1
|
Jeong SM, Nam HN, Choi SJ. Effects of the Interactions Between Food Additive Titanium Dioxide and Matrices on Genotoxicity. Int J Mol Sci 2025; 26:617. [PMID: 39859330 PMCID: PMC11765690 DOI: 10.3390/ijms26020617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Titanium dioxide (TiO2), a white color food additive, is widely used in bakery products, candies, chewing gums, soups, and creamers. Concerns about its potential genotoxicity have recently emerged, particularly following the European Union's ban on its usage as a food additive due to its genotoxicity potential. Conflicting in vitro and in vivo results regarding its genotoxicity highlight the need for further in-depth investigation. Moreover, food additives can interact with food components or biological matrices, potentially altering their biological responses and genotoxicity. In this study, we evaluated the interactions between two different sizes of additive TiO2 particles and food or biological matrices, including albumin, fetal bovine serum (FBS), and glucose. The results showed that the hydrodynamic diameters of TiO2 increased upon interaction with albumin or FBS, but not with glucose. The presence of albumin or FBS reduced TiO2-induced cytotoxicity, oxidative stress, in vitro intestinal transport, and ex vivo intestinal absorption to untreated control levels, regardless of particle size. While TiO2 caused DNA damage in intestinal Caco-2 cells, the interactions with albumin or FBS significantly reduced the DNA damage to levels comparable to untreated controls. The DNA damage was closely related to oxidative stress caused by TiO2. These findings suggest that the interaction of TiO2 with albumin or FBS, resulting in increased hydrodynamic diameters, mitigates its cytotoxicity, oxidative stress, intestinal transport, and genotoxicity. Further investigation is required to fully understand the potential genotoxicity of TiO2 in food contexts.
Collapse
Affiliation(s)
| | | | - Soo-Jin Choi
- Department of Food Science & Technology, Seoul Women’s University, Seoul 01797, Republic of Korea; (S.-M.J.); (H.-N.N.)
| |
Collapse
|
2
|
Ali K, Zaidi S, Khan AA, Khan AU. Orally fed EGCG coronate food released TiO 2 and enhanced penetrability into body organs via gut. BIOMATERIALS ADVANCES 2022; 144:213205. [PMID: 36442452 DOI: 10.1016/j.bioadv.2022.213205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/16/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Owing to unique nano-scale properties, TiO2-NPs (T-NPs) are employed as food-quality enhancers in >900 processed food products. Whereas, epigallocatechin-3-gallate (EGCG), a green tea polyphenol is consumed in traditional brewed tea, globally. Taken together, we aimed to investigate whether human gastric-acid digested T-NPs and complex tea catechins yield ionic species (Ti4+, Ti3+ etc.) and active EGCG forms to meet favourable conditions for in vivo bio-genesis of EGCG-coronated TiO2-NPs (ET-NPs) in human gut. Secondly, compared to bare-surface micro and nano-scale TiO2, i.e., T-MPs and T-NPs, respectively, how EGCG coronation on ET-NPs in the gut facilitates the modulation of intrinsic propensity of internalization of TiO2 species into bacteria, body-organs, and gut-microbiota (GM), and immune system. ET-NPs were synthesized in non-toxic aqueous solution at varied pH (3-10) and characterised by state-of-the-arts for crystallinity, surface-charge, EGCG-encapsulation, stability, size, composition and morphology. Besides, flow-cytometry (FCM), TEM, EDS, histopathology, RT-PCR, 16S-rRNA metagenomics and ELISA were also performed to assess the size and surface dependent activities of ET-NPs, T-NPs and T-MPs vis-a-vis planktonic bacteria, biofilm, GM bacterial communities and animal's organs. Electron-microscopic, NMR, FTIR, DLS, XRD and EDS confirmed the EGCG coronation, dispersity, size-stability of ET-NPs, crystallinity and elemental composition of ET-NPs-8 and T-NPs. Besides, FCM, RT-PCR, 16S-rRNA metagenomics, histopathology, SEM and EDS analyses exhibited that EGCG coronation in ET-NPs-8 enhanced the penetration into body organs (i.e., liver and kidney etc.) and metabolically active bacterial communities of GM.
Collapse
Affiliation(s)
- Khursheed Ali
- Medical Microbiology and Molecular Biology, Laboratory Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Sahar Zaidi
- Medical Microbiology and Molecular Biology, Laboratory Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Aijaz A Khan
- Department of Anatomy, Jawaharlal Nehru Medical College & Hospital, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology, Laboratory Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
3
|
Evans SJ, Lawrence RL, Ilett M, Burgum MJ, Meldrum K, Hondow N, Jenkins GJ, Clift MJD, Doak SH. Industrial-relevant TiO 2 types do not promote cytotoxicity in the A549 or TK6 cell lines regardless of cell specific interaction. Toxicol In Vitro 2022; 83:105415. [PMID: 35752104 DOI: 10.1016/j.tiv.2022.105415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/07/2022] [Accepted: 06/04/2022] [Indexed: 01/09/2023]
Abstract
Due to the expansive application of TiO2 and its variance in physico-chemical characteristics, the toxicological profile of TiO2, in all its various forms, requires evaluation. This study aimed to assess the hazard of five TiO2 particle-types in relation to their cytotoxic profile correlated to their cellular interaction, specifically in human lymphoblast (TK6) and type-II alveolar epithelial (A549) cells. Treatment with the test materials was undertaken at a concentration range of 1-100 μg/cm2 over 24 and 72 h exposure. TiO2 interaction with both cell types was visualised by transmission electron microscopy, supported by energy-dispersive X-ray. None of the TiO2 materials tested promoted cytotoxicity in either cell type over the concentration and time range studied. All materials were observed to interact with the A549 cells and were further noted to be internalised following 24 h exposure. In contrast, only the pigmentary rutile was internalised by TK6 lymphoblasts after 24 h exposure. Where uptake was observed there was no evidence, as determined by 2D microscopy techniques, of particle localisation within the nucleus of either cell type. This study indicates that industrially relevant TiO2 particles demonstrate cell interactions that are cell-type dependent and do not induce cytotoxicity at the applied dose range.
Collapse
Affiliation(s)
- Stephen J Evans
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Rachel L Lawrence
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Martha Ilett
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Michael J Burgum
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Kirsty Meldrum
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Gareth J Jenkins
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science, Swansea Univeristy Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
4
|
Chang H, Wang Q, Meng X, Chen X, Deng Y, Li L, Yang Y, Song G, Jia H. Effect of Titanium Dioxide Nanoparticles on Mammalian Cell Cycle In Vitro: A Systematic Review and Meta-Analysis. Chem Res Toxicol 2022; 35:1435-1456. [PMID: 35998370 DOI: 10.1021/acs.chemrestox.1c00402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although most studies that explore the cytotoxicity of titanium dioxide nanoparticles (nano-TiO2) have focused on cell viability and oxidative stress, the cell cycle, a basic process of cell life, can also be affected. However, the results on the effects of nano-TiO2 on mammalian cell cycle are still inconsistent. A systematic review and meta-analysis were therefore performed in this research based on the effects of nano-TiO2 on the mammalian cell cycle in vitro to explore whether nano-TiO2 can induce cell cycle arrest. Meanwhile, the impact of physicochemical properties of nano-TiO2 on the cell cycle in vitro was investigated, and the response of normal cells and cancer cells was compared. A total of 33 articles met the eligibility criteria after screening. We used Review Manager 5.4 and Stata 15.1 for analysis. The results showed an increased percentage of cells in the sub-G1 phase and an upregulation of the p53 gene after being exposed to nano-TiO2. Nevertheless, nano-TiO2 had no effect on cell percentage in other phases of the cell cycle. Furthermore, subgroup analysis revealed that the cell percentage in both the sub-G1 phase of normal cells and S phase of cancer cells were significantly increased under anatase-form nano-TiO2 treatment. Moreover, nano-TiO2 with a particle size <25 nm or exposure duration of nano-TiO2 more than 24 h induced an increased percentage of normal cells in the sub-G1 phase. In addition, the cell cycle of cancer cells was arrested in the S phase no matter if the exposure duration of nano-TiO2 was more than 24 h or the exposure concentration was over 50 μg/mL. In conclusion, this study demonstrated that nano-TiO2 disrupted the cell cycle in vitro. The cell cycle arrest induced by nano-TiO2 varies with cell status and physicochemical properties of nano-TiO2.
Collapse
Affiliation(s)
- Hongmei Chang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Qianqian Wang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xiaojia Meng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xinyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 210019 Nanjing, China
| | - Yaxin Deng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Li Li
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yaqian Yang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Huaimiao Jia
- Department of Endemic Disease, Shihezi Center for Disease Control and Prevention, Shihezi 832003, Xinjiang, China
| |
Collapse
|
5
|
Shi J, Han S, Zhang J, Liu Y, Chen Z, Jia G. Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro. NANOIMPACT 2022; 25:100377. [PMID: 35559883 DOI: 10.1016/j.impact.2021.100377] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 06/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are currently one of the most widely used nanomaterials. Due to an increasing scope of applications, the exposure of humans to TiO2 NP is inevitable, such as entering the body through the mouth with food additives or drugs, invading the damaged skin with cosmetics, and entering the body through the respiratory tract during the process of production and handling. Compared with TiO2 coarse particles, TiO2 NPs have stronger conductivity, reaction activity, photocatalysis, and permeability, which may lead to greater toxicity to organisms. Given that TiO2 was classified as a category 2B carcinogen (possibly carcinogenic to humans), the genotoxicity of TiO2 NPs has become the focus of attention. There have been a series of previous studies investigating the potential genotoxicity of TiO2 NPs, but the existing research results are still controversial and difficult to conclude. More than half of studies have shown that TiO2 NPs can cause genotoxicity, suggesting that TiO2 NPs are likely to be genotoxic to humans. And the genotoxicity of TiO2 NPs is closely related to the exposure concentration, mode and time, and experimental cells/animals as well as its physicochemical properties (crystal type, size, and shape). This review summarized the latest research progress of related genotoxic effects through in vivo studies and in vitro cell tests, hoping to provide ideas for the evaluation of TiO2 NPs genotoxicity.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Shuo Han
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Jiahe Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| |
Collapse
|
6
|
Suitability of the In Vitro Cytokinesis-Block Micronucleus Test for Genotoxicity Assessment of TiO 2 Nanoparticles on SH-SY5Y Cells. Int J Mol Sci 2021; 22:ijms22168558. [PMID: 34445265 PMCID: PMC8395234 DOI: 10.3390/ijms22168558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/13/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Standard toxicity tests might not be fully adequate for evaluating nanomaterials since their unique features are also responsible for unexpected interactions. The in vitro cytokinesis-block micronucleus (CBMN) test is recommended for genotoxicity testing, but cytochalasin-B (Cyt-B) may interfere with nanoparticles (NP), leading to inaccurate results. Our objective was to determine whether Cyt-B could interfere with MN induction by TiO2 NP in human SH-SY5Y cells, as assessed by CBMN test. Cells were treated for 6 or 24 h, according to three treatment options: co-treatment with Cyt-B, post-treatment, and delayed co-treatment. Influence of Cyt-B on TiO2 NP cellular uptake and MN induction as evaluated by flow cytometry (FCMN) were also assessed. TiO2 NP were significantly internalized by cells, both in the absence and presence of Cyt-B, indicating that this chemical does not interfere with NP uptake. Dose-dependent increases in MN rates were observed in CBMN test after co-treatment. However, FCMN assay only showed a positive response when Cyt-B was added simultaneously with TiO2 NP, suggesting that Cyt-B might alter CBMN assay results. No differences were observed in the comparisons between the treatment options assessed, suggesting they are not adequate alternatives to avoid Cyt-B interference in the specific conditions tested.
Collapse
|
7
|
Conventional water treatment improvement through enhanced conventional and hybrid membrane processes to remove Ag, CuO and TiO2 nanoparticles mixture in surface waters. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Xenaki V, Marthinussen MC, Costea DE, Didilescu AC, Susin C, Cimpan MR, Åstrøm AN. Knowledge about nanotechnology and intention to use nanomaterials: A comparative study among dental students in Norway and Romania. EUROPEAN JOURNAL OF DENTAL EDUCATION : OFFICIAL JOURNAL OF THE ASSOCIATION FOR DENTAL EDUCATION IN EUROPE 2020; 24:79-87. [PMID: 31574582 DOI: 10.1111/eje.12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/29/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The introduction of innovative nanotechnologies in medicine and dentistry may initiate a need for curriculum revision at the universities. The aim of this study was to assess dental students' knowledge and attitudes related to nanotechnology. Covariates of students' intention to use nanomaterials in their future dental practice were evaluated using the theory of planned behaviour (TPB). METHODS Dental students at Norwegian and Romanian Universities were invited to participate. A self-administered structured questionnaire including socio-demographics and Ajzen's TPB components was used. FINDINGS A total of 212 out of 732 dental students participated in the survey: 52 Norwegian and 160 Romanian. Most students reported to have little knowledge about nanotechnology (Norwegians = 44.2% vs Romanians = 46.9%, P < .05). More than 90% of the students in both countries reported that they wanted to get more information about nanotechnology. Mean knowledge score was similar for Norwegian and Romanian students (4.4 ± 1.7 vs 4.2 ± 1.4, P > .05). Romanian students had more positive attitude, stronger subjective norms and stronger perceived behavioural control towards nanotechnology compared to their Norwegian counterparts. Intention to use nanomaterials in the total sample was most strongly influenced by attitude towards the use of dental nanomaterials (beta = 0.42, P < .001). CONCLUSION Dental students in Norway and Romania demonstrated limited knowledge about nanotechnology. Intention to use nanomaterials was primarily influenced by attitudes. A clear desire for more information about the application of nanotechnology in dentistry was expressed by the respondents indicating a need for curriculum modification.
Collapse
Affiliation(s)
- Victoria Xenaki
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for International Health, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Mihaela Cuida Marthinussen
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
- Oral Health Centre of Expertise in Western Norway, Hordaland, Norway
| | - Daniela Elena Costea
- Department of Clinical Medicine and Center for Cancer Biomarkers CCBio, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | | | - Cristiano Susin
- Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Mihaela Roxana Cimpan
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Anne Nordrehaug Åstrøm
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Label-Free Monitoring of Uptake and Toxicity of Endoprosthetic Wear Particles in Human Cell Cultures. Int J Mol Sci 2018; 19:ijms19113486. [PMID: 30404169 PMCID: PMC6274933 DOI: 10.3390/ijms19113486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022] Open
Abstract
The evaluation of the biological effects of endoprosthetic wear particles on cells in vitro relies on a variety of test assays. However, most of these methods are susceptible to particle-induced interferences; therefore, label-free testing approaches emerge as more reliable alternatives. In this study, impedance-based real-time monitoring of cellular viability and metabolic activity were performed following exposure to metallic and ceramic wear particles. Moreover, label-free imaging of particle-exposed cells was done by high-resolution darkfield microscopy (HR-ODM) and field emission scanning electron microscopy (FESEM). The isolated human fibroblasts were exposed to CoCr28Mo6 and alumina matrix composite (AMC) ceramic particles. HR-ODM and FESEM revealed ingested particles. For impedance measurements, cells were seeded on gold-plated microelectrodes. Cellular behavior was monitored over a period of 48 h. CoCr28Mo6 and AMC particle exposure affected cell viability in a concentration-dependent manner, i.e., 0.01 mg/mL particle solutions led to small changes in cell viability, while 0.05 mg/mL resulted in a significant reduction of viability. The effects were more pronounced after exposure to CoCr28Mo6 particles. The results were in line with light and darkfield microcopy observations indicating that the chosen methods are valuable tools to assess cytotoxicity and cellular behavior following exposure to endoprosthetic wear particles.
Collapse
|
10
|
Huang X, Lan Y, Liu Z, Huang W, Guo Q, Liu L, Hu M, Sui Y, Wu F, Lu W, Wang Y. Salinity mediates the toxic effect of nano-TiO 2 on the juvenile olive flounder Paralichthys olivaceus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:726-735. [PMID: 29879661 DOI: 10.1016/j.scitotenv.2018.05.350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/03/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Increased production of engineered nanoparticles has raised extensive concern about the potential toxic effects on marine organisms living in estuarine and coastal environments. Meanwhile, salinity is one of the key environmental factors that may influence the physiological activities in flatfish species inhabiting in those waters due to fluctuations caused by freshwater input or rainfall. In this study, we investigated the oxidative stress and histopathological alteration of the juvenile Paralichthys olivaceus exposed to nano-TiO2 (1 and 10 mg L-1) under salinities of 10 and 30 psu for 4 days. In the gills, Na+-K+-ATPase activity significantly deceased after 4 days 10 psu exposure without nano-TiO2 compared with 1 day of acclimating the salinity from the normal salinity (30 psu) to 10 psu. Under this coastal salinity, low concentration (1 mg L-1) of nano-TiO2 exerted significant impacts. In the liver, the activities of superoxide dismutase, catalase, the levels of lipid peroxide and malondialdehyde increased with nano-TiO2 exposed under 30 psu. Such increase indicated an oxidative stress response. The result of the integrated biomarker responses showed that P. olivaceus can be adversely affected by high salinity and high concentration of nano-TiO2 for a short-term (4 days) exposure. The histological analysis revealed the accompanying severe damages for the gill filaments. Principal component analysis further showed that the oxidative stress was associated with the nano-TiO2 effect at normal salinity. These findings indicated that nano-TiO2 and normal salinity exert synergistic effects on juvenile P. olivaceus, and low salinity plays a protective role in its physiological state upon short-term exposure to nano-TiO2. The mechanism of salinity mediating the toxic effects of NPs on estuarine fish should be further considered.
Collapse
Affiliation(s)
- Xizhi Huang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| | - Yawen Lan
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Zekang Liu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Wei Huang
- Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography State Oceanic Administration, Hangzhou 310058, China
| | - Qindan Guo
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Liping Liu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Menghong Hu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Yanming Sui
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Fangli Wu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China
| | - Youji Wang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China; Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography State Oceanic Administration, Hangzhou 310058, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China.
| |
Collapse
|
11
|
Ibrahim M, Schoelermann J, Mustafa K, Cimpan MR. TiO
2
nanoparticles disrupt cell adhesion and the architecture of cytoskeletal networks of human osteoblast‐like cells in a size dependent manner. J Biomed Mater Res A 2018; 106:2582-2593. [DOI: 10.1002/jbm.a.36448] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/07/2018] [Accepted: 04/25/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Mohamed Ibrahim
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergen Norway
- Centre for International Health, Department of Global Public Health and Primary Care, Faculty of MedicineUniversity of BergenBergen Norway
| | - Julia Schoelermann
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergen Norway
- BerGenBio ASBergen Norway
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergen Norway
| | - Mihaela R. Cimpan
- Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenBergen Norway
| |
Collapse
|
12
|
Vicari T, Dagostim AC, Klingelfus T, Galvan GL, Monteiro PS, da Silva Pereira L, Silva de Assis HC, Cestari MM. Co-exposure to titanium dioxide nanoparticles (NpTiO 2) and lead at environmentally relevant concentrations in the Neotropical fish species Hoplias intermedius. Toxicol Rep 2018; 5:1032-1043. [PMID: 30386731 PMCID: PMC6205112 DOI: 10.1016/j.toxrep.2018.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/13/2018] [Accepted: 09/01/2018] [Indexed: 12/03/2022] Open
Abstract
Growing production and utilization of titanium dioxide nanoparticles (NpTiO2) invariably lead to their accumulation in oceans, rivers and other water bodies, thus increasing the risk to the welfare of this ecosystem. The progressive launch of these nanoparticles in the environment has been accompanied by concern in understanding the dynamics and the toxic effect of these xenobiotic in different ecosystems, either on their own or in tandem with different contaminants (such as organic compounds and heavy metals), possibly altering their toxicity. Nevertheless, it remains unknown if these combined effects may induce damage in freshwater organisms. Therefore, this study aimed to analyze the consequences caused by NpTiO2, after a waterborne exposure of 96 h to a Neotropical fish species Hoplias intermedius, as well as after a co-exposure with lead, whose effects for fish have already been well described in the literature. The characterization of NpTiO2 stock suspension was carried out in order to provide additional information and revealed a stable colloidal suspension. As a result, NpTiO2 showed some genotoxic effects which were observed by comet assay in gill, kidney and brain cells. Also, the activity of brain acetylcholinesterase (AChE) has not changed, but the activity of muscle AChE decreased in the group exposed only to PbII. Regarding the hepatic antioxidant system, catalase (CAT) did not show any change in its activity, whereas that of superoxide dismutase (SOD) intensified in the groups submitted only to PbII and NpTiO2 alone. As for lipid peroxidation, there was a decrease in the group exposed to the NpTiO2 alone and to the co-exposed group (NpTiO2+PbII). As far as metallothionein is concerned, its concentration rose for the co-exposed group (NpTiO2+PbII) and for the group exposed to PbII alone. Overall, we may conclude that NpTiO2 alone caused DNA damage to vital tissues. Also, some impairment related to the antioxidant mechanism was described but it is probably not related to the DNA damage observed, suggesting that the genotoxic effect observed may be due to a different mechanism instead of ROS production.
Collapse
Affiliation(s)
- Taynah Vicari
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Ana Carolina Dagostim
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Tatiane Klingelfus
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Gabrieli Limberger Galvan
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Patrícia Sampaio Monteiro
- Department of Pharmacology, Laboratory of Aquatic Toxicology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Letícia da Silva Pereira
- Department of Pharmacology, Laboratory of Aquatic Toxicology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Helena Cristina Silva de Assis
- Department of Pharmacology, Laboratory of Aquatic Toxicology, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Marta Margarete Cestari
- Department of Genetics, Laboratory of Animal Cytogenetics and Environmental Mutagenesis, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| |
Collapse
|
13
|
Zeman T, Loh EW, Čierný D, Šerý O. Penetration, distribution and brain toxicity of titanium nanoparticles in rodents' body: a review. IET Nanobiotechnol 2018; 12:695-700. [PMID: 30104440 PMCID: PMC8676074 DOI: 10.1049/iet-nbt.2017.0109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 11/20/2022] Open
Abstract
Titanium dioxide (TiO2) has been vastly used commercially, especially as white pigment in paints, colorants, plastics, coatings, cosmetics. Certain industrial uses TiO2 in diameter <100 nm. There are three common exposure routes for TiO2: (i) inhalation exposure, (ii) exposure via gastrointestinal tract, (iii) dermal exposure. Inhalation and gastrointestinal exposure appear to be the most probable ways of exposure, although nanoparticle (NP) penetration is limited. However, the penetration rate may increase substantially when the tissue is impaired. When TiO2 NPs migrate into the circulatory system, they can be distributed into all tissues including brain. In brain, TiO2 lead to oxidative stress mediated by the microglia phagocytic cells which respond to TiO2 NPs by the production and release of superoxide radicals that convert to multiple reactive oxygen species (ROS). The ROS production may also cause the damage of blood-brain barrier which then becomes more permeable for NPs. Moreover, several studies have showed neuron degradation and the impairment of spatial recognition memory and learning abilities in laboratory rodent exposed to TiO2 NPs.
Collapse
Affiliation(s)
- Tomáš Zeman
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - El-Wui Loh
- Center for Evidence - based Health Care, Taipei Medical University - Shuang Ho Hospital, No. 291, Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan
| | - Daniel Čierný
- Department of Clinical Biochemistry, Jessenius Faculty of Medicine in Martin, Kollárova 2, 03659 Martin, Slovak Republic
| | - Omar Šerý
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00 Brno, Czech Republic.
| |
Collapse
|
14
|
Lopera A, Velásquez A, Clementino L, Robledo S, Montoya A, de Freitas L, Bezzon V, Fontana C, Garcia C, Graminha M. Solution-combustion synthesis of doped TiO 2 compounds and its potential antileishmanial activity mediated by photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:64-74. [DOI: 10.1016/j.jphotobiol.2018.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 11/28/2022]
|
15
|
Høl PJ, Kristoffersen EK, Gjerdet NR, Pellowe AS. Novel Nanoparticulate and Ionic Titanium Antigens for Hypersensitivity Testing. Int J Mol Sci 2018; 19:E1101. [PMID: 29642398 PMCID: PMC5979587 DOI: 10.3390/ijms19041101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/26/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
Abstract
Titanium is used in a wide variety of materials ranging from medical devices to materials used in everyday life. Adverse biological reactions that could occur in patients, consumers, and workers should be monitored and prevented. There is a lack of available agents to test and predict titanium-related hypersensitivity. The aim of this study was to develop two bioavailable titanium substances in ionic and nanoparticulate form to serve as antigens for hypersensitivity testing in vitro. Peripheral blood mononuclear cells from 20 test subjects were stimulated with the antigens and secretion of monocytic and lymphatic cytokines and chemokines were measured by a multiplex bead assay. Lymphocyte stimulation indices were also determined in a subset of test subjects by measuring CD69 and HLA-DR expression by flow cytometry. Cytokine profiling revealed that both antigens increased production of typical monocyte and macrophage secreted cytokines after 24 h, with significant increases in IL-1β, IL-7, IL-10, IL-12, IL-2R, IL-6, GM-CSF, TNF-α, IL-1RA, MIP-1α, MIP-1β, IFN-α, and IL-15. Lymphatic cytokines and chemokines were not significantly induced by activation. After seven days of stimulation, ionic-Ti (2.5 μg/mL) caused proliferation (stimulation index > 2) of CD4+ cells and CD8+ cells in all persons tested (N = 6), while titanium dioxide nanoparticles (50 μg/mL) only caused significant proliferation of CD4+ cells. Our preliminary results show that the experimental titanium antigens, especially the ionic form, induce a general inflammatory response in vitro. A relevant cohort of test subjects is required to further elucidate their potential for predictive hypersensitivity testing.
Collapse
Affiliation(s)
- Paul Johan Høl
- Department of Clinical Medicine, University of Bergen, N-5021 Bergen, Norway.
- Department of Orthopaedic Surgery, Haukeland University Hospital, Jonas Lies vei 87, N-5021 Bergen, Norway.
| | - Einar K Kristoffersen
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway.
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, N-5021 Bergen, Norway.
| | - Nils Roar Gjerdet
- Department of Clinical Dentistry, University of Bergen, N-5009 Bergen, Norway.
| | - Amanda S Pellowe
- School of Engineering and Applied Sciences, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
16
|
Gandamalla D, Lingabathula H, Yellu N. Nano titanium exposure induces dose- and size-dependent cytotoxicity on human epithelial lung and colon cells. Drug Chem Toxicol 2018; 42:24-34. [PMID: 29611443 DOI: 10.1080/01480545.2018.1452930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The productions as well as use of Titanium dioxide nanoparticles (TNPs) were rapidly increasing in the present nano-world. The TNP becomes an inevitable part our daily life in the form of cosmeceutical, bio-medical, and nano-pharmaceutical applications. The TNPs are either inhaled or ingested into the human body through common routes of exposure like the lungs and the oral-gastrointestinal tract (GIT). Human lung and colon were exposed to test particles, TNP 18 nm (TNP 18), TNP 30 nm (TNP 30), and TNP 87 nm (TNP 87) with a dose range 0.1-100 µg/ml. The effect of exposure was determined using MTT, LDH, and DCFH-DA methods. The TNP 18, TNP 30, and TNP 87 significantly (p < 0.001) reduced cell viability in a dose- and a size-dependent manner in 60 and 100 µg/ml. The lowest IC50 values 21.80 and 24.83 µg/ml were observed in A549 and Caco-2 for the smallest size, TNP 18. Further, for TNP 30, IC50 values were 23.30 and 28.59 µg/ml compared to Nano QTZ 43.82 and 45.86 µg/ml. The EC25 values of LDH leakage were 5.83 and 9.50 µg/ml for TNP 18 in lung and colon cells. Besides, ROS levels increased significantly at doses 60 (p < 0.01) and 100 (p < 0.001) µg/ml in two cells. The smaller size particle, TNP 18 has produced a significant (p < 0.05) toxic effect at the lowest dose i.e., 10 µg/ml. Therefore, we conclude that TNP 18, TNP 30, and TNP 87 induced a dose- and size-dependent cytotoxicity via decreased cell viability, increased LDH and ROS levels by in vitro methods.
Collapse
Affiliation(s)
- Durgaiah Gandamalla
- a Department of Pharmacology and Toxicology , University College of Pharmaceutical Sciences, Kakatiya University , Warangal , India
| | - Harikiran Lingabathula
- a Department of Pharmacology and Toxicology , University College of Pharmaceutical Sciences, Kakatiya University , Warangal , India
| | - Narsimhareddy Yellu
- a Department of Pharmacology and Toxicology , University College of Pharmaceutical Sciences, Kakatiya University , Warangal , India
| |
Collapse
|
17
|
Feliu N, Sun X, Alvarez Puebla RA, Parak WJ. Quantitative Particle-Cell Interaction: Some Basic Physicochemical Pitfalls. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6639-6646. [PMID: 28379704 DOI: 10.1021/acs.langmuir.6b04629] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
There are numerous reports about particle-cell interaction studies in the literature. Many of those are performed in two-dimensional cell cultures. While the interpretation of such studies seems trivial at first sight, in fact for quantitative analysis some basic physical and physicochemical bases need to be considered. This starts with the dispersion of the particles, for which gravity, Brownian motion, and interparticle interactions need to be considered. The respective strength of these interactions determines whether the particles will sediment, are dispersed, or are agglomerated. This in turn largely influences their interaction with cells. While in the case of well-dispersed particles only a fraction of them will come into contact with cells in a two-dimensional culture, (agglomeration-induced) sedimentation drives the particles toward the cell surface, resulting in enhanced uptake.
Collapse
Affiliation(s)
- Neus Feliu
- Fachbereich Physik, Philipps Universität Marburg , Marburg, Germany
- Department of Laboratory Medicine (LABMED), Karolinska Institutet , Stockholm, Sweden
- Medcom Advance S.A., Barcelona, Spain
| | - Xing Sun
- Fachbereich Physik, Philipps Universität Marburg , Marburg, Germany
| | - Ramon A Alvarez Puebla
- Departamento de Química Física e Inorgánica and Emas, Universitat Rovira i Virgili , Tarragona, Spain
- ICREA, Barcelona, Spain
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps Universität Marburg , Marburg, Germany
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , Shanghai, China
| |
Collapse
|
18
|
Achtschin CG, Sipahi AM. The role of titanium dioxide in the gut. NUTRITION & FOOD SCIENCE 2017; 47:432-442. [DOI: 10.1108/nfs-07-2016-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Purpose
Titanium is a naturally occurring mineral in the form of titanium dioxide (TiO2) and is one of the most widely used food additives. The purpose of this review article is to show the importance of the accumulation of this mineral in the gut and its relation with inflammatory processes.
Methodology
This is a literature review study from 2002 to 2016, focusing on studies with TiO2 and its relation with inflammatory bowel diseases.
Findings
Articles describe that TiO2 is resistant to gastrointestinal degradation, as it has high stability, and that its particles, ingested daily, may bind to biomolecules in the lumen or be absorbed by the intestinal mucosa, accumulating in the macrophages of lymphoid tissue in the gut, thus causing or aggravating the inflammatory response in the inflamed bowel.
Limitations/implications
There is a limited number of studies on the long-term impact of dietary microparticles in animal models, in healthy subjects and in patients with inflammatory bowel diseases.
Practical implications
It is necessary to regulate the amount of TiO2 used in industrialized products.
Social implications
The high consumption of processed foods, as opposed to a healthy diet based on the balanced consumption of nutrients, is relevant, as it may lead to or exacerbate intestinal inflammation.
Originality/value
This review indicates that titanium particles may mediate toxicological processes leading to an abnormal increase in intestinal permeability, which may be particularly aggravating in patients with inflammatory bowel diseases.
Collapse
|
19
|
Jain AK, Senapati VA, Singh D, Dubey K, Maurya R, Pandey AK. Impact of anatase titanium dioxide nanoparticles on mutagenic and genotoxic response in Chinese hamster lung fibroblast cells (V-79): The role of cellular uptake. Food Chem Toxicol 2017; 105:127-139. [PMID: 28400324 DOI: 10.1016/j.fct.2017.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 04/07/2017] [Indexed: 12/16/2022]
Abstract
The unique physico-chemical properties of nano crystalline anatase titanium dioxide nanoparticles (TiO2 NPs) render them with different biological and chemical activities. Hence, it is widely used in industrial and consumer applications. Previous studies have shown the genotoxicity of TiO2 NPs. However, there is a paucity of data regarding mutagenicity of these NPs. In the present study, the cellular uptake, sub-cellular localization, cytotoxicity and short term DNA interaction of TiO2 NPs (1-100 μgmL-1) of diameter ranging from 12 to 25 nm on mammalian lung fibroblast cells (V-79) has been studied. The flow cytometric analysis and electron micrographs of V-79 monolayer showed the internalization of TiO2 NPs in the cytoplasm with the confirmation of elemental composition through SEM/EDX analysis. TEM analysis also showed TiO2 NPs induced ultra-structural changes such as swollen mitochondria and nuclear membrane disruption in V-79 cells. TiO2 NPs generated free radicals, which induced indirect mutagenic and genotoxic responses. Apart from measuring the genotoxicity by Comet assay, the mutagenic potential of TiO2 NPs in V-79 cells was evaluated by mammalian HGPRT gene forward mutation assay, showing a 2.98- fold increase in 6TGR HGPRT mutant frequency (*p < 0.05, **p < 0.01, ***p < 0.001) by culture plate method, which is an early indicator of potential carcinogenicity. Hence, TiO2 NPs should be closely monitored and there should be a judicious use and disposal of NPs.
Collapse
Affiliation(s)
- Abhishek Kumar Jain
- CSIR- Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India; Department of Biochemistry, Babu Banarasi Das University, Faizabad Road, Lucknow, Uttar Pradesh, India
| | - Violet Aileen Senapati
- Division of Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Divya Singh
- CSIR- Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India
| | - Kavita Dubey
- CSIR- Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India
| | - Renuka Maurya
- CSIR- Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India
| | - Alok Kumar Pandey
- CSIR- Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
20
|
Krüger K, Schrader K, Klempt M. Cellular Response to Titanium Dioxide Nanoparticles in Intestinal Epithelial Caco-2 Cells is Dependent on Endocytosis-Associated Structures and Mediated by EGFR. NANOMATERIALS 2017; 7:nano7040079. [PMID: 28387727 PMCID: PMC5408171 DOI: 10.3390/nano7040079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 02/03/2023]
Abstract
Titanium dioxide (TiO₂) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO₂ nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2nfkb-RE), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO₂ NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO₂ NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO₂ NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO₂ NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO₂ particles.
Collapse
Affiliation(s)
- Kristin Krüger
- Max Rubner-Institut (MRI), Federal Research Institute for Nutrition and Food, Department of Safety and Quality of Milk and Fish Products, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany.
| | - Katrin Schrader
- Max Rubner-Institut (MRI), Federal Research Institute for Nutrition and Food, Department of Safety and Quality of Milk and Fish Products, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany.
| | - Martin Klempt
- Max Rubner-Institut (MRI), Federal Research Institute for Nutrition and Food, Department of Safety and Quality of Milk and Fish Products, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany.
| |
Collapse
|
21
|
Picchietti S, Bernini C, Stocchi V, Taddei AR, Meschini R, Fausto AM, Rocco L, Buonocore F, Cervia D, Scapigliati G. Engineered nanoparticles of titanium dioxide (TIO 2): Uptake and biological effects in a sea bass cell line. FISH & SHELLFISH IMMUNOLOGY 2017; 63:53-67. [PMID: 28159697 DOI: 10.1016/j.fsi.2017.01.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/26/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
With the rapid development of nanotechnology there has been a corresponding increase in the application of titanium dioxide nanoparticles (TiO2-NPs) in various consumer and industrial products, consequently their potential health hazards and environmental effects are considered an aspect of great concern. In the present study, in order to assess the impact of TiO2-NPs in the marine environment, the biological effects of TiO2-NPs on a sea bass cell line (DLEC) were investigated. Cells were exposed for 24 h to different concentrations of TiO2-NPs (1, 8, 40, 200 and 1000 μg/ml) or co-exposed with CdCl2 (Cd). The effects of UV light irradiation were also investigated in cells treated with TiO2-NPs and/or Cd. The internalization of TiO2-NPs and the morphological cell modifications induced by the treatments were examined by transmission and scanning electron microscopy, this latter coupled with energy dispersive X-ray spectroscopy (EDS) for particle element detection. In addition, the effects of controlled exposures were studied evaluating the cytotoxicity, the DNA damage and the expression of inflammatory genes. Our study indicates that TiO2-NPs were localized on the cell surface mainly as agglomerates revealed by EDS analysis and that they were uptaken by the cells inducing morphological changes. Photoactivation of TiO2-NPs and/or co-exposure with Cd affects ATP levels and it contributes to induce acute cellular toxicity in DLEC cells dependent on Ti concentration. The inflammatory potential and the DNA damage, this latter displayed through a caspase-3 independent apoptotic process, were also demonstrated. Overall our data suggest that the interaction of TiO2-NPs with marine water contaminants, such as cadmium, and the UV irradiation, may be an additional threat to marine organisms.
Collapse
Affiliation(s)
- S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - C Bernini
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - V Stocchi
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - A R Taddei
- Section of Electron Microscopy, Great Equipment Center, University of Tuscia, Viterbo, Italy.
| | - R Meschini
- Department of Environmental and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy.
| | - A M Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - L Rocco
- Department of Environmental, Biological and Pharmaceutical, Sciences and Technologies (DiSTABiF), Second University of Naples, Caserta, Italy.
| | - F Buonocore
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - D Cervia
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - G Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| |
Collapse
|
22
|
Konstantinova V, Ibrahim M, Lie SA, Birkeland ES, Neppelberg E, Marthinussen MC, Costea DE, Cimpan MR. Nano-TiO 2 penetration of oral mucosa: in vitro analysis using 3D organotypic human buccal mucosa models. J Oral Pathol Med 2017; 46:214-222. [PMID: 27387227 PMCID: PMC5347879 DOI: 10.1111/jop.12469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Oral cavity is a doorway for a variety of products containing titanium dioxide (TiO2 ) nanoparticles (NPs) (nano-TiO2 ) such as food additives, oral healthcare products and dental materials. Their potential to penetrate and affect normal human oral mucosa is not yet determined. OBJECTIVES To evaluate the ability of nano-TiO2 to penetrate the in vitro reconstructed normal human buccal mucosa (RNHBM). METHODS RNHBM was generated from primary normal human oral keratinocytes and fibroblasts isolated from buccal oral mucosa of healthy patients (n = 6). The reconstructed tissues were exposed after 10 days to clinically relevant concentrations of spherical or spindle rutile nano-TiO2 in suspension for short (20 min) and longer time (24 h). Ultrahigh-resolution imaging (URI) microscopy (CytoViva™ , Auburn, AL, USA) was used to assess the depth of penetration into reconstructed tissues. RESULTS Ultrahigh-resolution imaging microscopy demonstrated the presence of nano-TiO2 mostly in the epithelium of RNHBM at both 20 min and 24-h exposure, and this was shape and doze dependent at 24 h of exposure. The depth of penetration diminished in time at higher concentrations. The exposed epithelium showed increased desquamation but preserved thickness. CONCLUSION Nano-TiO2 is able to penetrate RNHBM and to activate its barrier function in a doze- and time-dependent manner.
Collapse
Affiliation(s)
- Victoria Konstantinova
- Department of Clinical DentistryFaculty of Medicine and DentistryUniversity of BergenBergenNorway
- Gade Laboratory for PathologyDepartment of Clinical MedicineFaculty of Medicine and DentistryUniversity of BergenBergenNorway
- Department of Global Public Health and Primary CareCentre for International HealthFaculty of Medicine and DentistryUniversity of BergenBergenNorway
| | - Mohamed Ibrahim
- Department of Clinical DentistryFaculty of Medicine and DentistryUniversity of BergenBergenNorway
- Department of Global Public Health and Primary CareCentre for International HealthFaculty of Medicine and DentistryUniversity of BergenBergenNorway
| | - Stein A. Lie
- Department of Clinical DentistryFaculty of Medicine and DentistryUniversity of BergenBergenNorway
| | - Eivind Salmorin Birkeland
- Department of Clinical DentistryFaculty of Medicine and DentistryUniversity of BergenBergenNorway
- Gade Laboratory for PathologyDepartment of Clinical MedicineFaculty of Medicine and DentistryUniversity of BergenBergenNorway
| | - Evelyn Neppelberg
- Department of Oral SurgeryInstitute of Clinical DentistryUniversity of BergenBergenNorway
- Department of Ear‐Nose‐and‐Throat SurgeryHaukeland University HospitalBergenNorway
| | - Mihaela Cuida Marthinussen
- Department of Clinical DentistryFaculty of Medicine and DentistryUniversity of BergenBergenNorway
- Oral Health Centre of Expertise in Western NorwayHordalandNorway
| | - Daniela Elena Costea
- Gade Laboratory for PathologyDepartment of Clinical MedicineFaculty of Medicine and DentistryUniversity of BergenBergenNorway
- Department of Global Public Health and Primary CareCentre for International HealthFaculty of Medicine and DentistryUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| | - Mihaela R. Cimpan
- Department of Clinical DentistryFaculty of Medicine and DentistryUniversity of BergenBergenNorway
| |
Collapse
|
23
|
Liu L, Zeng L, Wu L, Jiang X. Revealing the Effect of Protein Weak Adsorption to Nanoparticles on the Interaction between the Desorbed Protein and its Binding Partner by Surface-Enhanced Infrared Spectroelectrochemistry. Anal Chem 2017; 89:2724-2730. [PMID: 28192928 DOI: 10.1021/acs.analchem.6b01964] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In recent years, the properties of protein corona have attracted intense interest in the field of nanobio interface, but a long-ignored research issue is how the desorbed proteins suffering from conformational change upon weak association with nanoparticles affect their functional properties when further interacting with their downstream protein partners. In this Article, surface-enhanced infrared absorption spectroscopy (SEIRAS) and electrochemical cyclic voltammetry were used to study the adsorption and redox properties of the soluble cytochrome c (cyt c) on 11-mercaptoundecanoic acid (MUA) self-assembled monolayer (SAM) after weakly binding to and then desorbed from nano-TiO2. For the first time, our study reveals that the weak interaction between cyt c and nano-TiO2 induces the protein to undergo a heterogeneous conformational change. More importantly, the cyt c with a largely unfolded conformation exhibits a weaker interaction with its binding partner mimics than the native-like cyt c but a faster adsorption rate even at a concentration that is much lower than that of native-like cyt c. Correspondingly, the cyt c with a large unfolding shows a greatly positive-shifted formal potential (Ef) relative to the native-like protein possibly due to the disruption of the pocket structure of heme in the vicinity of Met80. These properties could enable the largely unfolded cyt c to undergo a favorable binding but an unavailable electron transfer to cytochrome c oxidase even in the presence of high-concentration native cyt c, probably causing the disruption of electron flow.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Li Zeng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Lie Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| |
Collapse
|
24
|
Serrão Sousa V, Corniciuc C, Ribau Teixeira M. The effect of TiO 2 nanoparticles removal on drinking water quality produced by conventional treatment C/F/S. WATER RESEARCH 2017; 109:1-12. [PMID: 27865169 DOI: 10.1016/j.watres.2016.11.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 10/28/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Nanoparticles, namely titanium dioxide (TiO2), are emerging contaminants widely used to commercial and industrial applications, are a potential hazard and can cause damage to environment and human health due to their toxicity. Therefore, their removal from the water is urgent to minimize or eliminate the adverse environmental and human effects. This work, investigates the efficiency of conventional coagulation/flocculation/sedimentation (C/F/S) from drinking water treatment to remove TiO2 nanoparticles (NPs) from surface waters, and pretends to understand if the removal of TiO2 NPs affects the ability of C/F/S to remove natural organic matter (NOM) and turbidity, and consequently affects the quality of the treated water. Results show that TiO2 NPs removal is high (>90%) for all the waters studied (hydrophobic and hydrophilic waters) and the treated water quality is not compromised (turbidity, Ti and Al concentrations, pH and conductivity are below the national and international guidelines). In addition, TiO2 initial concentrations, ranging between 0.2 and 10 mg/L, have not a significant impact on NPs removal by C/F/S. Therefore, the widely used polyaluminium based coagulants are effective in the removal of TiO2 NPs by conventional C/F/S treatment, but removal is strongly influenced by the water characteristics. Hydrophobic waters need a higher coagulant dose than hydrophilic waters to achieve the same TiO2 NPs removals, as well as water with higher UV254nm values. The principal mechanism involved in TiO2 NPs removal is charge neutralisation.
Collapse
Affiliation(s)
- Vânia Serrão Sousa
- CENSE, Center for Environmental and Sustainability Research, University of Algarve, Faculty of Sciences and Technology, Bldg 7, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Claudia Corniciuc
- University of Algarve, Faculty of Sciences and Technology, Bldg 7, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Margarida Ribau Teixeira
- CENSE, Center for Environmental and Sustainability Research, University of Algarve, Faculty of Sciences and Technology, Bldg 7, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
25
|
De Simone U, Lonati D, Ronchi A, Coccini T. Brief exposure to nanosized and bulk titanium dioxide forms induces subtle changes in human D384 astrocytes. Toxicol Lett 2016; 254:8-21. [DOI: 10.1016/j.toxlet.2016.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 01/09/2023]
|
26
|
Hsiao IL, Bierkandt FS, Reichardt P, Luch A, Huang YJ, Jakubowski N, Tentschert J, Haase A. Quantification and visualization of cellular uptake of TiO2 and Ag nanoparticles: comparison of different ICP-MS techniques. J Nanobiotechnology 2016; 14:50. [PMID: 27334629 PMCID: PMC4918130 DOI: 10.1186/s12951-016-0203-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/09/2016] [Indexed: 12/22/2022] Open
Abstract
Background Safety assessment of nanoparticles (NPs) requires techniques that are suitable to quantify tissue and cellular uptake of NPs. The most commonly applied techniques for this purpose are based on inductively coupled plasma mass spectrometry (ICP-MS). Here we apply and compare three different ICP-MS methods to investigate the cellular uptake of TiO2 (diameter 7 or 20 nm, respectively) and Ag (diameter 50 or 75 nm, respectively) NPs into differentiated mouse neuroblastoma cells (Neuro-2a cells). Cells were incubated with different amounts of the NPs. Thereafter they were either directly analyzed by laser ablation ICP-MS (LA-ICP-MS) or were lysed and lysates were analyzed by ICP-MS and by single particle ICP-MS (SP-ICP-MS). Results All techniques confirmed that smaller particles were taken up to a higher extent when values were converted in an NP number-based dose metric. In contrast to ICP-MS and LA-ICP-MS, this measure is already directly provided through SP-ICP-MS. Analysis of NP size distribution in cell lysates by SP-ICP-MS indicates the formation of NP agglomerates inside cells. LA-ICP-MS imaging shows that some of the 75 nm Ag NPs seemed to be adsorbed onto the cell membranes and were not penetrating into the cells, while most of the 50 nm Ag NPs were internalized. LA-ICP-MS confirms high cell-to-cell variability for NP uptake. Conclusions Based on our data we propose to combine different ICP-MS techniques in order to reliably determine the average NP mass and number concentrations, NP sizes and size distribution patterns as well as cell-to-cell variations in NP uptake and intracellular localization. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0203-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- I-Lun Hsiao
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.,Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Frank S Bierkandt
- Division of Inorganic Trace Analysis, German Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Philipp Reichardt
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Yuh-Jeen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Norbert Jakubowski
- Division of Inorganic Trace Analysis, German Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Jutta Tentschert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| |
Collapse
|
27
|
Chen CW, Huang JH, Lai TC, Jan YH, Hsiao M, Chen CH, Hwu YK, Liu RS. Evaluation of the intracellular uptake and cytotoxicity effect of TiO 2 nanostructures for various human oral and lung cells under dark conditions. Toxicol Res (Camb) 2016; 5:303-311. [PMID: 30090346 PMCID: PMC6062302 DOI: 10.1039/c5tx00312a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/17/2015] [Indexed: 01/15/2023] Open
Abstract
Titanium dioxide (TiO2) nanomaterials (NMs) have been widely used to develop commercial products such as sunscreen cosmetics because of their unique optical properties to provide complete protection from ultraviolet (UV) light. The most dangerous type of UV radiation is UVA, which comprises nearly 97% of the UV radiation that reaches the Earth. This type of radiation is also the major cause of skin damage. As the most beneficial content of sunscreen cosmetics, TiO2 NMs exhibit immense capability to protect the human skin from UVA exposure through their scattering and reflecting physical properties. Therefore, investigating the factors involved in using TiO2 NMs in cosmetics is necessary. In this study, various human oral and lung cell lines were selected to evaluate the cytotoxicity of treatment using different sizes and shapes of TiO2 NMs, including spheres (AFDC and AFDC300) and rods (M212 and cNRs). The morphology, size, and crystalline phase of the selected TiO2 NMs were studied to characterize each physical property. Based on cell viability and endocytic behavior results, treatment with all the selected TiO2 NMs were nearly non-toxic to the oral cell lines. However, high cytotoxicity was obviously observed in lung cells with M212 and AFDC treatments at 50 μg mL-1, which was larger by approximately 20% than with ADC300 and cNRs treatments because the smaller the TiO2 NMs, the larger their specific surface area. This condition resulted in the progress of apoptosis from the considerable aggregation of TiO2 NMs in the cytoplasm. Moreover, compared with those of TiO2 NMs with a similar structure (e.g., cNRs) and size (e.g., M212), the cellular uptake of AFDC was evidently low, which resulted in the approximated non-toxicity. Moreover, the similar sizes and different shapes of AFDC and cNRs were considered to treat lung cells to investigate further the influence of morphology on the cell cycle and the apoptosis effect. Consequently, AFDC and cNRs could inhibit the growth of lung cells and allow a considerable proportion of the cells to remain in the G1/G0 phase. Furthermore, a high-dose treatment would directly induce the apoptosis pathway, whereas a low-dose treatment might decrease cell regeneration.
Collapse
Affiliation(s)
- Chieh-Wei Chen
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan .
| | - Jing-Hong Huang
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan .
| | - Tsung-Ching Lai
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan .
| | - Yi-Hua Jan
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan .
| | - Michael Hsiao
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan .
| | - Chung-Hsuan Chen
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan .
| | - Yeu-Kuang Hwu
- Institute of Physics , Academia Sinica , Taipei 115 , Taiwan
| | - Ru-Shi Liu
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan .
- Genomics Research Center , Academia Sinica , Taipei 115 , Taiwan .
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology , National Taipei University of Technology , Taipei 106 , Taiwan
| |
Collapse
|
28
|
Wilson CL, Natarajan V, Hayward SL, Khalimonchuk O, Kidambi S. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles. NANOSCALE 2015; 7:18477-88. [PMID: 26274697 PMCID: PMC4636459 DOI: 10.1039/c5nr03646a] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 ± 10.56 ppm, 136.0 ± 31.73 ppm and 62.37 ± 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction.
Collapse
Affiliation(s)
- Christina L Wilson
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE 68588, USA.
| | | | | | | | | |
Collapse
|
29
|
Huerta-García E, Márquez-Ramírez SG, Ramos-Godinez MDP, López-Saavedra A, Herrera LA, Parra A, Alfaro-Moreno E, Gómez EO, López-Marure R. Internalization of titanium dioxide nanoparticles by glial cells is given at short times and is mainly mediated by actin reorganization-dependent endocytosis. Neurotoxicology 2015; 51:27-37. [PMID: 26340880 DOI: 10.1016/j.neuro.2015.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 01/12/2023]
Abstract
Many nanoparticles (NPs) have toxic effects on multiple cell lines. This toxicity is assumed to be related to their accumulation within cells. However, the process of internalization of NPs has not yet been fully characterized. In this study, the cellular uptake, accumulation, and localization of titanium dioxide nanoparticles (TiO2 NPs) in rat (C6) and human (U373) glial cells were analyzed using time-lapse microscopy (TLM) and transmission electron microscopy (TEM). Cytochalasin D (Cyt-D) was used to evaluate whether the internalization process depends of actin reorganization. To determine whether the NP uptake is mediated by phagocytosis or macropinocytosis, nitroblue tetrazolium (NBT) reduction was measured and the 5-(N-ethyl-N-isopropyl)-amiloride was used. Expression of proteins involved with endocytosis and exocytosis such as caveolin-1 (Cav-1) and cysteine string proteins (CSPs) was also determined using flow cytometry. TiO2 NPs were taken up by both cell types, were bound to cellular membranes and were internalized at very short times after exposure (C6, 30 min; U373, 2h). During the uptake process, the formation of pseudopodia and intracellular vesicles was observed, indicating that this process was mediated by endocytosis. No specific localization of TiO2 NPs into particular organelles was found: in contrast, they were primarily localized into large vesicles in the cytoplasm. Internalization of TiO2 NPs was strongly inhibited by Cyt-D in both cells and by amiloride in U373 cells; besides, the observed endocytosis was not associated with NBT reduction in either cell type, indicating that macropinocytosis is the main process of internalization in U373 cells. In addition, increases in the expression of Cav-1 protein and CSPs were observed. In conclusion, glial cells are able to internalize TiO2 NPs by a constitutive endocytic mechanism which may be associated with their strong cytotoxic effect in these cells; therefore, TiO2 NPs internalization and their accumulation in brain cells could be dangerous to human health.
Collapse
Affiliation(s)
- Elizabeth Huerta-García
- Departamento de Fisiología (Biología Celular), Instituto Nacional de Cardiología "Ignacio Chávez", Mexico; Departamento de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Sandra Gissela Márquez-Ramírez
- Departamento de Fisiología (Biología Celular), Instituto Nacional de Cardiología "Ignacio Chávez", Mexico; Departamento de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | | | | | - Luis Alonso Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Mexico; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - Alberto Parra
- Departamento de Inmunología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Ernesto Alfaro-Moreno
- Laboratorio de Toxicología Ambiental, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico(h); Swedish Toxicology Sciences Research Center (Swetox), Södertälje, Sweden
| | - Erika Olivia Gómez
- Academia de Biología, Colegio de Ciencias y Humanidades, Universidad Autónoma de la Ciudad de México, Mexico
| | - Rebeca López-Marure
- Departamento de Fisiología (Biología Celular), Instituto Nacional de Cardiología "Ignacio Chávez", Mexico.
| |
Collapse
|
30
|
Schoelermann J, Burtey A, Allouni ZE, Gerdes HH, Cimpan MR. Contact-dependent transfer of TiO₂ nanoparticles between mammalian cells. Nanotoxicology 2015; 10:204-15. [PMID: 26037905 DOI: 10.3109/17435390.2015.1048322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cellular organelles have been shown to shuttle between cells in co-culture. We hereby show that titanium dioxide (TiO2) nanoparticles (NPs) can be transferred in such a manner, between cells in direct contact, along with endosomes and lysosomes. A co-culture system was employed for this purpose and the NP transfer was observed in mammalian cells including normal rat kidney (NRK) and HeLa cells. We found that the small GTPase Arf6 facilitates the intercellular transfer of smaller NPs and agglomerates. Spherical, anatase nano-TiO2 with sizes of 5 (Ti5) and 40 nm (Ti40) were used in this study. Humans are increasingly exposed to TiO2 NPs from external sources such as constituents of foods, cosmetics, and pharmaceuticals, or from internal sources represented by Ti-based implants, which release NPs upon abrasion. Exposure to 5 mg/l of Ti5 and Ti40 for 24 h did not affect cellular viability but modified their ability to communicate with surrounding cells. Altogether, our results have important implications for the design of nanomedicines, drug delivery and toxicity.
Collapse
Affiliation(s)
- Julia Schoelermann
- a Department of Biomedicine, Faculty of Medicine and Dentistry , University of Bergen , Bergen , Norway and
| | - Anne Burtey
- a Department of Biomedicine, Faculty of Medicine and Dentistry , University of Bergen , Bergen , Norway and
| | - Zouhir Ekeland Allouni
- b Division of Biomaterials, Department of Clinical Dentistry, Faculty of Medicine and Dentistry , University of Bergen , Bergen , Norway
| | - Hans-Hermann Gerdes
- a Department of Biomedicine, Faculty of Medicine and Dentistry , University of Bergen , Bergen , Norway and
| | - Mihaela Roxana Cimpan
- b Division of Biomaterials, Department of Clinical Dentistry, Faculty of Medicine and Dentistry , University of Bergen , Bergen , Norway
| |
Collapse
|
31
|
Mao Z, Xu B, Ji X, Zhou K, Zhang X, Chen M, Han X, Tang Q, Wang X, Xia Y. Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics. NANOSCALE 2015; 7:8466-8475. [PMID: 25891938 DOI: 10.1039/c5nr01448d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in our daily lives, for example, in the areas of sunscreens, cosmetics, toothpastes, food products, and nanomedical reagents. Recently, increasing concern has been raised about their neurotoxicity, but the mechanisms underlying such toxic effects are still unknown. In this work, we employed a human neuroblastoma cell line (SH-SY5Y) to study the effects of TiO2 NPs on neurological systems. Our results showed that TiO2 NPs did not affect cell viability but induced noticeable morphological changes until 100 μg ml(-1). Immunofluorescence detection showed disorder, disruption, retraction, and decreased intensity of the microtubules after TiO2 NPs treatment. Both α and β tubule expressions did not change in the TiO2 NP-treated group, but the percentage of soluble tubules was increased. A microtubule dynamic study in living cells indicated that TiO2 NPs caused a lower growth rate and a higher shortening rate of microtubules as well as shortened lifetimes of de novo microtubules. TiO2 NPs did not cause changes in the expression and phosphorylation state of tau proteins, but a tau-TiO2 NP interaction was observed. TiO2 NPs could interact with tubule heterodimers, microtubules and tau proteins, which led to the instability of microtubules, thus contributing to the neurotoxicity of TiO2 NPs.
Collapse
Affiliation(s)
- Zhilei Mao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211100, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Periasamy VS, Athinarayanan J, Al-Hadi AM, Juhaimi FA, Alshatwi AA. Effects of titanium dioxide nanoparticles isolated from confectionery products on the metabolic stress pathway in human lung fibroblast cells. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 68:521-533. [PMID: 25543150 DOI: 10.1007/s00244-014-0109-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
Titanium dioxide (TiO2) is a common additive in many foods, pigments, personal care products, and other consumer products used in daily life. Despite the widespread use of nanoscale TiO2 and composites of nanoscale TiO2 in the food industry, there is a serious lack of awareness of the toxicity of TiO2 nanoparticles (NPs) among consumers and manufacturers. There is an urgent need for toxicological studies of TiO2 NPs. TiO2 food additives separated from marketed foods were characterized by transmission electron microscopy. In addition, the effects of TiO2 NPs on metabolic stress in WI-38 cells were analyzed. Cell viability, total ROS, mitochondrial transmembrane potential (ΔψM), cell cycle, and metabolism-related gene expression were analyzed. The results indicate that TiO2 NPs have a significant concentration-dependent toxic effect in lung cells. The ΔψM, the intracellular ROS level, and the stages of the WI-38 cell cycle were altered by increasing TiO2 concentrations after exposure for 24 and 48 h relative to the control. Cytochrome P450 1A, GSTM3, and glutathione S-transferase A4 upregulation in response to the TiO2 NPs was observed. These findings suggest that the toxicity of TiO2 from confectionery products in WI-38 cells may be mediated through an increase in oxidative stress. The results of this study clearly demonstrate the nanotoxicological effects of TiO2 on WI-38 cells and will be useful for nanotoxicological indexing.
Collapse
Affiliation(s)
- Vaiyapuri Subbarayan Periasamy
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, P.O. Box 2460, Riyadh, 11451, Kingdom of Saudi Arabia
| | | | | | | | | |
Collapse
|
33
|
Allouni ZE, Gjerdet NR, Cimpan MR, Høl PJ. The effect of blood protein adsorption on cellular uptake of anatase TiO2 nanoparticles. Int J Nanomedicine 2015; 10:687-95. [PMID: 25632230 PMCID: PMC4304597 DOI: 10.2147/ijn.s72726] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Protein adsorption onto nanoparticles (NPs) in biological fluids has emerged as an important factor when testing biological responses to NPs, as this may influence both uptake and subsequent toxicity. The aim of the present study was to quantify the adsorption of proteins onto TiO2 NPs and to test the influence on cellular uptake. The surface composition of the particles was characterized by thermal analysis and by X-ray photoelectron spectroscopy. The adsorption of three blood proteins, ie, human serum albumin (HSA), γ-globulins (Glbs), and fibrinogen (Fib), onto three types of anatase NPs of different sizes was quantified for each protein. The concentration of the adsorbed protein was measured by ultraviolet-visible spectrophotometry using the Bradford method. The degree of cellular uptake was quantified by inductivity coupled plasma mass spectroscopy, and visualized by an ultra-high resolution imaging system. The proteins were adsorbed onto all of the anatase NPs. The quantity adsorbed increased with time and was higher for the smaller particles. Fib and Glbs showed the highest affinity to TiO2 NPs, while the lowest was seen for HSA. The adsorption of proteins affected the surface charge and the hydrodynamic diameter of the NPs in cell culture medium. The degree of particle uptake was highest in protein-free medium and in the presence HSA, followed by culture medium supplemented with Glbs, and lowest in the presence of Fib. The results indicate that the uptake of anatase NPs by fibroblasts is influenced by the identity of the adsorbed protein.
Collapse
Affiliation(s)
- Zouhir E Allouni
- Faculty of Medicine and Dentistry, Department of Clinical Dentistry, Biomaterials, University of Bergen, Bergen, Norway
| | - Nils R Gjerdet
- Faculty of Medicine and Dentistry, Department of Clinical Dentistry, Biomaterials, University of Bergen, Bergen, Norway
| | - Mihaela R Cimpan
- Faculty of Medicine and Dentistry, Department of Clinical Dentistry, Biomaterials, University of Bergen, Bergen, Norway
| | - Paul J Høl
- Faculty of Medicine and Dentistry, Department of Clinical Medicine, Biomaterials, University of Bergen, Bergen, Norway
- Department of Orthopaedic Surgery, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
34
|
Medina-Reyes EI, Déciga-Alcaraz A, Freyre-Fonseca V, Delgado-Buenrostro NL, Flores-Flores JO, Gutiérrez-López GF, Sánchez-Pérez Y, García-Cuéllar CM, Pedraza-Chaverri J, Chirino YI. Titanium dioxide nanoparticles induce an adaptive inflammatory response and invasion and proliferation of lung epithelial cells in chorioallantoic membrane. ENVIRONMENTAL RESEARCH 2015; 136:424-434. [PMID: 25460664 DOI: 10.1016/j.envres.2014.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) studies have been performed using relatively high NPs concentration under acute exposure and limited studies have compared shape effects. We hypothesized that midterm exposure to low TiO2 NPs concentration in lung epithelial cells induces carcinogenic characteristics modulated partially by NPs shape. To test our hypothesis we synthesized NPs shaped as belts (TiO2-B) using TiO2 spheres (TiO2-SP) purchased from Sigma Aldrich Co. Then, lung epithelial A549 cells were low-exposed (10 µg/cm(2)) to both shapes during 7 days and internalization, cytokine release and invasive potential were determined. Results showed greater TiO2-B effect on agglomerates size, cell size and granularity than TiO2-SP. Agglomerates size in cell culture medium was 310 nm and 454 nm for TiO2-SP and TiO2-B, respectively; TiO2-SP and TiO2-B induced 23% and 70% cell size decrease, respectively, whilst TiO2-SP and TiO2-B induced 7 and 14-fold of granularity increase. NOx production was down-regulated (31%) by TiO2-SP and up-regulated (70%) by TiO2-B. Both NPs induced a transient cytokine release (IL-2, IL-6, IL-8, IL-4, IFN-γ, and TNF-α) after 4 days, but cytokines returned to basal levels in TiO2-SP exposed cells while TiO2-B induced a down-regulation after 7 days. Midterm exposure to both shapes of NPs induced capability to degrade cellular extracellular matrix components from chorioallantoic membrane and Ki-67 marker showed that TiO2-B had higher proliferative potential than TiO2-SP. We conclude that midterm exposure to low NPs concentration of NPs has an impact in the acquisition of new characteristics of exposed cells and NPs shape influences cellular outcome.
Collapse
Affiliation(s)
- Estefany I Medina-Reyes
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059 Estado de México, Mexico
| | - Alejandro Déciga-Alcaraz
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059 Estado de México, Mexico
| | - Verónica Freyre-Fonseca
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059 Estado de México, Mexico; Doctorado en Ciencias en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, CP 11340 México, DF, Mexico
| | - Norma L Delgado-Buenrostro
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059 Estado de México, Mexico
| | - José O Flores-Flores
- Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria AP 70-186, CP 04510 México, DF, Mexico
| | - Gustavo F Gutiérrez-López
- Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, CP 11340 México, DF, Mexico
| | - Yesennia Sánchez-Pérez
- Instituto Nacional de Cancerología, Subdirección de Investigación Básica, San Fernando 22, Tlalpan, CP 14080 México, DF, Mexico
| | - Claudia M García-Cuéllar
- Instituto Nacional de Cancerología, Subdirección de Investigación Básica, San Fernando 22, Tlalpan, CP 14080 México, DF, Mexico
| | - José Pedraza-Chaverri
- Laboratorio 209, Edificio F, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, CP 04510 México, DF, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, CP 54059 Estado de México, Mexico.
| |
Collapse
|
35
|
Ogneva IV, Buravkov SV, Shubenkov AN, Buravkova LB. Mechanical characteristics of mesenchymal stem cells under impact of silica-based nanoparticles. NANOSCALE RESEARCH LETTERS 2014; 9:284. [PMID: 24948901 PMCID: PMC4055799 DOI: 10.1186/1556-276x-9-284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/24/2014] [Indexed: 05/07/2023]
Abstract
Silica-based nanoparticles (NPs) pose great potential for medical and biological applications; however, their interactions with living cells have not been investigated in full. The objective of this study was to analyze the mechanical characteristics of mesenchymal stem cells when cultured in the presence of silica (Si) and silica-boron (SiB) nanoparticles. Cell stiffness was measured using atomic force microscopy; F-actin structure was evaluated using TRITC-phalloidin by confocal microscopy. The obtained data suggested that the cell stiffness increased within the following line: 'Control' - 'Si' - 'SiB' (either after 1-h cultivation or 24-h incubation). Moreover, the cell stiffness was found to be higher after 1-h cultivation as compared to 24-h cultivation. This result shows that there is a two-phase process of particle diffusion into cells and that the particles interact directly with the membrane and, further, with the submembranous cytoskeleton. Conversely, the intensity of phalloidin fluorescence dropped within the same line: Control - Si - SiB. It could be suggested that the effects of silica-based particles may result in structural reorganization of cortical cytoskeleton with subsequent stiffness increase and concomitant F-actin content decrease (for example, in recruitment of additional actin-binding proteins within membrane and regrouping of actin filaments).
Collapse
Affiliation(s)
- Irina V Ogneva
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Khoroshevskoyoe shosse, 76a, Moscow 123007, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Sergey V Buravkov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow 119192, Russia
| | - Alexander N Shubenkov
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Khoroshevskoyoe shosse, 76a, Moscow 123007, Russia
| | - Ludmila B Buravkova
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Khoroshevskoyoe shosse, 76a, Moscow 123007, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow 119192, Russia
| |
Collapse
|
36
|
Janer G, Mas del Molino E, Fernández-Rosas E, Fernández A, Vázquez-Campos S. Cell uptake and oral absorption of titanium dioxide nanoparticles. Toxicol Lett 2014; 228:103-10. [PMID: 24793716 DOI: 10.1016/j.toxlet.2014.04.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/17/2014] [Accepted: 04/19/2014] [Indexed: 10/25/2022]
Abstract
Large efforts are invested on the development of in vitro tests to evaluate nanomaterial (NM) toxicity. In order to assess the relevance of the adverse effects identified in in vitro toxicity tests a thorough understanding of the biokinetics of NMs is critical. We used different in vitro and in vivo test methods to evaluate cell uptake and oral absorption of titanium dioxide nanoparticles (TiO2 NPs). These NPs were readily uptaken by A549 cells (carcinomic human alveolar basal epithelial cells) in vitro. Such rapid uptake contrasted with a very low oral absorption in a differentiated Caco-2 monolayer system (human epithelial colorectal adenocarcinoma cells) and after oral gavage administration to rats. In this oral study, no significant increase in the levels of titanium was recorded by ICP-MS in any of the tissues evaluated (including among other: small intestine, Peyer's patches, mesenteric lymph nodes, liver, and spleen). No NPs were observed by TEM in sections of the small intestine, except for several particles in the cytoplasm of a cell from a Peyer's Patch area. The observation of NPs in Peyer's Patch suggests that the Caco-2 monolayer system is likely to underestimate the potential for oral absorption of NPs and that the model could be improved by including M-cells in co-culture.
Collapse
Affiliation(s)
- G Janer
- LEITAT Technological Center, C/de la Innovació, 2, Terrassa, 08225, Spain
| | - E Mas del Molino
- LEITAT Technological Center, C/de la Innovació, 2, Terrassa, 08225, Spain
| | - E Fernández-Rosas
- LEITAT Technological Center, C/de la Innovació, 2, Terrassa, 08225, Spain
| | - A Fernández
- LEITAT Technological Center, C/de la Innovació, 2, Terrassa, 08225, Spain
| | - S Vázquez-Campos
- LEITAT Technological Center, C/de la Innovació, 2, Terrassa, 08225, Spain.
| |
Collapse
|
37
|
Clemente Z, Castro VLSS, Moura MAM, Jonsson CM, Fraceto LF. Toxicity assessment of TiO₂ nanoparticles in zebrafish embryos under different exposure conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 147:129-39. [PMID: 24418748 DOI: 10.1016/j.aquatox.2013.12.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/13/2013] [Accepted: 12/18/2013] [Indexed: 05/25/2023]
Abstract
The popularity of TiO2 nanoparticles (nano-TiO2) lies in their wide range of nanotechnological applications, together with low toxicity. Meanwhile, recent studies have shown that the photocatalytic properties of this material can result in alterations in their behavior in the environment, causing effects that have not yet been fully elucidated. The objective of this study was to evaluate the toxicity of two formulations of nano-TiO2 under different illumination conditions, using an experimental model coherent with the principle of the three Rs of alternative animal experimentation (reduction, refinement, and replacement). Embryos of the fish Danio rerio were exposed for 96h to different concentrations of nano-TiO2 in the form of anatase (TA) or an anatase/rutile mixture (TM), under either visible light or a combination of visible and ultraviolet light (UV). The acute toxicity and sublethal parameters evaluated included survival rates, malformation, hatching, equilibrium, and overall length of the larvae, together with biochemical biomarkers (specific activities of catalase (CAT), glutathione S-transferase (GST), and acid phosphatase (AP)). Both TA and TM caused accelerated hatching of the larvae. Under UV irradiation, there was greater mortality of the larvae of the groups exposed to TM, compared to those exposed to TA. Exposure to TM under UV irradiation altered the equilibrium of the larvae. Alterations in the activities of CAT and GST were indicative of oxidative stress, although no clear dose-response relationship was observed. The effects of nano-TiO2 appeared to depend on both the type of formulation and the illumination condition. The findings contribute to elucidation of the factors involved in the toxicity of these nanoparticles, as well as to the establishment of protocols for risk assessments of nanotechnology.
Collapse
Affiliation(s)
- Z Clemente
- Laboratório de Ecotoxicologia e Biossegurança, Embrapa CNPMA, Jaguariúna, SP, Brazil; Programa de Pós-graduação em Biologia Funcional e Molecular, UNICAMP, Campinas, SP, Brazil.
| | - V L S S Castro
- Laboratório de Ecotoxicologia e Biossegurança, Embrapa CNPMA, Jaguariúna, SP, Brazil
| | - M A M Moura
- Laboratório da Ciência das Plantas Daninhas, Instituto Biológico, APTA/SAA, Campinas, SP, Brazil
| | - C M Jonsson
- Laboratório de Ecotoxicologia e Biossegurança, Embrapa CNPMA, Jaguariúna, SP, Brazil
| | - L F Fraceto
- Programa de Pós-graduação em Biologia Funcional e Molecular, UNICAMP, Campinas, SP, Brazil; Departamento de Engenharia Ambiental, UNESP, Sorocaba, SP, Brazil
| |
Collapse
|
38
|
Vetten MA, Tlotleng N, Tanner Rascher D, Skepu A, Keter FK, Boodhia K, Koekemoer LA, Andraos C, Tshikhudo R, Gulumian M. Label-free in vitro toxicity and uptake assessment of citrate stabilised gold nanoparticles in three cell lines. Part Fibre Toxicol 2013; 10:50. [PMID: 24103467 PMCID: PMC3853235 DOI: 10.1186/1743-8977-10-50] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 09/28/2013] [Indexed: 11/18/2022] Open
Abstract
Background Reliable in vitro toxicity testing is needed prior to the commencement of in vivo testing necessary for hazard identification and risk assessment of nanoparticles. In this study, the cytotoxicity and uptake of 14 nm and 20 nm citrate stabilised gold nanoparticles (AuNPs) in the bronchial epithelial cell line BEAS-2B, the Chinese hamster ovary cell line CHO, and the human embryonic kidney cell line HEK 293 were investigated. Methods Cytotoxicity of the AuNPs was assessed via traditional XTT-, LDH-, and ATP-based assays, followed by cell impedance studies. Dark-field imaging and hyperspectral imaging were used to confirm the uptake of AuNPs into the cells. Results Interference of the AuNPs with the XTT- and ATP-based assays was overcome through the use of cell impedance technology. AuNPs were shown to be relatively non-toxic using this methodology; nevertheless CHO cells were the most sensitive cell type with 20 nm AuNPs having the highest toxicity. Uptake of both 14 nm and 20 nm AuNPs was observed in all cell lines in a time- and cell type-dependent manner. Conclusions Using the cell impedance and dark-field hyperspectral imaging technologies, it was possible to study the toxicity of AuNPs in different cell lines and show that these cells could internalize AuNPs with their subsequent intracellular aggregation. It was also possible to show that this toxicity would not correlate with the level of uptake but it would correlate with cell-type and the size of the AuNPs. Therefore, these two label-free methodologies used in this study are suitable for in vitro studies on the effects of AuNPs, and could present themselves as appropriate and valuable methodologies for future nanoparticle toxicity and uptake studies.
Collapse
Affiliation(s)
- Melissa A Vetten
- Toxicology Section, National Institute for Occupational Health (NIOH), P O Box 4788, Johannesburg 2000, South Africa.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Clemente Z, Castro VL, Feitosa LO, Lima R, Jonsson CM, Maia AHN, Fraceto LF. Fish exposure to nano-TiO2 under different experimental conditions: methodological aspects for nanoecotoxicology investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 463-464:647-656. [PMID: 23845857 DOI: 10.1016/j.scitotenv.2013.06.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
The ecotoxicology of nano-TiO2 has been extensively studied in recent years; however, few toxicological investigations have considered the photocatalytic properties of the substance, which can increase its toxicity to aquatic biota. The aim of this work was to evaluate the effects on fish exposed to different nano-TiO2 concentrations and illumination conditions. The interaction of these variables was investigated by observing the survival of the organisms, together with biomarkers of biochemical and genetic alterations. Fish (Piaractus mesopotamicus) were exposed for 96 h to 0, 1, 10, and 100 mg/L of nano-TiO2, under visible light, and visible light with ultraviolet (UV) light (22.47 J/cm(2)/h). The following biomarkers of oxidative stress were monitored in the liver: concentrations of lipid hydroperoxide and carbonylated protein, and specific activities of superoxide dismutase, catalase, and glutathione S-transferase. Other biomarkers of physiological function were also studied: the specific activities of acid phosphatase and Na,K-ATPase were analyzed in the liver and brain, respectively, and the concentration of metallothionein was measured in the gills. In addition, micronucleus and comet assays were performed with blood as genotoxic biomarkers. Nano-TiO2 caused no mortality under any of the conditions tested, but induced sublethal effects that were influenced by illumination condition. Under both illumination conditions tested, exposure to 100 mg/L showed an inhibition of acid phosphatase activity. Under visible light, there was an increase in metallothionein level in fish exposed to 1 mg/L of nano-TiO2. Under UV light, protein carbonylation was reduced in groups exposed to 1 and 10 mg/L, while nucleus alterations in erythrocytes were higher in fish exposed to 10 mg/L. As well as improving the understanding of nano-TiO2 toxicity, the findings demonstrated the importance of considering the experimental conditions in nanoecotoxicological tests. This work provides information for the development of protocols to study substances whose toxicity is affected by illumination conditions.
Collapse
Affiliation(s)
- Z Clemente
- Department of Biochemistry, Institute of Biology, State University of Campinas, Rua Monteiro Lobato 255, CEP 13083-862 Campinas, SP, Brazil; Laboratory of Ecotoxicology and Biosafety, Embrapa, Rodovia SP 340, Km 127.5, CP 69, CEP 13820-000, Jaguariúna, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
40
|
Xu QF, Liu Y, Lin FJ, Mondal B, Lyons AM. Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties. ACS APPLIED MATERIALS & INTERFACES 2013; 5:8915-24. [PMID: 23889192 DOI: 10.1021/am401668y] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Multifunctional superhydrophobic nanocomposite surfaces based on photocatalytic materials, such as fluorosilane modified TiO2, have generated significant research interest. However, there are two challenges to forming such multifunctional surfaces with stable superhydrophobic properties: the photocatalytic oxidation of the hydrophobic functional groups, which leads to the permanent loss of superhydrophobicity, as well as the photoinduced reversible hydrolysis of the catalytic particle surface. Herein, we report a simple and inexpensive template lamination method to fabricate multifunctional TiO2-high-density polyethylene (HDPE) nanocomposite surfaces exhibiting superhydrophobicity, UV-induced reversible wettability, and self-cleaning properties. The laminated surface possesses a hierarchical roughness spanning the micro- to nanoscale range. This was achieved by using a wire mesh template to emboss the HDPE surface creating an array of polymeric posts while partially embedding untreated TiO2 nanoparticles selectively into the top surface of these features. The surface exhibits excellent superhydrophobic properties immediately after lamination without any chemical surface modification to the TiO2 nanoparticles. Exposure to UV light causes the surface to become hydrophilic. This change in wettability can be reversed by heating the surface to restore superhydrophobicity. The effect of TiO2 nanoparticle surface coverage and chemical composition on the mechanism and magnitude of wettability changes was studied by EDX and XPS. In addition, the ability of the surface to shed impacting water droplets as well as the ability of such droplets to clean away particulate contaminants was demonstrated.
Collapse
Affiliation(s)
- Qian Feng Xu
- Department of Chemistry, College of Staten Island, City University of New York , New York, New York 10314, United States
| | | | | | | | | |
Collapse
|
41
|
Immunomodulation and T helper TH₁/TH₂ response polarization by CeO₂ and TiO₂ nanoparticles. PLoS One 2013; 8:e62816. [PMID: 23667525 PMCID: PMC3648566 DOI: 10.1371/journal.pone.0062816] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/26/2013] [Indexed: 01/12/2023] Open
Abstract
Immunomodulation by nanoparticles, especially as related to the biochemical properties of these unique materials, has scarcely been explored. In an in vitro model of human immunity, we demonstrate two catalytic nanoparticles, TiO2 (oxidant) and CeO2 (antioxidant), have nearly opposite effects on human dendritic cells and T helper (TH) cells. For example, whereas TiO2 nanoparticles potentiated DC maturation that led towards TH1-biased responses, treatment with antioxidant CeO2 nanoparticles induced APCs to secrete the anti-inflammatory cytokine, IL-10, and induce a TH2-dominated T cell profile. In subsequent studies, we demonstrate these results are likely explained by the disparate capacities of the nanoparticles to modulate ROS, since TiO2, but not CeO2 NPs, induced inflammatory responses through an ROS/inflammasome/IL-1β pathway. This novel capacity of metallic NPs to regulate innate and adaptive immunity in profoundly different directions via their ability to modulate dendritic cell function has strong implications for human health since unintentional exposure to these materials is common in modern societies.
Collapse
|
42
|
Cimpan MR, Mordal T, Schölermann J, Allouni ZE, Pliquett U, Cimpan E. An impedance-based high-throughput method for evaluating the cytotoxicity of nanoparticles. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/429/1/012026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Vranic S, Boggetto N, Contremoulins V, Mornet S, Reinhardt N, Marano F, Baeza-Squiban A, Boland S. Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Part Fibre Toxicol 2013; 10:2. [PMID: 23388071 PMCID: PMC3599262 DOI: 10.1186/1743-8977-10-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/03/2013] [Indexed: 01/08/2023] Open
Abstract
Background The uptake of nanoparticles (NPs) by cells remains to be better characterized in order to understand the mechanisms of potential NP toxicity as well as for a reliable risk assessment. Real NP uptake is still difficult to evaluate because of the adsorption of NPs on the cellular surface. Results Here we used two approaches to distinguish adsorbed fluorescently labeled NPs from the internalized ones. The extracellular fluorescence was either quenched by Trypan Blue or the uptake was analyzed using imaging flow cytometry. We used this novel technique to define the inside of the cell to accurately study the uptake of fluorescently labeled (SiO2) and even non fluorescent but light diffracting NPs (TiO2). Time course, dose-dependence as well as the influence of surface charges on the uptake were shown in the pulmonary epithelial cell line NCI-H292. By setting up an integrative approach combining these flow cytometric analyses with confocal microscopy we deciphered the endocytic pathway involved in SiO2 NP uptake. Functional studies using energy depletion, pharmacological inhibitors, siRNA-clathrin heavy chain induced gene silencing and colocalization of NPs with proteins specific for different endocytic vesicles allowed us to determine macropinocytosis as the internalization pathway for SiO2 NPs in NCI-H292 cells. Conclusion The integrative approach we propose here using the innovative imaging flow cytometry combined with confocal microscopy could be used to identify the physico-chemical characteristics of NPs involved in their uptake in view to redesign safe NPs.
Collapse
Affiliation(s)
- Sandra Vranic
- Univ Paris Diderot, Sorbonne Paris Cité, Laboratory of Molecular and Cellular Responses to Xenobiotics, Unit of Functional and Adaptive Biology (BFA) EAC CNRS 4413, 5 rue Thomas Mann, Paris 75 013, France.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Luque-Garcia JL, Sanchez-Díaz R, Lopez-Heras I, Camara C, Martin P. Bioanalytical strategies for in-vitro and in-vivo evaluation of the toxicity induced by metallic nanoparticles. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2012.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Hamzeh M, Sunahara GI. In vitro cytotoxicity and genotoxicity studies of titanium dioxide (TiO2) nanoparticles in Chinese hamster lung fibroblast cells. Toxicol In Vitro 2012; 27:864-73. [PMID: 23274916 DOI: 10.1016/j.tiv.2012.12.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 12/10/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022]
Abstract
There are increasing safety concerns about the development and abundant use of nanoparticles. The unique physical and chemical characteristics of titanium dioxide (TiO2) nanoparticles result in different chemical and biological activities compared to their larger micron-sized counterparts, and can subsequently play an important role in influencing toxicity. Therefore, our objective was to investigate the cytotoxicity and genotoxicity of commercially available TiO2 nanoparticles with respect to their selected physicochemical properties, as well as the role of surface coating of these nanoparticles. While all types of tested TiO2 samples decrease cell viability in a mass-based concentration- and size-dependent manner, the polyacrylate-coated nano-TiO2 product was only cytotoxic at higher concentrations. A similar pattern of response was observed for induction of apoptosis/necrosis, and no DNA damage was detected in the polyacrylate-coated nano-TiO2 model. Given the increasing production of TiO2 nanoparticles, toxicological studies should take into account the physiochemical properties of these nanoparticles that may help researchers to develop new nanoparticles with minimum toxicity.
Collapse
Affiliation(s)
- Mahsa Hamzeh
- National Research Council Canada, 6100 Royalmount Ave., Montréal, QC H4P 2R2, Canada.
| | | |
Collapse
|
46
|
Effect of nanoparticles and environmental particles on a cocultures model of the air-blood barrier. BIOMED RESEARCH INTERNATIONAL 2012; 2013:801214. [PMID: 23509780 PMCID: PMC3591223 DOI: 10.1155/2013/801214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 12/02/2022]
Abstract
Exposure to engineered nanoparticles (NPs) and to ambient particles (PM) has increased significantly. During the last decades the application of nano-objects to daily-life goods and the emissions produced in highly urbanized cities have considerably augmented. As a consequence, the understanding of the possible effects of NPs and PM on human respiratory system and particularly on the air-blood barrier (ABB) has become of primary interest. The crosstalk between lung epithelial cells and underlying endothelial cells is indeed essential in determining the effects of inhaled particles. Here we report the effects of metal oxides NPs (CuO and TiO2) and of PM on an in vitro model of the ABB constituted by the type II epithelial cell line (NCI-H441) and the endothelial one (HPMEC-ST1.6R). The results demonstrate that apical exposure of alveolar cells induces significant modulation of proinflammatory proteins also in endothelial cells.
Collapse
|
47
|
Couleau N, Techer D, Pagnout C, Jomini S, Foucaud L, Laval-Gilly P, Falla J, Bennasroune A. Hemocyte responses of Dreissena polymorpha following a short-term in vivo exposure to titanium dioxide nanoparticles: preliminary investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 438:490-497. [PMID: 23032565 DOI: 10.1016/j.scitotenv.2012.08.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/24/2012] [Accepted: 08/26/2012] [Indexed: 06/01/2023]
Abstract
The widespread use of titanium-based nanoparticles and their environmental release may pose a significant risk to aquatic organisms within freshwater ecosystems. Suspension-feeder invertebrates like bivalve molluscs represent a unique target group for nanoparticle toxicology. The aim of this work was to investigate the short-term responses of Dreissena polymorpha hemocytes after in vivo exposure to titanium dioxide nanoparticles (TiO(2) NP). For this purpose, freshwater mussels were exposed to P25 TiO(2) NP at the concentrations of 0.1, 1, 5 and 25mg/L during 24h. Viability, phagocytosis activity and mitogen activated protein kinase (MAPK) phosphorylation level of ERK 1/2 and p38 in hemocytes extracted from exposed mussels were compared to those from control specimens. Results demonstrated an inhibition of the phagocytosis activity after exposure to TiO(2) NP at 0.1 and 1mg/L. Similar trends, albeit less pronounced, were reported for higher concentrations of NP. Transmission electron microscopy showed for the first time the internalization of TiO(2) NP into Dreissena polymorpha hemocytes. Besides, exposure to NP increased the ERK 1/2 phosphorylation levels in all treatments. Concerning the phosphorylation level of p38, only exposures to 5 and 25mg/L of NP induced significant p38 activation in comparison to that of the control. Finally, these short-term effects observed at environmentally relevant concentrations highlighted the need for further studies concerning ecotoxicological evaluation of nanoparticle release into an aquatic environment.
Collapse
Affiliation(s)
- Nicolas Couleau
- Université de Lorraine, Laboratoire des Interactions Ecotoxicologie, Biodiversité, Ecosystèmes, CNRS UMR 7146, IUT Thionville-Yutz, Espace Cormontaigne, Yutz, F-57970, France
| | | | | | | | | | | | | | | |
Collapse
|