1
|
Wang Y, Li D, Xu K, Wang G, Zhang F. Copper homeostasis and neurodegenerative diseases. Neural Regen Res 2025; 20:3124-3143. [PMID: 39589160 PMCID: PMC11881714 DOI: 10.4103/nrr.nrr-d-24-00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/27/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024] Open
Abstract
Copper, one of the most prolific transition metals in the body, is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations. Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins, including copper transporters (CTR1 and CTR2), the two copper ion transporters the Cu -transporting ATPase 1 (ATP7A) and Cu-transporting beta (ATP7B), and the three copper chaperones ATOX1, CCS, and COX17. Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue. Emerging evidence suggests that abnormal copper metabolism or copper binding to various proteins, including ceruloplasmin and metallothionein, is involved in the pathogenesis of neurodegenerative disorders. However, the exact mechanisms underlying these processes are not known. Copper is a potent oxidant that increases reactive oxygen species production and promotes oxidative stress. Elevated reactive oxygen species levels may further compromise mitochondrial integrity and cause mitochondrial dysfunction. Reactive oxygen species serve as key signaling molecules in copper-induced neuroinflammation, with elevated levels activating several critical inflammatory pathways. Additionally, copper can bind aberrantly to several neuronal proteins, including alpha-synuclein, tau, superoxide dismutase 1, and huntingtin, thereby inducing neurotoxicity and ultimately cell death. This study focuses on the latest literature evaluating the role of copper in neurodegenerative diseases, with a particular focus on copper-containing metalloenzymes and copper-binding proteins in the regulation of copper homeostasis and their involvement in neurodegenerative disease pathogenesis. By synthesizing the current findings on the functions of copper in oxidative stress, neuroinflammation, mitochondrial dysfunction, and protein misfolding, we aim to elucidate the mechanisms by which copper contributes to a wide range of hereditary and neuronal disorders, such as Wilson's disease, Menkes' disease, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Potential clinically significant therapeutic targets, including superoxide dismutase 1, D-penicillamine, and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline, along with their associated therapeutic agents, are further discussed. Ultimately, we collate evidence that copper homeostasis may function in the underlying etiology of several neurodegenerative diseases and offer novel insights into the potential prevention and treatment of these diseases based on copper homeostasis.
Collapse
Affiliation(s)
- Yuanyuan Wang
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Daidi Li
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Kaifei Xu
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Guoqing Wang
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Feng Zhang
- International Research Laboratory of Ethnomedicine of Ministry of Education, Key Laboratory of Basic Pharmacology of Ministry of Education, Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
2
|
Witt B, Friese S, Walther V, Ebert F, Bornhorst J, Schwerdtle T. Cellular mechanisms of copper neurotoxicity in human, differentiated neurons. Arch Toxicol 2025; 99:689-699. [PMID: 39680088 PMCID: PMC11774975 DOI: 10.1007/s00204-024-03921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Copper (Cu) is an essential trace element involved in fundamental physiological processes in the human body. Even slight disturbances in the physiological Cu homeostasis are associated with the manifestation of neurodegenerative diseases. While suggesting a crucial role of Cu in the pathogenesis, the exact mechanisms of Cu neurotoxicity involved in the onset and progression of neurological diseases are far from understood. This study focuses on the molecular and cellular mechanisms of Cu-mediated neurotoxicity in human brain cells. First, the cytotoxic potential of Cu was studied in fully differentiated, human neurons (LUHMES cells). Lysosomal integrity was considerably affected following incubation with 420 µM CuSO4 for 48 h. Further mechanistic studies revealed mitochondria and neuronal network as most susceptible target organelles (already at 100 µM CuSO4, 48 h), while the generation of reactive oxygen species turned out to be a rather later consequence of Cu toxicity. Besides Cu, the homeostasis of other elements might be involved and are likely to contribute to the pathology of Cu-mediated neurological disorders. Besides Cu, also effects on the cellular levels of magnesium, calcium, iron, and manganese were observed in the neurons, presumably aggravating the consequences of Cu neurotoxicity. In conclusion, insights in the underlying mode of action will foster the development of treatment strategies against Cu-mediated neurological diseases. Particularly, the interplay of Cu with other elements might provide a powerful diagnostic tool and might be used as therapeutic approach.
Collapse
Affiliation(s)
- Barbara Witt
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany.
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Potsdam, Germany.
| | - Sharleen Friese
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Potsdam, Germany
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Vanessa Walther
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Potsdam, Germany
| | - Franziska Ebert
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Potsdam, Germany
| | - Julia Bornhorst
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
- Food Chemistry With Focus On Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Potsdam, Germany
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-Und-Neu-Straße 9, 76131, Karlsruhe, Germany
| |
Collapse
|
3
|
Ragasa LRP, Cuomo CA, del Rosario RCH, Velarde MC. Comparative genomics reveals putative copper tolerance genes in a Fusarium oxysporum strain. G3 (BETHESDA, MD.) 2025; 15:jkae272. [PMID: 39560500 PMCID: PMC11708227 DOI: 10.1093/g3journal/jkae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/12/2024] [Indexed: 11/20/2024]
Abstract
Copper has been widely used as a main component in fungicides due to its versatility and effectivity. However, copper contamination from the environment creates selective pressure for the emergence of copper-tolerant pathogenic fungal strains that may proliferate and further cause damage to important agricultural crops. Although some studies focused on specific cellular mechanisms of copper tolerance, comprehensive genomic data are lacking. Here, we examined the genes potentially involved in copper tolerance by conducting a comparative analysis of newly sequenced genomes of 2 Fusarium oxysporum strains, IB-SN1W (copper-tolerant) and Foc-3429 (copper-sensitive), with other Fusarium species. Whole-genome assembly and annotation identified 10 core chromosomes shared between the 2 strains. Protein prediction revealed 16,894 and 15,420 protein-coding genes for IB-SN1W and Foc-3429, respectively. There are 388 unique genes in IB-SN1W not found in Foc-3429, potentially contributing to copper tolerance. Furthermore, the identification of synteny between the 2 strains, including the analysis of orthologous genes within the Fusarium genus, confirmed the presence of accessory chromosomes that are specific to IB-SN1W, accounting for 13% of the genome. These accessory chromosomes consist of genes associated with cation transporter activity, vacuole, copper oxidases, and copper transporters which shed light on the potential mechanism of copper tolerance in this strain. Additionally, a region within an accessory chromosome contains a high density of copper-related genes, raising the possibility that horizontal transfer of these chromosomes may contribute to copper tolerance.
Collapse
Affiliation(s)
- Lorenz Rhuel P Ragasa
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Christina A Cuomo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ricardo C H del Rosario
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael C Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
- Natural Sciences Research Institute, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| |
Collapse
|
4
|
Aschner M, Skalny AV, Lu R, Martins AC, Tizabi Y, Nekhoroshev SV, Santamaria A, Sinitskiy AI, Tinkov AA. Mitochondrial pathways of copper neurotoxicity: focus on mitochondrial dynamics and mitophagy. Front Mol Neurosci 2024; 17:1504802. [PMID: 39703721 PMCID: PMC11655512 DOI: 10.3389/fnmol.2024.1504802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Copper (Cu) is essential for brain development and function, yet its overload induces neuronal damage and contributes to neurodegeneration and other neurological disorders. Multiple studies demonstrated that Cu neurotoxicity is associated with mitochondrial dysfunction, routinely assessed by reduction of mitochondrial membrane potential. Nonetheless, the role of alterations of mitochondrial dynamics in brain mitochondrial dysfunction induced by Cu exposure is still debatable. Therefore, the objective of the present narrative review was to discuss the role of mitochondrial dysfunction in Cu-induced neurotoxicity with special emphasis on its influence on brain mitochondrial fusion and fission, as well as mitochondrial clearance by mitophagy. Existing data demonstrate that, in addition to mitochondrial electron transport chain inhibition, membrane damage, and mitochondrial reactive oxygen species (ROS) overproduction, Cu overexposure inhibits mitochondrial fusion by down-regulation of Opa1, Mfn1, and Mfn2 expression, while promoting mitochondrial fission through up-regulation of Drp1. It has been also demonstrated that Cu exposure induces PINK1/Parkin-dependent mitophagy in brain cells, that is considered a compensatory response to Cu-induced mitochondrial dysfunction. However, long-term high-dose Cu exposure impairs mitophagy, resulting in accumulation of dysfunctional mitochondria. Cu-induced inhibition of mitochondrial biogenesis due to down-regulation of PGC-1α further aggravates mitochondrial dysfunction in brain. Studies from non-brain cells corroborate these findings, also offering additional evidence that dysregulation of mitochondrial dynamics and mitophagy may be involved in Cu-induced damage in brain. Finally, Cu exposure induces cuproptosis in brain cells due mitochondrial proteotoxic stress, that may also contribute to neuronal damage and pathogenesis of certain brain diseases. Based on these findings, it is assumed that development of mitoprotective agents, specifically targeting mechanisms of mitochondrial quality control, would be useful for prevention of neurotoxic effects of Cu overload.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anatoly V. Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Sergey V. Nekhoroshev
- Problem Research Laboratory, Khanty-Mansiysk State Medical Academy, Khanty-Mansiysk, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Anton I. Sinitskiy
- Department of Biochemistry, South Ural State Medical University, Chelyabinsk, Russia
| | - Alexey A. Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Laboratory of Ecobiomonitoring and Quality Control and Department of Physical Education, Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
5
|
Gromadzka G, Antos A, Sorysz Z, Litwin T. Psychiatric Symptoms in Wilson's Disease-Consequence of ATP7B Gene Mutations or Just Coincidence?-Possible Causal Cascades and Molecular Pathways. Int J Mol Sci 2024; 25:12354. [PMID: 39596417 PMCID: PMC11595239 DOI: 10.3390/ijms252212354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism. The genetic defect in WD affects the ATP7B gene, which encodes the ATP7B transmembrane protein, which is essential for maintaining normal copper homeostasis in the body. It is primarily expressed in the liver and acts by incorporating copper into ceruloplasmin (Cp), the major copper transport protein in the blood. In conditions of excess copper, ATP7B transports it to bile for excretion. Mutations in ATP7B lead to impaired ATP7B function, resulting in copper accumulation in hepatocytes leading to their damage. The toxic "free"-unbound to Cp-copper released from hepatocytes then accumulates in various organs, contributing to their damage and clinical manifestations of WD, including hepatic, neurological, hematological, renal, musculoskeletal, ophthalmological, psychiatric, and other effects. While most clinical manifestations of WD correspond to identifiable organic or cellular damage, the pathophysiology underlying its psychiatric manifestations remains less clearly understood. A search for relevant articles was conducted in PubMed/Medline, Science Direct, Scopus, Willy Online Library, and Google Scholar, combining free text and MeSH terms using a wide range of synonyms and related terms, including "Wilson's disease", "hepatolenticular degeneration", "psychiatric manifestations", "molecular mechanisms", "pathomechanism", and others, as well as their combinations. Psychiatric symptoms of WD include cognitive disorders, personality and behavioral disorders, mood disorders, psychosis, and other mental disorders. They are not strictly related to the location of brain damage, therefore, the question arises whether these symptoms are caused by WD or are simply a coincidence or a reaction to the diagnosis of a genetic disease. Hypotheses regarding the etiology of psychiatric symptoms of WD suggest a variety of molecular mechanisms, including copper-induced CNS toxicity, oxidative stress, mitochondrial dysfunction, mitophagy, cuproptosis, ferroptosis, dysregulation of neurotransmission, deficiencies of neurotrophic factors, or immune dysregulation. New studies on the expression of noncoding RNA in WD are beginning to shed light on potential molecular pathways involved in psychiatric symptomatology. However, current evidence is still insufficient to definitively establish the cause of psychiatric symptoms in WD. It is possible that the etiology of psychiatric symptoms varies among individuals, with multiple biological and psychological mechanisms contributing to them simultaneously. Future studies with larger samples and comprehensive analyses are necessary to elucidate the mechanisms underlying the psychiatric manifestations of WD and to optimize diagnostics and therapeutic approaches.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| | - Zofia Sorysz
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
6
|
Theme 9 Clinical Trials and Trial Design. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:232-261. [PMID: 39508676 DOI: 10.1080/21678421.2024.2403306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
|
7
|
Rodriguez P, Kalia V, Fenollar-Ferrer C, Gibson CL, Gichi Z, Rajoo A, Matier CD, Pezacki AT, Xiao T, Carvelli L, Chang CJ, Miller GW, Khamoui AV, Boerner J, Blakely RD. Glial swip-10 controls systemic mitochondrial function, oxidative stress, and neuronal viability via copper ion homeostasis. Proc Natl Acad Sci U S A 2024; 121:e2320611121. [PMID: 39288174 PMCID: PMC11441482 DOI: 10.1073/pnas.2320611121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/01/2024] [Indexed: 09/19/2024] Open
Abstract
Cuprous copper [Cu(I)] is an essential cofactor for enzymes that support many fundamental cellular functions including mitochondrial respiration and suppression of oxidative stress. Neurons are particularly reliant on mitochondrial production of ATP, with many neurodegenerative diseases, including Parkinson's disease, associated with diminished mitochondrial function. The gene MBLAC1 encodes a ribonuclease that targets pre-mRNA of replication-dependent histones, proteins recently found in yeast to reduce Cu(II) to Cu(I), and when mutated disrupt ATP production, elevates oxidative stress, and severely impacts cell growth. Whether this process supports neuronal and/or systemic physiology in higher eukaryotes is unknown. Previously, we identified swip-10, the putative Caenorhabditis elegans ortholog of MBLAC1, establishing a role for glial swip-10 in limiting dopamine (DA) neuron excitability and sustaining DA neuron viability. Here, we provide evidence from computational modeling that SWIP-10 protein structure mirrors that of MBLAC1 and locates a loss of function coding mutation at a site expected to disrupt histone RNA hydrolysis. Moreover, we find through genetic, biochemical, and pharmacological studies that deletion of swip-10 in worms negatively impacts systemic Cu(I) levels, leading to deficits in mitochondrial respiration and ATP production, increased oxidative stress, and neurodegeneration. These phenotypes can be offset in swip-10 mutants by the Cu(I) enhancing molecule elesclomol and through glial expression of wildtype swip-10. Together, these studies reveal a glial-expressed pathway that supports systemic mitochondrial function and neuronal health via regulation of Cu(I) homeostasis, a mechanism that may lend itself to therapeutic strategies to treat devastating neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter Rodriguez
- Department of Biological Sciences, Charles E. Schmidt College of Science, Boca Raton, FL33412
| | - Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY10032
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, Bethesda, MD20892
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
| | - Chelsea L. Gibson
- Department of Biological Sciences, Charles E. Schmidt College of Science, Boca Raton, FL33412
- Oak Ridge Institute for Science and Education, Oak Ridge, TN37830
| | - Zayna Gichi
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL33458
| | - Andre Rajoo
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL33458
| | - Carson D. Matier
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Princeton University, Princeton, NJ08544
| | - Tong Xiao
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Princeton University, Princeton, NJ08544
| | - Lucia Carvelli
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL33458
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL33458
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Princeton University, Princeton, NJ08544
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY10032
| | - Andy V. Khamoui
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
- Department of Exercise Science and Health Promotion, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL33431
| | - Jana Boerner
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
| | - Randy D. Blakely
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL33458
| |
Collapse
|
8
|
Sailer J, Nagel J, Akdogan B, Jauch AT, Engler J, Knolle PA, Zischka H. Deadly excess copper. Redox Biol 2024; 75:103256. [PMID: 38959622 PMCID: PMC11269798 DOI: 10.1016/j.redox.2024.103256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Abstract
Higher eukaryotes' life is impossible without copper redox activity and, literally, every breath we take biochemically demonstrates this. However, this dependence comes at a considerable price to ensure target-oriented copper action. Thereto its uptake, distribution but also excretion are executed by specialized proteins with high affinity for the transition metal. Consequently, malfunction of copper enzymes/transporters, as is the case in hereditary Wilson disease that affects the intracellular copper transporter ATP7B, comes with serious cellular damage. One hallmark of this disease is the progressive copper accumulation, primarily in liver but also brain that becomes deadly if left untreated. Such excess copper toxicity may also result from accidental ingestion or attempted suicide. Recent research has shed new light into the cell-toxic mechanisms and primarily affected intracellular targets and processes of such excess copper that may even be exploited with respect to cancer therapy. Moreover, new therapies are currently under development to fight against deadly toxic copper.
Collapse
Affiliation(s)
- Judith Sailer
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Judith Nagel
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adrian T Jauch
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Jonas Engler
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine and Health, Munich, Germany; Institute of Molecular Toxicology and Pharmacology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
9
|
Tao M, Chen J, Cui C, Xu Y, Xu J, Shi Z, Yun J, Zhang J, Ou GZ, Liu C, Chen Y, Zhu ZR, Pan R, Xu S, Chen XX, Rokas A, Zhao Y, Wang S, Huang J, Shen XX. Identification of a longevity gene through evolutionary rate covariation of insect mito-nuclear genomes. NATURE AGING 2024; 4:1076-1088. [PMID: 38834883 DOI: 10.1038/s43587-024-00641-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/02/2024] [Indexed: 06/06/2024]
Abstract
Oxidative phosphorylation, essential for energy metabolism and linked to the regulation of longevity, involves mitochondrial and nuclear genes. The functions of these genes and their evolutionary rate covariation (ERC) have been extensively studied, but little is known about whether other nuclear genes not targeted to mitochondria evolutionarily and functionally interact with mitochondrial genes. Here we systematically examined the ERC of mitochondrial and nuclear benchmarking universal single-copy ortholog (BUSCO) genes from 472 insects, identifying 75 non-mitochondria-targeted nuclear genes. We found that the uncharacterized gene CG11837-a putative ortholog of human DIMT1-regulates insect lifespan, as its knockdown reduces median lifespan in five diverse insect species and Caenorhabditis elegans, whereas its overexpression extends median lifespans in fruit flies and C. elegans and enhances oxidative phosphorylation gene activity. Additionally, DIMT1 overexpression protects human cells from cellular senescence. Together, these data provide insights into the ERC of mito-nuclear genes and suggest that CG11837 may regulate longevity across animals.
Collapse
Affiliation(s)
- Mei Tao
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
- Centre for Evolutionary and Organismal Biology, Zhejiang University, Hangzhou, China
| | - Jiani Chen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chunlai Cui
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yandong Xu
- Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorders, Hangzhou, China
| | - Jingxiu Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zheyi Shi
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiaqi Yun
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Junwei Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guo-Zheng Ou
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chao Liu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yun Chen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zeng-Rong Zhu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ronghui Pan
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Suhong Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xue-Xin Chen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Yang Zhao
- Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Lab of Genetic and Developmental Disorders, Hangzhou, China
| | - Sibao Wang
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Jianhua Huang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China.
- Centre for Evolutionary and Organismal Biology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Schildroth S, Valeri L, Kordas K, Shi B, Friedman A, Smith D, Placidi D, Wright RO, Lucchini RG, White RF, Horton M, Claus Henn B. Assessing the mediating role of iron status on associations between an industry-relevant metal mixture and verbal learning and memory in Italian adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167435. [PMID: 37774885 PMCID: PMC10918745 DOI: 10.1016/j.scitotenv.2023.167435] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Metals, including lead (Pb), manganese (Mn), chromium (Cr) and copper (Cu), have been associated with neurodevelopment; iron (Fe) plays a role in the metabolism and neurotoxicity of metals, suggesting Fe may mediate metal-neurodevelopment associations. However, no study to date has examined Fe as a mediator of the association between metal mixtures and neurodevelopment. OBJECTIVE We assessed Fe status as a mediator of a mixture of Pb, Mn, Cr and Cu in relation to verbal learning and memory in a cohort of Italian adolescents. METHODS We used cross-sectional data from 383 adolescents (10-14 years) in the Public Health Impact of Metals Exposure Study. Metals were quantified in blood (Pb) or hair (Mn, Cr, Cu) using ICP-MS, and three markers of Fe status (blood hemoglobin, serum ferritin and transferrin) were quantified using luminescence assays or immunoassays. Verbal learning and memory were assessed using the California Verbal Learning Test for Children (CVLT-C). We used Bayesian Kernel Machine Regression Causal Mediation Analysis to estimate four mediation effects: the natural direct effect (NDE), natural indirect effect (NIE), controlled direct effect (CDE) and total effect (TE). Beta (β) coefficients and 95 % credible intervals (CIs) were estimated for all effects. RESULTS The metal mixture was jointly associated with a greater number of words recalled on the CVLT-C, but these associations were not mediated by Fe status. For example, when ferritin was considered as the mediator, the NIE for long delay free recall was null (β = 0.00; 95 % CI = -0.22, 0.23). Conversely, the NDE (β = 0.23; 95 % CI = 0.01, 0.44) indicated a beneficial association of the mixture with recall that operated independently of Fe status. CONCLUSION An industry-relevant metal mixture was associated with learning and memory, but there was no evidence of mediation by Fe status. Further studies in populations with Fe deficiency and greater variation in metal exposure are warranted.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Linda Valeri
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA
| | - Baoyi Shi
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roberto G Lucchini
- Department of Occupational Health, University of Brescia, Brescia, Italy; Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Department of Neurology, Boston University, Boston, MA, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
11
|
James AA, OShaughnessy KL. Environmental chemical exposures and mental health outcomes in children: a narrative review of recent literature. FRONTIERS IN TOXICOLOGY 2023; 5:1290119. [PMID: 38098750 PMCID: PMC10720725 DOI: 10.3389/ftox.2023.1290119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Background: Mental health is an important factor for children's overall wellbeing. National health statistics show that millions of children are diagnosed with mental health disorders every year, and evidence from studies on chemical pollutants like lead and bisphenols indicate that environmental exposures are linked to mental health illnesses in youth. However, the relationship between children's mental health and the environment is not well understood. This paper aims to review recent literature on prenatal and/or childhood environmental chemical exposures and mental health problems related to mood, anxiety, and behavior. This work also identifies areas of insufficient data and proposes suggestions to fill the data gaps. Methods: A narrative review was performed by searching Google Scholar and PubMed for literature published in the last 6 years (2017-2022), using search terms related to children, mental health, and environmental chemical exposure. Additional relevant studies were identified by screening the references in these papers. Results: A total of 29 studies are included in this review and results are summarized by chemical category: heavy metals, endocrine-disrupting chemicals, and pesticides. The majority of studies reported positive and significant associations between chemical exposures and child mental health outcomes including internalizing and externalizing behaviors. Conclusion: This review demonstrates that there is a growing body of literature that suggests developmental exposure to some environmental chemicals increases a child's risk of mood, anxiety, and behavior problems. Future research should expand on these findings to understand cumulative impacts, chemical mixtures, neurotoxic mechanisms, sex differences, and windows of vulnerability.
Collapse
Affiliation(s)
- Ashley A. James
- United States Environmental Protection Agency, Office of Children’s Health Protection, Regulatory Support and Science Policy Division, Washington, DC, United States
- Oak Ridge Institute for Science Education, Oak Ridge, TN, United States
| | - Katherine L. OShaughnessy
- United States Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
| |
Collapse
|
12
|
Draper M, Bester MJ, Van Rooy MJ, Oberholzer HM. Adverse neurological effects after exposure to copper, manganese, and mercury mixtures in a Spraque-Dawley rat model: an ultrastructural investigation. Ultrastruct Pathol 2023; 47:509-528. [PMID: 37849276 DOI: 10.1080/01913123.2023.2270580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Exposure to environmental metal pollutants is linked to oxidative stress and the subsequent development of neurological disease. In this study, the effects of copper, manganese, and mercury, were evaluated at X100 the World Health Organization safety limits for drinking water. Using a Sprague-Dawley rat model, following exposure for 28 days, the effects of these metals on biochemical blood parameters and tissue and cellular structure of the brain were determined. Biochemical analysis revealed no hepatocellular injury with minor changes associated with the hepatobiliary system. Minimal changes were found for renal function and the Na+/K+ ratio was reduced in the copper and manganese (Cu + Mn) and copper, manganese, and mercury (Cu, Mn + Hg) groups that could affect neurological function. Light microscopy of the brain revealed abnormal histopathology of Purkinje cells in the cerebellum and pyramidal cells in the cerebrum as well as tissue damage and fibrosis of the surface blood vessels. Transmission electron microscopy of the cerebral neurons showed microscopic signs of axonal damage, chromatin condensation, the presence of indistinct nucleoli and mitochondrial damage. Together these cellular features suggest the presence and influence of oxidative stress. Exposure to these metals at X100 the safety limits, as part of mixtures, induces changes to neurological tissue that could adversely influence neurological functioning in the central nervous system.
Collapse
Affiliation(s)
- Maxine Draper
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Megan Jean Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Mia-Jeanne Van Rooy
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | | |
Collapse
|
13
|
Chen J, Gao X, Zheng C, Zhang C, Li P, He K, Liu G, Huang X, Liu J, Xie Y, Yang X. Low-dose Cu exposure enhanced α-synuclein accumulation associates with mitochondrial impairments in mice model of Parkinson's disease. Toxicol Lett 2023; 387:14-27. [PMID: 37717680 DOI: 10.1016/j.toxlet.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/10/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that mainly affects the elder population, and its etiology is enigmatic. Both environmental risks and genetics may influence the development of PD. Excess copper causes neurotoxicity and accelerates the progression of neurodegenerative diseases. However, the underlying mechanisms of copper-induced neurotoxicity remain controversial. In this study, A53T transgenic α-synuclein (A53T) mice and their matching wild-type (WT) mice were treated with a low dose of copper (0.13 ppm copper chlorinated drinking water, equivalent to the copper exposure of human daily copper intake dose) for 4 months, and copper poisoning was performed on human A53T mutant SHSY5Y cells overexpressed with α-synuclein (dose of 1/4 IC50), to test the effects of copper exposure on the body. The results of the open field test showed that the moto function of Cu-treated mice was impaired. Proteomics revealed changes in neurodevelopment, transport function, and mitochondrial membrane-related function in Cu-treated WT mice, which were associated with reduced expression of mitochondrial complex (NDUFA10, ATP5A), dopamine neurons (TH), and dopamine transporter (DAT). Mitochondrial function, nervous system development, synaptic function, and immune response were altered in Cu-treated A53T mice. These changes were associated with increased mitochondrial splitting protein (Drp1), decreased mitochondrial fusion protein (OPA1, Mfn1), abnormalities in mitochondrial autophagy protein (LC3BII/I, P62), decreased dopamine neuron (TH) expression, increased α-synuclein expression, inflammatory factors (IL-6, IL-1β, and TNF-α) release and microglia (Iba1) activation. In addition, we found that Cu2+ (30 μM) induced excessive ROS production and reduced mitochondrial ATP production in human A53T mutant α-synuclein overexpressing SHSY5Y cells by in vitro experiments. In conclusion, low-dose copper treatment altered critical proteins involved in mitochondrial, neurodevelopmental, and inflammatory responses and affected mitochondria's ROS and ATP production levels.
Collapse
Affiliation(s)
- Jie Chen
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xufang Gao
- Department of Neurology, General Hospital of The Yangtze River Shipping and Wuhan Brain Hospital, Wuhan, Hubei 430010, China
| | - Chengyou Zheng
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chen Zhang
- School of Public Health, Xinjiang Medical University, Urumqi 830011, China
| | - Peimao Li
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Rd., Luohu district, Shenzhen 518020, China
| | - Kaiwu He
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Gongping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinfeng Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China.
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| |
Collapse
|
14
|
Einer C, Munk DE, Park E, Akdogan B, Nagel J, Lichtmannegger J, Eberhagen C, Rieder T, Vendelbo MH, Michalke B, Wimmer R, Blutke A, Feuchtinger A, Dershwitz P, DiSpirito AM, Islam T, Castro RE, Min BK, Kim T, Choi S, Kim D, Jung C, Lee H, Park D, Im W, Eun SY, Cho YH, Semrau JD, Rodrigues CMP, Hohenester S, Damgaard Sandahl T, DiSpirito AA, Zischka H. ARBM101 (Methanobactin SB2) Drains Excess Liver Copper via Biliary Excretion in Wilson's Disease Rats. Gastroenterology 2023; 165:187-200.e7. [PMID: 36966941 DOI: 10.1053/j.gastro.2023.03.216] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND & AIMS Excess copper causes hepatocyte death in hereditary Wilson's disease (WD). Current WD treatments by copper-binding chelators may gradually reduce copper overload; they fail, however, to bring hepatic copper close to normal physiological levels. Consequently, lifelong daily dose regimens are required to hinder disease progression. This may result in severe issues due to nonadherence or unwanted adverse drug reactions and also due to drug switching and ultimate treatment failures. This study comparatively tested bacteria-derived copper binding agents-methanobactins (MBs)-for efficient liver copper depletion in WD rats as well as their safety and effect duration. METHODS Copper chelators were tested in vitro and in vivo in WD rats. Metabolic cage housing allowed the accurate assessment of animal copper balances and long-term experiments related to the determination of minimal treatment phases. RESULTS We found that copper-binding ARBM101 (previously known as MB-SB2) depletes WD rat liver copper dose dependently via fecal excretion down to normal physiological levels within 8 days, superseding the need for continuous treatment. Consequently, we developed a new treatment consisting of repetitive cycles, each of ∼1 week of ARBM101 applications, followed by months of in-between treatment pauses to ensure a healthy long-term survival in WD rats. CONCLUSIONS ARBM101 safely and efficiently depletes excess liver copper from WD rats, thus allowing for short treatment periods as well as prolonged in-between rest periods.
Collapse
Affiliation(s)
- Claudia Einer
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ditte Emilie Munk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Eok Park
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea; Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Judith Nagel
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Josef Lichtmannegger
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tamara Rieder
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Mikkel H Vendelbo
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ralf Wimmer
- Department of Medicine II, Ludwig Maximilian University Munich, Munich, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Philip Dershwitz
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Ana M DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Tawhidul Islam
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Byong-Keol Min
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - TaeWon Kim
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - Seoyoung Choi
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - Dasol Kim
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - Chunwon Jung
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - Hongjae Lee
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - Dongsik Park
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - Weonbin Im
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - So-Young Eun
- R&D Center, ArborMed Company Ltd, Pangyo, Seongnam, Gyeonggi-do, Republic of Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Gyeonggi-do, Republic of Korea
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Simon Hohenester
- Department of Medicine II, Ludwig Maximilian University Munich, Munich, Germany
| | | | - Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University Munich, Munich, Germany.
| |
Collapse
|
15
|
Schwarz M, Meyer CE, Löser A, Lossow K, Hackler J, Ott C, Jäger S, Mohr I, Eklund EA, Patel AAH, Gul N, Alvarez S, Altinonder I, Wiel C, Maares M, Haase H, Härtlova A, Grune T, Schulze MB, Schwerdtle T, Merle U, Zischka H, Sayin VI, Schomburg L, Kipp AP. Excessive copper impairs intrahepatocyte trafficking and secretion of selenoprotein P. Nat Commun 2023; 14:3479. [PMID: 37311819 DOI: 10.1038/s41467-023-39245-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
Selenium homeostasis depends on hepatic biosynthesis of selenoprotein P (SELENOP) and SELENOP-mediated transport from the liver to e.g. the brain. In addition, the liver maintains copper homeostasis. Selenium and copper metabolism are inversely regulated, as increasing copper and decreasing selenium levels are observed in blood during aging and inflammation. Here we show that copper treatment increased intracellular selenium and SELENOP in hepatocytes and decreased extracellular SELENOP levels. Hepatic accumulation of copper is a characteristic of Wilson's disease. Accordingly, SELENOP levels were low in serum of Wilson's disease patients and Wilson's rats. Mechanistically, drugs targeting protein transport in the Golgi complex mimicked some of the effects observed, indicating a disrupting effect of excessive copper on intracellular SELENOP transport resulting in its accumulation in the late Golgi. Our data suggest that hepatic copper levels determine SELENOP release from the liver and may affect selenium transport to peripheral organs such as the brain.
Collapse
Affiliation(s)
- Maria Schwarz
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Caroline E Meyer
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Alina Löser
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Kristina Lossow
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
| | - Julian Hackler
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Hessische Straße 3-4, 10115, Berlin, Germany
| | - Christiane Ott
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Susanne Jäger
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Isabelle Mohr
- Department of Internal Medicine IV, University Hospital Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Ella A Eklund
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Angana A H Patel
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Nadia Gul
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Samantha Alvarez
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Ilayda Altinonder
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Clotilde Wiel
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Maria Maares
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Food Chemistry and Toxicology, Technical University Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Hajo Haase
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Food Chemistry and Toxicology, Technical University Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Anetta Härtlova
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
- Institute of Biomedicine, Department of Microbiology and Immunology, University of Gothenburg, 41345, Gothenburg, Sweden
- The Institute of Medical Microbiology and Hygiene, University Medical Centre Freiburg, Freiburg, Germany
| | - Tilman Grune
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Matthias B Schulze
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Biedersteinerstraße 29, 80802, Munich, Germany
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Volkan I Sayin
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Blå stråket 5, 41345, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Lutz Schomburg
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany
- Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Hessische Straße 3-4, 10115, Berlin, Germany
| | - Anna P Kipp
- Department of Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany.
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany.
| |
Collapse
|
16
|
Everman ER, Macdonald SJ, Kelly JK. The genetic basis of adaptation to copper pollution in Drosophila melanogaster. Front Genet 2023; 14:1144221. [PMID: 37082199 PMCID: PMC10110907 DOI: 10.3389/fgene.2023.1144221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 04/22/2023] Open
Abstract
Introduction: Heavy metal pollutants can have long lasting negative impacts on ecosystem health and can shape the evolution of species. The persistent and ubiquitous nature of heavy metal pollution provides an opportunity to characterize the genetic mechanisms that contribute to metal resistance in natural populations. Methods: We examined variation in resistance to copper, a common heavy metal contaminant, using wild collections of the model organism Drosophila melanogaster. Flies were collected from multiple sites that varied in copper contamination risk. We characterized phenotypic variation in copper resistance within and among populations using bulked segregant analysis to identify regions of the genome that contribute to copper resistance. Results and Discussion: Copper resistance varied among wild populations with a clear correspondence between resistance level and historical exposure to copper. We identified 288 SNPs distributed across the genome associated with copper resistance. Many SNPs had population-specific effects, but some had consistent effects on copper resistance in all populations. Significant SNPs map to several novel candidate genes involved in refolding disrupted proteins, energy production, and mitochondrial function. We also identified one SNP with consistent effects on copper resistance in all populations near CG11825, a gene involved in copper homeostasis and copper resistance. We compared the genetic signatures of copper resistance in the wild-derived populations to genetic control of copper resistance in the Drosophila Synthetic Population Resource (DSPR) and the Drosophila Genetic Reference Panel (DGRP), two copper-naïve laboratory populations. In addition to CG11825, which was identified as a candidate gene in the wild-derived populations and previously in the DSPR, there was modest overlap of copper-associated SNPs between the wild-derived populations and laboratory populations. Thirty-one SNPs associated with copper resistance in wild-derived populations fell within regions of the genome that were associated with copper resistance in the DSPR in a prior study. Collectively, our results demonstrate that the genetic control of copper resistance is highly polygenic, and that several loci can be clearly linked to genes involved in heavy metal toxicity response. The mixture of parallel and population-specific SNPs points to a complex interplay between genetic background and the selection regime that modifies the effects of genetic variation on copper resistance.
Collapse
Affiliation(s)
| | - Stuart J. Macdonald
- Molecular Biosciences, University of Kansas, Lawrence, KS, United States
- Center for Computational Biology, University of Kansas, Lawrence, KS, United States
| | - John K. Kelly
- Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
17
|
Raschke S, Ebert F, Kipp AP, Kopp JF, Schwerdtle T. Selenium homeostasis in human brain cells: Effects of copper (II) and Se species. J Trace Elem Med Biol 2023; 78:127149. [PMID: 36948045 DOI: 10.1016/j.jtemb.2023.127149] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Both essential trace elements selenium (Se) and copper (Cu) play an important role in maintaining brain function. Homeostasis of Cu, which is tightly regulated under physiological conditions, seems to be disturbed in Alzheimer´s (AD) and Parkinson´s disease (PD) patients. Excess Cu promotes the formation of oxidative stress, which is thought to be a major cause for development and progression of neurological diseases (NDs). Most selenoproteins exhibit antioxidative properties and may counteract oxidative stress. However, expression of selenoproteins is altered under conditions of Se deficiency. Serum Se levels are decreased in AD and PD patients suggesting Se as an important factor in the development and progression of NDs. The aim of this study was to elucidate the interactions between Cu and Se in human brain cells particularly with respect to Se homeostasis. METHODS Firstly, modulation of Se status by selenite or SeMet were assessed in human astrocytes and human differentiated neurons. Therefore, cellular total Se content, intra- and extracellular selenoprotein P (SELENOP) content, and glutathione peroxidase (GPX) activity were quantified. Secondly, to investigate the impact of Cu on these markers, cells were exposed to copper(II)sulphate (CuSO4) for 48 h. In addition, putative protective effects of Se on Cu-induced toxicity, as measured by cell viability, DNA damage, and neurodegeneration were investigated. RESULTS Modulation of cellular Se status was strongly dependent on Se species. In detail, SeMet increased total cellular Se and SELENOP content, whereas selenite led to increased GPX activity and SELENOP excretion. Cu treatment resulted in 133-fold higher cellular Cu concentration with a concomitant decrease in Se content. Additionally, SELENOP excretion was suppressed in both cell lines, while GPX activity was diminished only in astrocytes. These effects of Cu could be partially prevented by the addition of Se depending on the cell line and Se species used. While Cu-induced oxidative DNA damage could not be prevented by addition of Se regardless of chemical species, SeMet protected against neurite network degeneration triggered by Cu. CONCLUSION Cu appears to negatively affect Se status in astrocytes and neurons. Especially with regard to an altered homeostasis of those trace elements during aging, this interaction is of high physiological relevance. Increasing Cu concentrations associated with decreased selenoprotein expression or functionality might be a promoting factor for the development of NDs.
Collapse
Affiliation(s)
- Stefanie Raschke
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany
| | - Franziska Ebert
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany
| | - Anna Patricia Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, Jena 07743, Germany; TraceAge, DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Potsdam, Jena, Berlin, Germany
| | - Johannes Florian Kopp
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany; TraceAge, DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Potsdam, Jena, Berlin, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany; TraceAge, DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Potsdam, Jena, Berlin, Germany; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, Berlin 10589, Germany.
| |
Collapse
|
18
|
Ke D, Zhang Z, Liu J, Chen P, Li J, Sun X, Chu Y, Li L. Ferroptosis, necroptosis and cuproptosis: Novel forms of regulated cell death in diabetic cardiomyopathy. Front Cardiovasc Med 2023; 10:1135723. [PMID: 36970345 DOI: 10.3389/fcvm.2023.1135723if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/22/2023] [Indexed: 09/15/2024] Open
Abstract
Diabetes is a common chronic metabolic disease, and its incidence continues to increase year after year. Diabetic patients mainly die from various complications, with the most common being diabetic cardiomyopathy. However, the detection rate of diabetic cardiomyopathy is low in clinical practice, and targeted treatment is lacking. Recently, a large number of studies have confirmed that myocardial cell death in diabetic cardiomyopathy involves pyroptosis, apoptosis, necrosis, ferroptosis, necroptosis, cuproptosis, cellular burial, and other processes. Most importantly, numerous animal studies have shown that the onset and progression of diabetic cardiomyopathy can be mitigated by inhibiting these regulatory cell death processes, such as by utilizing inhibitors, chelators, or genetic manipulation. Therefore, we review the role of ferroptosis, necroptosis, and cuproptosis, three novel forms of cell death in diabetic cardiomyopathy, searching for possible targets, and analyzing the corresponding therapeutic approaches to these targets.
Collapse
Affiliation(s)
- Dan Ke
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Jialing Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Xinhai Sun
- Department of Thoracic Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
19
|
Ke D, Zhang Z, Liu J, Chen P, Li J, Sun X, Chu Y, Li L. Ferroptosis, necroptosis and cuproptosis: Novel forms of regulated cell death in diabetic cardiomyopathy. Front Cardiovasc Med 2023; 10:1135723. [PMID: 36970345 PMCID: PMC10036800 DOI: 10.3389/fcvm.2023.1135723] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Diabetes is a common chronic metabolic disease, and its incidence continues to increase year after year. Diabetic patients mainly die from various complications, with the most common being diabetic cardiomyopathy. However, the detection rate of diabetic cardiomyopathy is low in clinical practice, and targeted treatment is lacking. Recently, a large number of studies have confirmed that myocardial cell death in diabetic cardiomyopathy involves pyroptosis, apoptosis, necrosis, ferroptosis, necroptosis, cuproptosis, cellular burial, and other processes. Most importantly, numerous animal studies have shown that the onset and progression of diabetic cardiomyopathy can be mitigated by inhibiting these regulatory cell death processes, such as by utilizing inhibitors, chelators, or genetic manipulation. Therefore, we review the role of ferroptosis, necroptosis, and cuproptosis, three novel forms of cell death in diabetic cardiomyopathy, searching for possible targets, and analyzing the corresponding therapeutic approaches to these targets.
Collapse
Affiliation(s)
- Dan Ke
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Jialing Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Xinhai Sun
- Department of Thoracic Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- Correspondence: Yanhui Chu Luxin Li
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- Correspondence: Yanhui Chu Luxin Li
| |
Collapse
|
20
|
Li X, Bai Y, Huo H, Wu H, Liao J, Han Q, Zhang H, Hu L, Li Y, Pan J, Tang Z, Guo J. Long-term Copper Exposure Induces Mitochondrial Dynamics Disorder and Mitophagy in the Cerebrum of Pigs. Biol Trace Elem Res 2023; 201:1197-1204. [PMID: 35616827 DOI: 10.1007/s12011-022-03224-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
Abstract
Copper (Cu) is an essential trace element for growth and development in most organisms. However, environmental exposure to high doses of Cu can damage multiple organs. To investigate the underlying mechanism of Cu toxicity on mitochondrial dynamics and mitophagy in the cerebrum of pigs, 60 30-day-old pigs were randomly divided into three groups and treated with different contents of anhydrous Cu sulfate in the diets (Cu 10 mg/kg, control group; Cu 125 mg/kg, group I; Cu 250 mg/kg, group II) for 80 days. The Cu levels and histological changes in the cerebrum were measured. Moreover, the protein and mRNA expression levels related to mitophagy and mitochondrial dynamics were determined. The results showed that the contents of Cu were increased in the cerebrum with increasing dietary Cu. Vacuolar degeneration was found in group I and group II compared to the control group. Additionally, the protein and mRNA expression levels of PINK1, Parkin, and Drp1 and the protein level of LC3-II were remarkably upregulated with increasing levels of dietary Cu. Nevertheless, the protein and mRNA expression levels of MFN1 and MFN2 and the mRNA expression of P62 were obviously downregulated in a Cu dose-dependent manner. Overall, these results suggested that excess Cu could trigger mitochondrial dynamics disorder and mitophagy in the pig cerebrum, which provided a novel insight into Cu-induced toxicology.
Collapse
Affiliation(s)
- Xinrun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Yuman Bai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Haihua Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Haitong Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
21
|
Tsai TL, Hsieh CJ, Wu MT, Chen ML, Kuo PH, Wang SL. Co-exposure to toxic metals and phthalates in pregnant women and their children's mental health problems aged four years - Taiwan Maternal and Infant Cohort Study (TMICS). ENVIRONMENT INTERNATIONAL 2023; 173:107804. [PMID: 36842379 DOI: 10.1016/j.envint.2023.107804] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Childhood and adolescent mental health problems may increase the global burden of disease. Neurotoxic metals are associated with inflammation and cytotoxicity in the brain. In addition, prenatal phthalate ester (PAE) exposure is associated with cognitive function deficits. However, the effect of co-exposure to toxic metals, PAEs, and their association with child behavior is less well studied. Hence, we aimed to investigate prenatal co-exposure to the metals and PAEs and the consequent behavioral outcomes in early childhood. METHODS We followed pregnant women and their newborns from the Taiwan Maternal and Infant Cohort Study between 2015 and 2017, with a focus on women from the central, southern, and eastern areas of Taiwan. We quantified maternal urinary concentrations of metals and metabolites of PAEs as surrogates of prenatal exposure. We recorded the Child Behavior Checklist scores according to caregiver reports at 4 years of age, and identified Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5)-oriented problems. RESULTS Ultimately, 408 children were included in the statistical analysis. Maternal urinary copper levels were significantly associated with depressive problems (odds ratio [OR] = 2.13) in children. Maternal urinary concentrations of mono-n-butyl phthalate (MnBP) and mono-isobutyl phthalate (MiBP) were also significantly associated with depressive symptoms (odds ratio [OR] = 1.51 and 1.53, respectively). Further analysis considering prenatal co-exposure to metals and PAEs showed that co-exposure to these materials was significantly associated with autism spectrum problems (OR = 3.11). CONCLUSIONS We observed that prenatal single exposure or co-exposure to metals and PAEs may play a role in some DSM-5-oriented problems in children at 4 years of age. Reduction of exposure to toxic metals and PAEs in pregnancy is suggested to prevent increased mental health problems in children.
Collapse
Affiliation(s)
- Tsung-Lin Tsai
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chia-Jung Hsieh
- Department of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan; Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan.
| |
Collapse
|
22
|
Huo Y, Ma F, Li T, Lei C, Liao J, Han Q, Li Y, Pan J, Hu L, Guo J, Tang Z. Exposure to copper activates mitophagy and endoplasmic reticulum stress-mediated apoptosis in chicken (Gallus gallus) cerebrum. ENVIRONMENTAL TOXICOLOGY 2023; 38:392-402. [PMID: 36350156 DOI: 10.1002/tox.23701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
A large amount of copper (Cu) used in production activities can lead to the enrichment of Cu in the environment, which can cause toxicity to animals. However, the toxicity mechanism of Cu on the cerebrum is still uncertain. Hence, a total of 240 chickens were separated into four groups in this study to reveal the potential connection between mitophagy and endoplasmic reticulum (ER) stress-mediated apoptosis in the chicken cerebrum in the case of excess Cu exposure. The cu exposure situation was simulated by diets containing various levels of copper (11 mg/kg, control group; 110 mg/kg, group I; 220 mg/kg, group II and 330 mg/kg, group III) for 49 days. The results of histology showed that vacuolar degeneration was observed in the treated groups, and the mitochondria swell and autophagosomes formation were found under excess Cu treatment. Additionally, the expression of mitophagy (PINK1, Parkin, LC3I, LC3II and p62) and ER stress (GRP78, PERK, ATF6, IRE1α, XBP1, CHOP, and JNK) indexes were significantly upregulated under excess Cu exposure. Furthermore, the mRNA and protein expression of Bcl-2 were decreased, while Bak1, Bax, Caspase12, and Caspase3 were increased compared to the control group. In summary, this study demonstrated that an overdose of Cu could induce mitophagy and ER stress-mediated apoptosis in the chicken cerebrum. These findings revealed an important potential connection between Cu toxicity and cerebrum damage, which provided a new insight into Cu neurotoxicity.
Collapse
Affiliation(s)
- Yihui Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tingyu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chaiqin Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Chen K, Wu L, Liu Q, Tan F, Wang L, Zhao D, Fang X, Liu X, Liu J, Han H. Glutathione improves testicular spermatogenesis through inhibiting oxidative stress, mitochondrial damage, and apoptosis induced by copper deposition in mice with Wilson disease. Biomed Pharmacother 2023; 158:114107. [PMID: 36502753 DOI: 10.1016/j.biopha.2022.114107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVE There are considerable evidence of reproductive impairment in male organisms with Wilson disease (WD). The purpose of this study was to observe spermatogenesis, mitochondrial damage, apoptosis, and the level of oxidative stress in the testes of Wilson disease model TX mice, and to observe the effect and mechanism of glutathione on testicular spermatogenesis. METHODS Mice were divided into a normal control group (control group), Wilson disease model TX mice group (WD group), penicillamine-treated TX mice group (penicillamine group) and glutathione-treated TX mice group (glutathione group). Testicular coefficient, histomorphology of testis and epididymis, number of spermatozoa, apoptosis of spermatogenic cells and expression of apoptosis-related proteins were observed. Ultrastructural analysis of mitochondria and mitochondrial membrane potential (MMP) monitored using JC-1 dye were used to detect mitochondrial damage. The levels of malondialdehyde (MDA), glutathione (GSH), catalase (CAT), and reactive oxygen species (ROS) in testicular cells were measured to assess oxidative stress. RESULTS Testicular coefficient did not change in mice with Wilson disease. However, the tissue structure of the testicular seminiferous tubules was damaged, and the number of spermatozoa in the epididymal lumen was significantly reduced in WD group. The apoptosis rate in the testes was significantly increased. The protein expression of the pro-apoptotic proteins Bax and Caspase-3 significantly increased, and the expressions of the anti-apoptotic protein Bcl-2 significantly decreased. The levels of ROS and MDA significantly increased, and the levels of CAT and GSH significantly decreased. Mitochondria with abnormal ultrastructure and the rate of JC-1 positive cells were significantly increased in the WD group. After copper chelation by penicillamine, the structure of the testicular seminiferous tubules and the number of spermatozoa in the epididymal lumen were significantly improved. The number of apoptotic cells was significantly reduced. The levels of Bax and Caspase-3 decreased, and the expression of Bcl-2 increased. The contents of CAT and GSH increased, and the levels of ROS and MDA decreased significantly. The abnormal mitochondria and JC-1 positive cells was significantly decreased. The histomorphology of seminiferous tubules, spermatogenic function, apoptosis rate, apoptosis-related proteins, mitochondrial damage, and oxidative stress in Wilson disease TX mice significantly improved after glutathione treatment. CONCLUSION Copper deposition in Wilson disease can lead to oxidative stress injury, mitochondrial damage, and apoptosis in the testis, leading to the impairment of spermatogenesis. Glutathione may improve testicular spermatogenesis in male Wilson disease TX mice by inhibiting copper deposition-induced oxidative stress, mitochondrial damage, and apoptosis.
Collapse
Affiliation(s)
- Kuiyu Chen
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Limin Wu
- Reproductive and genetic branch, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Qianzhuo Liu
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Fang Tan
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Luyao Wang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Dan Zhao
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Xinru Fang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Xiang Liu
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Jiabo Liu
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Hui Han
- Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China.
| |
Collapse
|
24
|
Penning LC, Berenguer M, Czlonkowska A, Double KL, Dusek P, Espinós C, Lutsenko S, Medici V, Papenthin W, Stremmel W, Willemse J, Weiskirchen R. A Century of Progress on Wilson Disease and the Enduring Challenges of Genetics, Diagnosis, and Treatment. Biomedicines 2023; 11:biomedicines11020420. [PMID: 36830958 PMCID: PMC9953205 DOI: 10.3390/biomedicines11020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Wilson disease (WD) is a rare, inherited metabolic disorder manifested with varying clinical presentations including hepatic, neurological, psychiatric, and ophthalmological features, often in combination. Causative mutations in the ATP7B gene result in copper accumulation in hepatocytes and/or neurons, but clinical diagnosis remains challenging. Diagnosis is complicated by mild, non-specific presentations, mutations exerting no clear effect on protein function, and inconclusive laboratory tests, particularly regarding serum ceruloplasmin levels. As early diagnosis and effective treatment are crucial to prevent progressive damage, we report here on the establishment of a global collaboration of researchers, clinicians, and patient advocacy groups to identify and address the outstanding challenges posed by WD.
Collapse
Affiliation(s)
- Louis C. Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
- Correspondence: (L.C.P.); (R.W.)
| | - Marina Berenguer
- Digestive Medicine Department, Ciberehd & IISLaFe, Hospital U. i P. La Fe, University of Valencia, 46010 Valenci, Spain
| | - Anna Czlonkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Kay L. Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW 2006, Australia
| | - Petr Dusek
- Department of Radiology, Charles University and General University Hospital, 128 08 Prague, Czech Republic
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic
| | - Carmen Espinós
- Rare Neurodegenerative Diseases Lab, Centro de Investigacion Principe Felipe, 46012 Valencia, Spain
| | - Svetlana Lutsenko
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 1800, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 1800, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA 59817, USA
| | - Wiebke Papenthin
- German Society for Wilson disease Patients (Morbus Wilson e.V.), Zehlendorfer Damm 119, D-14532 Kleinnachnow, Germany
| | - Wolfgang Stremmel
- Private Practice for Internal Medicine, Beethovenstraße 2, D-76530 Baden-Baden, Germany
| | - Jose Willemse
- Dutch Society for Liver Disease Patients (Nederlandse Leverpatienten Vereniging), 3828 NS Hoogland, The Netherlands
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital Aachen, D-52074 Aachen, Germany
- Correspondence: (L.C.P.); (R.W.)
| |
Collapse
|
25
|
Escobedo-Monge MF, Barrado E, Parodi-Román J, Escobedo-Monge MA, Torres-Hinojal MC, Marugán-Miguelsanz JM. Copper/Zinc Ratio in Childhood and Adolescence: A Review. Metabolites 2023; 13:metabo13010082. [PMID: 36677007 PMCID: PMC9862945 DOI: 10.3390/metabo13010082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Both copper (Cu) and zinc (Zn) are crucial micronutrients for human growth and development. This literature review covered the last five years of available evidence on the Cu/Zn ratio in children and adolescents. We searched PubMed, Web of Science, Google Scholar, Cochrane Library, and Science Direct for publications between 2017 and 2022, especially in English, although publications in other languages with abstracts in English were included. The main terms used were "copper", "zinc", "copper-zinc", and "zinc-copper" ratios. Cu and Zn determinations made in blood, plasma, or serum were included. This review comprises several cross-sectional and case-control studies with substantial results. The bibliographic search generated a compilation of 19 articles, in which 63.2% of the studies mostly reported a significantly higher Cu/Zn ratio, and 57.9% of them informed significantly lower levels of Zn. We conclude that children and adolescents with acute and chronic conditions are at greater risk of developing elevated Cu/Zn ratios, related to altered nutritional, infectious, and inflammatory status.
Collapse
Affiliation(s)
- Marlene Fabiola Escobedo-Monge
- Faculty of Medicine, University of Valladolid, Avenida Ramón y Cajal, 7, 47005 Valladolid, Spain
- Correspondence: ; Tel.: +34-639-590-467
| | - Enrique Barrado
- Department of Analytical Chemistry, Science Faculty, Campus Miguel Delibes, University of Valladolid, Calle Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Joaquín Parodi-Román
- Science Faculty, University of Cadiz, Paseo de Carlos III, 28, 11003 Cádiz, Spain
| | | | | | - José Manuel Marugán-Miguelsanz
- Department of Pediatrics, Faculty of Medicine, University of Valladolid, Section of Gastroenterology and Pediatric Nutrition, University Clinical Hospital of Valladolid, Avenida Ramón y Cajal, 7, 47005 Valladolid, Spain
| |
Collapse
|
26
|
Schildroth S, Kordas K, Bauer JA, Wright RO, Claus Henn B. Environmental Metal Exposure, Neurodevelopment, and the Role of Iron Status: a Review. Curr Environ Health Rep 2022; 9:758-787. [PMID: 35997893 DOI: 10.1007/s40572-022-00378-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Exposure to environmental metals, like lead (Pb), manganese (Mn), and methylmercury (Me-Hg), has consistently been implicated in neurodevelopmental dysfunction. Recent research has focused on identifying modifying factors of metal neurotoxicity in childhood, such as age, sex, and co-exposures. Iron (Fe) status is critical for normal cognitive development during childhood, and current mechanistic, animal, and human evidence suggests that Fe status may be a modifier or mediator of associations between environmental metals and neurodevelopment. The goals of this review are to describe the current state of the epidemiologic literature on the role of Fe status (i.e., hemoglobin, ferritin, blood Fe concentrations) and Fe supplementation in the relationship between metals and children's neurodevelopment, and to identify research gaps. RECENT FINDINGS We identified 30 studies in PubMed and EMBASE that assessed Fe status as a modifier, mediator, or co-exposure of associations of Pb, Me-Hg, Mn, copper (Cu), zinc (Zn), arsenic (As), or metal mixtures measured in early life (prenatal period through 8 years of age) with cognition in children. In experimental studies, co-supplementation of Fe and Zn was associated with better memory and cognition than supplementation with either metal alone. Several observational studies reported interactions between Fe status and Pb, Mn, Zn, or As in relation to developmental indices, memory, attention, and behavior, whereby adverse associations of metals with cognition were worse among Fe-deficient children compared to Fe-sufficient children. Only two studies quantified joint associations of complex metal mixtures that included Fe with neurodevelopment, though findings from these studies were not consistent. Findings support memory and attention as two possible cognitive domains that may be both vulnerable to Fe deficiency and a target of metals toxicity. Major gaps in the literature remain, including evaluating Fe status as a modifier or mediator of metal mixtures and cognition. Given that Fe deficiency is the most common nutritional deficiency worldwide, characterizing Fe status in studies of metals toxicity is important for informing public health interventions.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St., Boston, MA, 02118, USA.
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Julia Anglen Bauer
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St., Boston, MA, 02118, USA
| |
Collapse
|
27
|
Environmental Chemical Exposures and Mitochondrial Dysfunction: a Review of Recent Literature. Curr Environ Health Rep 2022; 9:631-649. [PMID: 35902457 PMCID: PMC9729331 DOI: 10.1007/s40572-022-00371-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Mitochondria play various roles that are important for cell function and survival; therefore, significant mitochondrial dysfunction may have chronic consequences that extend beyond the cell. Mitochondria are already susceptible to damage, which may be exacerbated by environmental exposures. Therefore, the aim of this review is to summarize the recent literature (2012-2022) looking at the effects of six ubiquitous classes of compounds on mitochondrial dysfunction in human populations. RECENT FINDINGS The literature suggests that there are a number of biomarkers that are commonly used to identify mitochondrial dysfunction, each with certain advantages and limitations. Classes of environmental toxicants such as polycyclic aromatic hydrocarbons, air pollutants, heavy metals, endocrine-disrupting compounds, pesticides, and nanomaterials can damage the mitochondria in varied ways, with changes in mtDNA copy number and measures of oxidative damage the most commonly measured in human populations. Other significant biomarkers include changes in mitochondrial membrane potential, calcium levels, and ATP levels. This review identifies the biomarkers that are commonly used to characterize mitochondrial dysfunction but suggests that emerging mitochondrial biomarkers, such as cell-free mitochondria and blood cardiolipin levels, may provide greater insight into the impacts of exposures on mitochondrial function. This review identifies that the mtDNA copy number and measures of oxidative damage are commonly used to characterize mitochondrial dysfunction, but suggests using novel approaches in addition to well-characterized ones to create standardized protocols. We identified a dearth of studies on mitochondrial dysfunction in human populations exposed to metals, endocrine-disrupting chemicals, pesticides, and nanoparticles as a gap in knowledge that needs attention.
Collapse
|
28
|
Thy-AuNP-AgNP Hybrid Systems for Colorimetric Determination of Copper (II) Ions Using UV-Vis Spectroscopy and Smartphone-Based Detection. NANOMATERIALS 2022; 12:nano12091449. [PMID: 35564160 PMCID: PMC9105095 DOI: 10.3390/nano12091449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023]
Abstract
A colorimetric probe based on a hybrid sensing system of gold nanoparticles (AuNPs), silver nanoparticles (AgNPs), and thymine (Thy) was developed for easy and rapid detection of copper (II) ions (Cu2+) in solution. The underlying principle of this probe was the Cu2+-triggered aggregation of the nanoparticle components. Color change of the sensing solution (from red to purple) was clearly observed with naked eyes. The experimental parameters, including pH and concentration of tris buffer, thymine concentration and AgNP dilution ratios, were investigated and optimized. Once optimized, the limits of detection were found to be 1, 0.09 and 0.03 ppm for naked eyes, smartphone application and UV-vis spectrophotometer, respectively. Furthermore, determination of Cu2+ was accomplished within 15 min under ambient conditions. For quantitative analysis, the linearity of detection was observed through ranges of 0.09−0.5 and 0.03−0.5 ppm using smartphone application and UV-vis spectrophotometer, respectively, conforming to the World Health Organization guideline for detection of copper at concentrations < 2 ppm in water. This developed hybrid colorimetric probe exhibited preferential selectivity toward Cu2+, even when assessed in the presence of other metal ions (Al3+, Ca2+, Pb2+, Mn2+, Mg2+, Zn2+, Fe3+, Ni2+, Co2+, Hg2+ and Cd2+). The developed procedure was also successfully applied to quantification of Cu2+ in real water samples. The recovery and relative standard deviation (RSD) values from real water sample analysis were in the ranges of 70.14−103.59 and 3.21−17.63%, respectively. Our findings demonstrated a successful development and implementation of the Thy-AuNP-AgNP hybrid sensing system for rapid, simple and portable Cu2+ detection in water samples using a spectrophotometer or a smartphone-based device.
Collapse
|
29
|
Liver injury in Wilson's disease: An immunohistochemical study. Adv Med Sci 2022; 67:203-207. [PMID: 35477108 DOI: 10.1016/j.advms.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/04/2022] [Accepted: 04/16/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE Wilson's disease (WD) is an inherited disorder involving copper accumulation in the liver and brain. An important mechanism responsible for hepatocyte injury in WD is mitochondria destruction, although damage may also be caused by oxidative stress and lipid peroxidation. PATIENTS/METHODS The study included 54 treated patients with WD without liver cirrhosis and 10 healthy controls. All patients had liver biopsy and immunohistochemical analysis of liver samples was performed using targeted staining for markers of mitochondrial injury (thioredoxin-2 [TRX2], cytochrome c oxidases subunit 2 [COX2], and cytochrome c oxidases complex IV subunit 4 isoform 1 [COX4-1]), of oxidative stress (peroxiredoxin-1 [PRDX1] and 8-hydroxyguanosine [8-OHdG]), and of lipid peroxidation (4-hydroxynonenal [4-HNE]). RESULTS Expression, measured as mean strengths of intensity (SI) of immunohistochemical reactions per 5 fields of view, was significantly lower in patients with WD compared to controls for COX2 (2.9 vs 8.3), 8-OHdG (0.05 vs 3.8), TRX2 (4.9 vs 10.1), and PRDX1 (4.6 vs 10.1) (all P < 10-5). COX4-1 expression was undetected in patients with WD but detected in control specimens (8.1) (P < 10-5). 4-HNE was overexpressed in patients with WD compared to controls (10.1 vs 9.1; P < 0.07). CONCLUSIONS Negligible COX4-1 and low COX2 expression in liver specimens may serve as markers of inner mitochondrial membrane injury in treated patients with WD and early stages of liver fibrosis.
Collapse
|
30
|
Liao J, Li Q, Hu Z, Yu W, Zhang K, Ma F, Han Q, Zhang H, Guo J, Hu L, Pan J, Li Y, Tang Z. Mitochondrial miR-1285 regulates copper-induced mitochondrial dysfunction and mitophagy by impairing IDH2 in pig jejunal epithelial cells. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126899. [PMID: 34418838 DOI: 10.1016/j.jhazmat.2021.126899] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Copper (Cu), a hazardous heavy metal, can lead to toxic effects on host physiology. Recently, specific mitochondria-localized miRNAs (mitomiRs) were shown to modulate mitochondrial function, but the underlying mechanisms remain undefined. Here, we identified mitomiR-1285 as an important molecule regulating mitochondrial dysfunction and mitophagy in jejunal epithelial cells under Cu exposure. Mitochondrial dysfunction and mitophagy were the important mechanisms of Cu-induced pathological damage in jejunal epithelial cells, which were accompanied by significant increase of mitomiR-1285 in vivo and in vitro. Knockdown of mitomiR-1285 significantly attenuated Cu-induced mitochondrial respiratory dysfunction, ATP deficiency, mitochondrial membrane potential reduction, mitochondrial reactive oxygen species accumulation, and mitophagy. Subsequently, bioinformatics analysis and luciferase reporter assay demonstrated that IDH2 was a direct target of mitomiR-1285. RNA interference of IDH2 dramatically reversed the effect that mitomiR-1285 knockdown relieved mitochondrial dysfunction and mitophagy induced by Cu, and the opposite effect was shown by overexpression of IDH2. Therefore, our results suggested that mitomiR-1285 aggravated Cu-induced mitochondrial dysfunction and mitophagy via suppressing IDH2 expression. These findings identified the important mechanistic connection between mitomiRs and mitochondrial metabolism under Cu exposure, providing a new insight into Cu toxicology.
Collapse
Affiliation(s)
- Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zhuoying Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Kai Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
31
|
Borchard S, Raschke S, Zak KM, Eberhagen C, Einer C, Weber E, Müller SM, Michalke B, Lichtmannegger J, Wieser A, Rieder T, Popowicz GM, Adamski J, Klingenspor M, Coles AH, Viana R, Vendelbo MH, Sandahl TD, Schwerdtle T, Plitz T, Zischka H. Bis-choline tetrathiomolybdate prevents copper-induced blood-brain barrier damage. Life Sci Alliance 2021; 5:5/3/e202101164. [PMID: 34857647 PMCID: PMC8675913 DOI: 10.26508/lsa.202101164] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022] Open
Abstract
The blood–brain barrier endothelial cell monolayer becomes permeable to elevated copper loosely bound to albumin, which can be avoided by a high-affinity copper chelator but not by D-penicillamine. In Wilson disease, excessive copper accumulates in patients’ livers and may, upon serum leakage, severely affect the brain according to current viewpoints. Present remedies aim at avoiding copper toxicity by chelation, for example, by D-penicillamine (DPA) or bis-choline tetrathiomolybdate (ALXN1840), the latter with a very high copper affinity. Hence, ALXN1840 may potentially avoid neurological deterioration that frequently occurs upon DPA treatment. As the etiology of such worsening is unclear, we reasoned that copper loosely bound to albumin, that is, mimicking a potential liver copper leakage into blood, may damage cells that constitute the blood-brain barrier, which was found to be the case in an in vitro model using primary porcine brain capillary endothelial cells. Such blood–brain barrier damage was avoided by ALXN1840, plausibly due to firm protein embedding of the chelator bound copper, but not by DPA. Mitochondrial protection was observed, a prerequisite for blood–brain barrier integrity. Thus, high-affinity copper chelators may minimize such deterioration in the treatment of neurologic Wilson disease.
Collapse
Affiliation(s)
- Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie Raschke
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,TraceAge-Deutsche Forschungsgemeinschaft Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (Forschungsgruppe 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Krzysztof M Zak
- Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Einer
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Elisabeth Weber
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sandra M Müller
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Josef Lichtmannegger
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Albrecht Wieser
- Institute of Radiation Medicine, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tamara Rieder
- Technical University Munich, School of Medicine, Institute of Toxicology and Environmental Hygiene, Munich, Germany
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Lehrstuhl für Experimentelle Genetik, Technical University Munich, Freising-Weihenstephan, Germany.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technical University of Munich, School of Life Sciences Weihenstephan, Freising, Germany.,Else-Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| | | | - Ruth Viana
- Alexion AstraZeneca Rare Disease, Boston, MA, USA
| | - Mikkel H Vendelbo
- Department of Nuclear Medicine and Positron Emission Tomography Centre, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Thomas D Sandahl
- Medical Department Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,TraceAge-Deutsche Forschungsgemeinschaft Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (Forschungsgruppe 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | | | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany .,Technical University Munich, School of Medicine, Institute of Toxicology and Environmental Hygiene, Munich, Germany
| |
Collapse
|
32
|
Shribman S, Poujois A, Bandmann O, Czlonkowska A, Warner TT. Wilson's disease: update on pathogenesis, biomarkers and treatments. J Neurol Neurosurg Psychiatry 2021; 92:1053-1061. [PMID: 34341141 DOI: 10.1136/jnnp-2021-326123] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/08/2021] [Indexed: 12/22/2022]
Abstract
Wilson's disease is an autosomal-recessive disorder of copper metabolism caused by mutations in ATP7B and associated with neurological, psychiatric, ophthalmological and hepatic manifestations. Decoppering treatments are used to prevent disease progression and reduce symptoms, but neurological outcomes remain mixed. In this article, we review the current understanding of pathogenesis, biomarkers and treatments for Wilson's disease from the neurological perspective, with a focus on recent advances. The genetic and molecular mechanisms associated with ATP7B dysfunction have been well characterised, but despite extensive efforts to identify genotype-phenotype correlations, the reason why only some patients develop neurological or psychiatric features remains unclear. We discuss pathological processes through which copper accumulation leads to neurodegeneration, such as mitochondrial dysfunction, the role of brain iron metabolism and the broader concept of selective neuronal vulnerability in Wilson's disease. Delayed diagnoses continue to be a major problem for patients with neurological presentations. We highlight limitations in our current approach to making a diagnosis and novel diagnostic biomarkers, including the potential for newborn screening programmes. We describe recent progress in developing imaging and wet (fluid) biomarkers for neurological involvement, including findings from quantitative MRI and other neuroimaging studies, and the development of a semiquantitative scoring system for assessing radiological severity. Finally, we cover the use of established and novel chelating agents, paradoxical neurological worsening, and progress developing targeted molecular and gene therapy for Wilson's disease, before discussing future directions for translational research.
Collapse
Affiliation(s)
- Samuel Shribman
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - Aurelia Poujois
- Department of Neurology, National Reference Centre for Wilson's Disease, Rothschild Foundation Hospital, Paris, France
| | - Oliver Bandmann
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, Sheffield, UK
| | - Anna Czlonkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Thomas T Warner
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
33
|
Perineuronal Nets and Metal Cation Concentrations in the Microenvironments of Fast-Spiking, Parvalbumin-Expressing GABAergic Interneurons: Relevance to Neurodevelopment and Neurodevelopmental Disorders. Biomolecules 2021; 11:biom11081235. [PMID: 34439901 PMCID: PMC8391699 DOI: 10.3390/biom11081235] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/31/2022] Open
Abstract
Because of their abilities to catalyze generation of toxic free radical species, free concentrations of the redox reactive metals iron and copper are highly regulated. Importantly, desired neurobiological effects of these redox reactive metal cations occur within very narrow ranges of their local concentrations. For example, synaptic release of free copper acts locally to modulate NMDA receptor-mediated neurotransmission. Moreover, within the developing brain, iron is critical to hippocampal maturation and the differentiation of parvalbumin-expressing neurons, whose soma and dendrites are surrounded by perineuronal nets (PNNs). The PNNs are a specialized component of brain extracellular matrix, whose polyanionic character supports the fast-spiking electrophysiological properties of these parvalbumin-expressing GABAergic interneurons. In addition to binding cations and creation of the Donnan equilibrium that support the fast-spiking properties of this subset of interneurons, the complex architecture of PNNs also binds metal cations, which may serve a protective function against oxidative damage, especially of these fast-spiking neurons. Data suggest that pathological disturbance of the population of fast-spiking, parvalbumin-expressing GABAergic inhibitory interneurons occur in at least some clinical presentations, which leads to disruption of the synchronous oscillatory output of assemblies of pyramidal neurons. Increased expression of the GluN2A NMDA receptor subunit on parvalbumin-expressing interneurons is linked to functional maturation of both these neurons and the perineuronal nets that surround them. Disruption of GluN2A expression shows increased susceptibility to oxidative stress, reflected in redox dysregulation and delayed maturation of PNNs. This may be especially relevant to neurodevelopmental disorders, including autism spectrum disorder. Conceivably, binding of metal redox reactive cations by the perineuronal net helps to maintain safe local concentrations, and also serves as a reservoir buffering against second-to-second fluctuations in their concentrations outside of a narrow physiological range.
Collapse
|
34
|
Goto N, Hara H, Kondo M, Yasuda N, Kamiya T, Okuda K, Adachi T. Hydrogen sulfide increases copper-dependent neurotoxicity via intracellular copper accumulation. Metallomics 2021; 12:868-875. [PMID: 32315022 DOI: 10.1039/d0mt00015a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Copper (Cu) is an essential trace element and acts as a redox cofactor for many enzymes; however, excess Cu is toxic to cells. Hydrogen sulfide (H2S) is a well-known toxic gaseous molecule, but it has various biological effects such as neuromodulation and vasodilation. H2S was recently demonstrated to be involved in the detoxification of heavy metals, including zinc and cadmium, suggesting that H2S helps to maintain the homeostasis of heavy metals in cells. However, it is unclear how H2S impacts cellular Cu dynamics. In this study, we examined the effects of H2S on Cu cytotoxicity. Human neuroblastoma SH-SY5Y cells were exposed to CuSO4 in the presence of the H2S donor NaHS. CuSO4 alone slightly induced cell injury, whereas the combination of CuSO4 and NaHS (Cu/NaHS) increased Cu cytotoxicity. The Cu chelator bathocuproinedisulfonic acid mitigated Cu/NaHS-induced cytotoxicity. Compared with CuSO4 alone, Cu/NaHS markedly promoted ROS generation, mitochondrial dysfunction, and a decrease in ATP production. In addition, reporter assay using the metal responsive element (MRE)-driven reporter plasmid revealed that Cu/NaHS augmented Cu-dependent MRE activation. The amount of intracellular Cu was significantly higher in cells treated with Cu/NaHS than in those treated with CuSO4 alone. Moreover, Cu/NaHS markedly suppressed the level of the Cu exporter ATP7A, but not ATP7B, protein, whereas the combination did not affect that of the Cu importer CTR1 protein. Taken together, we conclude that the marked decrease in the ATP7A protein level by Cu/NaHS promotes intracellular Cu accumulation and leads to increased Cu cytotoxicity.
Collapse
Affiliation(s)
- Norika Goto
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Mao Kondo
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Naomi Yasuda
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Kensuke Okuda
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyama-kita, Higashinada, Kobe 658-8558, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| |
Collapse
|
35
|
Kabiri Y, Eberhagen C, Schmitt S, Knolle PA, Zischka H. Isolation and Electron Microscopic Analysis of Liver Cancer Cell Mitochondria. Methods Mol Biol 2021; 2277:277-287. [PMID: 34080157 DOI: 10.1007/978-1-0716-1270-5_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Isolation of mitochondria is a crucial method for examining molecular details of this organelle's manifold functions. Historically, mitochondrial isolations required large amounts of sample material which impeded their isolation from cultured cells. We have therefore developed a method allowing for controlled and reproducible isolation of intact and functional mitochondria from diverse cell types in culture. Here we provide a methodological update of this approach together with a protocol for the subsequent analysis of such isolated mitochondria by electron microscopy. Combining the isolation procedure with this powerful imaging method can reveal ultrastructural mitochondrial peculiarities in disease settings that might not be evident in intact cells and allows for assessment of mitochondrial membrane integrity and sample purity.
Collapse
Affiliation(s)
- Yaschar Kabiri
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabine Schmitt
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University of Munich, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Oncology, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans Zischka
- Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University of Munich, Munich, Germany. .,Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
36
|
Kondo M, Hara H, Kamijo F, Kamiya T, Adachi T. 6-Hydroxydopamine disrupts cellular copper homeostasis in human neuroblastoma SH-SY5Y cells. Metallomics 2021; 13:6311138. [PMID: 34185060 DOI: 10.1093/mtomcs/mfab041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022]
Abstract
Copper (Cu) is an essential trace element that plays an important role in maintaining neuronal functions such as the biosynthesis of neurotransmitters. In contrast, exposure to excess Cu results in cell injury. Therefore, intracellular Cu levels are strictly regulated by proteins related to Cu-trafficking, including ATP7A. Parkinson's disease (PD) is a neurodegenerative disorder and is characterized by the loss of dopaminergic neurons in the substantia nigra. Recently, the abnormality of Cu homeostasis was demonstrated to be related to the pathogenesis of PD. However, the association between Cu dyshomeostasis and PD remains unclear. In this study, we examined the effects of 6-hydroxydopamine (6-OHDA), a neurotoxin used for the production of PD model animals, on cellular Cu trafficking in human neuroblastoma SH-SY5Y cells. 6-OHDA reduced the protein levels of the Cu exporter ATP7A and the Cu chaperone Atox1, but not CTR1, a Cu importer; however, it did not affect the expression of ATP7A and Atox1 mRNAs. The decreased levels of ATP7A and Atox1 proteins were restored by the antioxidant N-acetylcysteine and the lysosomal inhibitor bafilomycin A1. This suggests that 6-OHDA-induced oxidative stress facilitates the degradation of these proteins. In addition, the amount of intracellular Cu after exposure to CuCl2 was significantly higher in cells pretreated with 6-OHDA than in untreated cells. Moreover, 6-OHDA reduced the protein levels of the cuproenzyme dopamine β-hydroxylase that converts dopamine to noradrenaline. Thus, this study suggests that 6-OHDA disrupts Cu homeostasis through the dysregulation of cellular Cu trafficking, resulting in the dysfunction of neuronal cells.
Collapse
Affiliation(s)
- Mao Kondo
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Fuka Kamijo
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| |
Collapse
|
37
|
Cheng H, Yang B, Ke T, Li S, Yang X, Aschner M, Chen P. Mechanisms of Metal-Induced Mitochondrial Dysfunction in Neurological Disorders. TOXICS 2021; 9:142. [PMID: 34204190 PMCID: PMC8235163 DOI: 10.3390/toxics9060142] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/31/2023]
Abstract
Metals are actively involved in multiple catalytic physiological activities. However, metal overload may result in neurotoxicity as it increases formation of reactive oxygen species (ROS) and elevates oxidative stress in the nervous system. Mitochondria are a key target of metal-induced toxicity, given their role in energy production. As the brain consumes a large amount of energy, mitochondrial dysfunction and the subsequent decrease in levels of ATP may significantly disrupt brain function, resulting in neuronal cell death and ensuing neurological disorders. Here, we address contemporary studies on metal-induced mitochondrial dysfunction and its impact on the nervous system.
Collapse
Affiliation(s)
- Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; (H.C.); (X.Y.)
| | - Bobo Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China;
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; (H.C.); (X.Y.)
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| |
Collapse
|
38
|
Considerations for optimizing Wilson's disease patients' long-term follow-up. GASTROENTEROLOGIA Y HEPATOLOGIA 2021; 45:146-154. [PMID: 34052403 DOI: 10.1016/j.gastrohep.2021.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 11/23/2022]
Abstract
Wilson's disease is a sistemic genetic disease caused by the excessive accumulation of copper. The first and main involvement is in the liver, which can range from mild and transient elevation of transaminases to the onset of an overt cirrhosis or acute liver failure. It is known that up to 20-30% of these patients may evolve to liver cirrhosis during follow-up. In clinical practice, liver fibrosis is assessed mainly by using indirect and non-invasive tools (laboratory tests, liver elastography, ultrasound), similar to other prevalent chronic liver diseases. However, despite the fact that liver elastography is a valuable tool in general hepatology, the evidence of its usefulness and accuracy in Wilsońs disease is scarce. This review summarizes the available scientific data and their limitations in Wilson's disease.
Collapse
|
39
|
Witt B, Stiboller M, Raschke S, Friese S, Ebert F, Schwerdtle T. Characterizing effects of excess copper levels in a human astrocytic cell line with focus on oxidative stress markers. J Trace Elem Med Biol 2021; 65:126711. [PMID: 33486291 DOI: 10.1016/j.jtemb.2021.126711] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/02/2020] [Accepted: 01/02/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Being an essential trace element, copper is involved in diverse physiological processes. However, excess levels might lead to adverse effects. Disrupted copper homeostasis, particularly in the brain, has been associated with human diseases including the neurodegenerative disorders Wilson and Alzheimer's disease. In this context, astrocytes play an important role in the regulation of the copper homeostasis in the brain and likely in the prevention against neuronal toxicity, consequently pointing them out as a potential target for the neurotoxicity of copper. Major toxic mechanisms are discussed to be directed against mitochondria probably via oxidative stress. However, the toxic potential and mode of action of copper in astrocytes is poorly understood, so far. METHODS In this study, excess copper levels affecting human astrocytic cell model and their involvement in the neurotoxic mode of action of copper, as well as, effects on the homeostasis of other trace elements (Mn, Fe, Ca and Mg) were investigated. RESULTS Copper induced substantial cytotoxic effects in the human astrocytic cell line following 48 h incubation (EC30: 250 μM) and affected mitochondrial function, as observed via reduction of mitochondrial membrane potential and increased ROS production, likely originating from mitochondria. Moreover, cellular GSH metabolism was altered as well. Interestingly, not only cellular copper levels were affected, but also the homeostasis of other elements (Ca, Fe and Mn) were disrupted. CONCLUSION One potential toxic mode of action of copper seems to be effects on the mitochondria along with induction of oxidative stress in the human astrocytic cell model. Moreover, excess copper levels seem to interact with the homeostasis of other essential elements such as Ca, Fe and Mn. Disrupted element homeostasis might also contribute to the induction of oxidative stress, likely involved in the onset and progression of neurodegenerative disorders. These insights in the toxic mechanisms will help to develop ideas and approaches for therapeutic strategies against copper-mediated diseases.
Collapse
Affiliation(s)
- Barbara Witt
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Michael Stiboller
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Stefanie Raschke
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sharleen Friese
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Franziska Ebert
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| |
Collapse
|
40
|
Neurotoxic Effect of Flavonol Myricetin in the Presence of Excess Copper. Molecules 2021; 26:molecules26040845. [PMID: 33562817 PMCID: PMC7914656 DOI: 10.3390/molecules26040845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress (OS) induced by the disturbed homeostasis of metal ions is one of the pivotal factors contributing to neurodegeneration. The aim of the present study was to investigate the effects of flavonoid myricetin on copper-induced toxicity in neuroblastoma SH-SY5Y cells. As determined by the MTT method, trypan blue exclusion assay and measurement of ATP production, myricetin heightened the toxic effects of copper and exacerbated cell death. It also increased copper-induced generation of reactive oxygen species, indicating the prooxidative nature of its action. Furthermore, myricetin provoked chromatin condensation and loss of membrane integrity without caspase-3 activation, suggesting the activation of both caspase-independent programmed cell death and necrosis. At the protein level, myricetin-induced upregulation of PARP-1 and decreased expression of Bcl-2, whereas copper-induced changes in the expression of p53, p73, Bax and NME1 were not further affected by myricetin. Inhibitors of ERK1/2 and JNK kinases, protein kinase A and L-type calcium channels exacerbated the toxic effects of myricetin, indicating the involvement of intracellular signaling pathways in cell death. We also employed atomic force microscopy (AFM) to evaluate the morphological and mechanical properties of SH-SY5Y cells at the nanoscale. Consistent with the cellular and molecular methods, this biophysical approach also revealed a myricetin-induced increase in cell surface roughness and reduced elasticity. Taken together, we demonstrated the adverse effects of myricetin, pointing out that caution is required when considering powerful antioxidants for adjuvant therapy in copper-related neurodegeneration.
Collapse
|
41
|
Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol 2021; 95:591-615. [PMID: 33512557 PMCID: PMC7870626 DOI: 10.1007/s00204-020-02970-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Inhibition of complex I of the mitochondrial respiratory chain (cI) by rotenone and methyl-phenylpyridinium (MPP +) leads to the degeneration of dopaminergic neurons in man and rodents. To formally describe this mechanism of toxicity, an adverse outcome pathway (AOP:3) has been developed that implies that any inhibitor of cI, or possibly of other parts of the respiratory chain, would have the potential to trigger parkinsonian motor deficits. We used here 21 pesticides, all of which are described in the literature as mitochondrial inhibitors, to study the general applicability of AOP:3 or of in vitro assays that are assessing its activation. Five cI, three complex II (cII), and five complex III (cIII) inhibitors were characterized in detail in human dopaminergic neuronal cell cultures. The NeuriTox assay, examining neurite damage in LUHMES cells, was used as in vitro proxy of the adverse outcome (AO), i.e., of dopaminergic neurodegeneration. This test provided data on whether test compounds were unspecific cytotoxicants or specifically neurotoxic, and it yielded potency data with respect to neurite degeneration. The pesticide panel was also examined in assays for the sequential key events (KE) leading to the AO, i.e., mitochondrial respiratory chain inhibition, mitochondrial dysfunction, and disturbed proteostasis. Data from KE assays were compared to the NeuriTox data (AO). The cII-inhibitory pesticides tested here did not appear to trigger the AOP:3 at all. Some of the cI/cIII inhibitors showed a consistent AOP activation response in all assays, while others did not. In general, there was a clear hierarchy of assay sensitivity: changes of gene expression (biomarker of neuronal stress) correlated well with NeuriTox data; mitochondrial failure (measured both by a mitochondrial membrane potential-sensitive dye and a respirometric assay) was about 10–260 times more sensitive than neurite damage (AO); cI/cIII activity was sometimes affected at > 1000 times lower concentrations than the neurites. These data suggest that the use of AOP:3 for hazard assessment has a number of caveats: (i) specific parkinsonian neurodegeneration cannot be easily predicted from assays of mitochondrial dysfunction; (ii) deriving a point-of-departure for risk assessment from early KE assays may overestimate toxicant potency. Comparison of 21 data-rich mitochondrial toxicants for neurotoxicity Quantitative comparison of key event triggering thresholds for AOP:3 Comparison of two cell models and two exposure times for neurotoxicity Comparison of transcriptome changes and classical key event measures for sensitivity
Collapse
|
42
|
Baldini F, Fabbri R, Eberhagen C, Voci A, Portincasa P, Zischka H, Vergani L. Adipocyte hypertrophy parallels alterations of mitochondrial status in a cell model for adipose tissue dysfunction in obesity. Life Sci 2021; 265:118812. [PMID: 33278396 DOI: 10.1016/j.lfs.2020.118812] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022]
Abstract
AIMS Adipocyte hypertrophy is the main cause of obesity. A deeper understanding of the molecular mechanisms regulating adipocyte dysfunction may help to plan strategies to treat/prevent obesity and its metabolic complications. Here, we investigated in vitro the molecular alterations associated with early adipocyte hypertrophy, focusing on mitochondrial dysfunction. MAIN METHODS As model of adipocyte hypertrophy, we employed 3T3-L1 preadipocytes firstly differentiated into mature adipocytes, then cultured with long-chain fatty acids. As a function of differentiation and hypertrophy, we assessed triglyceride content, lipid droplet size, radical homeostasis by spectrophotometry and microscopy, as well as the expression of PPARγ, adiponectin and metallothioneins. Mitochondrial status was investigated by electron microscopy, oxygraph 2 k (O2K) high-resolution respirometry, fluorimetry and western blot. KEY FINDINGS Compared to mature adipocytes, hypertrophic adipocytes showed increased triglyceride accumulation and lipid peroxidation, larger or unique lipid droplet, up-regulated expression of PPARγ, adiponectin and metallothioneins. At mitochondrial level, early-hypertrophic adipocytes exhibited: (i) impaired mitochondrial oxygen consumption with parallel reduction in the mitochondrial complexes; (ii) no changes in citrate synthase and HSP60 expression, and in the inner mitochondrial membrane polarization; (iii) no stimulation of mitochondrial fatty acid oxidation. Our findings indicate that the content, integrity, and catabolic activity of mitochondria were rather unchanged in early hypertrophic adipocytes, while oxygen consumption and oxidant production were altered. SIGNIFICANCE In the model of early adipocyte hypertrophy exacerbated oxidative stress and impaired mitochondrial respiration were observed, likely depending on reduction in the mitochondrial complexes, without changes in mitochondrial mass and integrity.
Collapse
Affiliation(s)
- Francesca Baldini
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Rita Fabbri
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Adriana Voci
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Piero Portincasa
- Division of Internal Medicine, Department of Biomedical Sciences and Human Oncology, University School of Medicine, 70124 Bari, Italy
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Toxicology and Environmental Hygiene, Technical University of Munich, School of Medicine, Munich, Germany
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy.
| |
Collapse
|
43
|
Joshi A, Farber K, Scheiber IF. Neurotoxicity of copper and copper nanoparticles. ADVANCES IN NEUROTOXICOLOGY 2021:115-157. [DOI: 10.1016/bs.ant.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
44
|
Zhang J, Tang LL, Li LY, Cui SW, Jin S, Chen HZ, Yang WM, Xie DJ, Yu GR. Gandouling Tablets Inhibit Excessive Mitophagy in Toxic Milk (TX) Model Mouse of Wilson Disease via Pink1/Parkin Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:3183714. [PMID: 33456485 PMCID: PMC7787754 DOI: 10.1155/2020/3183714] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Gandouling (GDL) tablet is a Chinese patent medicine approved by the National Medical Product Administration, which is used to treat Wilson disease (WD) in China. In this study, we aimed to investigate the effects of GDL on mitophagy in the hippocampus in the toxic milk (TX) mouse model of WD. METHODS Mice were randomly divided into the following four groups: control, Wilson (model group), D-penicillamine (DPA), and GDL groups. The animal behaviors were evaluated by the water maze experiment, traction test, and pole test. Transmission electron microscopy was used for the detection of mitochondrion structure. An enzyme-linked immunosorbent assay (ELISA) was performed for the analysis of the changes in liver function. Colocalization of mitophagy-related proteins was detected by fluorescence microscopy. Western blotting (WB) and reverse transcription-polymerase chain reaction (RT-PCR) were conducted for the detection of protein expression and mRNA levels, respectively. RESULTS Significant reduction in neurological impairments was observed in the WD model group. All of these results were significantly reversed by GDL intervention. Compared with the levels in the Wilson group, the levels of alanine aminotransferase (ALT), aspartate transaminase (AST), total bilirubin (TBIL), and albumin (ALB) changed obviously. Colocalization between mitophagy-related proteins pink1, parkin, and mitochondria was changed significantly. The mitophagy-related mRNA (pink1, parkin, and LC3II) and protein expression levels (pink1, parkin, and the rate of LC3II/LC3I) were decreased significantly, while p62 was remarkably increased after GDL intervention. CONCLUSION Our findings indicated that the neuroprotective mechanism of GDL may occur via the inhibition of excessive mitophagy through the regulation of the pink1/parkin pathway in the TX mouse brain of WD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Lu-Lu Tang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Liang-Yong Li
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Shen-Wei Cui
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Shan Jin
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Huai-Zhen Chen
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Wen-Ming Yang
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Dao-Jun Xie
- Department of Neurology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Gu-Ran Yu
- Department of Neurology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
45
|
Nie X, Wang Y, Zhao H, Guo M, Liu Y, Xing M. As 3+ or/and Cu 2+ exposure triggers oxidative stress imbalance, induces inflammatory response and apoptosis in chicken brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110993. [PMID: 32678762 DOI: 10.1016/j.ecoenv.2020.110993] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) and copper (Cu) are common environmental pollutants in nature. When they are excessively present in living organisms, they can cause heavy metal poisoning. There were relatively few studies of the toxicological concentrations of As and Cu in the brain using chicken as a model. Therefore, in this study, arsenic trioxide or/and copper sulfate were added to chicken diets for a 12-week toxicity test. The test results showed that excessive intake of As or/and Cu led to a significant reduction in the total antioxidant capacity (T-AOC), catalase (CAT) and hydroxyl radicals. And significant increase in nitric oxide synthase (NOS) indicates an imbalanced oxidation reaction. In addition, the increase in heat shock protein (HSPs), the increase of NF-κB pathway-related pro-inflammatory mediators, the change of apoptosis factors on the death receptor and mitochondrial apoptosis pathway show that, As or/and Cu exposure induced chicken brain has heat shock response (HSP), tissue inflammation and apoptosis. This damage is inseparable from the oxidative imbalance. It is worth noting that these injury changes are time-dependent, and the combined effect of these two metals is more severe than that of a single group of injuries. Our findings can inform the regulation of animal feed additives and avoid agricultural economic losses or biological health damage.
Collapse
Affiliation(s)
- Xiaopan Nie
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
46
|
Bilde K, Olesen RH, Ernst EH, Mamsen LS, Amoushahi M, Lykke-Hartmann K, Ernst E, Larsen A. Reduced hepatic metallothionein expression in first trimester fetuses in response to intrauterine smoking exposure: a consequence of low maternal zinc levels? Hum Reprod 2020; 34:2129-2143. [PMID: 31713610 DOI: 10.1093/humrep/dez197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 08/05/2019] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Does maternal smoking in early pregnancy affect metallothionein 1 and 2 (MT1 and MT2) mRNA and protein expression in first trimester placenta or embryonic/fetal liver? SUMMARY ANSWER In the first trimester, MT protein expression is seen only in liver, where smoking is associated with a significantly reduced expression. WHAT IS KNOWN ALREADY Zinc homeostasis is altered by smoking. Smoking induces MT in the blood of smokers properly as a result of the cadmium binding capacities of MT. In term placenta MT is present and smoking induces gene and protein expression (MT2 in particular), but the MT presence and response to smoking have never been examined in first trimester placenta or embryonic/fetal tissues. STUDY DESIGN, SIZE, DURATION Cross sectional study where the presence of MT mRNA and protein was examined at the time of the abortion. The material was collected with informed consent after surgical intervention and frozen immediately. For protein expression analysis, liver tissue originating from smoking exposed n = 10 and unexposed n = 12 pregnancies was used. For mRNA expression analyses, placental tissue originating from smokers n = 19 and non-smokers n = 23 and fetal liver tissue from smoking exposed n = 16 and smoking unexposed pregnancies n = 13, respectively, were used. PARTICIPANTS/MATERIALS, SETTING, METHODS Tissues were obtained from women who voluntarily and legally chose to terminate their pregnancy between gestational week 6 and 12. Western blot was used to determine the protein expression of MT, and real-time PCR was used to quantify the mRNA expression of MT2A and eight MT1 genes alongside the expression of key placental zinc transporters: zinc transporter protein-1 (ZNT1), Zrt-, Irt-related protein-8 and -14 (ZIP8 and ZIP14). MAIN RESULTS AND THE ROLE OF CHANCE A significant reduction in the protein expression of MT1/2 in liver tissue (P = 0.023) was found by western blot using antibodies detecting both MT forms. Overall, a similar tendency was observed on the mRNA level although not statistically significant. Protein expression was not present in placenta, but the mRNA regulation suggested a down regulation of MT as well. A suggested mechanism based on the known role of MT in zinc homeostasis could be that the findings reflect reduced levels of easily accessible zinc in the blood of pregnant smokers and hence a reduced MT response in smoking exposed fetal/embryonic tissues. LIMITATIONS AND REASONS FOR CAUTION Smoking was based on self-reports; however, our previous studies have shown high consistency regarding cotinine residues and smoking status. Passive smoking could interfere but was found mainly among smokers. The number of fetuses was limited, and other factors such as medication and alcohol might affect the findings. Information on alcohol was not consistently obtained, and we cannot exclude that it was more readily obtained from non-users. In the study, alcohol consumption was reported by a limited number (less than 1 out of 5) of women but with more smokers consuming alcohol. However, the alcohol consumption reported was typically limited to one or few times low doses. The interaction between alcohol and smoking is discussed in the paper. Notably we would have liked to measure zinc status to test our hypothesis, but maternal blood samples were not available. WIDER IMPLICATIONS OF THE FINDINGS Zinc deficiency-in particular severe zinc deficiency-can affect pregnancy outcome and growth. Our findings indicate that zinc homeostasis is also affected in early pregnancy of smokers, and we know from pilot studies that even among women who want to keep their babies, the zinc status is low. Our findings support that zinc supplements should be considered in particular to women who smoke. STUDY FUNDING/COMPETING INTEREST(S) We thank the Department of Biomedicine for providing laboratory facilities and laboratory technicians and the Lundbeck Foundation and Læge Sofus Carl Emil Friis og Hustru Olga Doris Friis Legat for financial support. The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Katrine Bilde
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Rasmus H Olesen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Emil H Ernst
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,Department of Obstetrics and Gynecology, Herning Regional Hospital, 7400 Herning, Denmark
| | - Linn S Mamsen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Rigshospitalet, 2100 Copenhagen Ø, Denmark
| | | | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Erik Ernst
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,Department of Obstetrics and Gynecology, Regionshospitalet Horsens, 8700 Horsens, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
47
|
Frye RE, Cakir J, Rose S, Delhey L, Bennuri SC, Tippett M, Palmer RF, Austin C, Curtin P, Arora M. Early life metal exposure dysregulates cellular bioenergetics in children with regressive autism spectrum disorder. Transl Psychiatry 2020; 10:223. [PMID: 32636364 PMCID: PMC7341836 DOI: 10.1038/s41398-020-00905-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Neurodevelopmental regression (NDR) is a subtype of autism spectrum disorder (ASD) that manifests as loss of previously acquired developmental milestones. Early life dysregulation of nutritional metals and/or exposure to toxic metals have been associated with ASD, but the underlying biological mechanisms by which metals influence neurodevelopment remain unclear. We hypothesize that metals influences neurodevelopment through dysregulation of bioenergetics. Prenatal and early postnatal metal exposures were measured using validated tooth-matrix biomarkers in 27 ASD cases (13 with NDR) and 7 typically-developing (TD) controls. Mitochondrial respiration and glycolysis were measured in peripheral blood mononuclear cells using the Seahorse XF96. Children with ASD demonstrated lower prenatal and postnatal Copper (Cu) and prenatal Nickel concentrations and Copper-to-Zinc (Cu/Zn) ratio as compared with TD children. Children with ASD and NDR showed greater metal-related disruption of cellular bioenergetics than children with ASD without NDR. For children with ASD and NDR mitochondrial respiration decreased as prenatal Manganese concentration increased and increased as prenatal Zinc concentration increased; glycolysis decreased with increased exposure to prenatal Manganese and Lead and postnatal Manganese. For children with ASD without a history of NDR, glycolysis increased with increased postnatal exposure to Tin. Language and communication scores in children with ASD were positively related to prenatal Cu exposure and Cu/Zn ratio. This study suggests that prenatal nutritional metals may be important for neurodevelopment in children with ASD, and that exposure to toxic metals and differences in nutritional metal exposures is associated with dysregulation of cellular bioenergetics, particularly in the NDR subtype of ASD.
Collapse
Affiliation(s)
- Richard E. Frye
- grid.427785.b0000 0001 0664 3531Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ USA ,grid.134563.60000 0001 2168 186XUniversity of Arizona College of Medicine – Phoenix, Phoenix, AZ USA
| | - Janet Cakir
- grid.40803.3f0000 0001 2173 6074North Carolina State University, Raleigh, NC USA
| | - Shannon Rose
- grid.488749.eArkansas Children’s Research Institute, Little Rock, AR USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Leanna Delhey
- grid.488749.eArkansas Children’s Research Institute, Little Rock, AR USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Sirish C. Bennuri
- grid.488749.eArkansas Children’s Research Institute, Little Rock, AR USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Marie Tippett
- grid.488749.eArkansas Children’s Research Institute, Little Rock, AR USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Raymond F. Palmer
- grid.267309.90000 0001 0629 5880Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, TX USA
| | - Christine Austin
- grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Paul Curtin
- grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Manish Arora
- grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
48
|
Witt B, Schaumlöffel D, Schwerdtle T. Subcellular Localization of Copper-Cellular Bioimaging with Focus on Neurological Disorders. Int J Mol Sci 2020; 21:ijms21072341. [PMID: 32231018 PMCID: PMC7178132 DOI: 10.3390/ijms21072341] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
As an essential trace element, copper plays a pivotal role in physiological body functions. In fact, dysregulated copper homeostasis has been clearly linked to neurological disorders including Wilson and Alzheimer’s disease. Such neurodegenerative diseases are associated with progressive loss of neurons and thus impaired brain functions. However, the underlying mechanisms are not fully understood. Characterization of the element species and their subcellular localization is of great importance to uncover cellular mechanisms. Recent research activities focus on the question of how copper contributes to the pathological findings. Cellular bioimaging of copper is an essential key to accomplish this objective. Besides information on the spatial distribution and chemical properties of copper, other essential trace elements can be localized in parallel. Highly sensitive and high spatial resolution techniques such as LA-ICP-MS, TEM-EDS, S-XRF and NanoSIMS are required for elemental mapping on subcellular level. This review summarizes state-of-the-art techniques in the field of bioimaging. Their strengths and limitations will be discussed with particular focus on potential applications for the elucidation of copper-related diseases. Based on such investigations, further information on cellular processes and mechanisms can be derived under physiological and pathological conditions. Bioimaging studies might enable the clarification of the role of copper in the context of neurodegenerative diseases and provide an important basis to develop therapeutic strategies for reduction or even prevention of copper-related disorders and their pathological consequences.
Collapse
Affiliation(s)
- Barbara Witt
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany;
- Correspondence: ; Tel.: +49-3320-088-5241
| | - Dirk Schaumlöffel
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254, CNRS/Université de Pau et des Pays de l’Adour/E2S UPPA, 64000 Pau, France;
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany;
- TraceAge—DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Potsdam-Berlin-Jena, Germany
| |
Collapse
|
49
|
Copper Induces Oxidative Stress and Apoptosis in the Mouse Liver. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1359164. [PMID: 32411316 PMCID: PMC7201649 DOI: 10.1155/2020/1359164] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/24/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022]
Abstract
Copper (Cu) is an essential trace element involved in the normal physiological processes of animals. However, excessive exposure to Cu can produce numerous detrimental impacts. The aim of this study was to investigate the effects of Cu on oxidative stress and apoptosis as well as their relationship in the mouse liver. Four-week-old ICR mice (n = 240) were randomly assigned to different Cu (Cu2+-CuSO4) treatment groups (0, 4, 8, and 16 mg/kg) for periods of 21 and 42 days. The high doses of Cu exposure could induce oxidative stress, by increasing the levels of reactive oxygen species (ROS) and protein carbonyls (PC) and decreasing the activities of antisuperoxide anion (ASA) and antihydroxyl radical (AHR) and content of glutathione (GSH), as well as activities and mRNA expression levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). Moreover, high doses of Cu exposure induced hepatic apoptosis via the mitochondrial apoptotic pathway, as characterized by the depolarization of mitochondrial membrane potential (MMP); significantly increased mRNA and protein expression levels of cytosolic cytochrome (Cyt c), apoptosis-inducing factor (AIF), endonuclease G (Endo G), apoptosis protease-activating factor-1 (Apaf-1), cleaved caspase-9, cleaved caspase-3, cleaved PARP, Bcl-2 antagonist killer (Bak), Bcl-2-associated X protein (Bax), and Bcl-2-interacting mediator of cell death (Bim); and decreased mRNA and protein expression levels of B-cell lymphoma-2 (Bcl-2) and Bcl-extra-large (Bcl-xL). Furthermore, the activation of the tumor necrosis factor receptor-1 (TNF-R1) signaling pathway was involved in Cu-induced apoptosis, as characterized by the significantly increased mRNA and protein expression levels of TNF-R1, Fas-associated death domain (FADD), TNFR-associated death domain (TRADD), and cleaved caspase-8. These results indicated that exposure to excess Cu could cause oxidative stress triggered by ROS overproduction and diminished antioxidant function, which in turn promoted hepatic apoptosis via mitochondrial apoptosis and that the TNF-R1 signaling pathway was also involved in the Cu-induced apoptosis.
Collapse
|
50
|
Simon KU, Neto EW, Tramontin NDS, Canteiro PB, Pereira BDC, Zaccaron RP, Silveira PCL, Muller AP. Intranasal insulin treatment modulates the neurotropic, inflammatory, and oxidant mechanisms in the cortex and hippocampus in a low-grade inflammation model. Peptides 2020; 123:170175. [PMID: 31639435 DOI: 10.1016/j.peptides.2019.170175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/05/2023]
Abstract
The inflammatory process plays a critical role in the development of neurodegenerative diseases. Insulin is used in preclinical and clinical studies of neurological disorders. Its intranasal (IN) administration directly in the brain allows for its peripheral metabolic effects to be avoided. Swiss male mice were injected with lipopolysaccharide (LPS) (0.1 mg/kg) to induce low-grade inflammation. IN insulin treatment was initiated 4 h later at a dose of 1.7 IU once daily for 5 days. LPS induced cognitive deficits, which the IN insulin treatment reversed. LPS significantly decreased, whereas IN insulin significantly increased the levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor-β in the cortex. In the hippocampus, IN insulin significantly decreased the BDNF level. LPS significantly increased the interleukin (IL)-6 levels in the cortex, while IN Insulin significantly decreased its levels in the hippocampus. The tumor necrosis factor-α levels were significantly decreased by IN insulin both in the cortex and hippocampus. Moreover, IN insulin significantly increased the IL-10 levels in the cortex. The levels of oxidative and nitrosative stress were significantly higher in the LPS-treated mice; however, IN insulin had a modulatory effect on both. LPS significantly increased the antioxidant enzyme activity both in the cortex and hippocampus, whereas IN insulin significantly increased the activity of both superoxide dismutase and catalase in the hippocampus and that of catalase in the cortex. The hydrogen peroxide levels revealed that LPS significantly affected the electron transport chain. Therefore, IN insulin could be useful in the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Kellen Ugioni Simon
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), 88806-00 Criciúma, SC, Brazil
| | - Elias Wiggers Neto
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), 88806-00 Criciúma, SC, Brazil
| | - Natalia Dos Santos Tramontin
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), 88806-00 Criciúma, SC, Brazil
| | - Paula Bortoluzzi Canteiro
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), 88806-00 Criciúma, SC, Brazil
| | - Barbara da Costa Pereira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), 88806-00 Criciúma, SC, Brazil
| | - Rubya Pereira Zaccaron
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), 88806-00 Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), 88806-00 Criciúma, SC, Brazil
| | - Alexandre Pastoris Muller
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), 88806-00 Criciúma, SC, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|