1
|
Ben Amor M, Hamdaoui L, Daoud S, Ammar M, Louati N, Elleuch A, Badraoui R, Ben Mahmoud L, Ben Amor I, Sellami A, Rebai T. Impact of sub-chronic exposure to Kalach on male reproductive system and sperm function: In silico modelling and in vivo study in rats. Reprod Toxicol 2025; 132:108853. [PMID: 39922324 DOI: 10.1016/j.reprotox.2025.108853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Kalach 360 SL (KL), a glyphosate-based herbicide, is among the most widely used herbicides in Tunisia. This study aimed to evaluate the impact of sub-chronic exposure to KL on the male reproductive system and sperm parameters in adult rats after one and two cycles of spermatogenesis. 15 rats were randomly divided into three groups: a control group (G1) and two experimental groups (G2 and G3), exposed to KL at a dose of 102.2 mg/kg each day for 48 days. Treated groups G2 and G3 were sacrificed at day 48 and at day 96, respectively. We measured serum levels of testosterone and oestradiol, oxidative stress markers in testis, epididymal sperm parameters, sperm mitochondrial membrane potential (MMP), as well as testicular histopathology and morphometry as diagnostic markers of reproductive dysfunction. Additionally, we complemented the in vivo study with in silico modelling. Kl impaired sperm parameters, altered MMP, promoted oxidative stress, and affected testicular morphology, leading to reduced seminiferous epithelium height and delayed spermatogenesis arrest. KL caused significant declines in serum testosterone levels after 48 days (G2 group), supporting the herbicide's anti-androgenic activity. Notably, following cessation of exposure, testosterone levels increased and sperm concentration returned to normal by day 96 (G3 group). The computational approach revealed that glyphosate binds to the androgen receptor (2Q7K and 3QKM) with good affinities and strong molecular interactions, corroborating the in vivo results. We conclude that KL may interfere with spermatogenesis, impair male fertility, and function as a potential endocrine disruptor with anti-androgenic activity.
Collapse
Affiliation(s)
- Marwa Ben Amor
- Laboratory of Histophysiology of Developmental and Induced Pathologies (LR19ES12), Faculty of Medicine of Sfax, University of Sfax, Tunisia; Laboratory of Histology-Embryology and Reproductive Biology, Faculty of Medicine of Sfax, University of Sfax, Tunisia.
| | - Latifa Hamdaoui
- Laboratory of Histophysiology of Developmental and Induced Pathologies (LR19ES12), Faculty of Medicine of Sfax, University of Sfax, Tunisia; Laboratory of Histology-Embryology and Reproductive Biology, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Salima Daoud
- Laboratory of Histophysiology of Developmental and Induced Pathologies (LR19ES12), Faculty of Medicine of Sfax, University of Sfax, Tunisia; Laboratory of Histology-Embryology and Reproductive Biology, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Mariem Ammar
- Pharmacology Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Nour Louati
- Sfax Regional Center of Blood Transfusion, Sfax, Tunisia
| | - Aida Elleuch
- Department of Biochemistry, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Riadh Badraoui
- Laboratory of General Biology, Department of Biology, University of Ha'il, Ha'il, 81451, Saudi Arabia; Section of Histology-Cytology & Cytogenetics, Faculty of Medicine of Tunis, University of Tunis El Manar, 1007 La Rabta-Tunis, Tunisia
| | - Lobna Ben Mahmoud
- Pharmacology Laboratory, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Ikram Ben Amor
- Sfax Regional Center of Blood Transfusion, Sfax, Tunisia
| | - Afifa Sellami
- Laboratory of Histophysiology of Developmental and Induced Pathologies (LR19ES12), Faculty of Medicine of Sfax, University of Sfax, Tunisia; Laboratory of Histology-Embryology and Reproductive Biology, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Tarek Rebai
- Laboratory of Histophysiology of Developmental and Induced Pathologies (LR19ES12), Faculty of Medicine of Sfax, University of Sfax, Tunisia; Laboratory of Histology-Embryology and Reproductive Biology, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| |
Collapse
|
2
|
Schluter HM, Bariami H, Park HL. Potential Role of Glyphosate, Glyphosate-Based Herbicides, and AMPA in Breast Cancer Development: A Review of Human and Human Cell-Based Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1087. [PMID: 39200696 PMCID: PMC11354939 DOI: 10.3390/ijerph21081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024]
Abstract
The potential connection between exposure to glyphosate and glyphosate-based herbicides (GBHs) and breast cancer risk is a topic of research that is rapidly gaining the public's attention due to the conflicting reports surrounding glyphosate's potential carcinogenicity. In this review, we synthesize the current published biomedical literature works that have explored associations of glyphosate, its metabolite, aminomethylphosphonic acid (AMPA), and GBHs with breast cancer risk in humans and human cell-based models. Using PubMed as our search engine, we identified a total of 14 articles that were included in this review. In the four human studies, urinary glyphosate and/or AMPA were associated with breast cancer risk, endocrine disruption, oxidative stress biomarkers, and changes in DNA methylation patterns. Among most of the 10 human cell-based studies, glyphosate exhibited endocrine disruption, induced altered gene expression, increased DNA damage, and altered cell viability, while GBHs were more cytotoxic than glyphosate alone. In summary, numerous studies have shown glyphosate, AMPA, and GBHs to have potential carcinogenic, cytotoxic, or endocrine-disruptive properties. However, more human studies need to be conducted in order for more definitive and supported conclusions to be made on their potential effects on breast cancer risk.
Collapse
Affiliation(s)
| | | | - Hannah Lui Park
- Department of Pathology and Laboratory Medicine, University of California, 839 Health Sciences Road, 218 Sprague Hall, Irvine, CA 92697, USA; (H.M.S.); (H.B.)
| |
Collapse
|
3
|
Leblanc PO, Breton Y, Léveillé F, Tessier PA, Pelletier M. The impact of the herbicide glyphosate and its metabolites AMPA and MPA on the metabolism and functions of human blood neutrophils and their sex-dependent effects on reactive oxygen species and CXCL8/IL-8 production. ENVIRONMENTAL RESEARCH 2024; 252:118831. [PMID: 38580005 DOI: 10.1016/j.envres.2024.118831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Significant levels of glyphosate, the world's most widely used herbicide, and its primary metabolites, AMPA and MPA, are detected in various human organs and body fluids, including blood. Several studies have associated the presence of glyphosate in humans with health problems, and effects on immune cells and their functions have been reported. However, the impact of this molecule and its metabolites on neutrophils, the most abundant leukocytes in the human bloodstream, is still poorly documented. We isolated neutrophils from human donor blood and investigated the effects of exposure to glyphosate, AMPA, and MPA on viability, energy metabolism, and essential antimicrobial functions in vitro. We observed that neutrophil viability was unaffected at the blood-relevant average concentrations of the general population and exposed workers, as well as at higher intoxication concentrations. Neutrophil energy metabolism was also not altered following exposure to the chemicals. However, while phagocytosis was unaffected, reactive oxygen species generation and CXCL8/IL-8 production were altered by exposure to the molecules. Alterations in function following exposure to glyphosate and metabolites differed according to the sex of the donors, which could be linked to glyphosate's known role as an endocrine disruptor. While ROS generation was increased in both sexes, male neutrophils exposed to glyphosate had increased intracellular production of CXCL8/IL-8, with no effect on female neutrophils. Conversely, exposure to the metabolites AMPA and MPA decreased extracellular production of this chemokine only in female neutrophils, with MPA also increasing intracellular production in male cells exposed to the chemoattractant N-formyl-methionine-leucyl-phenylalanine. Our study highlights the effects of glyphosate and its metabolites on the antimicrobial functions of neutrophils, which could be associated with health problems as future studies provide a better understanding of the risks associated with glyphosate use. Advances in knowledge will enable better and potentially stricter regulations to protect the public.
Collapse
Affiliation(s)
- Pier-Olivier Leblanc
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada
| | - Yann Breton
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada
| | - Florence Léveillé
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada
| | - Philippe A Tessier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec, G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec, G1V 4G2, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec, G1V 0A6, Canada.
| |
Collapse
|
4
|
Hoy JA, Haas GT, Hallock P. Was the massive increase in use of teratogenic agrichemicals in western states (USA) associated with declines in wild ruminant populations between 1994 and 2013? CHEMOSPHERE 2024; 359:142320. [PMID: 38735490 DOI: 10.1016/j.chemosphere.2024.142320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Population declines were documented in multiple ruminant species in Montana and surrounding states starting in 1995. While weather, food sources, and predation certainly contributed, the declines were often attributed, at least partly, to unexplained factors. Use of teratogenic agrichemicals, notably neonicotinoid insecticides, fungicides, and glyphosate-based herbicides, massively increased regionally in 1994-96. The question explored in this review is whether this vastly increased use of these teratogenic pesticides might have contributed to observed population declines. We provide references and data documenting that specific developmental malformations on vertebrates can be associated with exposure to one or more of these agrichemicals. These pesticides are known to disrupt thyroid and other hormonal functions, mitochondrial functions, and biomineralization, all of which are particularly harmful to developing fetuses. Exposures can manifest as impaired embryonic development of craniofacial features, internal and reproductive organs, and musculoskeletal/integumental systems, often resulting in reproductive failure or weakened neonates. This paper reviews: a) studies of ruminant populations in the region, especially elk and white-tailed deer, prior to and after 1994; b) published and new data on underdeveloped facial bones in regional ruminants; c) published and new data on reproductive abnormalities in live and necropsied animals before and after 1994; and d) studies documenting the effects of exposures to three of the most applied teratogenic chemicals. While answers to the question posed above are complex and insufficient evidence is available for definitive answers, this review provides ideas for further consideration.
Collapse
Affiliation(s)
- Judith A Hoy
- 2858 Pheasant Lane, Stevensville, MT, 59870, USA; Bitterroot Wildlife Rehab Center, Stevensville, MT, 59870, (now retired), USA
| | - Gary T Haas
- Big Sky Beetle Works, 5189 Highway 93 North, Box 776, Florence, MT, 59833-0776, USA
| | - Pamela Hallock
- College of Marine Science, University of South Florida, 140 Seventh Avenue S., St. Petersburg, FL, 33701, USA.
| |
Collapse
|
5
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Hepatotoxicity, Nephrotoxicity, Hemotoxicity, Carcinogenicity, and Clinical Cases of Endocrine, Reproductive, Cardiovascular, and Pulmonary System Intoxication. ACS Pharmacol Transl Sci 2024; 7:1205-1236. [PMID: 38751624 PMCID: PMC11092036 DOI: 10.1021/acsptsci.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Glyphosate (GLP) is an active agent of GLP-based herbicides (GBHs), i.e., broad-spectrum and postemergent weedkillers, commercialized by Monsanto as, e.g., Roundup and RangerPro formulants. The GBH crop spraying, dedicated to genetically engineered GLP-resistant crops, has revolutionized modern agriculture by increasing the production yield. However, abusively administered GBHs' ingredients, e.g., GLP, polyoxyethyleneamine, and heavy metals, have polluted environmental and industrial areas far beyond farmlands, causing global contamination and life-threatening risk, which has led to the recent local bans of GBH use. Moreover, preclinical and clinical reports have demonstrated harmful impacts of GLP and other GBH ingredients on the gut microbiome, gastrointestinal tract, liver, kidney, and endocrine, as well as reproductive, and cardiopulmonary systems, whereas carcinogenicity of these herbicides remains controversial. Occupational exposure to GBH dysregulates the hypothalamic-pituitary-adrenal axis, responsible for steroidogenesis and endocrinal secretion, thus affecting hormonal homeostasis, functions of reproductive organs, and fertility. On the other hand, acute intoxication with GBH, characterized by dehydration, oliguria, paralytic ileus, as well as hypovolemic and cardiogenic shock, pulmonary edema, hyperkalemia, and metabolic acidosis, may occur fatally. As no antidote has been developed for GBH poisoning so far, the detoxification is mainly symptomatic and supportive and requires intensive care based on gastric lavage, extracorporeal blood filtering, and intravenous lipid emulsion infusion. The current review comprehensively discusses the molecular and physiological basics of the GLP- and/or GBH-induced diseases of the endocrine and reproductive systems, and cardiopulmonary-, nephro-, and hepatotoxicities, presented in recent preclinical studies and case reports on the accidental or intentional ingestions with the most popular GBHs. Finally, they briefly describe modern and future healthcare methods and tools for GLP detection, determination, and detoxification. Future electronically powered, decision-making, and user-friendly devices targeting major GLP/GBH's modes of actions, i.e., dysbiosis and the inhibition of AChE, shall enable self-handled or point-of-care professional-assisted evaluation of the harm followed with rapid capturing GBH xenobiotics in the body and precise determining the GBH pathology-associated biomarkers levels.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department
of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Bio
& Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Klepacka
- ENSEMBLE sp. z o. o., 01-919 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Włodzimierz Kutner
- Department
of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional
Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
6
|
Sun H, He Z, Gao Y, Yang Y, Wang Y, Gu A, Xu J, Quan Y, Yang Y. Polyoxyethylene tallow amine and glyphosate exert different developmental toxicities on human pluripotent stem cells-derived heart organoid model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170675. [PMID: 38316312 DOI: 10.1016/j.scitotenv.2024.170675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
The early stage of heart development is highly susceptible to various environmental factors. While the use of animal models has aided in identifying numerous environmental risk factors, the variability between species and the low throughput limit their translational potential. Recently, a type of self-assembling cardiac structures, known as human heart organoids (hHOs), exhibits a remarkable biological consistency with human heart. However, the feasibility of hHOs for assessing cardiac developmental risk factors remains unexplored. Here, we focused on the cardiac developmental effects of core components of Glyphosate-based herbicides (GBHs), the most widely used herbicides, to evaluate the reliability of hHOs for the prediction of possible cardiogenesis toxicity. GBHs have been proven toxic to cardiac development based on multiple animal models, with the mechanism remaining unknown. We found that polyoxyethylene tallow amine (POEA), the most common surfactant in GBHs formulations, played a dominant role in GBHs' heart developmental toxicity. Though there were a few differences in transcriptive features, hHOs exposed to sole POEA and combined POEA and Glyphosate would suffer from both disruption of heart contraction and disturbance of commitment in cardiomyocyte isoforms. By contrast, Glyphosate only caused mild epicardial hyperplasia. This study not only sheds light on the toxic mechanism of GBHs, but also serves as a methodological demonstration, showcasing its effectiveness in recognizing and evaluating environmental risk factors, and deciphering toxic mechanisms.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhazheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yao Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanhan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Yachang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingyi Quan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
7
|
Hariti M, Kamel A, Ghozlani A, Djennane N, Djenouhat K, Aksas K, Hamouli-Saïd Z. Disruption of spermatogenesis in testicular adult Wistar rats after short-term exposure to high dose of glyphosate based-herbicide: Histopathological and biochemical changes. Reprod Biol 2024; 24:100865. [PMID: 38402720 DOI: 10.1016/j.repbio.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Glyphosate is an endocrine disruptor and can act on the activity of certain enzymes of metabolism subsequently altering some functions such as reproduction. The goal of the present study is to evaluate the involvement of glyphosate based-herbicide (GBH) in spermatogenesis disruption and to investigate which cells of the adult Wistar rat testis are most affected by short-term exposure to GBH. Treated groups received a diluted solution of GBH orally for 21 days (D1: 102.5 mg/Kg; D2: 200 mg/Kg; D3: 400 mg/Kg). The control group (C) received water in the same manner. Hormone levels, oxidative stress markers were evaluated, histological and morphometric analysis were performed, AR and p53 expression was conducted. Seminiferious epithelium sloughing associated to erosion of Sertoli and spermatogonia from the basement of the seminiferous tubules, with intraluminal exfoliated cells among with immature spermatids were observed. A significant change in morphometric measurement and significant decrease in AR expression in Sertoli cells were noted for all treated groups. A significant increase in NO level and p53 expression in Leydig cells were showed for animals treated with 200 and 400 mg/kg BW/day. These data demonstrate that short-term exposure to high doses of GBH has led to a disruption of certain parameters that could disturb spermatogenesis. The treatment showed that both Leydig and Sertoli cells are affected in the same manner by GBH, the activation of p53 expression in both Leydig cells and peritubular myloid cells nuclei, and the reduction in AR expression in Sertoli cells, which resulted in important testicular damage.
Collapse
Affiliation(s)
- Meriem Hariti
- L.B.P.O/Section Endocrinology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, 16 111 Algiers, Algeria.
| | - Assia Kamel
- L.B.P.O/Section Endocrinology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, 16 111 Algiers, Algeria
| | - Amel Ghozlani
- L.B.P.O/Section Endocrinology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, 16 111 Algiers, Algeria
| | - Nacima Djennane
- Faculty of Medicine - University of Algiers1 / Pathological Anatomy and Cytology Department, Mohammed Lamine Debaghine Hospital, Bab El Oued, Algeria
| | - Kamel Djenouhat
- Faculty of Medicine - University of Algiers1 / Central Laboratory, Public Hospital Etablishment of Rouiba, Algeria
| | - Kahina Aksas
- Faculty of Medicine - University of Algiers1 / Central Laboratory, Mohammed Lamine Debaghine Hospital, Bab El Oued, Algeria
| | - Zohra Hamouli-Saïd
- L.B.P.O/Section Endocrinology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, 16 111 Algiers, Algeria
| |
Collapse
|
8
|
Fang YW, Wang C, Lin CY. Association between urinary glyphosate levels and hand grip strength in a representative sample of US adults: NHANES 2013-2014. Front Public Health 2024; 12:1352570. [PMID: 38450138 PMCID: PMC10915012 DOI: 10.3389/fpubh.2024.1352570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Glyphosate, a widely utilized herbicide globally, has been linked to various health issues, including cancer, birth abnormalities, and reproductive issues. Additionally, there is growing experimental support indicating potential harm to skeletal muscles. Despite this, the impact of glyphosate on human muscle health remains unclear. Methods We examined information gathered from the 2013-2014 National Health and Nutrition Examination Survey (NHANES), which included 1466 adults aged 18 or older. Our primary aim was to investigate the relationship between glyphosate exposure and hand grip strength, as well as its influence on lean muscle mass. Results and discussion Our investigation uncovered a detrimental correlation between glyphosate exposure and all measures of grip strength, except for the second test of the first hand. Specifically, we observed a statistically significant adverse association between glyphosate exposure and combined grip strength, which is calculated as the sum of the highest readings from both hands (ß coefficient of -2.000, S.E. = 0.891, p = 0.040). We did not observe a significant correlation between glyphosate levels, lean muscle mass, and the likelihood of reaching maximum grip strength meeting sarcopenia criteria. Additionally, we observed an interaction between age and glyphosate, as well as between body mass index (BMI) and glyphosate, concerning the association with combined grip strength. In this comprehensive analysis of NHANES data, our study reveals a potential association between glyphosate exposure and hand grip strength in the adult population. Our findings suggest the need for deeper exploration into the health effects of glyphosate exposure and its impact on muscle strength, shedding light on possible public health concerns.
Collapse
Affiliation(s)
- Yu-Wei Fang
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - ChiKang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chien-Yu Lin
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, Taiwan
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| |
Collapse
|
9
|
John R, Aravindakumar CT, Aravind UK. Delineating the cascade of molecular events in protein aggregation triggered by Glyphosate, aminomethylphosphonic acid, and Roundup in serum albumins. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132158. [PMID: 37567142 DOI: 10.1016/j.jhazmat.2023.132158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
The molecular basis of protein unfolding on exposure to the widely used herbicide, Glyphosate (GLY), its metabolite aminomethylphosphonic acid (AMPA), and the commercial formulation Roundup have been probed using human and bovine serum albumins (HSA and BSA). Protein solutions were exposed to chemical stress at set experimental conditions. The study proceeds with spectroscopic and imaging tools. Steady-state and time-resolved fluorescence (TRF) measurements indicated polarity changes with the possibility of forming a ground-state complex. Atomic force microscopy imaging results revealed the formation of fibrils from BSA and dimer, trimer, and tetramer forms of oligomers from HSA under the chemical stress of GLY. In the presence of AMPA, serum albumins (SAs) form a compact network of oligomers. The compact network of oligomers was transformed into fibrils for HSA with increasing concentrations of AMPA. In contrast, Roundup triggered the formation of amorphous aggregates from SAs. Analysis of the Raman amide I band of all aggregates showed a significant increase in antiparallel β-sheet fractions at the expense of α-helix. The highest percentage, 24.6%, of antiparallel β-sheet fractions was present in amorphous aggregate formed from HSA under the influence of Roundup. These results demonstrated protein unfolding, which led to the formation of oligomers and fibrils.
Collapse
Affiliation(s)
- Reshmi John
- Inter University Instrumentation Centre (IUIC), India
| | - Charuvila T Aravindakumar
- Inter University Instrumentation Centre (IUIC), India; School of Environmental Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India.
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science and Technology (CUSAT), Kochi 682022, Kerala, India.
| |
Collapse
|
10
|
Chang MH, Chu PL, Wang C, Lin CY. Association between Glyphosate Exposure and Erythrograms in a Representative Sample of US Adults: NHANES 2013-2014. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91207-91215. [PMID: 37474857 DOI: 10.1007/s11356-023-28905-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Glyphosate is the most commonly utilized herbicide globally, and a growing body of experimental research has linked its exposure to red blood cell damage. However, the potential toxicity of glyphosate exposure on erythrocytes in the general population remains poorly understood. Therefore, we analyzed data from the 2013-2014 National Health and Nutrition Examination Survey (NHANES) of 1466 adults (≥ 18 years) to explore the potential relationship between glyphosate exposure and erythrocyte profiles. Our results indicated a significant negative association between urinary glyphosate levels and hemoglobin (Hb) and hematocrit (Hct) in multiple regression analysis, with ß coefficients of -0.157 (S.E. = 0.055, P = 0.012) and -0.431 (S.E. = 0.195, P = 0.043), respectively. Additionally, the odds ratio showed a significant increase in individuals with anemia with a one-unit increase in ln-glyphosate levels (odds ratio = 1.523 (95% CI = 1.301 - 1.783), P < 0.001 in the final model). The negative correlation between glyphosate and Hb was more pronounced in subjects older than 60 years, non-Hispanic white ethnicity, lower income, and those with a body mass index (BMI) < 25 and ≥ 30. In conclusion, our results provide preliminary evidence of a plausible association between glyphosate exposure and anemia in a subset of the adult population in the United States. However, further research is necessary to understand the underlying mechanisms and clinical implications of this association.
Collapse
Affiliation(s)
- Ming-Hao Chang
- Department of Obstetrics and Gynecology, En Chu Kong Hospital, New Taipei City, 237, Taiwan
| | - Pei-Lun Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, 242, Taiwan
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei, 242, Taiwan
| | - ChiKang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Chien-Yu Lin
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, 242, Taiwan.
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan.
- Department of Internal Medicine, En Chu Kong Hospital, No. 399, Fuxing Rd., Sanxia Dist., New Taipei City, 237, Taiwan (R.O.C.).
| |
Collapse
|
11
|
Arrigo E, Gilardi S, Muratori L, Raimondo S, Mancardi D. Biological effects of sub-lethal doses of glyphosate and AMPA on cardiac myoblasts. Front Physiol 2023; 14:1165868. [PMID: 37168227 PMCID: PMC10164986 DOI: 10.3389/fphys.2023.1165868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction: Glyphosate is the active compound of different non-selective herbicides, being the most used agriculture pesticide worldwide. Glyphosate and AMPA (one of its main metabolites) are common pollutants of water, soil, and food sources such as crops. They can be detected in biological samples from both exposed workers and general population. Despite glyphosate acts as inhibitor of the shikimate pathway, present only in plants and some microorganisms, its safety in mammals is still debated. Acute glyphosate intoxications are correlated to cardiovascular/neuronal damages, but little is known about the effects of the chronic exposure. Methods: We evaluated the direct biological effects of different concentrations of pure glyphosate/AMPA on a rat-derived cell line of cardiomyoblasts (H9c2) in acute (1-2 h) or sub-chronic (24-48 h) settings. We analyzed cell viability/morphology, ROS production and mitochondrial dynamics. Results: Acute exposure to high doses (above 10 mM) of glyphosate and AMPA triggers immediate cytotoxic effects: reduction in cell viability, increased ROS production, morphological alterations and mitochondrial function. When exposed to lower glyphosate concentrations (1 μM-1 mM), H9c2 cells showed only a slight variation in cell viability and ROS production, while mitochondrial dynamic was unvaried. Moreover, the phenotype was completely restored after 48 h of treatment. Surprisingly, the sub-chronic (48 h) treatment with low concentrations (1 μM-1 mM) of AMPA led to a late cytotoxic response, reflected in a reduction in H9c2 viability. Conclusion: The comprehension of the extent of human exposure to these molecules remains pivotal to have a better critical view of the available data.
Collapse
Affiliation(s)
- Elisa Arrigo
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
- *Correspondence: Daniele Mancardi, ; Elisa Arrigo,
| | - Sara Gilardi
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Turin, Italy
| | - Daniele Mancardi
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
- *Correspondence: Daniele Mancardi, ; Elisa Arrigo,
| |
Collapse
|
12
|
Zhou J, Wang H, Jia L, Ma Y, Wang X, Zhu L, Wang K, Zhang P, Yang H. Mechanism of 2,4-Dichlorophenoxyacetic acid-induced damage to rat testis via Fas/FasL pathway and the protective effect of Lycium barbarum polysaccharides. ENVIRONMENTAL TOXICOLOGY 2022; 37:2764-2779. [PMID: 36214342 DOI: 10.1002/tox.23635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 06/16/2023]
Abstract
The herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) is widely used to control broadleaved weeds and has been associated with male infertility. We studied the molecular mechanisms of 2,4-D induced male reproductive system damage and the protective effects of Lycium barbarum polysaccharides (LBP) using Sprague Dawley rats and TM4 cells. Treatment with 2,4-D caused architectural and functional changes in the testis, including collapsed and atrophied seminiferous tubules with reduced number of spermatozoa, scarce sperm in the epididymal duct, low levels of serum testosterone, decreased superoxide dismutase and glutathione peroxidase activity, high malondialdehyde content, and increased apoptosis in the testis and epididymis. The expression of Fas, FasL, FADD, Pro-caspase-8, Cleaved-Caspase-8, Pro-Caspase-3, and Cleaved-Caspase-3 were significantly increased in the testicular tissue of 2,4-D-treated rats. The proliferative activity of TM4 cells decreased with an increase in dose and time of 2,4-D exposure, along with enhanced Fas/Fas ligand expression and a decreased concentration of inhibin B in TM4 cell culture medium. Depletion of Fas by specific shRNA transfection reversed the effects of 2,4-D in TM4 cells, further confirming the involvement of death receptor pathway in 2,4-D-mediated apoptosis of sertoli cells. Treatment with LBP also reversed the effects of 2,4-D in testicular cells, resulting in improved cell architecture along with enhanced proliferative capacity. Moreover, in response to LBP treatment of Sertoli cells, the content of inhibin B increased, the level of reactive oxygen species and malondialdehyde decreased, the activities of superoxide dismutase and glutathione peroxidase increased, and the rate of apoptosis as well as the expression of Fas/Fas ligand signaling pathway proteins decreased.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Hengquan Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Leina Jia
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yu Ma
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xiaolan Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Lingqin Zhu
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Pengju Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Huifang Yang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, People's Republic of China
| |
Collapse
|
13
|
Stahlschmidt ZR, Whitlock J, Vo C, Evalen P, D B. Pesticides in a warmer world: Effects of glyphosate and warming across insect life stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119508. [PMID: 35605834 DOI: 10.1016/j.envpol.2022.119508] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate (GLY) is a broad-spectrum herbicide that is the most commonly applied pesticide in terrestrial ecosystems in the U.S. and, potentially, worldwide. However, the combined effects of warming associated with climate change and exposure to GLY and GLY-based formulations (GBFs) on terrestrial animals are poorly understood. Animals progress through several life stages (e.g., embryonic, larval, and juvenile stages) that may exhibit different sensitivities to stressors. Therefore, we factorially manipulated temperature and GLY/GBF exposure in the variable field cricket (Gryllus lineaticeps) during two life stages-nymphal development and adulthood-and examined key animal traits, such as developmental rate, body size, food consumption, reproductive investment, and lifespan. A thermal environment simulating future climate warming obligated several costs to fitness-related traits. For example, warming experienced during nymphal development reduced survival, adult body mass and size, and investment into flight capacity and reproduction. Warming experienced by adults reduced lifespan and growth rate. Alternatively, the effects of GBF exposure were more subtle, often context-dependent (e.g., effects were only detected in one sex or temperature regime), and were stronger during adult exposure relative to exposure during development. There was evidence of additive costs of warming and GBF exposure to rates of feeding and growth in adults. Yet, the negative effect of GBF exposure to adult lifespan did not occur in warming conditions, suggesting that ongoing climate change may obscure some of the costs of GBFs to non-target organisms. The effects of GLY alone (i.e., in the absence of proprietary surfactants found in commercial formulations) were non-existent. Animals will be increasingly exposed to warming and GBFs, and our results indicate that GBF exposure and warming can entail additive costs for an animal taxon (insects) that plays critical roles in terrestrial ecosystems.
Collapse
Affiliation(s)
| | - J Whitlock
- University of the Pacific, Stockton, CA, 95211, USA
| | - C Vo
- University of the Pacific, Stockton, CA, 95211, USA
| | - P Evalen
- University of the Pacific, Stockton, CA, 95211, USA
| | - Bui D
- University of the Pacific, Stockton, CA, 95211, USA
| |
Collapse
|
14
|
Tudi M, Li H, Li H, Wang L, Lyu J, Yang L, Tong S, Yu QJ, Ruan HD, Atabila A, Phung DT, Sadler R, Connell D. Exposure Routes and Health Risks Associated with Pesticide Application. TOXICS 2022; 10:335. [PMID: 35736943 PMCID: PMC9231402 DOI: 10.3390/toxics10060335] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023]
Abstract
Pesticides play an important role in agricultural development. However, pesticide application can result in both acute and chronic human toxicities, and the adverse effects of pesticides on the environment and human health remain a serious problem. There is therefore a need to discuss the application methods for pesticides, the routes of pesticide exposure, and the health risks posed by pesticide application. The health problems related to pesticide application and exposure in developing countries are of particular concern. The purpose of this paper is to provide scientific information for policymakers in order to allow the development of proper pesticide application technics and methods to minimize pesticide exposure and the adverse health effects on both applicators and communities. Studies indicate that there are four main pesticide application methods, including hydraulic spraying, backpack spraying, basal trunk spraying, and aerial spraying. Pesticide application methods are mainly selected by considering the habits of target pests, the characteristics of target sites, and the properties of pesticides. Humans are directly exposed to pesticides in occupational, agricultural, and household activities and are indirectly exposed to pesticides via environmental media, including air, water, soil, and food. Human exposure to pesticides occurs mainly through dermal, oral, and respiratory routes. People who are directly and/or indirectly exposed to pesticides may contract acute toxicity effects and chronic diseases. Although no segment of the general population is completely protected against exposure to pesticides and their potentially serious health effects, a disproportionate burden is shouldered by people in developing countries. Both deterministic and probabilistic human health risk assessments have their advantages and disadvantages and both types of methods should be comprehensively implemented in research on exposure and human health risk assessment. Equipment for appropriate pesticide application is important for application efficiency to minimize the loss of spray solution as well as reduce pesticide residuals in the environment and adverse human health effects due to over-spraying and residues. Policymakers should implement various useful measures, such as integrated pest management (IPM) laws that prohibit the use of pesticides with high risks and the development of a national implementation plan (NIP) to reduce the adverse effects of pesticides on the environment and on human health.
Collapse
Affiliation(s)
- Muyesaier Tudi
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (L.W.); (J.L.); (L.Y.); (S.T.)
- School of Medicine, Griffith University, 170 Kessels Road, Nathan, Brisbane, QLD 4111, Australia; (D.T.P.); (R.S.)
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (L.W.); (J.L.); (L.Y.); (S.T.)
| | - Hongying Li
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing 100035, China;
| | - Li Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (L.W.); (J.L.); (L.Y.); (S.T.)
| | - Jia Lyu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (L.W.); (J.L.); (L.Y.); (S.T.)
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, No. 29 Nanwei Road, Beijing 100050, China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (L.W.); (J.L.); (L.Y.); (S.T.)
| | - Shuangmei Tong
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11 Datun Road, Beijing 100101, China; (M.T.); (L.W.); (J.L.); (L.Y.); (S.T.)
| | - Qiming Jimmy Yu
- School of Engineering and Built Environment, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia;
| | - Huada Daniel Ruan
- Environmental Science Program, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, 2000 Jintong Road, Tangjiawan, Zhuhai 519087, China;
| | - Albert Atabila
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, Legon, Accra P.O. Box LG13, Ghana;
| | - Dung Tri Phung
- School of Medicine, Griffith University, 170 Kessels Road, Nathan, Brisbane, QLD 4111, Australia; (D.T.P.); (R.S.)
| | - Ross Sadler
- School of Medicine, Griffith University, 170 Kessels Road, Nathan, Brisbane, QLD 4111, Australia; (D.T.P.); (R.S.)
| | - Des Connell
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, Brisbane, QLD 4111, Australia;
| |
Collapse
|
15
|
Flurochloridone Induced Cell Apoptosis via ER Stress and eIF2α-ATF4/ATF6-CHOP-Bim/Bax Signaling Pathways in Mouse TM4 Sertoli Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084564. [PMID: 35457433 PMCID: PMC9024663 DOI: 10.3390/ijerph19084564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023]
Abstract
Flurochloridone (FLC), as a novel herbicide, has been widely used in many countries since 1980s. Current studies have shown that FLC has toxic effects on male reproduction and its target organ is testis, while the underlying mechanism is still unknown. Mouse testis Sertoli cell line TM4 cells were used as an in vitro model and treated with FLC at different doses (40, 80, 160 μM) for different times (6, 12, 24 h). Cell viability, cytotoxicity and apoptotic cells were detected by CCK-8 assay, LDH leakage assay and flow cytometry. The protein levels of GRP78, phosphorylated-eIF2α, ATF4, ATF6, CHOP, Bim and Bax were observed by Western Blot and Immunofluorescence staining. FLC inhibited cell viability and induced cytotoxicity in dose-dependent way in TM4 cells. The percentage of apoptotic cells were 6.2% ± 0.6%, 7.3% ± 0.3%, 9.8% ± 0.4%, 13.2% ± 0.2%, respectively. The expression levels of ER stress and UPR related proteins were activated over dose. Meanwhile, the pro-apoptotic proteins (Bim and Bax) were also up-regulated in dose-dependent. After pretreated with ISRIB, the inhibitor of eIF2α phosphorylation, the elevated expression of GRP78, phosphorylated-eIF2α, ATF4, ATF6, CHOP and Bim was down to normal level accordingly. In conclusion, FLC induced apoptosis in TM4 cells mediated by UPR signaling pathways.
Collapse
|
16
|
Bhardwaj JK, Kumar V, Saraf P, Panchal H, Rathee V, Sachdeva SN. Efficacy of N-acetyl- l-cysteine against glyphosate induced oxidative stress and apoptosis in testicular germ cells preventing infertility. J Biochem Mol Toxicol 2022; 36:e22979. [PMID: 34964212 DOI: 10.1002/jbt.22979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/27/2021] [Accepted: 12/09/2021] [Indexed: 11/08/2022]
Abstract
The present era's demand for continuous pesticides' use to increase the agriculture outcome, has caused numerous health effects among which mammalian infertility, owing to reproductive toxicity, is serious. Thus, the present study emphasizes upon glyphosate (GLY) induced toxicity and mitigating effects of N-acetyl cysteine (NAC) in testicular cells of caprine by using various cytotoxic and biochemical parameters. GLY was found to induce several apoptotic attributes such as pyknotic nuclei, tubular degeneration, increased vacuolization, and so on, in testicular cells. GLY also decreased the cell viability and increased the incidence of apoptosis in testicular cells in a dose- and time-dependent manner as revealed by MTT assay and Fluorescence (ethidium bromide/acridine orange) assay, respectively. It also increased the level of oxidative stress as evident with an increase in lipid peroxidation and decline in antioxidant power along with the decreased enzymatic activity of different antioxidant enzymes (SOD, CAT, and GST). However, NAC supplementation showed antagonistic results in GLY-treated testicular tissues with maximum amelioration at the highest dose, thereby decreasing GLY-mediated apoptosis rate and oxidative stress. Maximum amelioration was reported at 10 mM NAC concentration. Reduced GLY toxicity due to NAC will prove NAC to be an excellent approach for dealing with male reproductive toxicity at the cellular level, benefiting the mammalian reproductive status.
Collapse
Affiliation(s)
- Jitender K Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Vijay Kumar
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Harish Panchal
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Vishavjeet Rathee
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, India
| | - Som N Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, India
| |
Collapse
|
17
|
Antonine B, Guillaume M, Philippe D, Marie-Hélène P. Low concentrations of glyphosate alone affect the pubertal male rat meiotic step: An in vitro study. Toxicol In Vitro 2022; 79:105291. [PMID: 34864054 DOI: 10.1016/j.tiv.2021.105291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
Glyphosate is the most used herbicide in the world. Controversial studies exist on its effect on the male reproductive system. We used the validated BioAlter® model to test the effects of low concentrations of Glyphosate. Pubertal rat seminiferous tubules were treated with Glyphosate 50 nM, 500 nM, 5 μM or 50 μM over a 3-week culture period. The Trans-Epithelial Electrical Resistance was not modified by any of the concentrations. The decrease of Clusterin mRNAs suggested that glyphosate would target the integrity of Sertoli cells. The decrease of the numbers of germ cells from day 14 onward highlighted the chronic effect of glyphosate at 50 nM, 500 nM or 5 μM. No consistent effect of glyphosate was observed on the numbers of spermatogonia or on their specific mRNA levels. However, those low concentrations of glyphosate targeted young spermatocytes and middle to late pachytene spermatocytes resulting in a decrease of the numbers of round spermatids, the direct precursors of spermatozoa. This study underlines that the effect of a toxicant should be also studied at low doses and during the establishment of the blood-testis barrier.
Collapse
Affiliation(s)
- Blondet Antonine
- Kallistem, VetAgro Sup, 1 Avenue Bourgelat, 69280 Marcy-l'Etoile, France.
| | - Martin Guillaume
- Kallistem, VetAgro Sup, 1 Avenue Bourgelat, 69280 Marcy-l'Etoile, France.
| | - Durand Philippe
- Kallistem, VetAgro Sup, 1 Avenue Bourgelat, 69280 Marcy-l'Etoile, France.
| | - Perrard Marie-Hélène
- INSERM U 1208, Institut Cellule Souche et Cerveau, 18 avenue du Doyen Lépine, 69500 Bron, France.
| |
Collapse
|
18
|
Fu H, Tan P, Wang R, Li S, Liu H, Yang Y, Wu Z. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127494. [PMID: 34687999 DOI: 10.1016/j.jhazmat.2021.127494] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPPs) are one of the most widely used types of pesticide that play an important role in the production process due to their effects on preventing pathogen infection and increasing yield. However, in the early development and application of OPPs, their toxicological effects and the issue of environmental pollution were not considered. With the long-term overuse of OPPs, their hazards to the ecological environment (including soil and water) and animal health have attracted increasing attention. Therefore, this review first clarified the classification, characteristics, applications of various OPPs, and the government's restriction requirements on various OPPs. Second, the toxicological effects and metabolic mechanisms of OPPs and their metabolites were introduced in organisms. Finally, the existing methods of degrading OPPs were summarized, and the challenges and further addressing strategy of OPPs in the sustainable development of agriculture, the environment, and ecology were prospected. However, methods to solve the environmental and ecological problems caused by OPPs from the three aspects of use source, use process, and degradation methods were proposed, which provided a theoretical basis for addressing the stability of the ecological environment and improving the structure of the pesticide industry in the future.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Renjie Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Senlin Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
19
|
Spinaci M, Nerozzi C, Mislei B, Blanco-Prieto O, Mari G, Galeati G, Bucci D. Impact of glyphosate and its formulation Roundup® on stallion spermatozoa. Theriogenology 2022; 179:197-203. [PMID: 34891125 DOI: 10.1016/j.theriogenology.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022]
Abstract
The growing and widespread use of glyphosate-based herbicides (GBHs) has raised an intense public debate about the impact of environmental contamination on animal and human health, including male fertility. The aim of this study was to deepen the impact of glyphosate (Gly) and GBHs on mammalian sperm investigating the effect of in vitro exposure of stallion spermatozoa to Gly and to its commercial formulation Roundup® (R). Spermatozoa were incubated at 37 °C with different Gly or R concentrations (from 0.5 to 720 μg/mL Gly or R at the same Gly-equivalent concentrations). After 1 h of incubation motility, viability, acrosome integrity, mitochondrial activity and ROS production were assessed. Gly, at all the concentrations tested, did not induce any detrimental impact on the sperm quality parameters evaluated. Conversely, R starting from 360 μg/mL (Gly-equivalent dose) significantly (P < 0.05) decreased total and progressive motility, viability, acrosome integrity, mitochondrial activity and the percentage of live spermatozoa with intact mitochondria not producing ROS. Our results indicate that the commercial formulation R is more toxic than its active molecule Gly and that the negative impact on stallion sperm motility might be likely due to a detrimental effect mainly at membrane and mitochondrial level and, at least in part, to redox unbalance. Moreover, based on the data obtained, it can be hypothesized a species-specificity in sperm sensitivity to Gly and GBHs as horse spermatozoa were negatively influenced at higher concentrations of R compared to those reported in literature to be toxic for human and swine male germ cells.
Collapse
Affiliation(s)
- Marcella Spinaci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy.
| | - Chiara Nerozzi
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Beatrice Mislei
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy; National Institute of Artificial Insemination (AUB-INFA), University of Bologna, Bologna, Italy
| | - Olga Blanco-Prieto
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Gaetano Mari
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy; National Institute of Artificial Insemination (AUB-INFA), University of Bologna, Bologna, Italy
| | - Giovanna Galeati
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Diego Bucci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Martins-Gomes C, Silva TL, Andreani T, Silva AM. Glyphosate vs. Glyphosate-Based Herbicides Exposure: A Review on Their Toxicity. J Xenobiot 2022; 12:21-40. [PMID: 35076536 PMCID: PMC8788447 DOI: 10.3390/jox12010003] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/25/2022] Open
Abstract
Glyphosate-based herbicide has been the first choice for weed management worldwide since the 1970s, mainly due to its efficacy and reported low toxicity, which contributed to its high acceptance. Many of the recent studies focus solely on the persistence of pesticides in soils, air, water or food products, or even on the degree of exposure of animals, since their potential hazards to human health have raised concerns. Given the unaware exposure of the general population to pesticides, and the absence of a significant number of studies on occupational hazards, new glyphosate-induced toxicity data obtained for both residual and acute doses should be analyzed and systematized. Additionally, recent studies also highlight the persistence and toxicity of both glyphosate metabolites and surfactants present in herbicide formulations. To renew or ban the use of glyphosate, recently published studies must be taken into account, aiming to define new levels of safety for exposure to herbicide, its metabolites, and the toxic excipients of its formulations. This review aims to provide an overview of recent publications (2010–present) on in vitro and in vivo studies aimed at verifying the animal toxicity induced by glyphosate, its metabolite aminomethylphosphonic acid (AMPA) and glyphosate-based formulations, evaluated in various experimental models. Apart from glyphosate-induced toxicity, recent data concerning the role of surfactants in the toxicity of glyphosate-based formulations are discussed.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (T.L.S.); (T.A.)
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Correspondence: (C.M.-G.); (A.M.S.); Tel.: +351-259-350-921(A.M.S.)
| | - Tânia L. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (T.L.S.); (T.A.)
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Tatiana Andreani
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (T.L.S.); (T.A.)
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (T.L.S.); (T.A.)
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Correspondence: (C.M.-G.); (A.M.S.); Tel.: +351-259-350-921(A.M.S.)
| |
Collapse
|
21
|
Sabio Y García CA, Vera MS, Vinocur A, Graziano M, Miranda C, Pizarro HN. Rethinking the term "glyphosate effect" through the evaluation of different glyphosate-based herbicide effects over aquatic microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118382. [PMID: 34666097 DOI: 10.1016/j.envpol.2021.118382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate-based herbicides (GBH) -the most widely used herbicides in agriculture worldwide-are frequently generalized by the name of "glyphosate". However, GBH encompass a variety of glyphosate salts as active ingredient and different adjuvants, which differ between products. These herbicides reach water bodies and produce diverse impacts over aquatic communities. Yet, the risk assessment assays required for the approval focus mostly on active ingredients. Herein, we compared the effect of five different GBH as well as of monoisopropylamine salt of glyphosate (GIPA) on aquatic microbial communities from natural shallow lakes that were mixed and allowed to evolve in an outdoor pond. We performed an 8-day long assay under indoor control conditions to evaluate the effects of exposure on the structure of nano-plus microphytoplankton (net phytoplankton, with sizes between 2 and 20 μm and >20 μm, respectively) and picoplankton (size ranging between 0.2 and 2 μm) communities through microscopy and flow cytometry, respectively. Significantly different effects were evident on the structure of microbial communities dependent on the GBH, even with herbicides sharing similar active ingredients. Each GBH evoked increases of different magnitude in bacterioplankton abundance. Furthermore, GIPA and a formulation decreased the abundance of a phycocyanin-rich (PC-rich) picocyanobacteria (Pcy) cytometric population and GIPA further altered Pcy composition. Also, two GBH increased net phytoplankton total abundance and, unlike the tested GBH, no apparent effect of GIPA was detected on this community structure. These results demonstrate that GBH effects on aquatic microbial communities should not be summarized as "glyphosate" effects considering that the formulations have effects beyond those exerted by the active ingredients alone. This work intends to alert on the lack of real knowledge regarding the consequences of the variety of GBH on natural aquatic ecosystems. Indeed, the wide use of the term "glyphosate effect" should be thoroughly rethought.
Collapse
Affiliation(s)
- Carmen Alejandra Sabio Y García
- CONICET - Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. Ecología, Genética y Evolución, Buenos Aires, Argentina.
| | - María Solange Vera
- CONICET - Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. Ecología, Genética y Evolución, Buenos Aires, Argentina
| | - Alicia Vinocur
- CONICET - Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. Biodiversidad y Biología Experimental, Buenos Aires, Argentina
| | - Martín Graziano
- CONICET - Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. Ecología, Genética y Evolución, Buenos Aires, Argentina
| | - Cecilia Miranda
- CONICET - Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. Ecología, Genética y Evolución, Buenos Aires, Argentina
| | - Haydée Norma Pizarro
- CONICET - Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. Ecología, Genética y Evolución, Buenos Aires, Argentina
| |
Collapse
|
22
|
Karacaoğlu E. Flusilazole-induced damage to SerW3 cells via cytotoxicity, oxidative stress and lipid metabolism: An in vitro study. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:104998. [PMID: 34955182 DOI: 10.1016/j.pestbp.2021.104998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Flusilazole (C16H15F2N3Si) is a triazole fungicide and it is being used widely in recent years to control fungal infections in various fruits and vegetables. This study aims to evaluate the impact of flusilazole on cytotoxicity, ATP-dependent cassette transporter proteins (ABC transporter proteins) in SerW3 cells. In this study, SerW3 cells have administrated with 25, 100, and 200 μM flusilazole, cell viability was performed. The quantity of the cellular lipids was evaluated spectrophotometrically. Moreover, the expression of the ABCA1 and ABCB1 proteins determined by immunofluorescence microscopy. Furtherly, evaluation of the cell death type and measurement of the activity of the antioxidant enzymes was performed. According to the results, flusilazole treatment gave rise to inhibition in cell viability, increase in apoptotic cell number, reduction in cellular lipids, and inhibition in the expression of ABCA1 and ABCB1 proteins. Furthermore, it caused decreases in antioxidant enzyme activities. It may be concluded that flusilazole administration may cause infertility/subfertility. The mechanism of action can be due to cytotoxicity, impairment of the detoxification mechanisms, lipid metabolism, and dysregulation of cell functions.
Collapse
Affiliation(s)
- Elif Karacaoğlu
- Hacettepe University, Faculty of Science, Department of Biology, 06800, Beytepe, Ankara, Turkey.
| |
Collapse
|
23
|
Carvalho Ramos Salles de Oliveira D, Nunes Oliveira Jardim A, Perignon M, Drogue S, Darmon N, Dutra Caldas E, Verly-Jr E. Meeting nutritional adequacy in the Brazilian population increases pesticide intake without exceeding chronic safe levels. Int J Food Sci Nutr 2021; 73:538-551. [PMID: 34957904 DOI: 10.1080/09637486.2021.2017408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Achieving nutritional adequacy requires an increase in fresh foods consumption, which may increase pesticide intakes. This study aimed to identify required dietary modifications to achieve nutritional adequacy without exceeding the acceptable daily intake (ADI) for pesticides. Data from the National Dietary Survey 2017-2018 were linked to the pesticide database from the Program on Pesticide Residue Analysis in Food. We performed linear programming models to design nutritionally adequate diets constrained by food preferences for different constraints on pesticide intake at the least cost increment. Nutritional adequacy led to an increase in pesticide intakes without exceeding their ADI. Modifications in diets varied according to the model, but, in general, consisted in an increase in fruits and vegetables, dairy, and seafood, and a reduction in rice, red meat, and sugar-sweetened beverages quantities. In conclusion, meeting nutritional adequacy increases pesticide intake compared to the observed diets, without representing a health concern to consumers.
Collapse
Affiliation(s)
| | | | - Marlène Perignon
- MoISA, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Sophie Drogue
- MoISA, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Nicole Darmon
- MoISA, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Eloisa Dutra Caldas
- Laboratory of Toxicology, Department of Pharmacy, University of Brasilia, Brasilia, Brazil
| | - Eliseu Verly-Jr
- Department of Epidemiology, Institute of Social Medicine, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Reproductive toxicity of roundup®-treated feed on broiler breeder roosters and the amelioration of these deleterious effects with inclusion of humic acids in feed. Vet Anim Sci 2021; 14:100215. [PMID: 34888431 PMCID: PMC8636858 DOI: 10.1016/j.vas.2021.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022] Open
Abstract
Glyphosate-based herbicides (GBHs) such as RoundUp® are a staple of modern crop production, and as a result, residues of their ingredients are typically found in animal feeds. GBH ingredients have repeatedly been shown to impact the male reproductive health of various animals, but at present, the impact of GBH exposures on reproductive health have not been investigated in broiler breeder roosters. This study sought to determine the effect of these exposures on roosters as well as the ability of humic acids (HA) to counteract the effect of GBH exposure. Through 18 weeks of treatment with Roundup®-added or HA-added feeds compared against a common broiler breeder mash, negative effects of Roundup® exposure were seen on testis morphology as well as sperm quality. Increased exposure to Roundup® ingredients resulted in increased vacuolation of seminiferous tubule epithelium. Exposure to Roundup® impacted assessments of sperm quality including sperm mobility, viability and count during the experimental trail. HA supplementation served as a promising adsorptive additive by improving both morphology and sperm quality during the trial. Roundup® exposure was shown to have a negative influence on broiler breeder rooster reproductive health while HA improved reproductive health. The use of HA as an absorbent additive in broiler breeder feeds shows promise in improving reproductive efficiency in broiler breeders.
Collapse
|
25
|
Marino M, Mele E, Viggiano A, Nori SL, Meccariello R, Santoro A. Pleiotropic Outcomes of Glyphosate Exposure: From Organ Damage to Effects on Inflammation, Cancer, Reproduction and Development. Int J Mol Sci 2021; 22:12606. [PMID: 34830483 PMCID: PMC8618927 DOI: 10.3390/ijms222212606] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/07/2021] [Accepted: 11/19/2021] [Indexed: 12/29/2022] Open
Abstract
Glyphosate is widely used worldwide as a potent herbicide. Due to its ubiquitous use, it is detectable in air, water and foodstuffs and can accumulate in human biological fluids and tissues representing a severe human health risk. In plants, glyphosate acts as an inhibitor of the shikimate pathway, which is absent in vertebrates. Due to this, international scientific authorities have long-considered glyphosate as a compound that has no or weak toxicity in humans. However, increasing evidence has highlighted the toxicity of glyphosate and its formulations in animals and human cells and tissues. Thus, despite the extension of the authorization of the use of glyphosate in Europe until 2022, several countries have begun to take precautionary measures to reduce its diffusion. Glyphosate has been detected in urine, blood and maternal milk and has been found to induce the generation of reactive oxygen species (ROS) and several cytotoxic and genotoxic effects in vitro and in animal models directly or indirectly through its metabolite, aminomethylphosphonic acid (AMPA). This review aims to summarize the more relevant findings on the biological effects and underlying molecular mechanisms of glyphosate, with a particular focus on glyphosate's potential to induce inflammation, DNA damage and alterations in gene expression profiles as well as adverse effects on reproduction and development.
Collapse
Affiliation(s)
- Marianna Marino
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università degli Studi di Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.M.); (A.V.)
| | - Elena Mele
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, 80133 Naples, Italy;
| | - Andrea Viggiano
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università degli Studi di Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.M.); (A.V.)
| | - Stefania Lucia Nori
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy;
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli Parthenope, 80133 Naples, Italy;
| | - Antonietta Santoro
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana”, Università degli Studi di Salerno, Via S. Allende, 84081 Baronissi, Italy; (M.M.); (A.V.)
| |
Collapse
|
26
|
Lehel J, Szemerédy G, Szabó R, Major L, Grúz A, Budai P. Reproductive toxicological changes in avian embryos due to a pesticide and an environmental contaminant. Acta Vet Hung 2021; 69:363-371. [PMID: 34747356 DOI: 10.1556/004.2021.00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/27/2021] [Indexed: 11/19/2022]
Abstract
Single and simultaneous toxic effects of glyphosate (Amega Up, 360 g L-1, 4%) and copper sulphate (0.01%) were studied in avian embryos treated either with injection directly into the air chamber or by immersion application for 30 min on day 0 of incubation. Alterations of the chicken embryos were evaluated during necropsy performed on day 19 of incubation, together with mortality, body weight and the type of developmental abnormalities. Based on the results, the injection application appeared to be more toxic than the immersion method, as it induced increased mortality and reduced the average body weight, and resulted in a higher incidence of congenital anomalies. Supposedly, a toxicodynamic interaction occurs between copper sulphate and glyphosate, which may reduce the vitality of embryos and thus decrease the number of offspring in wild birds.
Collapse
Affiliation(s)
- József Lehel
- 1 Department of Food Hygiene, University of Veterinary Medicine, István u. 2, H-1078, Budapest, Hungary
| | - Géza Szemerédy
- 2 Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák F. u. 16, H-8360, Keszthely, Hungary
| | - Rita Szabó
- 2 Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák F. u. 16, H-8360, Keszthely, Hungary
| | - László Major
- 2 Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák F. u. 16, H-8360, Keszthely, Hungary
| | - Adrienn Grúz
- 2 Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák F. u. 16, H-8360, Keszthely, Hungary
| | - Péter Budai
- 2 Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Deák F. u. 16, H-8360, Keszthely, Hungary
| |
Collapse
|
27
|
Serra L, Estienne A, Vasseur C, Froment P, Dupont J. Review: Mechanisms of Glyphosate and Glyphosate-Based Herbicides Action in Female and Male Fertility in Humans and Animal Models. Cells 2021; 10:3079. [PMID: 34831302 PMCID: PMC8622223 DOI: 10.3390/cells10113079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Glyphosate (G), also known as N-(phosphonomethyl)glycine is the declared active ingredient of glyphosate-based herbicides (GBHs) such as Roundup largely used in conventional agriculture. It is always used mixed with formulants. G acts in particular on the shikimate pathway, which exists in bacteria, for aromatic amino acids synthesis, but this pathway does not exist in vertebrates. In recent decades, researchers have shown by using various animal models that GBHs are endocrine disruptors that might alter reproductive functions. Our review describes the effects of exposure to G or GBHs on the hypothalamic-pituitary-gonadal (HPG) axis in males and females in terms of endocrine disruption, cell viability, and proliferation. Most of the main regulators of the reproductive axis (GPR54, GnRH, LH, FSH, estradiol, testosterone) are altered at all levels of the HPG axis (hypothalamus, pituitary, ovaries, testis, placenta, uterus) by exposure to GBHs which are considered more toxic than G alone due to the presence of formulants such as polyoxyethylene tallow amine (POEA)." In addition, we report intergenerational impacts of exposure to G or GBHs and, finally, we discuss different strategies to reduce the negative effects of GBHs on fertility.
Collapse
Affiliation(s)
- Loïse Serra
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| | - Anthony Estienne
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| | - Claudine Vasseur
- Assisted Medical Procreation, Pôle Santé Léonard de Vinci, F-37380 Chambray-lès-Tours, France;
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (P.F.)
| |
Collapse
|
28
|
Simasotchi C, Chissey A, Jungers G, Fournier T, Seralini GE, Gil S. A Glyphosate-Based Formulation but Not Glyphosate Alone Alters Human Placental Integrity. TOXICS 2021; 9:220. [PMID: 34564371 PMCID: PMC8472883 DOI: 10.3390/toxics9090220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022]
Abstract
Glyphosate (G)-based herbicidal formulations, such as the most commonly used one, Roundup (R), are major pesticides used worldwide on food and feed. Pregnant women may be frequently exposed to R compounds. These are composed of G, which is declared as the active principle, and other products contained in formulations, named formulants, which have been declared as inerts and diluents by the manufacturers. These formulants have, in fact, been demonstrated to be much more toxic than G, in particular to placental and embryonic human cells. In this work, we thus compared the effect of G and a GT+ formulation named R, using placental perfusion ex vivo. R, but not G alone, was demonstrated to alter the placental permeability of a known small model molecule, antipyrine. Similar results were observed for the fetal venous flow rate. The transfer of G alone increases with time, but is significantly decreased in presence of its formulants. The perfusion of R provokes a destruction of fetal vessels, as demonstrated by immunohistochemistry. Formulants obviously alter the fetal-placental circulation and placental integrity according to time of exposure. Therefore, G does not appear to be the main toxic agent of R. Formulants, although undeclared, include polyoxyethanolamines, PAHs, or heavy metals, and may be responsible for this toxicity. These compounds are also present in other pesticides. The progressive blood flow reduction due to the toxic compounds of formulations may diminish the nutrient supply to the fetus, alter the development, and may enhance the poisoning effects. Although these are preliminary results, they could at least partially explain some adverse pregnancy outcomes in mothers exposed to pesticides or other environmental pollutants. The debate on glyphosate alone is proven insufficient for the understanding of the toxicity.
Collapse
Affiliation(s)
- Christelle Simasotchi
- Faculté de Pharmacie, Université de Paris, INSERM, U1139, 3PHM, 4 Avenue de l’Observatoire, F-75006 Paris, France; (C.S.); (A.C.); (T.F.); (S.G.)
| | - Audrey Chissey
- Faculté de Pharmacie, Université de Paris, INSERM, U1139, 3PHM, 4 Avenue de l’Observatoire, F-75006 Paris, France; (C.S.); (A.C.); (T.F.); (S.G.)
| | - Gérald Jungers
- Network on Risks, Quality and Sustainable Development, MRSH, Faculty of Sciences, University of Caen Normandy, Esplanade de la Paix, F-14032 Caen, France;
| | - Thierry Fournier
- Faculté de Pharmacie, Université de Paris, INSERM, U1139, 3PHM, 4 Avenue de l’Observatoire, F-75006 Paris, France; (C.S.); (A.C.); (T.F.); (S.G.)
| | - Gilles-Eric Seralini
- Network on Risks, Quality and Sustainable Development, MRSH, Faculty of Sciences, University of Caen Normandy, Esplanade de la Paix, F-14032 Caen, France;
| | - Sophie Gil
- Faculté de Pharmacie, Université de Paris, INSERM, U1139, 3PHM, 4 Avenue de l’Observatoire, F-75006 Paris, France; (C.S.); (A.C.); (T.F.); (S.G.)
| |
Collapse
|
29
|
Kalyabina VP, Esimbekova EN, Kopylova KV, Kratasyuk VA. Pesticides: formulants, distribution pathways and effects on human health - a review. Toxicol Rep 2021; 8:1179-1192. [PMID: 34150527 PMCID: PMC8193068 DOI: 10.1016/j.toxrep.2021.06.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Pesticides are commonly used in agriculture to enhance crop production and control pests. Therefore, pesticide residues can persist in the environment and agricultural crops. Although modern formulations are relatively safe to non-target species, numerous theoretical and experimental data demonstrate that pesticide residues can produce long-term negative effects on the health of humans and animals and stability of ecosystems. Of particular interest are molecular mechanisms that mediate the start of a cascade of adverse effects. This is a review of the latest literature data on the effects and consequences of contamination of agricultural crops by pesticide residues. In addition, we address the issue of implicit risks associated with pesticide formulations. The effects of pesticides are considered in the context of the Adverse Outcome Pathway concept.
Collapse
Affiliation(s)
- Valeriya P. Kalyabina
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Elena N. Esimbekova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Kseniya V. Kopylova
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
| | - Valentina A. Kratasyuk
- Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
30
|
Vallés AS, Tenconi PE, Luquez JM, Furland NE. The inhibition of microtubule dynamics instability alters lipid homeostasis in TM4 Sertoli cells. Toxicol Appl Pharmacol 2021; 426:115607. [PMID: 34089742 DOI: 10.1016/j.taap.2021.115607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Sertoli cells (SC) structurally support and transport nutrients to germ cells during spermatogenesis facilitated by an active cytoskeleton. Chemical perturbation of SC microtubule (MT) dynamics instability leads to premature germ cell exfoliation demonstrating that this process is essential for male fertility, yet the effects of MT damaging drugs on SC lipid metabolism have been less explored. The aim of this study was to advance our understanding of how adequate SC MT dynamicity is needed to finely tune lipid homeostasis. To elucidate the role of MT dynamics instability on the latter, we suppressed MT dynamicity by long-term exposures to 10 nM of nocodazole (NCZ) on TM4-SC cultures. Inhibition of MT dynamics instability affected the distribution of [3H] arachidonate on TM4-SC. Triacylglycerols (TAG) exhibited a higher proportion of the [3H] label, with significantly lower percentages in the mitochondrial phospholipid cardiolipin, and notably, also in phosphatidylethanolamine. A noteworthy and progressive accumulation of lipid droplets during the period of exposure to NCZ was accompanied by increased TAG levels but not cholesterol levels in TM4-SC. NCZ-exposed cells reduced their mitochondrial membrane potential and increased ROS production without triggering apoptosis, had a compromised autophagic flux, and lost their transferrin expression. Although SC morphology was preserved, the NCZ-exposed cells displayed alteration of the normal organization of microfilaments (f-actin) and intermediate filaments (vimentin). Our findings suggest that a preserved MT dynamicity is essential in the maintenance of lipid and fatty acids homeostasis in SC, and thus highlights a novel target in these cells for drugs that impair MT dynamicity.
Collapse
Affiliation(s)
- A S Vallés
- Instituto de Investigaciones Bioquıímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina.
| | - P E Tenconi
- Instituto de Investigaciones Bioquıímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - J M Luquez
- Instituto de Investigaciones Bioquıímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - N E Furland
- Instituto de Investigaciones Bioquıímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
31
|
Rossetti MF, Canesini G, Lorenz V, Milesi MM, Varayoud J, Ramos JG. Epigenetic Changes Associated With Exposure to Glyphosate-Based Herbicides in Mammals. Front Endocrinol (Lausanne) 2021; 12:671991. [PMID: 34093442 PMCID: PMC8177816 DOI: 10.3389/fendo.2021.671991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/03/2021] [Indexed: 01/01/2023] Open
Abstract
Glyphosate is a phosphonomethyl amino acid derivative present in a number of non-selective and systemic herbicides. During the last years the use of glyphosate-based herbicide (GBH) has been increasing exponentially around the world, including Argentina. This fact added to the detection of glyphosate, and its main metabolite, amino methylphosphonic acid (AMPA), in environmental matrices such as soil, sediments, and food, has generated great concern about its risks for humans, animals, and environment. During the last years, there were controversy and intense debate regarding the toxicological effects of these compounds associated with the endocrine system, cancer, reproduction, and development. The mechanisms of action of GBH and their metabolites are still under investigation, although recent findings have shown that they could comprise epigenetic modifications. These are reversible mechanisms linked to tissue-specific silencing of gene expression, genomic imprinting, and tumor growth. Particularly, glyphosate, GBH, and AMPA have been reported to produce changes in global DNA methylation, methylation of specific genes, histone modification, and differential expression of non-coding RNAs in human cells and rodents. Importantly, the epigenome could be heritable and could lead to disease long after the exposure has ended. This mini-review summarizes the epigenetic changes produced by glyphosate, GBHs, and AMPA in humans and rodents and proposes it as a potential mechanism of action through which these chemical compounds could alter body functions.
Collapse
Affiliation(s)
- María Florencia Rossetti
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Guillermina Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge Guillermo Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
32
|
de Araújo-Ramos AT, Passoni MT, Romano MA, Romano RM, Martino-Andrade AJ. Controversies on Endocrine and Reproductive Effects of Glyphosate and Glyphosate-Based Herbicides: A Mini-Review. Front Endocrinol (Lausanne) 2021; 12:627210. [PMID: 33790858 PMCID: PMC8006305 DOI: 10.3389/fendo.2021.627210] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
Glyphosate-based herbicides (GBHs) are among the most used pesticides worldwide, presenting high potential for human exposure. Recently, a debate was raised on glyphosate risks to human health due to conflicting views over its potential carcinogenic and endocrine disruptive properties. Results from regulatory guideline studies, reports from Regulatory Agencies, and some literature studies point to a lack of endocrine disrupting properties of the active ingredient glyphosate. On the other hand, many in vivo and in vitro studies, using different experimental model systems, have demonstrated that GBHs can disrupt certain hormonal signaling pathways with impacts on the hypothalamic-pituitary-gonadal axis and other organ systems. Importantly, several studies showed that technical-grade glyphosate is less toxic than formulated GBHs, indicating that the mixture of the active ingredient and formulants can have cumulative effects on endocrine and reproductive endpoints, which requires special attention from Regulatory Agencies. In this mini-review, we discuss the controversies related to endocrine-disrupting properties of technical-grade glyphosate and GBHs emphasizing the reproductive system and its implications for human health.
Collapse
Affiliation(s)
- Anderson Tadeu de Araújo-Ramos
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Marcella Tapias Passoni
- Reproductive Toxicology Laboratory, Department of Pharmacology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Anderson Joel Martino-Andrade
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, Brazil
- Reproductive Toxicology Laboratory, Department of Pharmacology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
33
|
Hu J, Lesseur C, Miao Y, Manservisi F, Panzacchi S, Mandrioli D, Belpoggi F, Chen J, Petrick L. Low-dose exposure of glyphosate-based herbicides disrupt the urine metabolome and its interaction with gut microbiota. Sci Rep 2021; 11:3265. [PMID: 33547360 PMCID: PMC7864973 DOI: 10.1038/s41598-021-82552-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Glyphosate-based herbicides (GBHs) can disrupt the host microbiota and influence human health. In this study, we explored the potential effects of GBHs on urinary metabolites and their interactions with gut microbiome using a rodent model. Glyphosate and Roundup (equal molar for glyphosate) were administered at the USA glyphosate ADI guideline (1.75 mg/kg bw/day) to the dams and their pups. The urine metabolites were profiled using non-targeted liquid chromatography-high resolution mass spectrometry (LC-HRMS). Our results found that overall urine metabolite profiles significantly differed between dams and pups and between female and male pups. Specifically, we identified a significant increase of homocysteine, a known risk factor of cardiovascular disease in both Roundup and glyphosate exposed pups, but in males only. Correlation network analysis between gut microbiome and urine metabolome pointed to Prevotella to be negatively correlated with the level of homocysteine. Our study provides initial evidence that exposures to commonly used GBH, at a currently acceptable human exposure dose, is capable of modifying urine metabolites in both rat adults and pups. The link between Prevotella-homocysteine suggests the potential role of GBHs in modifying the susceptibility of homocysteine, which is a metabolite that has been dysregulated in related diseases like cardiovascular disease or inflammation, through commensal microbiome.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, USA.
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, USA
| | - Yu Miao
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, USA
| | - Fabiana Manservisi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Bentivoglio, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Simona Panzacchi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Bentivoglio, Bologna, Italy
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Bentivoglio, Bologna, Italy
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Bentivoglio, Bologna, Italy
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, USA
| | - Lauren Petrick
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, USA.
- Institute for Exposomics Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
34
|
Liu J, Dong C, Zhai Z, Tang L, Wang L. Glyphosate-induced lipid metabolism disorder contributes to hepatotoxicity in juvenile common carp. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116186. [PMID: 33302084 DOI: 10.1016/j.envpol.2020.116186] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Residues of glyphosate (GLY) are widely detected in aquatic systems, raising potential environmental threats and public health concerns, but the mechanism underlying GLY-induced hepatotoxicity in fish has not been fully elucidated yet. This study was designed to explore the hepatotoxic mechanism using juvenile common carp exposed to GLY for 45 d, and plasma and liver samples were collected at 15 d, 30 d, and 45 d to analyze the assays. First, GLY-induced hepatic damage was confirmed by serum liver damage biomarker and hepatic histopathological analysis. Next, changes in oxidative stress biomarkers, gene expression levels of pro- and anti-inflammatory cytokines, and lipid metabolism-related parameters in collected samples were analyzed to clarify their roles in GLY-induced hepatic damage. Data showed that oxidative stress was an early event during GLY exposure, followed by hepatic inflammatory response. Lipid metabolism disorder was a late event during GLY exposure, as evidenced by overproduced hepatic free fatty acids, enhanced lipogenesis-related gene expression levels, reduced lipolysis-related gene expression levels, and resultant hepatic lipid accumulation. Collectively, these findings demonstrate that GLY induces hepatotoxicity in fish through involvement of oxidative stress, inflammatory response, and lipid metabolism disorder, which are intimately interrelated with each other during GLY exposure.
Collapse
Affiliation(s)
- Jingbo Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Chenyu Dong
- The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, 510000, China
| | - Zhenzhen Zhai
- Tai'an City Central Hospital, 29 Longtan Road, Tai'an City, Shandong Province, 271000, China
| | - Liang Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
35
|
Ferramosca A, Lorenzetti S, Di Giacomo M, Murrieri F, Coppola L, Zara V. Herbicides glyphosate and glufosinate ammonium negatively affect human sperm mitochondria respiration efficiency. Reprod Toxicol 2021; 99:48-55. [PMID: 33249231 DOI: 10.1016/j.reprotox.2020.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/19/2020] [Accepted: 11/16/2020] [Indexed: 12/25/2022]
Abstract
The widespread cultivation of genetically modified organisms (GMOs) led to a widespread use of selective herbicides to which GMOs are resistant, thus increasing the concern about human exposure to them. Glyphosate (GLY) and glufosinate ammonium (GA), the active principles of the main formulations, have been investigated for their effects on human health, mainly cancer and reproductive toxicity. However, little is known about their effects on the molecular mechanisms related to sperm quality. To investigate the effects of GLY and GA on mitochondrial respiration efficiency, we took advantage of our already established ex vivo human sperm mitochondria assay. Since spermatozoa are highly regulated by sex steroids, we tested at first testosterone (T), di-hydroxytestosterone (DHT), 17β-estradiol (E2) and progesterone (P4). Then, we tested the effects of GLY and GA and of the hormone-like flavonoid quercetin (QRC) in a dose-dependent manner. The 0.1-1000 nM concentration range has been considered because it covers both the sexual hormones physiologically relevant concentrations (10 nM), triggering endogenously hormone-dependent signaling pathways, and the estimated (nM range) QRC dietary intake. Subsequently, co-incubation experiments were carried out with the two herbicides in the presence of 10 nM of each sex steroid and QRC. We found that: i) DHT and QRC are able to significantly reduce mitochondrial functionality at concentrations ≥ 10 nM; ii) GLY and GA negatively affect mitochondrial respiration efficiency; iii) in the presence of 10 nM DHT, the negative effect of GLY was increased; iiii) DHT, QRC and GA target mitochondria by using a mechanism different from GLY.
Collapse
Affiliation(s)
- Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100, Lecce, Italy.
| | - Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, I-00161, Rome, Italy.
| | - Mariangela Di Giacomo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100, Lecce, Italy
| | | | | | - Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100, Lecce, Italy
| |
Collapse
|
36
|
Calcium oxyhydroxide (CaO/Ca(OH)2) nanoparticles: Synthesis, characterization and evaluation of their capacity to degrade glyphosate-based herbicides (GBH). ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
|
38
|
Ingaramo P, Alarcón R, Muñoz-de-Toro M, Luque EH. Are glyphosate and glyphosate-based herbicides endocrine disruptors that alter female fertility? Mol Cell Endocrinol 2020; 518:110934. [PMID: 32659439 DOI: 10.1016/j.mce.2020.110934] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Numerous evidences have alerted on the toxic effects of the exposure to glyphosate on living organisms. Glyphosate is the herbicide most used in crops such as maize and soybean worldwide, which implies that several non-target species are at a high risk of exposure. Although the Environmental Protection Agency (EPA-USA) has reaffirmed that glyphosate is safe for users, there are controversial studies that question this statement. Some of the reported effects are due to exposure to high doses; however, recent evidences have shown that exposure to low doses could also alter the development of the female reproductive tract, with consequences on fertility. Different animal models of exposure to glyphosate or glyphosate-based herbicides (GBHs) have shown that the effects on the female reproductive tract may be related to the potential and/or mechanisms of actions of an endocrine-disrupting compound. Studies have also demonstrated that the exposure to GBHs alters the development and differentiation of ovarian follicles and uterus, affecting fertility when animals are exposed before puberty. In addition, exposure to GBHs during gestation could alter the development of the offspring (F1 and F2). The main mechanism described associated with the endocrine-disrupting effect of GBHs is the modulation of estrogen receptors and molecules involved in the estrogenic pathways. This review summarizes the endocrine-disrupting effects of exposure to glyphosate and GBHs at low or "environmentally relevant" doses in the female reproductive tissues. Data suggesting that, at low doses, GBHs may have adverse effects on the female reproductive tract fertility are discussed.
Collapse
Affiliation(s)
- Paola Ingaramo
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Ramiro Alarcón
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente Del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional Del Litoral, Santa Fe, Argentina.
| |
Collapse
|
39
|
Peillex C, Pelletier M. The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. J Immunotoxicol 2020; 17:163-174. [PMID: 32897110 DOI: 10.1080/1547691x.2020.1804492] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Glyphosate, or N-phosphomethyl(glycine), is an organophosphorus compound and a competitive inhibitor of the shikimate pathway that allows aromatic amino acid biosynthesis in plants and microorganisms. Its utilization in broad-spectrum herbicides, such as RoundUp®, has continued to increase since 1974; glyphosate, as well as its primary metabolite aminomethylphosphonic acid, is measured in soils, water, plants, animals and food. In humans, glyphosate is detected in blood and urine, especially in exposed workers, and is excreted within a few days. It has long been regarded as harmless in animals, but growing literature has reported health risks associated with glyphosate and glyphosate-based herbicides. In 2017, the International Agency for Research on Cancer (IARC) classified glyphosate as "probably carcinogenic" in humans. However, other national agencies did not tighten their glyphosate restrictions and even prolonged authorizations of its use. There are also discrepancies between countries' authorized levels, demonstrating an absence of a clear consensus on glyphosate to date. This review details the effects of glyphosate and glyphosate-based herbicides on fish and mammal health, focusing on the immune system. Increasing evidence shows that glyphosate and glyphosate-based herbicides exhibit cytotoxic and genotoxic effects, increase oxidative stress, disrupt the estrogen pathway, impair some cerebral functions, and allegedly correlate with some cancers. Glyphosate effects on the immune system appear to alter the complement cascade, phagocytic function, and lymphocyte responses, and increase the production of pro-inflammatory cytokines in fish. In mammals, including humans, glyphosate mainly has cytotoxic and genotoxic effects, causes inflammation, and affects lymphocyte functions and the interactions between microorganisms and the immune system. Importantly, even as many outcomes are still being debated, evidence points to a need for more studies to better decipher the risks from glyphosate and better regulation of its global utilization.
Collapse
Affiliation(s)
- Cindy Peillex
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
- Infectious and Immune Disease Axis, CHU de Québec-Université Laval Research Center, Quebec City, Canada
- ARThrite Research Center, Laval University, Quebec City, Canada
| | - Martin Pelletier
- Infectious and Immune Disease Axis, CHU de Québec-Université Laval Research Center, Quebec City, Canada
- ARThrite Research Center, Laval University, Quebec City, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Quebec City, Canada
| |
Collapse
|
40
|
Jarrell ZR, Ahammad MU, Benson AP. Glyphosate-based herbicide formulations and reproductive toxicity in animals. Vet Anim Sci 2020; 10:100126. [PMID: 32734026 PMCID: PMC7386766 DOI: 10.1016/j.vas.2020.100126] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/16/2023] Open
Abstract
The adoption of genetically engineered (GE) crops in agriculture has increased dramatically over the last few decades. Among the transgenic plants, those tolerant to the herbicide glyphosate are among the most common. Weed resistance to glyphosate-based herbicides (GBHs) has been on the rise, leading to increased herbicide applications. This, in turn, has led to increased glyphosate residues in feed. Although glyphosate has been considered to be generally safe to animal health, recent studies have shown that GBHs have potential to cause adverse effects in animal reproduction, including disruption of key regulatory enzymes in androgen synthesis, alteration of serum levels of estrogen and testosterone, damage to reproductive tissues and impairment of gametogenesis. This review emphasizes known effects of GBHs on reproductive health as well as the potential risk GBH residues pose to animal agriculture.
Collapse
Affiliation(s)
| | - Muslah Uddin Ahammad
- Department of Poultry Science, University of Georgia, Athens, GA 30602, United States
| | - Andrew Parks Benson
- Department of Poultry Science, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
41
|
Understanding the chemistry of manganese fertilizers and glyphosate mixtures by using synchrotron X-ray spectrometry. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03632-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
42
|
Ganesan S, Keating AF. Ovarian mitochondrial and oxidative stress proteins are altered by glyphosate exposure in mice. Toxicol Appl Pharmacol 2020; 402:115116. [PMID: 32634520 PMCID: PMC8500330 DOI: 10.1016/j.taap.2020.115116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
Glyphosate (GLY) usage for weed control is extensive. To investigate ovarian impacts of chronic GLY exposure, female C57BL6 mice were orally administered saline as vehicle control (CT) or GLY at 0.25 (G0.25), 0.5 (G0.5), 1.0 (G1.0), 1.5 (G1.5), or 2 (G2.0) mg/kg for five days per wk. for 20 wks. Feed intake increased (P < .05) in G1.5 and G2.0 mice and body weight increased (P < .05) in G1.0 mice. There was no impact of GLY on estrous cyclicity, nor did GLY affect circulating levels of 17β-estradiol or progesterone. Exposure to GLY did not impact heart, liver, spleen, kidney or uterus weight. Both ovarian weight and follicle number were increased (P < .05) by G2.0 but not affected at lower GLY concentrations. There were no detectable effects of GLY on ovarian protein abundance of pAKT, AKT, pAKT:AKT, γH2AX, STAR, CYP11A1, HSD3B, CYP19A, ERA or ERB. Increased (P < .05) abundance of ATM protein was observed at G0.25 but not higher GLY doses. A dose-dependent effect (P < .10) of GLY exposure on ovarian protein abundance as quantified by LC-MS/MS was observed (G0.25-4 increased, 19 decreased; G0.5-5 increased, 25 decreased; G1.0-65 increased, 7 decreased; G1.5-145 increased, 2 decreased; G2.0-159 increased, 4 decreased). Pathway analysis was performed using DAVID and identified glutathione metabolism, metabolic and proteasome pathways as GLY exposure targets. These data indicate that chronic low-level exposure to GLY alters the ovarian proteome and may ultimately impact ovarian function.
Collapse
Affiliation(s)
- Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
43
|
Nerozzi C, Recuero S, Galeati G, Bucci D, Spinaci M, Yeste M. Effects of Roundup and its main component, glyphosate, upon mammalian sperm function and survival. Sci Rep 2020; 10:11026. [PMID: 32620848 PMCID: PMC7335210 DOI: 10.1038/s41598-020-67538-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
The wide use of glyphosate-based herbicides (GBHs) has become a matter of concern due to its potential harmful effects on human health, including men fertility. This study sought to investigate, using the pig as a model, the impact of pure glyphosate and its most known commercial formulation, Roundup, on sperm function and survival. With this purpose, fresh commercial semen doses were incubated with different concentrations (0-360 µg/mL) of glyphosate (GLY; exp. 1) or Roundup, at the equivalent GLY concentration (exp. 2), at 38 °C for 3 h. Glyphosate at 360 µg/mL significantly (P < 0.05) decreased sperm motility, viability, mitochondrial activity and acrosome integrity but had no detrimental effect at lower doses. On the other hand, Roundup did significantly (P < 0.05) reduce sperm motility at ≥ 5 µg/mL GLY-equivalent concentration; mitochondrial activity at ≥ 25 µg/mL GLY-equivalent concentration; and sperm viability and acrosome integrity at ≥ 100 µg/mL GLY-equivalent concentration as early as 1 h of incubation. In a similar fashion, GLY and Roundup did not inflict any detrimental effect on sperm DNA integrity. Taken together, these data indicate that, while both glyphosate and Roundup exert a negative impact on male gametes, Roundup is more toxic than its main component, glyphosate.
Collapse
Affiliation(s)
- Chiara Nerozzi
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, C/Maria Aurèlia Campany, 69, Campus Montilivi, 17003, Girona, Spain
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Sandra Recuero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, C/Maria Aurèlia Campany, 69, Campus Montilivi, 17003, Girona, Spain
| | - Giovanna Galeati
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Diego Bucci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Marcella Spinaci
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, C/Maria Aurèlia Campany, 69, Campus Montilivi, 17003, Girona, Spain.
| |
Collapse
|
44
|
da Silva NDG, Carneiro CEA, Campos EVR, de Oliveira JL, Risso WE, Fraceto LF, Zaia DAM, Martinez CBR. Interference of goethite in the effects of glyphosate and Roundup® on ZFL cell line. Toxicol In Vitro 2020; 65:104755. [PMID: 31881238 DOI: 10.1016/j.tiv.2019.104755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/28/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022]
Abstract
Goethite (α-FeOOH) brings important perspectives in environmental remediation, as, due to its physicochemical properties, this iron oxide can adsorb a wide variety of compounds, including glyphosate. This study aimed to evaluate the effects of goethite nanoparticles (NPs), glyphosate (Gly), Roundup® (Rd), and co-exposures (Gly + NPs and Rd + NPs) on zebrafish liver cell line (ZFL). ZFL cells were exposed to NPs (1, 10, and 100 mg L-1), Gly (3.6 mg L-1), Rd (10 mg L-1), and co-exposures (Gly + NPs and Rd + NPs), or only to saline for 1, 6, and 12 h. Cell viability was assessed by Trypan blue, MTT, and neutral red assays. The generation of reactive oxygen species and total antioxidant capacity were also determined, while genotoxicity was quantified by the comet assay. Both NPs and Rd in isolation produced cytotoxic effects at 6 h and genotoxic effects at 1 and 6 h. Rd + NPs resulted in synergistic effects, intensifying the toxicity. Cells exposed to Gly did not present toxic effects and Gly + NPs resulted in the suppression of toxic effects observed for NPs. The presence of other components in Roundup® seems to favor its toxicity compared to the active ingredient. In conclusion, according to the in vitro model, the concentrations used were not safe for the ZFL lineage.
Collapse
Affiliation(s)
- Natara D G da Silva
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Londrina - UEL, Londrina, Paraná, Brazil
| | - Cristiane E A Carneiro
- Departamento de Química, Universidade Estadual de Londrina - UEL, Londrina, Paraná, Brazil
| | - Estefânia V R Campos
- Departamento de Engenharia Ambiental, Universidade Estadual Paulista - UNESP, Sorocaba, São Paulo, Brazil
| | - Jhones L de Oliveira
- Departamento de Engenharia Ambiental, Universidade Estadual Paulista - UNESP, Sorocaba, São Paulo, Brazil
| | - Wagner E Risso
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina - UEL, Londrina, Paraná, Brazil
| | - Leonardo F Fraceto
- Departamento de Engenharia Ambiental, Universidade Estadual Paulista - UNESP, Sorocaba, São Paulo, Brazil
| | - Dimas A M Zaia
- Departamento de Química, Universidade Estadual de Londrina - UEL, Londrina, Paraná, Brazil
| | - Cláudia B R Martinez
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Londrina - UEL, Londrina, Paraná, Brazil; Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina - UEL, Londrina, Paraná, Brazil.
| |
Collapse
|
45
|
Rogacz D, Lewkowski J, Cal D, Rychter P. Ecotoxicological effects of new C-substituted derivatives of N-phosphonomethylglycine (glyphosate) and their preliminary evaluation towards herbicidal application in agriculture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110331. [PMID: 32146199 DOI: 10.1016/j.ecoenv.2020.110331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
In this paper, comparison of ecotoxicological and herbicidal effect of newly synthesized N‑[(phosphono)(aryl)methyl]glycines 1a-g (C-substituted glyphosate derivatives) with pure glyphosate (N-phosphonomethylglycine) (2) was demonstrated. All of tested glyphosate derivatives (1a-g) in contrast to glyphosate, were found to be completely safe for oat (Avena sativa) and classified as not harmful for marine bacteria Aliivibrio fischeri. Compounds 1a-g were also found rather harmless to radish (Raphanus sativus) as compared to N-phosphonomethylglycine, but they were moderately toxic against freshwater crustaceans Heterocypris incongruens. One of synthesized compounds, namely N-[(phosphono)(4-hydroxyphenyl)methyl]glycine (1f) was found to possess stronger herbicidal properties against gallant soldier (Galinsoga parviflora) and common sorrel (Rumex acetosa) when compared to pure glyphosate and demonstrated total death of these weeds being ranked 1 in the European Weed Research Council (EWRC) scale. Considering lower phytotoxicity of compound 1f against cultivated plants and tested microorganisms when compared to pure glyphosate, this aminophosphonate may be good candidate for further, more comprehensive study toward its agrochemical application, especially that this active agent demonstrated much stronger herbicidal properties than N-phosphonomethylglycine.
Collapse
Affiliation(s)
- Diana Rogacz
- Faculty of Science and Technology, Jan Długosz University in Częstochowa, 42-200, Częstochowa, Armii Krajowej 13/15, Poland.
| | - Jarosław Lewkowski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403, Łódź, Poland
| | - Dariusz Cal
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403, Łódź, Poland; Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403, Łódź, Poland.
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Długosz University in Częstochowa, 42-200, Częstochowa, Armii Krajowej 13/15, Poland.
| |
Collapse
|
46
|
Pochron S, Simon L, Mirza A, Littleton A, Sahebzada F, Yudell M. Glyphosate but not Roundup® harms earthworms (Eisenia fetida). CHEMOSPHERE 2020; 241:125017. [PMID: 31605995 DOI: 10.1016/j.chemosphere.2019.125017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Glyphosate is the active ingredient in Roundup® formulations. While multiple studies have documented the toxicity, environmental persistence, and tendency to spread for glyphosate and Roundup®, few studies have compared the toxicity of glyphosate-based formulations to the toxicity of pure glyphosate for soil invertebrates, which contact both the herbicide and the formulations. Hundreds of formulations exist; their inert ingredients are confidential; and glyphosate persists in our food, water, and soil. In this experiment, we held glyphosate type and concentration constant, varying only formulation. Using Roundup Ready-to-Use III®, Roundup Super Concentrate®, and pure glyphosate, we delivered 26.3 mg glyphosate in the form of isopropylamine salt per kg of soil to compost worms (Eisenia fetida). We found that worms living in soil spiked with pure glyphosate lost 14.8-25.9% of their biomass and survived a stress test for 22.2-33.3% less time than worms living in uncontaminated soil. Worms living in soil spiked with Roundup Ready-to-Use III® and Roundup Super Concentrate® did not lose body mass and survived the stress test as well as worms living in uncontaminated soil. No contaminant affected soil microbial or fungal biomass over the 40-day period of this experiment. We suggest that the nitrates and phosphates in the formulations offset the toxic effects of glyphosate by spurring microbial growth and speeding glyphosate degradation. We also found a 26.5-41.3% reduction in fungal biomass across all treatments over the course of this experiment, suggesting that the worms consumed fungi and spores.
Collapse
Affiliation(s)
- Sharon Pochron
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, United States.
| | - Leora Simon
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, United States
| | - Ashra Mirza
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, United States
| | - Anne Littleton
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, United States
| | - Feisal Sahebzada
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, United States
| | - Michael Yudell
- Sustainability Studies Program, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-3435, United States
| |
Collapse
|
47
|
Gorga A, Rindone GM, Centola CL, Sobarzo C, Pellizzari EH, Camberos MDC, Cigorraga SB, Riera MF, Galardo MN, Meroni SB. In vitro effects of glyphosate and Roundup on Sertoli cell physiology. Toxicol In Vitro 2020; 62:104682. [PMID: 31626902 DOI: 10.1016/j.tiv.2019.104682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Roundup (R), a formulation that contains glyphosate (G) as the active ingredient, is a commonly used nonselective herbicide that has been proposed to affect male fertility. It is well known that an adequate Sertoli cell function is essential to maintain germ cell development. The aim of the present study was to analyze whether G and R are able to affect Sertoli cell functions, such as energy metabolism and blood-testis barrier (BTB) integrity. Sertoli cell cultures from 20-day-old rats were exposed to 10 and 100 ppm of G or R, doses which do not decrease cell viability. Neither G nor R caused impairment in lactate production or fatty acid oxidation. G and R decreased Transepithelial Electrical Resistance, which indicates the establishment of a Sertoli cell junction barrier. However, neither G nor R modified the expression of claudin11, ZO1 and occludin, proteins that constitute the BTB. Analysis of cellular distribution of claudin11 by immunofluorescence showed that G and R induced a delocalization of the signal from membrane to the cytoplasm. The results suggest that G and R could alter an important function of Sertoli cell such as BTB integrity and thus they could compromise the normal development of spermatogenesis.
Collapse
Affiliation(s)
- Agostina Gorga
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Gustavo Marcelo Rindone
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Cecilia Lucia Centola
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Cristian Sobarzo
- Facultad de Medicina, UBA, Instituto de Investigaciones Biomédicas (INBIOMED), Argentina
| | - Eliana Herminia Pellizzari
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - María Del Carmen Camberos
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Selva Beatriz Cigorraga
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Maria Fernanda Riera
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Maria Noel Galardo
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Silvina Beatriz Meroni
- CONICET-FEI-División de Endocrinología, Centro de Investigaciones Endocrinológicas "Dr César Bergadá", Hospital de Niños Ricardo Gutiérrez, Argentina.
| |
Collapse
|
48
|
Weeks Santos S, Gonzalez P, Cormier B, Mazzella N, Bonnaud B, Morin S, Clérandeau C, Morin B, Cachot J. A glyphosate-based herbicide induces sub-lethal effects in early life stages and liver cell line of rainbow trout, Oncorhynchus mykiss. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105291. [PMID: 31525644 DOI: 10.1016/j.aquatox.2019.105291] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Most pesticides used in agriculture end up in the aquatic environment through runoff and leaching of treated crops. One of the most commonly used herbicides is glyphosate. This compound or its metabolites are frequently detected in surface water in Europe. In the present study, in vivo and in vitro studies were carried out using the early life stages of rainbow trout (Oncorhynchus mykiss) and the cell line RTL-W1 (a liver cell line from rainbow trout) to characterize the toxic effects of glyphosate at environmentally-realistic concentrations. Both studies were performed using the commercial formulation Roundup® GT Max, and technical-grade glyphosate for the in vitro study. Eyed-stage embryos were exposed for 3 weeks to sub-lethal concentrations (0.1 and 1 mg/L) of glyphosate using Roundup. Numerous toxicity endpoints were recorded such as survival, hatching success, larval biometry, developmental abnormalities, swimming activity, genotoxicity (formamidopyrimidine DNA-glycosylase Fpg-modified comet assay), lipid peroxidation (TBARS), protein carbonyls and target gene transcription. Concentrations neither affected embryonic or larval survival nor increased developmental abnormalities. However, a significant decrease was observed in the head size of larvae exposed to 1 mg/L of glyphosate. In addition, a significant increase in mobility was observed for larvae exposed to glyphosate at 0.1 mg/L. TBARS levels were significantly decreased on larvae exposed to 1 mg/L (a.i.), and cat and cox1 genes were differently transcribed from controls. DNA damage was detected by the Fpg-modified comet assay in RTL-W1 cell line exposed to the technical-grade glyphosate and Roundup formulation. The results suggest that chronic exposure to glyphosate, at environmental concentrations, could represent a potential risk for early life stages of fish.
Collapse
Affiliation(s)
- Shannon Weeks Santos
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Patrice Gonzalez
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Bettie Cormier
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Nicolas Mazzella
- IRSTEA, UR EABX, 50 avenue de Verdun, 33612, Cestas cedex, France
| | - Bertille Bonnaud
- IRSTEA, UR EABX, 50 avenue de Verdun, 33612, Cestas cedex, France
| | - Soizic Morin
- IRSTEA, UR EABX, 50 avenue de Verdun, 33612, Cestas cedex, France
| | - Christelle Clérandeau
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Bénédicte Morin
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France
| | - Jérôme Cachot
- UMR CNRS 5805 EPOC, University of Bordeaux, Allée Geoffoy Saint-Hilaire, CS 50023, 33615, Pessac Cedex, France.
| |
Collapse
|
49
|
Hirano LQL, Alves LDS, Menezes-Reis LT, Mendonça JDS, Simões K, Santos ALQ, Vieira LG. Effects of egg exposure to atrazine and/or glyphosate on bone development in Podocnemis unifilis (Testudines, Podocnemididae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109400. [PMID: 31276883 DOI: 10.1016/j.ecoenv.2019.109400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
This study was designed to investigate skeletal changes in Podocnemis unifilis embryos derived from artificially incubated eggs exposed to different concentrations of atrazine, glyphosate or atrazine and glyphosate mixture. Forty-two eggs were randomly allocated to one of seven trays containing vermiculite treated distilled water (control group) or the following solutions: 2 or 200 μg L-1 of atrazine (groups A1 and A2 respectively); 65 or 6500 μg L-1 of glyphosate (groups G1 and G2 respectively); 2 μg L-1 and 65 μg L-1 or 200 μg L-1 and 6500 μg L-1 of atrazine and glyphosate mixture (groups AG1 and AG2 respectively). Three eggs per tray were randomly collected on days 30 and 50 of the incubation period. Embryos were submitted to soft tissue diaphanization and stained with Alizarin red S or Alcian blue for morphological analysis of bone and cartilage tissues; histological analysis was performed to confirm ossification changes. Findings were compared between groups. Morphological changes were limited to sclerotic ring features and number of ribs. Malformations rates differed significantly (p < 0.05) between embryos in the control and treated groups A2, AG1 and AG2. Concurrent exposure to atrazine and glyphosate did not affect the presence or severity of embryonic malformations and was not associated with appendicular skeleton changes in P. unifilis embryos. However, further studies focusing on the axial skeleton with particular emphasis on rib abnormalities are warranted.
Collapse
Affiliation(s)
| | | | | | | | - Karina Simões
- (b)Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | | | | |
Collapse
|
50
|
Verderame M, Scudiero R. How Glyphosate Impairs Liver Condition in the Field Lizard Podarcis siculus (Rafinesque-Schmaltz, 1810): Histological and Molecular Evidence. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4746283. [PMID: 31218226 PMCID: PMC6536989 DOI: 10.1155/2019/4746283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
Abstract
The potential toxicity of glyphosate, a widely used broad-spectrum herbicide, is currently a great matter of debate. As vertebrate insectivores, lizards protect plants from herbivorous insects increasing plant biomass via the trophic cascade and represent an important link between invertebrates and higher predators. A negative effect of glyphosate on lizards' survival could have major impacts at the ecological levels. In this study, we investigated the effects of the exposure to low doses of glyphosate on the liver of the wall lizard Podarcis siculus, a suitable bioindicator of soil pollution. Two different doses of pure glyphosate (0.05 and 0.5 μg/kg body weight) were orally administered every other day for 3 weeks to sexually mature males and females. The results demonstrated that both doses, despite being very low, are toxic for the liver that showed clear signs of suffering, regardless of sex. The histological analysis provided a scenario of severe hepatic condition, which degenerated until the appearance of fibrotic formations. The morphological observations were consistent with a loss of liver physiological functions. Immunocytochemical investigations allowed us to detect an involvement of antioxidant/cytoprotective proteins, such as superoxide dismutase 1 (Cu/Zn SOD, known as SOD1), glutathione peroxidase 1 (GPx1), metallothionein (MT), and tumor suppressor protein 53, (p53) suggesting that the liver was trying to react against stress signals and damage induced by glyphosate. Finally, in situ hybridization and Real-Time PCR analysis showed the upregulation of estrogen receptor α and vitellogenin gene expression, thus demonstrating the xenoestrogenic action of glyphosate. The imbalance of the hormonal homeostasis could threaten the lizards' reproductive fitness and survival, altering the trophic cascade.
Collapse
Affiliation(s)
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia, 80126 Napoli, Italy
| |
Collapse
|