Vita, Università dell'Insubria, Varese, Italy
| | | | - Nico Mitro
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Bruno Amati
- European Institute of Oncology (IEO) - IRCCS, Milan, Italy
| |
Collapse
|
21
|
Chao C, Tang R, Zhao J, Di D, Qian Y, Wang B. Oncogenic roles and related mechanisms of the long non-coding RNA MINCR in human cancers. Front Cell Dev Biol 2023; 11:1087337. [PMID: 37215074 PMCID: PMC10196036 DOI: 10.3389/fcell.2023.1087337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play vital roles in regulating epigenetic mechanisms and gene expression levels, and their dysregulation is closely associated with a variety of diseases such as cancer. Several studies have demonstrated that lncRNAs are dysregulated during tumor progression. Recently, the MYC-induced long non-coding RNA MINCR, a newly identified lncRNA, has been demonstrated to act as an oncogene in different cancers, including gallbladder cancer, hepatocellular cancer, colorectal cancer, non-small cell lung cancer, oral squamous cell carcinoma, nasopharyngeal cancer, and glioma. Moreover, MINCR has been reported to act as a biomarker in the prognosis of patients with different cancers. In this review, we summarize and analyze the oncogenic roles of MINCR in a variety of human cancers in terms of its clinical significance, biological functions, cellular activities, and regulatory mechanism. Our analysis of the literature suggests that MINCR has potential as a novel biomarker and therapeutic target in human cancers.
Collapse
Affiliation(s)
- Ce Chao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Renzhe Tang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiamin Zhao
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dongmei Di
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yongxiang Qian
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bin Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
22
|
Saeed H, Leibowitz BJ, Zhang L, Yu J. Targeting Myc-driven stress addiction in colorectal cancer. Drug Resist Updat 2023; 69:100963. [PMID: 37119690 DOI: 10.1016/j.drup.2023.100963] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
MYC is a proto-oncogene that encodes a powerful regulator of transcription and cellular programs essential for normal development, as well as the growth and survival of various types of cancer cells. MYC rearrangement and amplification is a common cause of hematologic malignancies. In epithelial cancers such as colorectal cancer, genetic alterations in MYC are rare. Activation of Wnt, ERK/MAPK, and PI3K/mTOR pathways dramatically increases Myc levels through enhanced transcription, translation, and protein stability. Elevated Myc promotes stress adaptation, metabolic reprogramming, and immune evasion to drive cancer development and therapeutic resistance through broad changes in transcriptional and translational landscapes. Despite intense interest and effort, Myc remains a difficult drug target. Deregulation of Myc and its targets has profound effects that vary depending on the type of cancer and the context. Here, we summarize recent advances in the mechanistic understanding of Myc-driven oncogenesis centered around mRNA translation and proteostress. Promising strategies and agents under development to target Myc are also discussed with a focus on colorectal cancer.
Collapse
Affiliation(s)
- Haris Saeed
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Brian J Leibowitz
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Lin Zhang
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Chemical Biology and Pharmacology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA; Dept. of Radiation Oncology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA.
| |
Collapse
|
23
|
Raninga PV, He Y, Datta KK, Lu X, Maheshwari UR, Venkat P, Mayoh C, Gowda H, Kalimutho M, Hooper JD, Khanna KK. Combined thioredoxin reductase and glutaminase inhibition exerts synergistic anti-tumor activity in MYC-high high-grade serous ovarian carcinoma. Mol Ther 2023; 31:729-743. [PMID: 36560881 PMCID: PMC10014232 DOI: 10.1016/j.ymthe.2022.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/10/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Approximately 50%-55% of high-grade serous ovarian carcinoma (HGSOC) patients have MYC oncogenic pathway activation. Because MYC is not directly targetable, we have analyzed molecular pathways enriched in MYC-high HGSOC tumors to identify potential therapeutic targets. Here, we report that MYC-high HGSOC tumors show enrichment in genes controlled by NRF2, an antioxidant signaling pathway, along with increased thioredoxin redox activity. Treatment of MYC-high HGSOC tumors cells with US Food and Drug Administration (FDA)-approved thioredoxin reductase 1 (TrxR1) inhibitor auranofin resulted in significant growth suppression and apoptosis in MYC-high HGSOC cells in vitro and also significantly reduced tumor growth in an MYC-high HGSOC patient-derived tumor xenograft. We found that auranofin treatment inhibited glycolysis in MYC-high cells via oxidation-induced GAPDH inhibition. Interestingly, in response to auranofin-induced glycolysis inhibition, MYC-high HGSOC cells switched to glutamine metabolism for survival. Depletion of glutamine with either glutamine starvation or glutaminase (GLS1) inhibitor CB-839 exerted synergistic anti-tumor activity with auranofin in HGSOC cells and OVCAR-8 cell line xenograft. These findings suggest that applying a combined therapy of GLS1 inhibitor and TrxR1 inhibitor could effectively treat MYC-high HGSOC patients.
Collapse
Affiliation(s)
- Prahlad V Raninga
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia.
| | - Yaowu He
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Keshava K Datta
- Proteomics and Metabolomics Platform, La Trobe University, Melbourne, VIC 3086, Australia
| | - Xue Lu
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - Uma R Maheshwari
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - Pooja Venkat
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW 2750, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW 2750, Australia
| | - Harsha Gowda
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - Murugan Kalimutho
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - John D Hooper
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia.
| |
Collapse
|
24
|
Thng DKH, Toh TB, Pigini P, Hooi L, Dan YY, Chow PK, Bonney GK, Rashid MBMA, Guccione E, Wee DKB, Chow EK. Splice-switch oligonucleotide-based combinatorial platform prioritizes synthetic lethal targets CHK1 and BRD4 against MYC-driven hepatocellular carcinoma. Bioeng Transl Med 2023; 8:e10363. [PMID: 36684069 PMCID: PMC9842033 DOI: 10.1002/btm2.10363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/29/2022] [Accepted: 06/12/2022] [Indexed: 01/25/2023] Open
Abstract
Deregulation of MYC is among the most frequent oncogenic drivers in hepatocellular carcinoma (HCC). Unfortunately, the clinical success of MYC-targeted therapies is limited. Synthetic lethality offers an alternative therapeutic strategy by leveraging on vulnerabilities in tumors with MYC deregulation. While several synthetic lethal targets of MYC have been identified in HCC, the need to prioritize targets with the greatest therapeutic potential has been unmet. Here, we demonstrate that by pairing splice-switch oligonucleotide (SSO) technologies with our phenotypic-analytical hybrid multidrug interrogation platform, quadratic phenotypic optimization platform (QPOP), we can disrupt the functional expression of these targets in specific combinatorial tests to rapidly determine target-target interactions and rank synthetic lethality targets. Our SSO-QPOP analyses revealed that simultaneous attenuation of CHK1 and BRD4 function is an effective combination specific in MYC-deregulated HCC, successfully suppressing HCC progression in vitro. Pharmacological inhibitors of CHK1 and BRD4 further demonstrated its translational value by exhibiting synergistic interactions in patient-derived xenograft organoid models of HCC harboring high levels of MYC deregulation. Collectively, our work demonstrates the capacity of SSO-QPOP as a target prioritization tool in the drug development pipeline, as well as the therapeutic potential of CHK1 and BRD4 in MYC-driven HCC.
Collapse
Affiliation(s)
- Dexter Kai Hao Thng
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
| | - Tan Boon Toh
- The N.1 Institute for Health, National University of SingaporeSingaporeSingapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Paolo Pigini
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Lissa Hooi
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Yock Young Dan
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
- Division of Gastroenterology and HepatologyNational University Health SystemSingaporeSingapore
- Department of Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Pierce Kah‐Hoe Chow
- Division of Surgical OncologyNational Cancer Centre SingaporeSingaporeSingapore
- Department of Hepato‐Pancreato‐Biliary and Transplant SurgerySingapore General HospitalSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
| | - Glenn Kunnath Bonney
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Division of Hepatobiliary and Liver Transplantation SurgeryNational University Health SystemSingaporeSingapore
| | | | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Department of Oncological SciencesTisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Therapeutics Discovery, Department of Oncological and Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Dave Keng Boon Wee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Edward Kai‐Hua Chow
- Cancer Science Institute of Singapore, National University of SingaporeSingaporeSingapore
- The N.1 Institute for Health, National University of SingaporeSingaporeSingapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of SingaporeSingapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Biomedical Engineering, College of Design and EngineeringNational University of SingaporeSingaporeSingapore
| |
Collapse
|
25
|
Hogan AM, Cardona ST. Gradients in gene essentiality reshape antibacterial research. FEMS Microbiol Rev 2022; 46:fuac005. [PMID: 35104846 PMCID: PMC9075587 DOI: 10.1093/femsre/fuac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
Essential genes encode the processes that are necessary for life. Until recently, commonly applied binary classifications left no space between essential and non-essential genes. In this review, we frame bacterial gene essentiality in the context of genetic networks. We explore how the quantitative properties of gene essentiality are influenced by the nature of the encoded process, environmental conditions and genetic background, including a strain's distinct evolutionary history. The covered topics have important consequences for antibacterials, which inhibit essential processes. We argue that the quantitative properties of essentiality can thus be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings. We summarize our points with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543 - 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|
26
|
Megyesfalvi Z, Barany N, Lantos A, Valko Z, Pipek O, Lang C, Schwendenwein A, Oberndorfer F, Paku S, Ferencz B, Dezso K, Fillinger J, Lohinai Z, Moldvay J, Galffy G, Szeitz B, Rezeli M, Rivard C, Hirsch FR, Brcic L, Popper H, Kern I, Kovacevic M, Skarda J, Mittak M, Marko-Varga G, Bogos K, Renyi-Vamos F, Hoda MA, Klikovits T, Hoetzenecker K, Schelch K, Laszlo V, Dome B. Expression patterns and prognostic relevance of subtype-specific transcription factors in surgically resected small cell lung cancer: an international multicenter study. J Pathol 2022; 257:674-686. [PMID: 35489038 PMCID: PMC9541929 DOI: 10.1002/path.5922] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
The tissue distribution and prognostic relevance of subtype‐specific proteins (ASCL1, NEUROD1, POU2F3, YAP1) present an evolving area of research in small‐cell lung cancer (SCLC). The expression of subtype‐specific transcription factors and P53 and RB1 proteins were measured by immunohistochemistry (IHC) in 386 surgically resected SCLC samples. Correlations between subtype‐specific proteins and in vitro efficacy of various therapeutic agents were investigated by proteomics and cell viability assays in 26 human SCLC cell lines. Besides SCLC‐A (ASCL1‐dominant), SCLC‐AN (combined ASCL1/NEUROD1), SCLC‐N (NEUROD1‐dominant), and SCLC‐P (POU2F3‐dominant), IHC and cluster analyses identified a quadruple‐negative SCLC subtype (SCLC‐QN). No unique YAP1‐subtype was found. The highest overall survival rates were associated with non‐neuroendocrine subtypes (SCLC‐P and SCLC‐QN) and the lowest with neuroendocrine subtypes (SCLC‐A, SCLC‐N, SCLC‐AN). In univariate analyses, high ASCL1 expression was associated with poor prognosis and high POU2F3 expression with good prognosis. Notably, high ASCL1 expression influenced survival outcomes independently of other variables in a multivariate model. High POU2F3 and YAP1 protein abundances correlated with sensitivity and resistance to standard‐of‐care chemotherapeutics, respectively. Specific correlation patterns were also found between the efficacy of targeted agents and subtype‐specific protein abundances. In conclusion, we investigated the clinicopathological relevance of SCLC molecular subtypes in a large cohort of surgically resected specimens. Differential IHC expression of ASCL1, NEUROD1, and POU2F3 defines SCLC subtypes. No YAP1‐subtype can be distinguished by IHC. High POU2F3 expression is associated with improved survival in a univariate analysis, whereas elevated ASCL1 expression is an independent negative prognosticator. Proteomic and cell viability assays of human SCLC cell lines revealed distinct vulnerability profiles defined by transcription regulators. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Zsolt Megyesfalvi
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.,National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nandor Barany
- National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Andras Lantos
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Zsuzsanna Valko
- National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Orsolya Pipek
- Department of Physics of Complex Systems, Eotvos Lorand University, Budapest, Hungary
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anna Schwendenwein
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Sandor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bence Ferencz
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.,National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Katalin Dezso
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Janos Fillinger
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Zoltan Lohinai
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Judit Moldvay
- National Koranyi Institute of Pulmonology, Budapest, Hungary.,MTA-SE NAP, Brain Metastasis Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gabriella Galffy
- Torokbalint County Institute of Pulmonology, Torokbalint, Hungary
| | - Beata Szeitz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Melinda Rezeli
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Christopher Rivard
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Tisch Cancer Institute, Center for Thoracic Oncology, Mount Sinai Health System, New York, NY, USA
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Helmut Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Izidor Kern
- University Clinic for Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Mile Kovacevic
- University Clinic for Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Jozef Skarda
- Institute of Clinical and Molecular Pathology, Medical Faculty, Palacky University Olomouc, Olomouc, Czech Republic.,Department of Pathology, University Hospital Ostrava and Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
| | - Marcel Mittak
- Department of Surgery, University Hospital Ostrava and Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
| | | | - Krisztina Bogos
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.,National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Thomas Klikovits
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, Klinik Floridsdorf, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Viktoria Laszlo
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.,Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Balazs Dome
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.,National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Cyclin-Dependent Kinase Synthetic Lethality Partners in DNA Damage Response. Int J Mol Sci 2022; 23:ijms23073555. [PMID: 35408915 PMCID: PMC8998982 DOI: 10.3390/ijms23073555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are pivotal mediators and effectors of the DNA damage response (DDR) that regulate both the pathway components and proteins involved in repair processes. Synthetic lethality (SL) describes a situation in which two genes are linked in such a way that the lack of functioning of just one maintains cell viability, while depletion of both triggers cell death. Synthetic lethal interactions involving CDKs are now emerging, and this can be used to selectively target tumor cells with DNA repair defects. In this review, SL interactions of CDKs with protooncogene products MYC, poly (ADP-ribose) polymerase (PARP-1), and cellular tumor antigen p53 (TP53) are discussed. The individual roles of each of the SL partners in DDR are described.
Collapse
|
28
|
Pei H, Guo W, Peng Y, Xiong H, Chen Y. Targeting key proteins involved in transcriptional regulation for cancer therapy: Current strategies and future prospective. Med Res Rev 2022; 42:1607-1660. [PMID: 35312190 DOI: 10.1002/med.21886] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
The key proteins involved in transcriptional regulation play convergent roles in cellular homeostasis, and their dysfunction mediates aberrant gene expressions that underline the hallmarks of tumorigenesis. As tumor progression is dependent on such abnormal regulation of transcription, it is important to discover novel chemical entities as antitumor drugs that target key tumor-associated proteins involved in transcriptional regulation. Despite most key proteins (especially transcription factors) involved in transcriptional regulation are historically recognized as undruggable targets, multiple targeting approaches at diverse levels of transcriptional regulation, such as epigenetic intervention, inhibition of DNA-binding of transcriptional factors, and inhibition of the protein-protein interactions (PPIs), have been established in preclinically or clinically studies. In addition, several new approaches have recently been described, such as targeting proteasomal degradation and eliciting synthetic lethality. This review will emphasize on accentuating these developing therapeutic approaches and provide a thorough conspectus of the drug development to target key proteins involved in transcriptional regulation and their impact on future oncotherapy.
Collapse
Affiliation(s)
- Haixiang Pei
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.,Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
29
|
The MYC oncogene - the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol 2022; 19:23-36. [PMID: 34508258 PMCID: PMC9083341 DOI: 10.1038/s41571-021-00549-2] [Citation(s) in RCA: 494] [Impact Index Per Article: 164.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
The MYC proto-oncogenes encode a family of transcription factors that are among the most commonly activated oncoproteins in human neoplasias. Indeed, MYC aberrations or upregulation of MYC-related pathways by alternate mechanisms occur in the vast majority of cancers. MYC proteins are master regulators of cellular programmes. Thus, cancers with MYC activation elicit many of the hallmarks of cancer required for autonomous neoplastic growth. In preclinical models, MYC inactivation can result in sustained tumour regression, a phenomenon that has been attributed to oncogene addiction. Many therapeutic agents that directly target MYC are under development; however, to date, their clinical efficacy remains to be demonstrated. In the past few years, studies have demonstrated that MYC signalling can enable tumour cells to dysregulate their microenvironment and evade the host immune response. Herein, we discuss how MYC pathways not only dictate cancer cell pathophysiology but also suppress the host immune response against that cancer. We also propose that therapies targeting the MYC pathway will be key to reversing cancerous growth and restoring antitumour immune responses in patients with MYC-driven cancers.
Collapse
|
30
|
Harrington CT, Sotillo E, Dang CV, Thomas-Tikhonenko A. Tilting MYC toward cancer cell death. Trends Cancer 2021; 7:982-994. [PMID: 34481764 PMCID: PMC8541926 DOI: 10.1016/j.trecan.2021.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
MYC oncoprotein promotes cell proliferation and serves as the key driver in many human cancers; therefore, considerable effort has been expended to develop reliable pharmacological methods to suppress its expression or function. Despite impressive progress, MYC-targeting drugs have not reached the clinic. Recent advances suggest that within a limited expression range unique to each tumor, MYC oncoprotein can have a paradoxical, proapoptotic function. Here we introduce a counterintuitive idea that modestly and transiently elevating MYC levels could aid chemotherapy-induced apoptosis and thus benefit the patients as much, if not more than MYC inhibition.
Collapse
Affiliation(s)
- Colleen T Harrington
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elena Sotillo
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chi V Dang
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA; Ludwig Institute for Cancer Research, New York, NY 10017, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Kamperi N, Kanara I, Kodukula K, Mavrakis AN, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Steliou K, Tamvakopoulos C, Vavvas DG, Zamboni RJ, Sampani K. Pathogenic mitochondrial dysfunction and metabolic abnormalities. Biochem Pharmacol 2021; 193:114809. [PMID: 34673016 DOI: 10.1016/j.bcp.2021.114809] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Herein we trace links between biochemical pathways, pathogenesis, and metabolic diseases to set the stage for new therapeutic advances. Cellular and acellular microorganisms including bacteria and viruses are primary pathogenic drivers that cause disease. Missing from this statement are subcellular compartments, importantly mitochondria, which can be pathogenic by themselves, also serving as key metabolic disease intermediaries. The breakdown of food molecules provides chemical energy to power cellular processes, with mitochondria as powerhouses and ATP as the principal energy carrying molecule. Most animal cell ATP is produced by mitochondrial synthase; its central role in metabolism has been known for >80 years. Metabolic disorders involving many organ systems are prevalent in all age groups. Progressive pathogenic mitochondrial dysfunction is a hallmark of genetic mitochondrial diseases, the most common phenotypic expression of inherited metabolic disorders. Confluent genetic, metabolic, and mitochondrial axes surface in diabetes, heart failure, neurodegenerative disease, and even in the ongoing coronavirus pandemic.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - David N Harpp
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Natalia Kamperi
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | | | - Anastasios N Mavrakis
- Department of Medicine, Tufts University School of Medicine, St. Elizabeth's Medical Center, Boston, MA, USA
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Constantin Tamvakopoulos
- Center for Clinical, Experimental Surgery and Translational Research Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Robert J Zamboni
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Schneider G, Wirth M, Keller U, Saur D. Rationale for MYC imaging and targeting in pancreatic cancer. EJNMMI Res 2021; 11:104. [PMID: 34637026 PMCID: PMC8511206 DOI: 10.1186/s13550-021-00843-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
The incidence and lethality of pancreatic ductal adenocarcinoma (PDAC) will continue to increase in the next decade. For most patients, chemotherapeutic combination therapies remain the standard of care. The development and successful implementation of precision oncology in other gastrointestinal tumor entities point to opportunities also for PDAC. Therefore, markers linked to specific therapeutic responses and important subgroups of the disease are needed. The MYC oncogene is a relevant driver in PDAC and is linked to drug resistance and sensitivity. Here, we update recent insights into MYC biology in PDAC, summarize the connections between MYC and drug responses, and point to an opportunity to image MYC non-invasively. In sum, we propose MYC-associated biology as a basis for the development of concepts for precision oncology in PDAC.
Collapse
Affiliation(s)
- Günter Schneider
- Medical Clinic and Policlinic II, Klinikum Rechts Der Isar, TU Munich, 81675, Munich, Germany. .,German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany. .,Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany.
| | - Matthias Wirth
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany. .,Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, 12203, Berlin, Germany.
| | - Ulrich Keller
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.,Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, 12203, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Dieter Saur
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.,Insititute for Translational Cancer Research and Experimental Cancer Therapy, MRI, TU Munich, 81675, Munich, Germany
| |
Collapse
|
33
|
Xu J, Gu M, Hooi L, Toh TB, Thng DKH, Lim JJ, Chow EKH. Enhanced penetrative siRNA delivery by a nanodiamond drug delivery platform against hepatocellular carcinoma 3D models. NANOSCALE 2021; 13:16131-16145. [PMID: 34542130 DOI: 10.1039/d1nr03502a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Small interfering RNA (siRNA) can cause specific gene silencing and is considered promising for treating a variety of cancers, including hepatocellular carcinoma (HCC). However, siRNA has many undesirable physicochemical properties that limit its application. Additionally, conventional methods for delivering siRNA are limited in their ability to penetrate solid tumors. In this study, nanodiamonds (NDs) were evaluated as a nanoparticle drug delivery platform for improved siRNA delivery into tumor cells. Our results demonstrated that ND-siRNA complexes could effectively be formed through electrostatic interactions. The ND-siRNA complexes allowed for efficient cellular uptake and endosomal escape that protects siRNA from degradation. Moreover, ND delivery of siRNA was more effective at penetrating tumor spheroids compared to liposomal formulations. This enhanced penetration capacity makes NDs ideal vehicles to deliver siRNA against solid tumor masses as efficient gene knockdown and decreased tumor cell proliferation were observed in tumor spheroids. Evaluation of ND-siRNA complexes within the context of a 3D cancer disease model demonstrates the potential of NDs as a promising gene delivery platform against solid tumors, such as HCC.
Collapse
Affiliation(s)
- Jingru Xu
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Mengjie Gu
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Lissa Hooi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health, National University of Singapore, 117456, Singapore
| | - Dexter Kai Hao Thng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Jhin Jieh Lim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
- The N.1 Institute for Health, National University of Singapore, 117456, Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| |
Collapse
|
34
|
Whitfield JR, Soucek L. The long journey to bring a Myc inhibitor to the clinic. J Cell Biol 2021; 220:212429. [PMID: 34160558 PMCID: PMC8240852 DOI: 10.1083/jcb.202103090] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
The oncogene Myc is deregulated in the majority of human tumors and drives numerous hallmarks of cancer. Despite its indisputable role in cancer development and maintenance, Myc is still undrugged. Developing a clinical inhibitor for Myc has been particularly challenging owing to its intrinsically disordered nature and lack of a binding pocket, coupled with concerns regarding potentially deleterious side effects in normal proliferating tissues. However, major breakthroughs in the development of Myc inhibitors have arisen in the last couple of years. Notably, the direct Myc inhibitor that we developed has just entered clinical trials. Celebrating this milestone, with this Perspective, we pay homage to the different strategies developed so far against Myc and all of the researchers focused on developing treatments for a target long deemed undruggable.
Collapse
Affiliation(s)
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology, Edifici Cellex, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Peptomyc S.L., Barcelona, Spain
| |
Collapse
|