1
|
Dong Y, Hu H, Liang P, Xue L, Chai X, Liu F, Yu M, Cheng F. Dissolution, solvation and diffusion in low-temperature zinc electrolyte design. Nat Rev Chem 2025; 9:102-117. [PMID: 39775526 DOI: 10.1038/s41570-024-00670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 01/11/2025]
Abstract
Aqueous zinc-based batteries have garnered the attention of the electrochemical energy storage community, but they suffer from electrolytes freezing and sluggish kinetics in cold environments. In this Review, we discuss the key parameters necessary for designing anti-freezing aqueous zinc electrolytes. We start with the fundamentals related to different zinc salts and their dissolution and solvation behaviours, by highlighting the effects of anions and additives on salt solubility, ion diffusion and freezing points. We then focus on the complex structures and energetics of cation-anion-solvent interaction. We also evaluate the prevailing strategies to improve the performance of electrolytes at low temperatures, with a discussion on the kinetics of plating and stripping of zinc anodes and charge storage in various cathode materials. Furthermore, we consider the current challenges and envisage future research directions in cold-resistant aqueous electrolyte formulations for zinc batteries.
Collapse
Affiliation(s)
- Yang Dong
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, China
- Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), College of Chemistry, Nankai University, Tianjin, China
| | - Honglu Hu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, China
| | - Ping Liang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, China
| | - Linlin Xue
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, China
| | - Xiulin Chai
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, China
| | - Fangming Liu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, China
| | - Meng Yu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, China
- Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), College of Chemistry, Nankai University, Tianjin, China
- State Key Laboratory of Advanced Chemical Power Sources, Nankai University, Tianjin, China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, China.
- Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), College of Chemistry, Nankai University, Tianjin, China.
- State Key Laboratory of Advanced Chemical Power Sources, Nankai University, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
| |
Collapse
|
2
|
Zhang SY, Liang JJ, Liu YQ. Excessive Zinc Ion Caused PC12 Cell Death Correlating with Inhibition of NOS and Increase of RAGE in Cells. Cell Biochem Biophys 2022; 80:755-761. [PMID: 36068383 DOI: 10.1007/s12013-022-01093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
Zinc ion (Zn2+) is an important functional factor; however, excessive Zn2+ can be toxic. To understand the neurotoxicity of excessive Zn2+ and the underlying mechanism, PC12 cells were treated with excessive Zn2+ and Zn2+ plus N, N, N', N'-Tetrakisethylenediamine (TPEN), a zinc ion chelator agent. Trypan blue and 3-(4,5-dimethyl-2- thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, thiazolyl blue tetrazolium bromide (MTT) assays were used to test cell viability; the relative kits were used to detect the activity of NOS synthase and the content of the receptor for advanced glycation end product (RAGE) in cells. We observed that excessive zinc caused PC12 cell damage and that TPEN partially reversed cell damage caused by excessive zinc. In addition, excessive zinc decreased total nitric oxide synthase (TNOS) activity in cells, in which constitutive nitric oxide synthase (cNOS) activity was significantly reduced; however, inducible nitric oxide synthase (iNOS) activity was extremely promoted. Moreover, excessive zinc upregulated the expression of RAGE, and TPEN effectively reversed the increase in RAGE induced by excessive zinc ions. Therefore, we concluded that excessive zinc caused PC12 cell damage, correlating with the inhibition of NOS and increase of RAGE induced in cells.
Collapse
Affiliation(s)
- Sai-Ya Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jing-Jing Liang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Suliman RS, Alghamdi SS, Ali R, Rahman I, Alqahtani T, Frah IK, Aljatli DA, Huwaizi S, Algheribe S, Alehaideb Z, Islam I. Distinct Mechanisms of Cytotoxicity in Novel Nitrogenous Heterocycles: Future Directions for a New Anti-Cancer Agent. Molecules 2022; 27:molecules27082409. [PMID: 35458609 PMCID: PMC9029529 DOI: 10.3390/molecules27082409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Electron-rich, nitrogenous heteroaromatic compounds interact more with biological/cellular components than their non-nitrogenous counterparts. The strong intermolecular interactions with proteins, enzymes, and receptors confer significant biological and therapeutic properties to the imidazole derivatives, giving rise to a well-known and extensively used range of therapeutic drugs used for infections, inflammation, and cancer, to name a few. The current study investigates the anti-cancer properties of fourteen previously synthesized nitrogenous heterocycles, derivatives of imidazole and oxazolone, on a panel of cancer cell lines and, in addition, predicts the molecular interactions, pharmacokinetic and safety profiles of these compounds. Method: The MTT and CellTiter-Glo® assays were used to screen the imidazole and oxazolone derivatives on six cancer cell lines: HL60, MDA-MB-321, KAIMRC1, KMIRC2, MCF-10A, and HCT8. Subsequently, in vitro tubulin staining and imaging were performed, and the level of apoptosis was measured using the Promega ApoTox-Glo® triplex assay. Furthermore, several computational tools were utilized to investigate the pharmacokinetics and safety profile, including PASS Online, SEA Search, the QikProp tool, SwissADME, ProTox-II, and an in silico molecular docking study on tubulin to identify the critical molecular interactions. Results: In vitro analysis identified compounds 8 and 9 to possess the most significant potent cytotoxic activity on the HL60 and MDA-MB-231 cell lines, supported by PASS Online anti-cancer predictions with pa scores of 0.413 and 0.434, respectively. In addition, compound 9 induced caspase 3/7 dependent-apoptosis and interfered with tubulin polymerization in the MDA-MB-231 cell line, consistent with in silico docking results, identifying binding similarity to the native ligand colchicine. All the derivatives, including compounds 8 and 9, had acceptable pharmacokinetics; however, the safety profile was suboptimal for all the tested derivates except compound 4. Conclusion: The imidazole derivative compound 9 is a promising anti-cancer agent that switches on caspase-dependent apoptotic cell death and modulates microtubule function. Therefore, it could be a lead compound for further drug optimization and development.
Collapse
Affiliation(s)
- Rasha Saad Suliman
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (R.A.); (T.A.); (I.K.F.); (D.A.A.)
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
- Correspondence: (R.S.S.); (S.S.A.); Tel.: +966-(11)-429-9570 (R.S.S.); +966-(11)-429-9516 (S.S.A.)
| | - Sahar Saleh Alghamdi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (R.A.); (T.A.); (I.K.F.); (D.A.A.)
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
- Correspondence: (R.S.S.); (S.S.A.); Tel.: +966-(11)-429-9570 (R.S.S.); +966-(11)-429-9516 (S.S.A.)
| | - Rizwan Ali
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (R.A.); (T.A.); (I.K.F.); (D.A.A.)
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
| | - Ishrat Rahman
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Tariq Alqahtani
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (R.A.); (T.A.); (I.K.F.); (D.A.A.)
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
| | - Ibrahim K. Frah
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (R.A.); (T.A.); (I.K.F.); (D.A.A.)
| | - Dimah A. Aljatli
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (R.A.); (T.A.); (I.K.F.); (D.A.A.)
| | - Sarah Huwaizi
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
| | - Shatha Algheribe
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
| | - Zeyad Alehaideb
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
| | - Imadul Islam
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
| |
Collapse
|
4
|
|
5
|
Wang X, Schepler H, Neufurth M, Wang S, Schröder HC, Müller WEG. Polyphosphate in Chronic Wound Healing: Restoration of Impaired Metabolic Energy State. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:51-82. [PMID: 35697937 DOI: 10.1007/978-3-031-01237-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many pathological conditions are characterized by a deficiency of metabolic energy. A prominent example is nonhealing or difficult-to-heal chronic wounds. Because of their unique ability to serve as a source of metabolic energy, inorganic polyphosphates (polyP) offer the opportunity to develop novel strategies to treat such wounds. The basis is the generation of ATP from the polymer through the joint action of two extracellular or plasma membrane-bound enzymes alkaline phosphatase and adenylate kinase, which enable the transfer of energy-rich phosphate from polyP to AMP with the formation of ADP and finally ATP. Building on these findings, it was possible to develop novel regeneratively active materials for wound therapy, which have already been successfully evaluated in first studies on patients.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hadrian Schepler
- Department of Dermatology, University Clinic Mainz, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
6
|
Khabir Z, Holmes AM, Lai YJ, Liang L, Deva A, Polikarpov MA, Roberts MS, Zvyagin AV. Human Epidermal Zinc Concentrations after Topical Application of ZnO Nanoparticles in Sunscreens. Int J Mol Sci 2021; 22:12372. [PMID: 34830253 PMCID: PMC8618668 DOI: 10.3390/ijms222212372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Zinc oxide nanoparticle (ZnO NP)-based sunscreens are generally considered safe because the ZnO NPs do not penetrate through the outermost layer of the skin, the stratum corneum (SC). However, cytotoxicity of zinc ions in the viable epidermis (VE) after dissolution from ZnO NP and penetration into the VE is ill-defined. We therefore quantified the relative concentrations of endogenous and exogenous Zn using a rare stable zinc-67 isotope (67Zn) ZnO NP sunscreen applied to excised human skin and the cytotoxicity of human keratinocytes (HaCaT) using multiphoton microscopy, zinc-selective fluorescent sensing, and a laser-ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) methodology. Multiphoton microscopy with second harmonic generation imaging showed that 67ZnO NPs were retained on the surface or within the superficial layers of the SC. Zn fluorescence sensing revealed higher levels of labile and intracellular zinc in both the SC and VE relative to untreated skin, confirming that dissolved zinc species permeated across the SC into the VE as ionic Zn and significantly not as ZnO NPs. Importantly, the LA-ICP-MS estimated exogenous 67Zn concentrations in the VE of 1.0 ± 0.3 μg/mL are much lower than that estimated for endogenous VE zinc of 4.3 ± 0.7 μg/mL. Furthermore, their combined total zinc concentrations in the VE are much lower than the exogenous zinc concentration of 21 to 31 μg/mL causing VE cytotoxicity, as defined by the half-maximal inhibitory concentration of exogenous 67Zn found in human keratinocytes (HaCaT). This speaks strongly for the safety of ZnO NP sunscreens applied to intact human skin and the associated recent US FDA guidance.
Collapse
Affiliation(s)
- Zahra Khabir
- Department of Physics and Astronomy & Earth and Planetary Sciences & Clinical Medicine, Macquarie University, Sydney 2109, Australia; (Z.K.); (Y.-J.L.); (L.L.); (A.D.)
- ARC Centre of Excellence for Nanoscale BioPhotonics, Sydney 2109, Australia
| | - Amy M. Holmes
- Clinical Health Sciences and Basil Hetzel Institute for Translational Health Research, University of South Australia, Adelaide 5000, Australia;
| | - Yi-Jen Lai
- Department of Physics and Astronomy & Earth and Planetary Sciences & Clinical Medicine, Macquarie University, Sydney 2109, Australia; (Z.K.); (Y.-J.L.); (L.L.); (A.D.)
| | - Liuen Liang
- Department of Physics and Astronomy & Earth and Planetary Sciences & Clinical Medicine, Macquarie University, Sydney 2109, Australia; (Z.K.); (Y.-J.L.); (L.L.); (A.D.)
- ARC Centre of Excellence for Nanoscale BioPhotonics, Sydney 2109, Australia
| | - Anand Deva
- Department of Physics and Astronomy & Earth and Planetary Sciences & Clinical Medicine, Macquarie University, Sydney 2109, Australia; (Z.K.); (Y.-J.L.); (L.L.); (A.D.)
| | | | - Michael S. Roberts
- Clinical Health Sciences and Basil Hetzel Institute for Translational Health Research, University of South Australia, Adelaide 5000, Australia;
- Diamantina Institute, University of Queensland, Brisbane 4072, Australia
| | - Andrei V. Zvyagin
- Department of Physics and Astronomy & Earth and Planetary Sciences & Clinical Medicine, Macquarie University, Sydney 2109, Australia; (Z.K.); (Y.-J.L.); (L.L.); (A.D.)
- Centre of Biomedical Engineering, Sechenov University, Moscow 119991, Russia
| |
Collapse
|
7
|
Impact of Product Formulation on Spray-Dried Microencapsulated Zinc for Food Fortification. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02721-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Karandish M, Mozaffari-Khosravi H, Mohammadi SM, Azhdari M, Cheraghian B. Evaluation of the effect of curcumin and zinc co-supplementation on glycemic measurements, lipid profiles, and inflammatory and antioxidant biomarkers in overweight or obese prediabetic patients: a study protocol for a randomized double-blind placebo-controlled phase 2 clinical trial. Trials 2020; 21:991. [PMID: 33256795 PMCID: PMC7708225 DOI: 10.1186/s13063-020-04923-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The prevalence of prediabetes is increasing worldwide. Unfortunately, prediabetes is related to non-communicable diseases. A high risk of developing type 2 diabetes mellitus (T2DM) is reported in people with prediabetes. Curcumin, a polyphenol, might lead to its therapeutic role in obesity and some obesity-related metabolic diseases. Zinc is a trace element that plays a key role in the synthesis and action of insulin, carbohydrate metabolism, and decreasing inflammation. There has been no clinical trial of zinc and curcumin co-supplementation in patients with prediabetes. In previous studies, the single administration of zinc or curcumin has not been conducted on many of the studied markers in prediabetic patients. METHODS The purpose of this randomized double-blind placebo-controlled clinical trial is to investigate the effect of curcumin and zinc co-supplementation on glycemic measurements, lipid profiles, and inflammatory and antioxidant biomarkers among 84 prediabetic patients with body mass index (BMI) between 25 and 35. Also, liver enzyme, serum zinc, urine zinc, blood pressure, anthropometric parameters, quality of life, adherence to co-supplementation, the side effects of co-supplementation, physical activity, and dietary intake will be assessed. Women or men (18-50 years old for men and 18 years to before menopause for women) will be followed for 3 months (90 days). This study will be conducted at Yazd Diabetes Research Clinic, Shahid Sadoughi University of Medical Sciences. DISCUSSION A diet rich in antioxidants, polyphenols, and phytochemicals has been shown to have a beneficial role in prediabetes. According to the beneficial properties of curcumin or zinc and inadequate evidence, RCTs are needed to assess the effect of curcumin and zinc co-supplementation in native prediabetes patients. We hope the results of the present trial, negative or positive, fill this gap in the literature and facilitate the approach for a much larger, multi-center clinical trial. In conclusion, a synergic effect of co-supplementation along with a weight-loss diet may delay the progression to type 2 diabetes mellitus. TRIAL REGISTRATION Iranian Registry of Clinical Trials (IRCT) IRCT20190902044671N1 . Registered on 11 October 2019.
Collapse
Affiliation(s)
- Majid Karandish
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Maryam Azhdari
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bahman Cheraghian
- Department of Biostatistics and Epidemiology, School of Health Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Akbaba GB. Toxicity assessment of zinc sulfate: A commonly used compound. Toxicol Ind Health 2020; 36:779-787. [PMID: 33241772 DOI: 10.1177/0748233720944771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Because zinc sulfate (ZnSO4) is widely used in many fields such as biomedicine, electronics, and chemistry, it is important to evaluate its toxic effects. In this study, the cyto-genotoxic effects of ZnSO4 on meristematic cells in the root tip of Allium cepa L. were investigated. After calculating the effective concentration (EC50 = 70 ppm) of ZnSO4, A. cepa root tip cells were suspended for 24, 48, 72, and 96 h in solutions of 35 ppm (EC50/2), 70 ppm (EC50), and 140 ppm (EC50 × 2) concentrations. Using the counts of dividing cells, the mitotic index (MI) was calculated. Chromosome aberration index (CAI) was determined from percentages of abnormal cells. When the obtained data were statistically evaluated, it was determined that all application concentrations caused a significant decrease in MI and an increase in CAI compared to the control group (distilled water). It was concluded that increased ZnSO4 dose concentrations and exposure times caused cytotoxicity and genotoxicity in the root cells of A. cepa L.
Collapse
Affiliation(s)
- Giray Buğra Akbaba
- Department of Bioengineering, Faculty of Engineering and Architecture, 52975Kafkas University, Kars, Turkey
| |
Collapse
|
10
|
Chen L, Yu X, Ding H, Zhao Y, Hu C, Feng J. Comparing the Influence of High Doses of Different Zinc Salts on Oxidative Stress and Energy Depletion in IPEC-J2 Cells. Biol Trace Elem Res 2020; 196:481-493. [PMID: 31732928 DOI: 10.1007/s12011-019-01948-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/22/2019] [Indexed: 01/06/2023]
Abstract
The current study aimed to investigate the influence of four supplemental zinc salts (chelated: Zn glycine; non-chelated: Zn sulfate, Zn citrate, Zn gluconate) among different zinc concentrations (30-300 μM) on cell proliferation, oxidative stress, and energy depletion in intestinal porcine jejunum epithelial cells (IPEC-J2). Different zinc salts affected cell viability in a time- and dose-dependent manner, which was mainly dependent on the uptake of intracellular Zn2+. Intracellular Zn2+ of Zn sulfate has taken up almost twice as high as Zn glycine when cells were loaded with 100-200 μM zinc. After loading cells with 300 μM zinc, Zn glycine and Zn sulfate had a similar trend in accumulation of Zn2+. When the intracellular Zn2+ overloads, cells will gradually be damaged and subsequently die bearing biochemical features of necrosis or late apoptosis. Meanwhile, obviously, increased levels of intracellular ROS, mitochondrial ROS, MDA, and NO and decreased levels of GSH were observed. Excessive intracellular Zn2+ significantly decreased mitochondria membrane potential accompanied by an obvious loss of ATP and NAD+ levels. Overall, exposure to high doses of zinc salts caused cell damage, which was mainly dependent on the uptake of Zn2+. Zinc overload induced oxidative stress and energy depletion in IPEC-J2 cells, and the cell damage with non-chelated zinc addition was more serious than Zn glycine.
Collapse
Affiliation(s)
- Lingjun Chen
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaonan Yu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Haoxuan Ding
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yang Zhao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caihong Hu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jie Feng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Holmes AM, Kempson I, Turnbull T, Paterson D, Roberts MS. Penetration of Zinc into Human Skin after Topical Application of Nano Zinc Oxide Used in Commercial Sunscreen Formulations. ACS APPLIED BIO MATERIALS 2020; 3:3640-3647. [DOI: 10.1021/acsabm.0c00280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Amy M. Holmes
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide 5001, Australia
| | - Ivan Kempson
- Future Industries Institute, The University of South Australia, Mawson Lakes 5095, Australia
| | - Tyron Turnbull
- Future Industries Institute, The University of South Australia, Mawson Lakes 5095, Australia
| | | | - Michael S. Roberts
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide 5001, Australia
- Therapeutics Research Centre, The University of Queensland, Brisbane 4102, Australia
| |
Collapse
|
12
|
Müller WEG, Schepler H, Tolba E, Wang S, Ackermann M, Muñoz-Espí R, Xiao S, Tan R, She Z, Neufurth M, Schröder HC, Wang X. A physiologically active interpenetrating collagen network that supports growth and migration of epidermal keratinocytes: zinc-polyP nanoparticles integrated into compressed collagen. J Mater Chem B 2020; 8:5892-5902. [DOI: 10.1039/d0tb01240h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is demonstrated that polyphosphate, as a component in wound healing mats together with Zn2+, is essential for growth and migration of skin keratinocytes.
Collapse
|
13
|
Cheung E, Nikfarjam M, Jackett L, Bolton DM, Ischia J, Patel O. The Protective Effect of Zinc Against Liver Ischaemia Reperfusion Injury in a Rat Model of Global Ischaemia. J Clin Exp Hepatol 2020; 10:228-235. [PMID: 32405179 PMCID: PMC7212296 DOI: 10.1016/j.jceh.2019.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ischaemia-reperfusion injury (IRI) is a major obstacle during liver transplantation and resection surgeries for cancer, with a need for effective and safe drugs to reduce IRI. Zinc preconditioning has been shown to protect against liver IRI in a partial (70%) ischaemia model. However, its efficacy against a clinically relevant Pringle manoeuvre that results in global liver ischaemia (100%) is unknown. AIMS The aim of this study was to test the efficacy of zinc preconditioning in a rat model of global liver ischaemia. METHODS Rats were preconditioned via subcutaneous injection of 10 mg/kg of ZnCl2, 24 h and 4 h before ischaemia. Total liver ischaemia (100%) was induced by placing a clamp across the portal triad for 30 min. Liver injury was assessed by serum alanine transaminase (ALT) and aspartate transaminase (AST) levels in blood taken before ischaemia (baseline) and at 1, 2, 4, 24, 48, 72, 96 and 120 hours after ischaemia. Animals were culled after 7 days, and the harvested livers were histologically analysed. RESULTS On a two-way repeated-measures analysis of variance, there was a statistically significant (p = 0.025) difference in the mean ALT levels between saline- and ZnCl2-treated groups. Specifically at 24 h after ischaemia, the ALT (341 ± 99 U/L) and AST (606 ± 78 U/L) in the zinc-treated group were significantly less than the ALT (2863 ± 828 U/L) and AST (3591 ± 948 U/L) values in the saline-treated group. Zinc significantly reduced neutrophil infiltration and necrosis compared with the saline control. CONCLUSION Zinc preconditioning reduces the overall hepatocellular damage from IRI. These results lay the foundation to assess the benefit of zinc preconditioning for clinical applications.
Collapse
Affiliation(s)
- Ernest Cheung
- Department of Surgery, The University of Melbourne, Victoria, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, The University of Melbourne, Victoria, Australia
| | - Louise Jackett
- Department of Anatomical Pathology, Austin Health, Heidelberg, Victoria, Australia
| | - Damien M. Bolton
- Department of Surgery, The University of Melbourne, Victoria, Australia,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Joseph Ischia
- Department of Surgery, The University of Melbourne, Victoria, Australia,Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Oneel Patel
- Department of Surgery, The University of Melbourne, Victoria, Australia,Address for correspondence: Dr Oneel Patel, Department of Surgery, Austin Health, Studley Rd., Heidelberg, Victoria 3084, Australia. Tel.: +(613) 9496 3676; fax: +(613) 9458 1650.
| |
Collapse
|
14
|
Ischia J, Bolton DM, Patel O. Why is it worth testing the ability of zinc to protect against ischaemia reperfusion injury for human application. Metallomics 2019; 11:1330-1343. [PMID: 31204765 DOI: 10.1039/c9mt00079h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ischaemia (interruption in the blood/oxygen supply) and subsequent damage induced by reperfusion (restoration of blood/oxygen supply) ultimately leads to cell death, tissue injury and permanent organ dysfunction. The impact of ischaemia reperfusion injury (IRI) is not limited to heart attack and stroke but can be extended to patients undergoing surgeries such as partial nephrectomy for renal cancer, liver resection for colorectal cancer liver metastasis, cardiopulmonary bypass, and organ transplantation. Unfortunately, there are no drugs that can protect organs against the inevitable peril of IRI. Recent data show that a protocol incorporating specific Zn formulation, dosage, number of dosages, time of injection, and mode of Zn delivery (intravenous) and testing of efficacy in a large preclinical sheep model of IRI strongly supports human trials of Zn preconditioning. No doubt, scepticism still exists among funding bodies and research fraternity on whether Zn, a naturally occurring metal, will work where everything else has failed. Therefore, in this article, we review the conflicting evidence on the promoter and protector role of Zn in the case of IRI and highlight factors that may help explain the contradictory evidence. Finally, we review the literature related to the knowledge of Zn's mechanism of action on ROS generation, apoptosis, HIF activation, inflammation, and signal transduction pathways, which highlight Zn's likelihood of success compared to various other interventions targeting IRI.
Collapse
Affiliation(s)
- Joseph Ischia
- Department of Surgery, The University of Melbourne, Austin Health, Studley Rd., Heidelberg, Victoria 3084, Australia. and Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Damien M Bolton
- Department of Surgery, The University of Melbourne, Austin Health, Studley Rd., Heidelberg, Victoria 3084, Australia. and Department of Urology, Austin Health, Heidelberg, Victoria, Australia
| | - Oneel Patel
- Department of Surgery, The University of Melbourne, Austin Health, Studley Rd., Heidelberg, Victoria 3084, Australia.
| |
Collapse
|
15
|
Pongkorpsakol P, Buasakdi C, Chantivas T, Chatsudthipong V, Muanprasat C. An agonist of a zinc-sensing receptor GPR39 enhances tight junction assembly in intestinal epithelial cells via an AMPK-dependent mechanism. Eur J Pharmacol 2018; 842:306-313. [PMID: 30459126 DOI: 10.1016/j.ejphar.2018.10.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 02/08/2023]
Abstract
Intestinal barrier function depends on integrity of tight junctions, which serve as barriers to transepithelial influx of noxious substances/microorganisms from gut lumen. The G-protein coupled receptor 39 (GPR39) is a zinc-sensing receptor, which is expressed in several cell types including intestinal epithelial cells (IECs). The main objective of this study was to investigate the effect of GPR39 activation on tight junction assembly in IECs. Treatment with TC-G 1008 (1 μM -10 μM), a GPR39 agonist, and zinc (10 μM -100 μM) increased tight junction assembly in T84 cells. This effect was suppressed by pretreatment with compound C, an inhibitor of AMP-activated protein kinase (AMPK). In addition, western blot analysis revealed that treatment with TC-G 1008 induced AMPK activation in time- and concentration-dependent manners. Interestingly, inhibitors of phospholipase C (PLC) and calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) abrogated the effect of TC-G 1008 on inducing AMPK activation, tight junction assembly and zonula occludens-1 re-organization. Collectively, this study reveals a novel role of GPR39 in enhancing tight junction assembly in IECs via PLC-CaMKKβ-AMPK pathways. GPR39 agonists may be beneficial in the treatment of diseases associated impaired intestinal barrier function.
Collapse
Affiliation(s)
- Pawin Pongkorpsakol
- Translational Medicine Graduate Program, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand
| | - Chavin Buasakdi
- College of Agricultural and Life Science, University of Wisconsin-Madison, 1450 Linden Dr, Madison, WI 53706, USA
| | - Thanyatorn Chantivas
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand
| | - Varanuj Chatsudthipong
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand
| | - Chatchai Muanprasat
- Translational Medicine Graduate Program, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand; Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand; Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok 10400, Thailand.
| |
Collapse
|
16
|
Bhardwaj N, Pandey SK, Mehta J, Bhardwaj SK, Kim KH, Deep A. Bioactive nano-metal-organic frameworks as antimicrobials against Gram-positive and Gram-negative bacteria. Toxicol Res (Camb) 2018; 7:931-941. [PMID: 30310670 PMCID: PMC6116815 DOI: 10.1039/c8tx00087e] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022] Open
Abstract
More effective antibiotics are needed to overcome the problem of multidrug resistance. The antibacterial efficacies of three Zn-based nano metal-organic frameworks (nMOFs) - IRMOF-3, MOF-5, and Zn-BTC - were explored, both alone and as mixtures with ampicillin and kanamycin. When tested against Escherichia coli, Staphylococcus aureus, Staphylococcus lentus, and Listeria monocytogenes, the nMOF/drug mixtures demonstrated synergistic (IRMOF-3/kanamycin) or additive (other nMOF/drug combinations) effects compared with the nMOFs or antibiotics alone. Zn-Based nMOFs can reduce the burden of the new discovery of antimicrobial pharmaceuticals by increasing the potency of existing antibiotics.
Collapse
Affiliation(s)
- Neha Bhardwaj
- Central Scientific Instruments Organisation (CSIR-CSIO) , Sector 30 C , Chandigarh , 160030 , India . ; Tel: +91-172-2672236
- Academy of Scientific and Innovative Research , CSIR-CSIO , Sector 30 C , Chandigarh , 160030 , India
| | - Satish K Pandey
- Central Scientific Instruments Organisation (CSIR-CSIO) , Sector 30 C , Chandigarh , 160030 , India . ; Tel: +91-172-2672236
| | - Jyotsana Mehta
- Central Scientific Instruments Organisation (CSIR-CSIO) , Sector 30 C , Chandigarh , 160030 , India . ; Tel: +91-172-2672236
- Academy of Scientific and Innovative Research , CSIR-CSIO , Sector 30 C , Chandigarh , 160030 , India
| | - Sanjeev K Bhardwaj
- Central Scientific Instruments Organisation (CSIR-CSIO) , Sector 30 C , Chandigarh , 160030 , India . ; Tel: +91-172-2672236
- Academy of Scientific and Innovative Research , CSIR-CSIO , Sector 30 C , Chandigarh , 160030 , India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering , Hanyang University , 222 Wangsimni-Ro , Seoul 133-791 , Republic of Korea . ; ; Tel: +82-22202325
| | - Akash Deep
- Central Scientific Instruments Organisation (CSIR-CSIO) , Sector 30 C , Chandigarh , 160030 , India . ; Tel: +91-172-2672236
- Academy of Scientific and Innovative Research , CSIR-CSIO , Sector 30 C , Chandigarh , 160030 , India
| |
Collapse
|
17
|
Prado-Prone G, Silva-Bermudez P, Almaguer-Flores A, García-Macedo JA, García VI, Rodil SE, Ibarra C, Velasquillo C. Enhanced antibacterial nanocomposite mats by coaxial electrospinning of polycaprolactone fibers loaded with Zn-based nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1695-1706. [PMID: 29673978 DOI: 10.1016/j.nano.2018.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/16/2018] [Accepted: 04/07/2018] [Indexed: 01/19/2023]
Abstract
ZnO and Zn acetate nanoparticles were embedded in polycaprolactone coaxial-fibers and uniaxial-fibers matrices to develop potential antibacterial nanocomposite wound dressings (mats). Morphology, composition, wettability, crystallinity and fiber structure of mats were characterized. Antibacterial properties of mats were tested against E. coli and S. aureus by turbidity and MTT assays. The effect of UVA illumination (prior to bacteria inoculation) on mats' antibacterial activity was also studied. Results showed that a coaxial-fibers design maintained nanoparticles distributed in the outer-shell of fibers and, in general, enhanced the antibacterial effect of the mats, in comparison to conventional uniaxial-fibers mats. Results indicated that mats simultaneously inhibited planktonic and biofilm bacterial growth by, probably, two main antibacterial mechanisms; 1) release of Zn2+ ions (mainly from Zn acetate nanoparticles) and 2) photocatalytic oxidative processes exerted by ZnO nanoparticles. Antibacterial properties of mats were significantly improved by coaxial-fibers design and exposure to UVA-light prior to bacteria inoculation.
Collapse
Affiliation(s)
- Gina Prado-Prone
- Posgrado en Ciencia e Ingeniería de Materiales, Universidad Nacional Autónoma de México, Ciudad de México, México; Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| | - Phaedra Silva-Bermudez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México.
| | - Argelia Almaguer-Flores
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jorge A García-Macedo
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Victor I García
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Sandra E Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Clemente Ibarra
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México; Dirección General, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México
| | - Cristina Velasquillo
- Subdirección de Investigación Tecnológica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, México.
| |
Collapse
|
18
|
Yu J, Yang H, Li K, Ren H, Lei J, Huang C. Development of Epigallocatechin-3-gallate-Encapsulated Nanohydroxyapatite/Mesoporous Silica for Therapeutic Management of Dentin Surface. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25796-25807. [PMID: 28703572 DOI: 10.1021/acsami.7b06597] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In dental clinic, unsatisfactory management of the dentin surface after dentin exposure often leads to the occurrence of dentin hypersensitivity and caries. Current approaches can occlude the tubules on the dentin surface to relieve dentin hypersensitivity; however, the blocked tubules are generally weak in combating daily tooth erosion and abrasion. Moreover, cariogenic bacteria, such as Streptococcus mutans, produce biofilm on the dentin surface, causing caries and compromising the tubules' sealing efficacy. To overcome this problem, the present study focused on establishing a versatile biomaterial, epigallocatechin-3-gallate-encapsulated nanohydroxyapatite/mesoporous silica nanoparticle (EGCG@nHAp@MSN), for therapeutic management of the dentin surface. The effectiveness of the biomaterial on dentinal tubule occlusion, including resistances against acid and abrasion, was evaluated by field-emission scanning electron microscopy (FESEM) and dentin permeability measurement. The inhibitory capability of the biomaterial on S. mutans biofilm formation was investigated by confocal laser scanning microscopy (CLSM), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony forming units (CFU) counts, and FESEM. Results demonstrated for the first time that the use of EGCG@nHAp@MSN on the dentin surface was capable of effectively occluding dentinal tubules, reducing dentin permeability, and achieving favorable acid- and abrasion-resistant stability. Furthermore, EGCG@nHAp@MSN held the capability to continuously release EGCG, Ca, and P, and significantly inhibit the formation and growth of S. mutans biofilm on the dentin surface. Thus, the development of EGCG@nHAp@MSN bridges the gap between multifunctional concept and dental clinical practice and is promising in providing dentists a therapeutic strategy for the management of the dentin surface to counter dentin hypersensitivity and caries.
Collapse
Affiliation(s)
- Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, China
| | - Kang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, China
| | - Hongyu Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, China
| | - Jinmei Lei
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, China
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, China
| |
Collapse
|
19
|
Nishikawa M, Mori H, Hara M. Analysis of ZIP (Zrt-, Irt-related protein) transporter gene expression in murine neural stem/progenitor cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 53:81-88. [PMID: 28527331 DOI: 10.1016/j.etap.2017.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Zinc plays important roles for brain development. Zrt-, Irt-related protein (ZIP) is a major transporter family to regulate the intracellular zinc levels. Neural stem/progenitor cells (NSPCs) are more sensitive than their differentiated progeny (neural/glial cells) to zinc in vitro (Nishikawa et al., 2015). We analyzed relative gene expression of 14 different ZIPs in murine NSPCs and differentiated cells by real-time polymerase chain reaction technique. Expression of Zip4 and that of Zip12 drastically increased, while that of Zip8 clearly decreased after differentiation of NSPCs. Downregulation of NSPC's marker (Nes) and upregulation of differentiated cell markers (Tubb3; neuron, Gfap; astrocyte) occurred simultaneously. ZIP8 protein was immunochemically detected both in cultured neurospheres consisting of NSPCs in vitro and in subventricular zone of embryonic mouse brain in vivo, like a novel surface marker of NSPCs. We considered that required types of ZIP changed during the differetiation of NSPCs.
Collapse
Affiliation(s)
- Mayu Nishikawa
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| | - Hideki Mori
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| | - Masayuki Hara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan.
| |
Collapse
|
20
|
Hamidovic A. Position on zinc delivery to olfactory nerves in intranasal insulin phase I-III clinical trials. Contemp Clin Trials 2015; 45:277-280. [PMID: 26386292 DOI: 10.1016/j.cct.2015.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/18/2015] [Accepted: 08/23/2015] [Indexed: 11/29/2022]
Abstract
Zinc in pancreatic insulin is essential for processing and action of the peptide, while in commercial preparations zinc promotes hexameric structure and prevents aggregate formation. In 2002, for the first time, insulin was delivered to humans intranasally with resulting cerebrospinal fluid insulin increases, but steady peripheral insulin levels. The novel method of increasing brain insulin levels without changes in the periphery resulted in an expansion of brain insulin research in clinical trials. As pre-clinical research has shown that brain insulin modulates a number functions, including food cravings and eating behavior, learning and memory functions, stress and mood regulation; realization of beneficial effects of insulin in modulating these functions in clinical populations became a possibility with the new direct-to-brain insulin delivery methodology. However, zinc, being integral to insulin structure and function, is neurotoxic, and has resulted in adverse effects to human health. In the last century, intranasal zinc was given preventively during the time of polio outbreak, and in the 21st century intranasal zinc was widely used over the counter to prevent common cold. In both cases, patients experienced partial or complete loss of smell. This paper is the first one to analyze zinc salts and concentrations of those two epidemiological adversities and directly compare formulations distributed to the public with animal toxicity data. The information gained from animal and epidemiological data provides a foundation for the formation of opinion given in this paper regarding safety of intranasal zinc in emerging clinical trials with intranasal insulin.
Collapse
Affiliation(s)
- A Hamidovic
- College of Pharmacy, University of New Mexico, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131-0001, United States.
| |
Collapse
|
21
|
Kubásek J, Vojtěch D, Jablonská E, Pospíšilová I, Lipov J, Ruml T. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:24-35. [PMID: 26478283 DOI: 10.1016/j.msec.2015.08.015] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 08/04/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022]
Abstract
Zn-(0-1.6)Mg (in wt.%) alloys were prepared by hot extrusion at 300 °C. The structure, mechanical properties and in vitro biocompatibility of the alloys were investigated. The hot-extruded magnesium-based WE43 alloy was used as a control. Mechanical properties were evaluated by hardness, compressive and tensile testing. The cytotoxicity, genotoxicity (comet assay) and mutagenicity (Ames test) of the alloy extracts and ZnCl2 solutions were evaluated with the use of murine fibroblasts L929 and human osteosarcoma cell line U-2 OS. The microstructure of the Zn alloys consisted of recrystallized Zn grains of 12 μm in size and fine Mg2Zn11 particles arranged parallel to the hot extrusion direction. Mechanical tests revealed that the hardness and strength increased with increasing Mg concentration. The Zn-0.8 Mg alloys showed the best combination of tensile mechanical properties (tensile yield strength of 203 MPa, ultimate tensile strength of 301 MPa and elongation of 15%). At higher Mg concentrations the plasticity of Zn-Mg alloys was deteriorated. Cytotoxicity tests with alloy extracts and ZnCl2 solutions proved the maximum safe Zn(2+) concentrations of 120 μM and 80 μM for the U-2 OS and L929 cell lines, respectively. Ames test with extracts of alloys indicated that the extracts were not mutagenic. The comet assay demonstrated that 1-day extracts of alloys were not genotoxic for U-2 OS and L929 cell lines after 1-day incubation.
Collapse
Affiliation(s)
- J Kubásek
- Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - D Vojtěch
- Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - E Jablonská
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - I Pospíšilová
- Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - J Lipov
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - T Ruml
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
22
|
Nishikawa M, Mori H, Hara M. Reduced zinc cytotoxicity following differentiation of neural stem/progenitor cells into neurons and glial cells is associated with upregulation of metallothioneins. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:1170-1176. [PMID: 25935539 DOI: 10.1016/j.etap.2015.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023]
Abstract
We investigated zinc cytotoxicity in mouse neural stem/progenitor cells (NSPCs) and their differentiated progeny (neuronal/glial cells) in correlation with expression of metallothionein (MT) gene. Differentiated cells were less sensitive than NSPCs to ZnCl2 (IC50: 128μM vs. 76μM). Differentiation of immature NSPCs to the differentiated cells led to an increase in expression of MT family genes (Mt1, Mt2, Mt3, and Mt4). Zinc exposure induced a dose-dependent increase in expression level of Mt1 and that of Mt2 in both NSPCs and the differentiated cells. Our results showed that the reduced cytotoxicity of zinc associated with differentiation from NSPCs into their progeny was related to the upregulation of MTs.
Collapse
Affiliation(s)
- Mayu Nishikawa
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Hideki Mori
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Masayuki Hara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan.
| |
Collapse
|
23
|
Ren F, Yang B, Cai J, Jiang Y, Xu J, Wang S. Toxic effect of zinc nanoscale metal-organic frameworks on rat pheochromocytoma (PC12) cells in vitro. JOURNAL OF HAZARDOUS MATERIALS 2014; 271:283-91. [PMID: 24637453 DOI: 10.1016/j.jhazmat.2014.02.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 05/10/2023]
Abstract
Metal-organic frameworks (MOFs) possess unique properties desirable for delivery of drugs and gaseous therapeutics, but their uncharacterized interactions with cells raise increasing concerns of their safety in such biomedical applications. We evaluated the adverse effects of zinc nanoscale MOFs on the cell morphology, cytoskeleton, cell viability and expression of neurotrophin signaling pathway-associated GAP-43 protein in rat pheochromocytoma PC12 cells. At the concentration of 25 μg/ml, zinc MOFs did not significantly affect morphology, viability and membrane integrity of the cells. But at higher concentrations (over 100 μg/ml), MOFs exhibited a time- and concentration-dependent cytotoxicity, indicating their entry into the cells via endocytosis where they release Zn(2+) into the cytosol to cause increased intracellular concentration of Zn(2+). We demonstrated that the toxicity of MOFs was associated with a disrupted cellular zinc homeostasis and down-regulation of GAP-43 protein, which might be the underlying mechanism for the improved differentiation in PC12 cells. These findings highlight the importance of cytotoxic evaluation of the MOFs before their biomedical application.
Collapse
Affiliation(s)
- Fei Ren
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Baochun Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing Cai
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yaodong Jiang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jun Xu
- Department of Health Economy Administration, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shan Wang
- Department of Pharmacy, Winthrop University Hospital, Mineola, NY 11501, USA
| |
Collapse
|
24
|
Trevisan R, Flesch S, Mattos JJ, Milani MR, Bainy ACD, Dafre AL. Zinc causes acute impairment of glutathione metabolism followed by coordinated antioxidant defenses amplification in gills of brown mussels Perna perna. Comp Biochem Physiol C Toxicol Pharmacol 2014; 159:22-30. [PMID: 24095941 DOI: 10.1016/j.cbpc.2013.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 01/28/2023]
Abstract
Zinc demonstrates protective and antioxidant properties at physiological levels, although these characteristics are not attributed at moderate or high concentrations. Zinc toxicity has been related to a number of factors, including interference with antioxidant defenses. In particular, the inhibition of glutathione reductase (GR) has been suggested as a possible mechanism for acute zinc toxicity in bivalves. The present work investigates the biochemical effects of a non-lethal zinc concentration on antioxidant-related parameters in gills of brown mussels Perna perna exposed for 21 days to 2.6 μM zinc chloride. After 2 days of exposure, zinc caused impairment of the antioxidant system, decreasing GR activity and glutathione levels. An increase in antioxidant defenses became evident at 7 and 21 days of exposure, as an increase in superoxide dismutase and glutathione peroxidase activity along with restoration of glutathione levels and GR activity. After 7 and 21 days, an increase in cellular peroxides and lipid peroxidation end products were also detected, which are indicative of oxidative damage. Changes in GR activity contrasts with protein immunoblotting data, suggesting that zinc produces a long lasting inhibition of GR. Contrary to the general trend in antioxidants, levels of peroxiredoxin 6 decreased after 21 days of exposure. The data presented here support the hypothesis that zinc can impair thiol homeostasis, causes an increase in lipid peroxidation and inhibits GR, imposing a pro-oxidant status, which seems to trigger homeostatic mechanisms leading to a subsequent increase on antioxidant-related defenses.
Collapse
Affiliation(s)
- Rafael Trevisan
- Department of Biochemistry, Biological Sciences Centre, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Osmond-McLeod MJ, Osmond RIW, Oytam Y, McCall MJ, Feltis B, Mackay-Sim A, Wood SA, Cook AL. Surface coatings of ZnO nanoparticles mitigate differentially a host of transcriptional, protein and signalling responses in primary human olfactory cells. Part Fibre Toxicol 2013; 10:54. [PMID: 24144420 PMCID: PMC4016547 DOI: 10.1186/1743-8977-10-54] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/05/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Inhaled nanoparticles have been reported in some instances to translocate from the nostril to the olfactory bulb in exposed rats. In close proximity to the olfactory bulb is the olfactory mucosa, within which resides a niche of multipotent cells. Cells isolated from this area may provide a relevant in vitro system to investigate potential effects of workplace exposure to inhaled zinc oxide nanoparticles. METHODS Four types of commercially-available zinc oxide (ZnO) nanoparticles, two coated and two uncoated, were examined for their effects on primary human cells cultured from the olfactory mucosa. Human olfactory neurosphere-derived (hONS) cells from healthy adult donors were analyzed for modulation of cytokine levels, activation of intracellular signalling pathways, changes in gene-expression patterns across the whole genome, and compromised cellular function over a 24 h period following exposure to the nanoparticles suspended in cell culture medium. RESULTS ZnO nanoparticle toxicity in hONS cells was mediated through a battery of mechanisms largely related to cell stress, inflammatory response and apoptosis, but not activation of mechanisms that repair damaged DNA. Surface coatings on the ZnO nanoparticles mitigated these cellular responses to varying degrees. CONCLUSIONS The results indicate that care should be taken in the workplace to minimize generation of, and exposure to, aerosols of uncoated ZnO nanoparticles, given the adverse responses reported here using multipotent cells derived from the olfactory mucosa.
Collapse
Affiliation(s)
- Megan J Osmond-McLeod
- CSIRO Advanced Materials TCP (Nanosafety), and CSIRO Animal, Food and Health Sciences, PO Box 52, North Ryde, NSW 1670, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 2013; 87:1181-200. [PMID: 23728526 PMCID: PMC3677982 DOI: 10.1007/s00204-013-1079-4] [Citation(s) in RCA: 687] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/08/2013] [Indexed: 11/26/2022]
Abstract
Nanoparticles (NPs) of copper oxide (CuO), zinc oxide (ZnO) and especially nanosilver are intentionally used to fight the undesirable growth of bacteria, fungi and algae. Release of these NPs from consumer and household products into waste streams and further into the environment may, however, pose threat to the 'non-target' organisms, such as natural microbes and aquatic organisms. This review summarizes the recent research on (eco)toxicity of silver (Ag), CuO and ZnO NPs. Organism-wise it focuses on key test species used for the analysis of ecotoxicological hazard. For comparison, the toxic effects of studied NPs toward mammalian cells in vitro were addressed. Altogether 317 L(E)C50 or minimal inhibitory concentrations (MIC) values were obtained for algae, crustaceans, fish, bacteria, yeast, nematodes, protozoa and mammalian cell lines. As a rule, crustaceans, algae and fish proved most sensitive to the studied NPs. The median L(E)C50 values of Ag NPs, CuO NPs and ZnO NPs (mg/L) were 0.01, 2.1 and 2.3 for crustaceans; 0.36, 2.8 and 0.08 for algae; and 1.36, 100 and 3.0 for fish, respectively. Surprisingly, the NPs were less toxic to bacteria than to aquatic organisms: the median MIC values for bacteria were 7.1, 200 and 500 mg/L for Ag, CuO and ZnO NPs, respectively. In comparison, the respective median L(E)C50 values for mammalian cells were 11.3, 25 and 43 mg/L. Thus, the toxic range of all the three metal-containing NPs to target- and non-target organisms overlaps, indicating that the leaching of biocidal NPs from consumer products should be addressed.
Collapse
Affiliation(s)
- Olesja Bondarenko
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Katre Juganson
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Department of Chemistry, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Angela Ivask
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Monika Mortimer
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Aquatic Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Faculty of Sciences, University of Geneva, 10 route de Suisse, 1290 Versoix, Switzerland
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
27
|
Valdiglesias V, Costa C, Kiliç G, Costa S, Pásaro E, Laffon B, Teixeira JP. Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. ENVIRONMENT INTERNATIONAL 2013; 55:92-100. [PMID: 23535050 DOI: 10.1016/j.envint.2013.02.013] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 05/27/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are one of the most abundantly used nanomaterials in consumer products and biomedical applications. As a result, human exposure to these NPs is highly frequent and they have become an issue of concern to public health. Although toxicity of ZnO NPs has been extensively studied and they have been shown to affect many different cell types and animal systems, there is a significant lack of toxicological data for ZnO NPs on the nervous system, especially for human neuronal cells and tissues. In this study, the cytotoxic and genotoxic effects of ZnO NPs on human SHSY5Y neuronal cells were investigated under different exposure conditions. Results obtained by flow cytometry showed that ZnO NPs do not enter the neuronal cells, but their presence in the medium induced cytotoxicity, including viability decrease, apoptosis and cell cycle alterations, and genotoxicity, including micronuclei production, H2AX phosphorylation and DNA damage, both primary and oxidative, on human neuronal cells in a dose- and time-dependent manner. Free Zn(2+) ions released from the ZnO NPs were not responsible for the viability decrease, but their role on other types of cell damage cannot be ruled out. The results obtained in this work contribute to increase the knowledge on the genotoxic and cytotoxic potential of ZnO NPs in general, and specifically on human neuronal cells, but further investigations are required to understand the action mechanism underlying the cytotoxic and genotoxic effects observed.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Toxicology Unit, Department of Psychobiology, University of A Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071, A Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Chang H, Ho CC, Yang CS, Chang WH, Tsai MH, Tsai HT, Lin P. Involvement of MyD88 in zinc oxide nanoparticle-induced lung inflammation. ACTA ACUST UNITED AC 2013; 65:887-96. [PMID: 23352990 DOI: 10.1016/j.etp.2013.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/21/2012] [Accepted: 01/04/2013] [Indexed: 12/12/2022]
Abstract
Zinc oxide nanoparticles (ZnONP) have great potential for medical applications. However, ZnONP is reported to induce acute lung inflammation, which limits its application in humans. We designed in vivo and in vitro studies to clarify ZnONP inflammation and its associated molecular signals. ZnONP with a single dose of 80 μg/30 μl was instilled into the tracheas of mice sacrificed at days 2, 7, 14, and 28 after instillation. Bronchoalveolar lavage fluid showed increased neutrophils and macrophages after treatment. Lung pathology showed a mixed inflammatory infiltrate of neutrophils, lymphocytes, and macrophages primarily in the bronchioles and peribronchiolar areas. Proinflammatory gene expression of TNF-α, IL-6, CXCL1, and MCP-1 was increased at day 2 and decreased after 7 days. The lung pathology resolved at day 28, without fibrosis. It remains unclear whether this acute lung inflammation was caused by ZnONP themselves or Zn(2+) iron released from the nanoparticles. In vitro studies confirming the results of in vivo studies showed increased expression of proinflammatory genes in both MLE12 cells (mouse lung epithelial cells) and RAW264.7 cells (mouse macrophages) with either ZnONP or Zn(NO₃)₂ treatment; notably, increased levels of proinflammatory genes were obviously higher in cells treated with ZnONP than in cells treated with Zn(NO₃)₂ at the same molarity dose. TNF-α and MCP-1 were induced only in MLE12 cells. MyD88, an adaptor protein for most Toll-like receptors (TLR) signaling pathways, initiated the ZnONP or Zn(NO₃)₂-induced lung inflammation. Silencing MyD88 expression with siRNA significantly reduced ZnONP or Zn(NO₃)₂-induced proinflammatory gene expression in MLE12 and RAW264.7 cells. Single-dose exposure to ZnONP produced the short-term lung inflammation via a MyD88-dependent TLR pathway. These data suggest that although both ZnONP and zinc ion might participate in the inflammatory reactions, ZnONP more effectively induced MyD88-dependent proinflammatory cytokines than zinc ion in lung epithelial cells.
Collapse
Affiliation(s)
- Han Chang
- Department of Pathology, School of Medicine, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
29
|
Pavlica S, Gebhardt R. Protective effects of flavonoids and two metabolites against oxidative stress in neuronal PC12 cells. Life Sci 2010; 86:79-86. [DOI: 10.1016/j.lfs.2009.10.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 10/26/2009] [Accepted: 10/28/2009] [Indexed: 01/08/2023]
|
30
|
Lim JH, Davis GE, Wang Z, Li V, Wu Y, Rue TC, Storm DR. Zicam-induced damage to mouse and human nasal tissue. PLoS One 2009; 4:e7647. [PMID: 19876403 PMCID: PMC2765727 DOI: 10.1371/journal.pone.0007647] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Accepted: 10/08/2009] [Indexed: 11/18/2022] Open
Abstract
Intranasal medications are used to treat various nasal disorders. However, their effects on olfaction remain unknown. Zicam (zinc gluconate; Matrixx Initiatives, Inc), a homeopathic substance marketed to alleviate cold symptoms, has been implicated in olfactory dysfunction. Here, we investigated Zicam and several common intranasal agents for their effects on olfactory function. Zicam was the only substance that showed significant cytotoxicity in both mouse and human nasal tissue. Specifically, Zicam-treated mice had disrupted sensitivity of olfactory sensory neurons to odorant stimulation and were unable to detect novel odorants in behavioral testing. These findings were long-term as no recovery of function was observed after two months. Finally, human nasal explants treated with Zicam displayed significantly elevated extracellular lactate dehydrogenase levels compared to saline-treated controls, suggesting severe necrosis that was confirmed on histology. Our results demonstrate that Zicam use could irreversibly damage mouse and human nasal tissue and may lead to significant smell dysfunction.
Collapse
Affiliation(s)
- Jae H. Lim
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - Greg E. Davis
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, United States of America
| | - Zhenshan Wang
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Vicky Li
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Yuping Wu
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Tessa C. Rue
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Daniel R. Storm
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
31
|
Pavlica S, Gebhardt R. Comparison of uptake and neuroprotective potential of seven zinc-salts. Neurochem Int 2009; 56:84-93. [PMID: 19782114 DOI: 10.1016/j.neuint.2009.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 09/10/2009] [Indexed: 11/15/2022]
Abstract
Zinc plays an important role as an antioxidant in different cells treated with various kinds of oxidative stressors. Although intracellular Zn(2+) is important in many cellular events, little is known about the cellular uptake of this trace metal and the intracellular status that is required for its optimal function. Since previous reports usually employed only one type of zinc-salt, in this work was compared cellular uptake and antioxidative potential of seven zinc-salts in order to discriminate whether different counterions and ligands may influence its function. Oxidative stress was induced by peroxide or iron in neuronal PC12 cells. We compared uptake of zinc-salts into the labile Zn(2+) pool of PC12 cells as well as their effects on the prevention of cell death, glutathione depletion, lipid peroxidation and ROS production. Zinc-salts provided better protection against oxidative stress-induced in PC12 cultures by peroxide than by iron. Preincubations with zinc-salts displayed better neuroprotection in all cases than coincubations. Zinc-histidine complex was shown to be the most potent compound. Our results indicated that protective effect of zinc is not related to its uptake into PC12 cells, what is indicated by the rather low salt concentrations required for the cell protection and by the observation that despite a superior antioxidant effect of zinc-histidine, the uptake of this salt by PC12 cells was remarkably lower in comparison with other zinc-salts. Although zinc-sulfate exerted weak neuroprotective potential, accumulation of Zn(2+) from this salt within cells was significantly higher compared to other salts. The differences in accumulation of zinc-salts were not specific and unique to PC12 cells, since similar results were obtained in rat primary hepatocytes and endothelial HUVEC cells.
Collapse
Affiliation(s)
- Sanja Pavlica
- Institut für Biochemie, Medizinische Fakultät, Universität Leipzig, Leipzig, Germany
| | | |
Collapse
|