1
|
Deepali D, Tejoprakash N, Sudhakara Reddy M. Diversity of Bacterial Communities in Seleniferous Soils and Their Impact on Plant Growth and Selenium Toxicity. Curr Microbiol 2025; 82:285. [PMID: 40335750 DOI: 10.1007/s00284-025-04245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 04/15/2025] [Indexed: 05/09/2025]
Abstract
The present study aimed to investigate the diversity of bacterial communities in seleniferous soils using Illumina Mi-Seq Next-Generation Sequencing. This study also compared seleniferous soils (SE) with non-seleniferous (NS) soils to evaluate Selenium (Se) impact on microbial communities and soil properties. Metagenomic analysis identified Proteobacteria as the predominant phylum in both environments, with SE soils exhibiting a higher dominance (48%) than NS soils (31%). The most dominant operational taxonomic unit (OTU) across both soil types belonged to the genus Bacillus. Se altered microbial community composition, increasing the abundance of the Bacillaceae family (30%) and Pseudomonadaceae family (25%) compared to NS soil. Bacillus was the dominant genus in the SE environment indicating its tolerance to selenium. Diversity indices indicated that control soils had higher species richness, while SE soils exhibited a more stressed microbial structure. A consortium of bacterial isolates (Proteus terrae Se3, Halopseudomonas formosensis Se5, and Corynebacterium glutamicum Se38) was inoculated in maize plants cultivated in natural seleniferous soils. Plants inoculated with bacterial consortium grew more healthy and had greater biomass in their roots, shoots, and seeds. Bacterial inoculation results in lesser selenium accumulation in the roots, shoots and seeds of maize plants compared to non-inoculated plants. These results suggest that bacterial species from seleniferous soils may be employed as biofertilizers to enhance plant growth and help plants tolerate Se toxicity in seleniferous soils.
Collapse
Affiliation(s)
- Deepali Deepali
- Department of Energy and Environment, Thapar Institute of Engineering & Technology, Patiala, Punjab, 147004, India
| | - N Tejoprakash
- Department of Energy and Environment, Thapar Institute of Engineering & Technology, Patiala, Punjab, 147004, India
| | - M Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
2
|
Kaur T, Reddy MS. Diversity of arbuscular mycorrhizal fungi in seleniferous soils and their role in plant growth promotion. 3 Biotech 2023; 13:369. [PMID: 37849768 PMCID: PMC10577119 DOI: 10.1007/s13205-023-03793-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
The present study aimed to investigate the molecular diversity of arbuscular mycorrhizal fungi (AMF) in natural seleniferous soils and their role in protecting plants from Se toxicity. The genomic DNA extracted from maize roots grown in seleniferous and non-seleniferous regions was amplified using AMF-specific primers by nested PCR. The 1.5 kb amplicon spanning pSSU-ITS-pLSU of 18S rRNA of AMF was deciphered using the Illumina Miseq Next Generation Sequencing (NGS) technique. A total of 17 AMF species from the seleniferous region and 18 AMF species from the non-seleniferous region were identified. The number of reads of Glomus irregularis, G. custos, and G. intraradices was higher in seleniferous soil than in non-seleniferous soil, indicating their tolerance to Se. A consortium of Se-tolerant AMF inoculum was prepared and inoculated to maize plants, grown in natural seleniferous soils. AMF-inoculated plants had healthy growth with higher root, shoot, and grain biomass than non-AMF-inoculated plants. AMF inoculation leads to higher Se accumulation in roots but lesser Se accumulation in shoots and seeds of inoculated maize plants as compared to control plants. Present study results suggest that AMF species from seleniferous soils have the potential to be used as biofertilizers to improve plant growth and tolerate Se toxicity in seleniferous soils.
Collapse
Affiliation(s)
- Tanveer Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| | - M. Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| |
Collapse
|
3
|
Bawiec P, Sawicki J, Łasińska-Pracuta P, Czop M, Sowa I, Iłowiecka K, Koch W. In Vitro Evaluation of Bioavailability of Se from Daily Food Rations and Dietary Supplements. Nutrients 2023; 15:nu15061511. [PMID: 36986241 PMCID: PMC10058741 DOI: 10.3390/nu15061511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Bioavailability refers to a fraction of a substance that is potentially absorbed from the gastrointestinal tract and enters the systemic circulation (blood). This term is related to various substances, including minerals, that are present in a complex matrix of food which is consumed every day as natural products and pharmaceutical preparations, e.g., dietary supplements. The purpose of the study was to assess the bioavailability of Se from selected dietary supplements, with the simultaneous assessment of the effect the diet type (standard, basic and high-residue diets) has on relative bioavailability. The research included a two-stage in vitro model of digestion using cellulose dialysis tubes of the food rations with the addition of dietary supplements. Se was determined using the ICP-OES method. The bioavailability of Se from dietary supplements, in the presence of food matrix, was determined to be within the range of 19.31-66.10%. Sodium selenate was characterized by the highest value of this parameter, followed by organic forms and sodium selenite. The basic diet, characterized by moderate protein and high carbohydrate and fiber contents, positively influenced the bioavailability of Se. The bioavailability of Se was also influenced by the pharmaceutical form of the product-the highest was for tablets, followed by capsules and coated tablets.
Collapse
Affiliation(s)
- Piotr Bawiec
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Jan Sawicki
- Department of Analytical Chemistry, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Paulina Łasińska-Pracuta
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11 Str., 20-080 Lublin, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Katarzyna Iłowiecka
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland
| |
Collapse
|
4
|
Wang H, Xu MZ, Liang XY, Nag A, Zeng QZ, Yuan Y. Fabrication of food grade zein-dispersed selenium dual-nanoparticles with controllable size, cell friendliness and oral bioavailability. Food Chem 2023; 398:133878. [DOI: 10.1016/j.foodchem.2022.133878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/17/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
|
5
|
Lv Q, Liang X, Nong K, Gong Z, Qin T, Qin X, Wang D, Zhu Y. Advances in Research on the Toxicological Effects of Selenium. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:715-726. [PMID: 33420800 DOI: 10.1007/s00128-020-03094-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/25/2020] [Indexed: 05/28/2023]
Abstract
Selenium is a trace element necessary for the growth of organisms. Moreover, selenium supplementation can improve the immunity and fertility of the body, as well as its ability to resist oxidation, tumors, heavy metals, and pathogenic microorganisms. However, owing to the duality of selenium, excessive selenium supplementation can cause certain toxic effects on the growth and development of the body and may even result in death in severe cases. At present, increasing attention is being paid to the development and utilization of selenium as a micronutrient, but its potential toxicity tends to be neglected. This study systematically reviews recent research on the toxicological effects of selenium, aiming to provide theoretical references for selenium toxicology-related research and theoretical support for the development of selenium-containing drugs, selenium-enriched dietary supplements, and selenium-enriched foods.
Collapse
Affiliation(s)
- Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, Guangxi, China
| | - Xiaomei Liang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Keyi Nong
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Zifeng Gong
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Ting Qin
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Xinyun Qin
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Daobo Wang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China.
| | - Yulin Zhu
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China.
| |
Collapse
|
6
|
Selenite Inhibits Notch Signaling in Cells and Mice. Int J Mol Sci 2021; 22:ijms22052518. [PMID: 33802299 PMCID: PMC7959125 DOI: 10.3390/ijms22052518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 02/05/2023] Open
Abstract
Selenium is an essential micronutrient with a wide range of biological effects in mammals. The inorganic form of selenium, selenite, is supplemented to relieve individuals with selenium deficiency and to alleviate associated symptoms. Additionally, physiological and supranutritional selenite have shown selectively higher affinity and toxicity towards cancer cells, highlighting their potential to serve as chemotherapeutic agents or adjuvants. At varying doses, selenite extensively regulates cellular signaling and modulates many cellular processes. In this study, we report the identification of Delta–Notch signaling as a previously uncharacterized selenite inhibited target. Our transcriptomic results in selenite treated primary mouse hepatocytes revealed that the transcription of Notch1, Notch2, Hes1, Maml1, Furin and c-Myc were all decreased following selenite treatment. We further showed that selenite can inhibit Notch1 expression in cultured MCF7 breast adenocarcinoma cells and HEPG2 liver carcinoma cells. In mice acutely treated with 2.5 mg/kg selenite via intraperitoneal injection, we found that Notch1 expression was drastically lowered in liver and kidney tissues by 90% and 70%, respectively. Combined, these results support selenite as a novel inhibitor of Notch signaling, and a plausible mechanism of inhibition has been proposed. This discovery highlights the potential value of selenite applied in a pathological context where Notch is a key drug target in diseases such as cancer, fibrosis, and neurodegenerative disorders.
Collapse
|
7
|
Adeyi OE, Babayemi DO, Ajayi BO, Adeyi AO, Ayodeji AH, Oguntayo AO, Adeyemi AT, Olaiyapo OE, Adeoye ST. Co-administration of sodium selenite and sodium arsenite exacerbates hepatic, renal, pulmonary and splenic inflammation in rats. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
8
|
Abstract
Primary hepatocytes are a vital tool in various biomedical research disciplines, serving as an ex vivo model for liver physiology. Obtaining high yields of viable primary mouse hepatocytes is technically challenging, limiting their use. Here, we present an improved protocol based on the classic two-step collagenase perfusion technique. The liver is washed by perfusion, hepatocytes are dissociated by collagenase, separated from other cells, and cultured. This protocol was optimized to significantly reduce procedure duration and improve hepatocyte yield and viability.
Collapse
Affiliation(s)
- Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Gao X, Li X, Mu J, Ho CT, Su J, Zhang Y, Lin X, Chen Z, Li B, Xie Y. Preparation, physicochemical characterization, and anti-proliferation of selenium nanoparticles stabilized by Polyporus umbellatus polysaccharide. Int J Biol Macromol 2020; 152:605-615. [PMID: 32087224 DOI: 10.1016/j.ijbiomac.2020.02.199] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 01/07/2023]
Abstract
Selenium nanoparticles (SeNPs), a novel selenium form, have attracted worldwide attention due to their bioactivities and low toxicity. This study aimed to assess the physicochemical characterization, storage stability, and anti-proliferative activities of SeNPs stabilized by Polyporus umbellatus polysaccharide (PUP). Results showed that orange-red, zero-valent, amorphous and spherical SeNPs with mean diameter of approximately 82.5 nm were successfully prepared by using PUP as a capping agent. PUP-SeNPs solution stored at 4 °C in dark condition could be stable for at least 84 days. Moreover, PUP-SeNPs treatment inhibited four cancer cell lines proliferation in a dose-dependent manner, while no significant cytotoxicity towards three normal cell lines was observed. Comparing with the other cancer cell lines (HepG2, Hela, and HT29), PUP-SeNPs displayed the most sensitive towards MDA-MB-231 cells with an IC50 value of 6.27 μM. Furthermore, PUP-SeNPs significantly up-regulated Bax/Bcl-2 ratio, promoted cytochrome c release, increased caspase-9, -8 and -3 activities, and poly (ADP-ribose) polymerase cleavage, suggesting that mitochondria-mediated and death receptor-mediated apoptotic pathways were activated in MDA-MB-231 cells. Besides, PUP-SeNPs possessed better anti-proliferative activity than selenomethionine as well as lower cytotoxicity than sodium selenite. Taken together, PUP-SeNPs have strong potential as a dietary supplement for application in cancer chemoprevention, especially breast cancer.
Collapse
Affiliation(s)
- Xiong Gao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China
| | - Xiaofei Li
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Jingjing Mu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Jiyan Su
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuting Zhang
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Bin Li
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China.
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China.
| |
Collapse
|
10
|
Selenium Attenuates Chronic Heat Stress-Induced Apoptosis via the Inhibition of Endoplasmic Reticulum Stress in Mouse Granulosa Cells. Molecules 2020; 25:molecules25030557. [PMID: 32012916 PMCID: PMC7037519 DOI: 10.3390/molecules25030557] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Heat stress induces apoptosis in various cells. Selenium, an essential micronutrient, has beneficial effects in maintaining the cellular physiological functions. However, its potential protective action against chronic heat stress (CHS)-induced apoptosis in granulosa cells and the related molecular mechanisms are not fully elucidated. In this study, we investigated the roles of selenium in CHS-induced apoptosis in mouse granulosa cells and explored its underlying mechanism. The heat treatment for 6–48 h induced apoptosis, potentiated caspase 3 activity, increased the expression levels of apoptosis-related gene BAX and ER stress markers, glucose-regulated protein 78 (GRP78), and CCAAT/enhancer binding protein homologous protein (CHOP) in mouse granulosa cells. The treatment with ER stress inhibitor 4-PBA significantly attenuated the adverse effects caused by CHS. Selenium treatment significantly attenuated the CHS- or thapsigargin (Tg, an ER stress activator)-induced apoptosis, potentiation of caspase 3 activity, and the increased protein expression levels of BAX, GRP78, and CHOP. Additionally, treatment of the cells with 5 ng/mL selenium significantly ameliorated the levels of estradiol, which were decreased in response to heat exposure. Consistently, administering selenium supplement alleviated the hyperthermia-caused reduction in the serum estradiol levels in vivo. Together, our findings indicate that selenium has protective effects on CHS-induced apoptosis via inhibition of the ER stress pathway. The current study provides new insights in understanding the role of selenium during the process of heat-induced cell apoptosis.
Collapse
|
11
|
Alburaki M, Smith KD, Adamczyk J, Karim S. Interplay between Selenium, selenoprotein genes, and oxidative stress in honey bee Apis mellifera L. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103891. [PMID: 31176625 PMCID: PMC7298915 DOI: 10.1016/j.jinsphys.2019.103891] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/29/2019] [Accepted: 06/01/2019] [Indexed: 05/03/2023]
Abstract
The honey bee, Apis mellifera L., is a major pollinator insect that lacks novel "selenoprotein genes", rendering it susceptible to elevated levels of Selenium (Se) occurring naturally in the environment. We investigated the effects of two inorganic forms of Se on biological traits, oxidative stress, and gene regulation. Using bioassay arenas in the laboratory, one-day old sister bees were fed ad libitum 4 different concentrations of selenate and selenite, two common inorganic forms of Se. The transcription levels of 4 honey bee antioxidant genes were evaluated, and three putative selenoprotein-like genes (SELENOT, SELENOK, SELENOF) were characterized as well as Sbp2, a Selenium binding protein required for the translation of selenoproteins mRNA. Oxidative stress and Se residues were subsequently quantified in honey bee bodies throughout the experiment. Se induced higher oxidative stress in treated honey bees leading to a significantly elevated protein carbonyl content, particularly at the highest studied concentrations. Early upregulations of Spb2 and MsrA were identified at day 2 of the treatment while all genes except SELENOT were upregulated substantially at day 8 to alleviate the Se-induced oxidative stress levels. We determined that doses between 60 and 600 mg.Se.L-1 were acutely toxic to bees (<48 h) while doses between 0.6 and 6 mg.Se.L-1 led to much lower mortality (7-16)%. Furthermore, when fed ad libitum, Se residue data indicated that bees tolerated accumulation up to 0.12 µg Se bee-1 for at least 8 days with a Se LC50 of ∼6 mg/L, a field realistic concentration found in pollen of certain plants in a high Se soil environment.
Collapse
Affiliation(s)
- Mohamed Alburaki
- The University of Southern Mississippi, Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, Hattiesburg, MS 39406, USA.
| | - Kristina D Smith
- The University of Southern Mississippi, Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, Hattiesburg, MS 39406, USA.
| | - John Adamczyk
- USDA-ARS Thad Cochran Horticultural Laboratory, Poplarville, MS 39470, USA.
| | - Shahid Karim
- The University of Southern Mississippi, Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, Hattiesburg, MS 39406, USA.
| |
Collapse
|
12
|
Yoshida S, Iwataka M, Fuchigami T, Haratake M, Nakayama M. In vitro assessment of bioavailability of selenium from a processed Japanese anchovy, Niboshi. Food Chem 2018; 269:436-441. [PMID: 30100457 DOI: 10.1016/j.foodchem.2018.07.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/24/2018] [Accepted: 07/03/2018] [Indexed: 11/29/2022]
Abstract
Niboshi is a commonly used foodstuff that is processed from Japanese anchovy (Engraulis japonicus) in Japanese cuisine. It was previously demonstrated that Niboshi and its water extract contained highly bioavailable selenium for selenium deficient mice. In this study, we assessed the selenium bioavailability from the extract of the Niboshi, using cultured cells. The activity of selenium-dependent glutathione peroxidase (GPx) of rat dorsal ganglion cells and human cervical carcinoma cells incubated with selenium from the Niboshi extract was over 2 times of that of the extract-free control cells and comparable to that of cells incubated with selenious acid of the same selenium concentration. These results suggest that selenium from the Niboshi extract was utilized for synthesis of the selenoprotein. Such in vitro selenium bioavailability was consistent with our previous results of in vivo assessment in mice.
Collapse
Affiliation(s)
- Sakura Yoshida
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Miho Iwataka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Takeshi Fuchigami
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mamoru Haratake
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1, Ikeda, Kumamoto 860-0082, Japan
| | - Morio Nakayama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
13
|
Fernandes J, Hu X, Ryan Smith M, Go YM, Jones DP. Selenium at the redox interface of the genome, metabolome and exposome. Free Radic Biol Med 2018; 127:215-227. [PMID: 29883789 PMCID: PMC6168380 DOI: 10.1016/j.freeradbiomed.2018.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/19/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is a redox-active environmental mineral that is converted to only a small number of metabolites and required for a relatively small number of mammalian enzymes. Despite this, dietary and environmental Se has extensive impact on every layer of omics space. This highlights a need for global network response structures to provide reference for targeted, hypothesis-driven Se research. In this review, we survey the Se research literature from the perspective of the responsive physical and chemical barrier between an organism (functional genome) and its environment (exposome), which we have previously termed the redox interface. Recent advances in metabolomics allow molecular phenotyping of the integrated genome-metabolome-exposome structure. Use of metabolomics with transcriptomics to map functional network responses to supplemental Se in mice revealed complex network responses linked to dyslipidemia and weight gain. Central metabolic hubs in the network structure in liver were not directly linked to transcripts for selenoproteins but were, instead, linked to transcripts for glucose transport and fatty acid β-oxidation. The experimental results confirm the survey of research literature in showing that Se interacts with the functional genome through a complex network response structure. The results imply that systematic application of data-driven integrated omics methods to models with controlled Se exposure could disentangle health benefits and risks from Se exposures and also serve more broadly as an experimental paradigm for exposome research.
Collapse
Affiliation(s)
- Jolyn Fernandes
- Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Xin Hu
- Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - M Ryan Smith
- Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Young-Mi Go
- Department of Medicine, Emory University, Atlanta, GA 30322, United States.
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
14
|
Zhang J, Teng Z, Yuan Y, Zeng QZ, Lou Z, Lee SH, Wang Q. Development, physicochemical characterization and cytotoxicity of selenium nanoparticles stabilized by beta-lactoglobulin. Int J Biol Macromol 2018; 107:1406-1413. [DOI: 10.1016/j.ijbiomac.2017.09.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
|
15
|
Lazard M, Dauplais M, Blanquet S, Plateau P. Recent advances in the mechanism of selenoamino acids toxicity in eukaryotic cells. Biomol Concepts 2018; 8:93-104. [PMID: 28574376 DOI: 10.1515/bmc-2017-0007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022] Open
Abstract
Selenium is an essential trace element due to its incorporation into selenoproteins with important biological functions. However, at high doses it is toxic. Selenium toxicity is generally attributed to the induction of oxidative stress. However, it has become apparent that the mode of action of seleno-compounds varies, depending on its chemical form and speciation. Recent studies in various eukaryotic systems, in particular the model organism Saccharomyces cerevisiae, provide new insights on the cytotoxic mechanisms of selenomethionine and selenocysteine. This review first summarizes current knowledge on reactive oxygen species (ROS)-induced genotoxicity of inorganic selenium species. Then, we discuss recent advances on our understanding of the molecular mechanisms of selenocysteine and selenomethionine cytotoxicity. We present evidences indicating that both oxidative stress and ROS-independent mechanisms contribute to selenoamino acids cytotoxicity. These latter mechanisms include disruption of protein homeostasis by selenocysteine misincorporation in proteins and/or reaction of selenols with protein thiols.
Collapse
|
16
|
Vinceti M, Chiari A, Eichmüller M, Rothman KJ, Filippini T, Malagoli C, Weuve J, Tondelli M, Zamboni G, Nichelli PF, Michalke B. A selenium species in cerebrospinal fluid predicts conversion to Alzheimer's dementia in persons with mild cognitive impairment. ALZHEIMERS RESEARCH & THERAPY 2017; 9:100. [PMID: 29258624 PMCID: PMC5735937 DOI: 10.1186/s13195-017-0323-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022]
Abstract
Background Little is known about factors influencing progression from mild cognitive impairment to Alzheimer’s dementia. A potential role of environmental chemicals and specifically of selenium, a trace element of nutritional and toxicological relevance, has been suggested. Epidemiologic studies of selenium are lacking, however, with the exception of a recent randomized trial based on an organic selenium form. Methods We determined concentrations of selenium species in cerebrospinal fluid sampled at diagnosis in 56 participants with mild cognitive impairment of nonvascular origin. We then investigated the relation of these concentrations to subsequent conversion from mild cognitive impairment to Alzheimer’s dementia. Results Twenty-one out of the 56 subjects developed Alzheimer’s dementia during a median follow-up of 42 months; four subjects developed frontotemporal dementia and two patients Lewy body dementia. In a Cox proportional hazards model adjusting for age, sex, duration of sample storage, and education, an inorganic selenium form, selenate, showed a strong association with Alzheimer’s dementia risk, with an adjusted hazard ratio of 3.1 (95% confidence interval 1.0–9.5) in subjects having a cerebrospinal fluid content above the median level, compared with those with lower concentration. The hazard ratio of Alzheimer’s dementia showed little departure from unity for all other inorganic and organic selenium species. These associations were similar in analyses that measured exposure on a continuous scale, and also after excluding individuals who converted to Alzheimer’s dementia at the beginning of the follow-up. Conclusions These results indicate that higher amounts of a potentially toxic inorganic selenium form in cerebrospinal fluid may predict conversion from mild cognitive impairment to Alzheimer’s dementia. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0323-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN-Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy. .,Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy. .,Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, 02118, USA.
| | - Annalisa Chiari
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy.,Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, via del Pozzo 71, Modena, Italy
| | - Marcel Eichmüller
- Helmholtz Zentrum München GmbH-German Research Center for Environmental Health GmbH, Research Unit Analytical BioGeoChemistry, 1 Ingolstaedter Landstrasse, Neuherberg, 85764, Germany
| | - Kenneth J Rothman
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, 02118, USA.,Research Triangle Institute, Research Triangle Park, 3040 E Cornwallis Road, Durham, NC, 27709, USA
| | - Tommaso Filippini
- CREAGEN-Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy
| | - Carlotta Malagoli
- CREAGEN-Environmental, Genetic, and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA, 02118, USA
| | - Manuela Tondelli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy.,Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, via del Pozzo 71, Modena, Italy
| | - Giovanna Zamboni
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy
| | - Paolo F Nichelli
- Center for Neurosciences and Neurotechnology, Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy.,Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, via del Pozzo 71, Modena, Italy
| | - Bernhard Michalke
- Helmholtz Zentrum München GmbH-German Research Center for Environmental Health GmbH, Research Unit Analytical BioGeoChemistry, 1 Ingolstaedter Landstrasse, Neuherberg, 85764, Germany
| |
Collapse
|
17
|
Sharma VK, McDonald TJ, Sohn M, Anquandah GAK, Pettine M, Zboril R. Assessment of toxicity of selenium and cadmium selenium quantum dots: A review. CHEMOSPHERE 2017; 188:403-413. [PMID: 28892773 DOI: 10.1016/j.chemosphere.2017.08.130] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/27/2017] [Accepted: 08/24/2017] [Indexed: 05/10/2023]
Abstract
This paper reviews the current understanding of the toxicity of selenium (Se) to terrestrial mammalian and aquatic organisms. Adverse biological effects occur in the case of Se deficiencies, associated with this element having essential biological functions and a narrow window between essentiality and toxicity. Several inorganic species of Se (-2, 0, +4, and +6) and organic species (monomethylated and dimethylated) have been reported in aquatic systems. The toxicity of Se in any given sample depends not only on its speciation and concentration, but also on the concomitant presence of other compounds that may have synergistic or antagonistic effects, affecting the target organism as well, usually spanning 2 or 3 orders of magnitude for inorganic Se species. In aquatic ecosystems, indirect toxic effects, linked to the trophic transfer of excess Se, are usually of much more concern than direct Se toxicity. Studies on the toxicity of selenium nanoparticles indicate the greater toxicity of chemically generated selenium nanoparticles relative to selenium oxyanions for fish and fish embryos while oxyanions of selenium have been found to be more highly toxic to rats as compared to nano-Se. Studies on polymer coated Cd/Se quantum dots suggest significant differences in toxicity of weathered vs. non-weathered QD's as well as a significant role for cadmium with respect to toxicity.
Collapse
Affiliation(s)
- Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX, 77843, USA; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 771 46, Olomouc, Czech Republic.
| | - Thomas J McDonald
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX, 77843, USA
| | - Mary Sohn
- Department of Chemistry, Florida Institute of Technology, 150 West University, Boulevard, Melbourne, FL, 32901, USA
| | - George A K Anquandah
- Department of Chemistry and Biochemistry, St Mary's University, 1 Camino Santa Maria, San Antonio, TX, 78228, USA
| | - Maurizio Pettine
- Istituto di Ricerca sulle Acque (IRSA)/Water Research Institute (IRSA), Consiglio Nazionale delle Ricerche (CNR)/National Research Council, Via Salaria km 29,300 C.P. 10, 00015, Monterotondo, RM, Italy
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 771 46, Olomouc, Czech Republic
| |
Collapse
|
18
|
Garousi F, Veres S, Kovács B. Comparison of Selenium Toxicity in Sunflower and Maize Seedlings Grown in Hydroponic Cultures. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:709-713. [PMID: 27613423 DOI: 10.1007/s00128-016-1912-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 08/27/2016] [Indexed: 05/05/2023]
Abstract
Several studies have demonstrated that selenium (Se) at low concentrations is beneficial, whereas high Se concentrations can induce toxicity. Controlling Se uptake, metabolism, translocation and accumulation in plants is important to decrease potential health risks and helping to select proper biofortification methods to improve the nutritional content of plant-based foods. The uptake and distribution of Se, changes in Se content, and effects of various concentrations of Se in two forms (sodium selenite and sodium selenate) on sunflower and maize plants were measured in nutrient solution experiments. Results revealed the Se content in shoots and roots of both sunflower and maize plants significantly increased as the Se level increased. In this study, the highest exposure concentrations (30 and 90 mg/L, respectively) caused toxicity in both sunflower and maize. While both Se forms damaged and inhibited plant growth, each behaved differently, as toxicity due to selenite was observed more than in the selenate treatments. Sunflower demonstrated a high Se accumulation capacity, with higher translocation of selenate from roots to shoots compared with selenite. Since in seleniferous soils, a high change in plants' capability exists to uptake Se from these soils and also most of the cultivated crop plants have a bit tolerance to high Se levels, distinction of plants with different Se tolerance is important. This study has tried to discuss about it.
Collapse
Affiliation(s)
- Farzaneh Garousi
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi str. 138, Debrecen, 4032, Hungary.
| | - Szilvia Veres
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Crop Sciences, Department of Agricultural Botany, Crop Physiology and Biotechnology, University of Debrecen, Böszörményi str. 138, 4032, Debrecen, Hungary
| | - Béla Kovács
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi str. 138, Debrecen, 4032, Hungary
| |
Collapse
|
19
|
Sun HJ, Rathinasabapathi B, Wu B, Luo J, Pu LP, Ma LQ. Arsenic and selenium toxicity and their interactive effects in humans. ENVIRONMENT INTERNATIONAL 2014; 69:148-58. [PMID: 24853282 DOI: 10.1016/j.envint.2014.04.019] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 05/15/2023]
Abstract
Arsenic (As) and selenium (Se) are unusual metalloids as they both induce and cure cancer. They both cause carcinogenesis, pathology, cytotoxicity, and genotoxicity in humans, with reactive oxygen species playing an important role. While As induces adverse effects by decreasing DNA methylation and affecting protein 53 expression, Se induces adverse effects by modifying thioredoxin reductase. However, they can react with glutathione and S-adenosylmethionine by forming an As-Se complex, which can be secreted extracellularly. We hypothesize that there are two types of interactions between As and Se. At low concentration, Se can decrease As toxicity via excretion of As-Se compound [(GS3)2AsSe](-), but at high concentration, excessive Se can enhance As toxicity by reacting with S-adenosylmethionine and glutathione, and modifying the structure and activity of arsenite methyltransferase. This review is to summarize their toxicity mechanisms and the interaction between As and Se toxicity, and to provide suggestions for future investigations.
Collapse
Affiliation(s)
- Hong-Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Li-Ping Pu
- Suzhou Health College, Suzhou, Jiangsu 215000, China
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
20
|
Li X, Yin D, Li J, Wang R. Protective effects of selenium on mercury induced immunotoxic effects in mice by way of concurrent drinking water exposure. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:104-14. [PMID: 24519443 DOI: 10.1007/s00244-014-0001-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/20/2014] [Indexed: 05/24/2023]
Abstract
Selenium (Se) has been recognized as one key to understanding mercury (Hg) exposure risks. To explore the effects of Se on Hg-induced immunotoxicity, female Balb/c mice were exposed to HgCl2- or MeHgCl-contaminated drinking water (0.001, 0.01, and 0.1 mM as Hg) with coexisting Na2SeO3 at different Se/Hg molar ratios (0:1, 1/3:1, 1:1 and 3:1). The potential immunotoxicity induced by Na2SeO3 exposure alone (by way of drinking water) was also determined within a wide range of concentrations. After 14 days' exposure, the effects of Hg or Se on the immune system of Balb/c mice were investigated by determining the proliferation of T and B lymphocytes and the activity of natural killer cells. Hg exposure alone induced a dose-dependent suppression effect, whereas Se provided promotion effects at low exposure level (<0.01 mM) and inhibition effects at high exposure level (>0.03 mM). Under Hg and Se coexposure condition, the effects on immunotoxicity depended on the Hg species, Se/Hg ratio, and exposure concentration. At low Hg concentration (0.001 mM), greater Se ingestion exhibited stronger protective effects on Hg-induced suppression effect mainly by way of decreasing Hg concentrations in target organs. At greater Hg concentration (0.01 and 0.1 mM), immunotoxicity induced by Se (>0.03 mM) became evident, and the protective effects appeared more significant at an Se/Hg molar ratio of 1:1. The complex antagonistic effects between Se and Hg suggested that both Se/Hg molar ratio and concentration should be considered when evaluating the potential health risk of Hg-contaminated biota.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | | | | | | |
Collapse
|
21
|
Wang X, Sun K, Tan Y, Wu S, Zhang J. Efficacy and safety of selenium nanoparticles administered intraperitoneally for the prevention of growth of cancer cells in the peritoneal cavity. Free Radic Biol Med 2014; 72:1-10. [PMID: 24727439 DOI: 10.1016/j.freeradbiomed.2014.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/01/2022]
Abstract
Peritoneal implantation of cancer cells, particularly postoperative seeding metastasis, frequently occurs in patients with primary tumors in the stomach, colon, liver, and ovary. Peritoneal carcinomatosis is associated with poor prognosis. In this work, we evaluated the prophylactic effect of intraperitoneal administration of selenium (Se), an essential trace element and a putative chemopreventive agent, on peritoneal implantation of cancer cells. Elemental Se nanoparticles were injected into the abdominal cavity of mice, into which highly malignant H22 hepatocarcinoma cells had previously been inoculated. Se concentrations in the cancer cells and tissues, as well as the efficacy of proliferation inhibition and safety, were evaluated. Se was mainly concentrated in cancer cells compared to Se retention in normal tissues, showing at least an order of magnitude difference between the drug target cells (the H22 cells) and the well-recognized toxicity target of Se (the liver). Such a favorable selective distribution resulted in strong proliferation suppression without perceived host toxicity. The mechanism of action of the Se nanoparticle-triggered cytotoxicity was associated with Se-mediated production of reactive oxygen species, which impaired the glutathione and thioredoxin systems. Our results suggest that intraperitoneal administration of Se is a safe and effective means of preventing growth of cancer cells in the peritoneal cavity for the above-mentioned high-risk populations.
Collapse
Affiliation(s)
- Xin Wang
- School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China
| | - Kang Sun
- School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China
| | - Yanping Tan
- School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China
| | - Shanshan Wu
- School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China
| | - Jinsong Zhang
- School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui, People's Republic of China.
| |
Collapse
|
22
|
Choi YJ, Kim NN, Shin HS, Park MS, Kil GS, Choi CY. Effects of waterborne selenium exposure on the antioxidant and immunological activity in the goldfish, Carassius auratus. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-013-0045-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Vinceti M, Solovyev N, Mandrioli J, Crespi CM, Bonvicini F, Arcolin E, Georgoulopoulou E, Michalke B. Cerebrospinal fluid of newly diagnosed amyotrophic lateral sclerosis patients exhibits abnormal levels of selenium species including elevated selenite. Neurotoxicology 2013; 38:25-32. [PMID: 23732511 DOI: 10.1016/j.neuro.2013.05.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/17/2013] [Accepted: 05/23/2013] [Indexed: 12/11/2022]
Abstract
Exposure to selenium, and particularly to its inorganic forms, has been hypothesized as a risk factor for amyotrophic lateral sclerosis (ALS), a fast progressing motor neuron disease with poorly understood etiology. However, no information is known about levels of inorganic and some organic selenium species in the central nervous system of ALS patients, and recent observations suggest that peripheral biomarkers of exposure are unable to predict these levels for several Se species including the inorganic forms. Using a hospital-referred case-control series and advanced selenium speciation methods, we compared the chemical species of selenium in cerebrospinal fluid from 38 ALS patients to those of 38 reference neurological patients matched on age and gender. We found that higher concentrations of inorganic selenium in the form of selenite and of human serum albumin-bound selenium were associated with increased ALS risk (relative risks 3.9 (95% confidence interval 1.2-11.0) and 1.7 (1.0-2.9) for 0.1μg/L increase). Conversely, lower concentrations of selenoprotein P-bound selenium were associated with increased risk (relative risk 0.2 for 1μg/L increase, 95% confidence interval 0.04-0.8). The associations were stronger among cases age 50 years or older, who are postulated to have lower rates of genetic disease origin. These results suggest that excess selenite and human serum albumin bound-selenium and low levels of selenoprotein P-bound selenium in the central nervous system, which may be related, may play a role in ALS etiology.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Selvaraj V, Tomblin J, Yeager Armistead M, Murray E. Selenium (sodium selenite) causes cytotoxicity and apoptotic mediated cell death in PLHC-1 fish cell line through DNA and mitochondrial membrane potential damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 87:80-88. [PMID: 23158585 DOI: 10.1016/j.ecoenv.2012.09.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 06/01/2023]
Abstract
Elevated concentration of selenium poses a toxic threat to organisms inhabiting aquatic ecosystems influenced by excessive inputs from anthropogenic sources. Selenium is also an essential micronutrient in living things, particularly in fish, and provides antioxidant properties to tissues. Whole fish and hepatocytes in primary culture show selenite toxicity above threshold levels. The present study was designed to investigate the process by which selenite exposure causes cellular toxicity and apoptotic and necrotic cell death in fish hepatoma cell line PLHC-1. PLHC-1 cells were exposed to various selenite concentrations (1, 10, 50 and 100 μM) for 10, 20 and 40 h intervals. The 24h inhibitory concentration 50 (IC₅₀) of selenite in PLHC-1 cell line was found to be 237 μM. Flow cytometery data showed that selenite exposed cells promote apoptotic and necrotic mediated cell death when selenite concentrations were ≥10 μM compared to control. Selenite exposure was associated with a significant increase of caspase-3 activities suggesting the induction of apoptosis. Selenite exposure at high levels (≥10 μM) and longer exposure times (≥20 h) induces mitochondrial membrane potential damage (ΔΨ(m)), DNA damage and elevated production of ROS which could be associated with cell death.
Collapse
Affiliation(s)
- Vellaisamy Selvaraj
- Department of Integrated Science and Technology, Marshall University, Huntington, WV 25755, USA
| | | | | | | |
Collapse
|
25
|
Vinceti M, Crespi CM, Malagoli C, Del Giovane C, Krogh V. Friend or foe? The current epidemiologic evidence on selenium and human cancer risk. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2013; 31:305-41. [PMID: 24171437 PMCID: PMC3827666 DOI: 10.1080/10590501.2013.844757] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Scientific opinion on the relationship between selenium and the risk of cancer has undergone radical change over the years, with selenium first viewed as a possible carcinogen in the 1940s then as a possible cancer preventive agent in the 1960s-2000s. More recently, randomized controlled trials have found no effect on cancer risk but suggest possible low-dose dermatologic and endocrine toxicity, and animal studies indicate both carcinogenic and cancer-preventive effects. A growing body of evidence from human and laboratory studies indicates dramatically different biological effects of the various inorganic and organic chemical forms of selenium, which may explain apparent inconsistencies across studies. These chemical form-specific effects also have important implications for exposure and health risk assessment. Overall, available epidemiologic evidence suggests no cancer preventive effect of increased selenium intake in healthy individuals and possible increased risk of other diseases and disorders.
Collapse
Affiliation(s)
- Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia, Modena, Italy
- Department of Diagnostic, Clinical Medicine and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Catherine M. Crespi
- Department of Biostatistics, University of California Los Angeles Fielding School of Public Health, Los Angeles, California, USA
| | - Carlotta Malagoli
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia, Modena, Italy
- Department of Diagnostic, Clinical Medicine and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Cinzia Del Giovane
- Department of Diagnostic, Clinical Medicine and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Italian Cochrane Centre, University of Modena and Reggio Emilia, Modena, Modena, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
26
|
Wang D, Taylor EW, Wang Y, Wan X, Zhang J. Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention. Int J Nanomedicine 2012; 7:1711-21. [PMID: 22619522 PMCID: PMC3356175 DOI: 10.2147/ijn.s29341] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chemoprevention that impedes one or more steps in carcinogenesis, via long-term administration of naturally occurring or synthetic compounds, is widely considered to be a crucial strategy for cancer control. Selenium (Se) has chemopreventive effects, but its application is limited due to a low therapeutic index as shown in numerous animal experiments. In contrast to Se, which was known for its toxicity prior to the discovery of its beneficial effects, the natural compound epigallocatechin-3-gallate (EGCG) was originally considered to be nontoxic. Due to its preventive effects on many types of cancer in various animal models, EGCG has been regarded as a prime example of a promising chemopreventive agent without major toxicity concerns. However, very recently, evidence has accumulated showing that efficacious doses of EGCG used in health promotion may not be far from its toxic dose level. Therefore, both Se and EGCG need to be modified by novel pharmaceutical technologies to attain enhanced efficacy and/or reduced toxicity. Nanotechnology may be one of these technologies. In support of this hypothesis, the characteristics of polylactic acid and polyethylene glycol-encapsulated nano-EGCG and elemental Se nanoparticles dispersed by bovine serum albumin are reviewed in this article. Encapsulation of EGCG to form nano-EGCG leads to its enhanced stability in plasma and remarkably superior chemopreventive effects, with more than tenfold dose advantages in inducing apoptosis and inhibition of both angiogenesis and tumor growth. Se at nanoparticle size (“Nano-Se”), compared with Se compounds commonly used in dietary supplements, has significantly lower toxicity, without compromising its ability to upregulate selenoenzymes at nutritional levels and induce phase II enzymes at supranutritional levels.
Collapse
Affiliation(s)
- Dongxu Wang
- Key Laboratory of Tea Biochemistry and Biotechnology, School of Tea and Food Science, Anhui Agricultural University, Hefei, Anhui, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Induction of oxidative stress by selenomethionine in isolated hepatocytes of rainbow trout (Oncorhynchus mykiss). Toxicol In Vitro 2012; 26:621-9. [PMID: 22342462 DOI: 10.1016/j.tiv.2012.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 01/10/2012] [Accepted: 02/04/2012] [Indexed: 11/23/2022]
Abstract
Fish are exposed to environmental selenium predominantly in the form of dietary selenomethionine (SeMet). The present study was designed to investigate the role of oxidative stress in the toxicity of SeMet using isolated hepatocytes of rainbow trout (Oncorhynchus mykiss) as the model experimental system. Cells were exposed to an increasing range of SeMet (0-1000 μM) over 24h, and the time-dependent effects on cell viability, response of enzymatic antioxidants, thiol redox, intracellular calcium balance and caspase-mediated apoptosis were evaluated. SeMet was found to be toxic only at the highest exposure dose (1000 μM), with ∼15% decrease in cell viability. Although modest increases in the activities of antioxidant enzymes were recorded following SeMet exposure, the ratio of reduced to oxidized glutathione decreased in a dose-dependent manner, suggesting a gradual progression towards an oxidative intracellular environment. The peroxidation of membrane lipids also increased with increasing SeMet exposure dose. In addition, a rapid increase in intracellular calcium level and the activation of caspase 3/7 enzymes were recorded at the highest exposure dose, indicating that SeMet at a high exposure dose causes cell death probably via apoptosis. Overall, our study demonstrated that oxidative stress plays a key role in the cytotoxicity of SeMet in fish.
Collapse
|
28
|
Pacini N, Abete MC, Dörr AJM, Prearo M, Natali M, Elia AC. Detoxifying response in juvenile tench fed by selenium diet. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:46-52. [PMID: 22104302 DOI: 10.1016/j.etap.2011.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 10/18/2011] [Accepted: 10/23/2011] [Indexed: 05/31/2023]
Abstract
The effects of a selenium (Se) diet (1.0 mg Se kg⁻¹) were investigated on growth, accumulation and antioxidant response in juvenile Tinca tinca at three endpoints (0, 4 and 8 weeks). Growth and condition factor (K>1.5) for both control (0.25 mg Se kg⁻¹) and Se tench were not significantly affected. Se exposed fish exhibited the highest Se level in the kidney and the liver after 4 weeks. By feeding more Se the accumulation capacity of tench did not increase and a plateau, mainly for the liver, was thus reached. Se level remained almost constant in the muscle if compared to own control and for each endpoint. Superoxide dismutase activity in both tissues was not affected by Se supplementation and the higher catalase level in the kidney might support the hypothesis that the enzyme was adequate to remove the hydrogen peroxide production following Se exposure. However, supplemented diet with higher Se level could be critical for tench, as it may cause a lowering of glutathione peroxidase and glutathione reductase activities facilitating the onset of oxidative damage. The enhancement of thiol level and glutathione S-transferase activity, mainly in the liver, could be the signals of the only protection against the oxidative damage induced by Se.
Collapse
Affiliation(s)
- Nicole Pacini
- Laboratory of Ecotoxicology, Department of Cellular and Environmental Biology, University of Perugia, 06123 Perugia, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Peng X, Cui H, He Y, Cui W, Fang J, Zuo Z, Deng J, Pan K, Zhou Y, Lai W. Excess dietary sodium selenite alters apoptotic population and oxidative stress markers of spleens in broilers. Biol Trace Elem Res 2012; 145:47-51. [PMID: 21809053 DOI: 10.1007/s12011-011-9160-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022]
Abstract
Three hundred 1-day-old avian broilers were fed on a basic diet (0.2 mg/kg selenium) or the same diet amended to contain 1, 5, 10, and 15 mg/kg selenium supplied as sodium selenite (n = 60/group). In comparison with those of 0.2 mg/kg selenium group, the percentages of annexin V-positive splenocytes were increased in 5, 10, and 15 mg/kg selenium groups. TUNEL assay revealed that apoptotic cells with brown-stained nuclei distributed within the red pulp and white pulp of the spleens with increased frequency of occurrence in 10 and 15 mg/kg selenium groups in comparison with that of 0.2 mg/kg Se group. Sodium selenite-induced oxidative stress in spleens of chickens was evidenced by decrease in glutathione peroxidase, superoxide dismutase, and catalase activities and increase in malondialdehyde contents. The results indicate that excess dietary selenium in the range of 5-15 mg/kg of feed causes oxidative stress, which may be mainly responsible for the increased apoptosis of splenocytes in chickens.
Collapse
Affiliation(s)
- Xi Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hoefig CS, Renko K, Köhrle J, Birringer M, Schomburg L. Comparison of different selenocompounds with respect to nutritional value vs. toxicity using liver cells in culture. J Nutr Biochem 2011; 22:945-55. [DOI: 10.1016/j.jnutbio.2010.08.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 08/02/2010] [Accepted: 08/05/2010] [Indexed: 10/18/2022]
|
31
|
Species-specific sensitivity to selenium-induced impairment of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). Toxicol Appl Pharmacol 2011; 253:137-44. [PMID: 21466817 DOI: 10.1016/j.taap.2011.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/25/2011] [Accepted: 03/27/2011] [Indexed: 11/22/2022]
Abstract
Species differences in physiological and biochemical attributes exist even among closely related species and may underlie species-specific sensitivity to toxicants. Rainbow trout (RT) are more sensitive than brook trout (BT) to the teratogenic effects of selenium (Se), but it is not known whether all tissues exhibit this pattern of vulnerability. In this study, primary cultures of RT and BT adrenocortical cells were exposed to selenite (Na(2)SO(3)) and selenomethionine (Se-Met) to compare cell viability and ACTH-stimulated cortisol secretion in the two fish species. Cortisol, the primary stress hormone in fish, facilitates maintenance of homeostasis when fish are exposed to stressors, including toxicants. Cell viability was not affected by Se, but selenite impaired cortisol secretion, while Se-Met did not (RT and BT EC(50)>2000mg/L). RT cells were more sensitive (EC(50)=8.7mg/L) to selenite than BT cells (EC(50)=90.4mg/L). To identify the targets where Se disrupts cortisol synthesis, selenite-impaired RT and BT cells were stimulated with ACTH, dbcAMP, OH-cholesterol, and pregnenolone. Selenite acted at different steps in the cortisol biosynthesis pathway in RT and BT cells, confirming a species-specific toxicity mechanism. To test the hypothesis that oxidative stress mediates Se-induced toxicity, selenite-impaired RT cells were exposed to NAC, BSO and antioxidants (DETCA, ATA, Vit A, and Vit E). Inhibition of SOD by DETCA enhanced selenite-induced cortisol impairment, indicating that oxidative stress plays a role in Se toxicity; however, modifying GSH content of the cells did not have an effect. The results of this study, with two closely related salmonids, provided additional evidence for species-specific differences in sensitivity to Se which should be considered when setting thresholds and water quality guidelines.
Collapse
|
32
|
Elia AC, Prearo M, Pacini N, Dörr AJM, Abete MC. Effects of selenium diets on growth, accumulation and antioxidant response in juvenile carp. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:166-73. [PMID: 20554323 DOI: 10.1016/j.ecoenv.2010.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/30/2010] [Accepted: 04/09/2010] [Indexed: 05/21/2023]
Abstract
An 8-week feeding trial was undertaken with Cyprinus carpio to determine the effects of two commercial Se diets (HSe 1.0 mg kg⁻¹ and LSe 0.25 mg kg⁻¹) on growth, accumulation and antioxidant response in juveniles at time 0, 30 and 60 days. HSe carp had higher mean weight (W) values than LSe group at 60 days and the Fulton condition factor (K) indicated good fish health for both diet groups. Among the investigated HSe tissues, kidney and liver were mainly involved in Se accumulation, whereas the Se level in muscle indicated a very low Se contamination risk for human health. Selenium accumulation levels in HSe tissues followed this order: kidney>liver>muscle. Although growth was not impaired, biochemical antioxidant indicators in liver and kidney evidenced an oxidative stress condition in HSe juveniles. Furthermore, selenium supplementation levels, higher than the one employed in this study, might worsen the antioxidant status of carp.
Collapse
Affiliation(s)
- Antonia Concetta Elia
- Ecotoxicology Laboratory, Department of Cellular and Environmental Biology, University of Perugia, Perugia, Italy
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Ohta Y, Kobayashi Y, Konishi S, Hirano S. Speciation analysis of selenium metabolites in urine and breath by HPLC- and GC-inductively coupled plasma-MS after administration of selenomethionine and methylselenocysteine to rats. Chem Res Toxicol 2010; 22:1795-801. [PMID: 19715347 DOI: 10.1021/tx900202m] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Selenium is an essential trace element found in vegetables as selenomethionine (SeMet) and methylselenocysteine (MeSeCys). In the present study, we used stable isotopes of Se to investigate differences between how SeMet and MeSeCys are metabolized, using methylseleninic acid (MSA) as a reference methylselenol source. A mixture containing (76)Se-SeMet, (77)Se-MeSeCys, and (82)Se-MSA (each 25 microg Se/kg b.w.) was orally administered to rats, and then, speciation analyses of Se in urine and exhaled gas were conducted using HPLC-inductively coupled plasma (ICP)-MS and GC-ICP-MS, respectively. The proportions of (76)Se-, (77)Se-, and (82)Se-selenosugar (Se-sugar) to total urinary Se metabolites originating from each tracer were very similar, while the proportion of (77)Se-tirmethylselenonium (TMSe) was much less than that of(76)Se- and (82)Se-TMSe in urine, suggesting that(77)Se-SeMet is less efficiently metabolized to TMSe. Similarly, there was significantly less (77)Se-dimethylselenide (DMSe) originating from (77)Se-SeMet than(76)Se- and (82)Se-DMSe originating from (76)Se-MeSeCys and (82)Se-MSA in exhaled gas. It is generally accepted that DMSe and TMSe are metabolites of methylselenol, a putative metabolic intermediate in Se metabolism. Methylselenol is believed to be responsible for the cancer chemoprevention effects of Se. These results suggest that MeSeCys is converted to methylselenol more efficiently than is SeMet and that urinary TMSe and exhaled DMSe might be useful biomarkers for the generation of cancer chemopreventive forms of Se.
Collapse
Affiliation(s)
- Yuki Ohta
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo, Chiba 260-8675 Japan
| | | | | | | |
Collapse
|
35
|
Peng X, Cui Y, Cui W, Deng J, Cui H. The decrease of relative weight, lesions, and apoptosis of bursa of fabricius induced by excess dietary selenium in chickens. Biol Trace Elem Res 2009; 131:33-42. [PMID: 19274448 DOI: 10.1007/s12011-009-8345-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 02/02/2009] [Indexed: 02/01/2023]
Abstract
Selenium is an essential trace element possessing immune-stimulatory properties. The purpose of this 42-day study was to investigate the effects of excess dietary sodium selenite on immune function by determining morphological changes and apoptosis of bursa of Fabricius. Three hundred 1-day-old Avian broilers were fed on a basic diet (0.2 ppm selenium) or the same diet amended to contain 1, 5, 10, and 15 ppm selenium supplied as sodium selenite (n = 60/group). Relative weight of bursa was significantly decreased in the 1, 5, 10, and 15 ppm groups at 28 days of age, when compared with that of 0.2 ppm group. Pathological lesions were progressed with the dietary Se level increased. The gross lesions of bursa involved obvious atrophy with decreased volume and pale color. Histopathologically, decreased number of lymphocytes and loosely packed lymphocytes appeared in the medulla and cortex in the follicles. Ultrastructurally, mitochondria injury and increased apoptotic cells with condensed nuclei were observed. In comparison to that of control group, excess Se (5, 10, and 15 ppm) intake increased the percentage of Annexin V positive cells, as measured by flow cytometry. Terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end-labeling assay showed that there were increased frequencies of apoptotic cells in 10 and 15 ppm selenium groups. These data suggest that Se supplementation with sodium selenite should be carefully evaluated as excess selenium (more than 5 ppm) intake could cause profound immunologic inhibition.
Collapse
Affiliation(s)
- Xi Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Yaan, Sichuan, China
| | | | | | | | | |
Collapse
|
36
|
Misra S, Niyogi S. Selenite causes cytotoxicity in rainbow trout (Oncorhynchus mykiss) hepatocytes by inducing oxidative stress. Toxicol In Vitro 2009; 23:1249-58. [DOI: 10.1016/j.tiv.2009.07.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/14/2009] [Accepted: 07/28/2009] [Indexed: 01/27/2023]
|
37
|
Espinosa-Aguirre J, Barajas-Lemus C, Hernández-Ojeda S, Govezensky T, Rubio J, Camacho-Carranza R. RecBCD and RecFOR dependent induction of chromosomal deletions by sodium selenite in Salmonella. Mutat Res 2009; 665:14-19. [PMID: 19427506 DOI: 10.1016/j.mrfmmm.2009.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 02/13/2009] [Accepted: 02/23/2009] [Indexed: 05/27/2023]
Abstract
RecBCD and RecFOR homologous recombination pathways induced bacterial chromosomal duplication-segregation by sodium selenite (SSe) at sub-inhibitory concentrations. This evidence suggests that SSe induces both, double and single DNA strand damage with a concomitant DNA repair response, however the strong dependence for recombinogenic activity of RecB product suggests that the main DNA repair pathway copes with dsDNA breaks. A role for SSe recombinogenic induction is proposed to explain its effect on DNA instability.
Collapse
Affiliation(s)
- Javier Espinosa-Aguirre
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | | | | | | | | | | |
Collapse
|
38
|
Wu J, Lyons GH, Graham RD, Fenech MF. The effect of selenium, as selenomethionine, on genome stability and cytotoxicity in human lymphocytes measured using the cytokinesis-block micronucleus cytome assay. Mutagenesis 2009; 24:225-32. [PMID: 19155331 DOI: 10.1093/mutage/gen074] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A supranutritional intake of selenium (Se) may be required for cancer prevention, but an excessively high dose could be toxic. Therefore, the effect on genome stability of seleno-L-methionine (Se-met), the most important dietary form of Se, was measured to determine its bioefficacy and safety limit. Peripheral blood lymphocytes were isolated from six volunteers and cultured with medium supplemented with Se-met in a series of Se concentrations (3, 31, 125, 430, 1880 and 3850 microg Se/litre) while keeping the total methionine (i.e. Se-met + L-methionine) concentration constant at 50 microM. Baseline genome stability of lymphocytes and the extent of DNA damage induced by 1.5-Gy gamma-ray were investigated using the cytokinesis-block micronucleus cytome assay after 9 days of culture in 96-microwell plates. High Se concentrations (>or=1880 microg Se/litre) caused strong inhibition of cell division and increased cell death (P < 0.0001). Baseline frequency of nucleoplasmic bridges and nuclear buds, however, declined significantly (P trend < 0.05) as Se concentration increased from 3 to 430 microg Se/litre. Se concentration (<or=430 microg Se/litre) had no significant effect on baseline frequency of micronuclei and had no protective effect against genome damage induced by exposure to 1.5-Gy gamma-ray irradiation. In conclusion, Se, as Se-met, may improve genome stability at concentrations up to 430 microg Se/litre, but higher doses may be cytotoxic. Therefore, a cautious approach to supplementation with Se-met is required to ensure that optimal genome health is achieved without cytotoxic effects.
Collapse
Affiliation(s)
- Jing Wu
- Nutrigenomics Laboratory, CSIRO Human Nutrition, SA, Australia
| | | | | | | |
Collapse
|
39
|
Monteiro DA, Rantin FT, Kalinin AL. The effects of selenium on oxidative stress biomarkers in the freshwater characid fish matrinxã, Brycon cephalus (Günther, 1869) exposed to organophosphate insecticide Folisuper 600 BR (methyl parathion). Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:40-9. [PMID: 18655848 DOI: 10.1016/j.cbpc.2008.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/27/2008] [Accepted: 06/28/2008] [Indexed: 11/28/2022]
Abstract
Methyl parathion (MP), an organophosphate widely applied in agriculture and aquaculture, induces oxidative stress due to free radical generation and changes in the antioxidant defense system. The antioxidant roles of selenium (Se) were evaluated in Brycon cephalus exposed to 2 mg L(-1) of Folisuper 600 BR (MP commercial formulation - MPc, 600 g L(-1)) for 96 h. Catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione S-transferase (GST), reduced glutathione (GSH) and lipid peroxidation (LPO) levels in the gills, white muscle and liver were evaluated in fish fed on diets containing 0 or 1.5 mg Se kg(-1) for 8 weeks. In fish treated with a Se-free diet, the MPc exposure increased SOD and CAT activities in all tissues. However, the GPx activity decreased in white muscle and gills whereas no alterations were observed in the liver. MPc also increased GST activity in all tissues with a concurrent decrease in GSH levels. LPO values increased in white muscle and gills and did not change in liver after MPc exposure. A Se-supplemented diet reversed these findings, preventing increases in LPO levels and concurrent decreases in GPx activity in gills and white muscle. Similarly, GSH levels were maintained in all tissue after MPc exposure. These results suggest that dietary Se supplementation protects cells against MPc-induced oxidative stress.
Collapse
Affiliation(s)
- Diana Amaral Monteiro
- Department of Physiological Science, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | | | | |
Collapse
|
40
|
Stemm DN, Tharappel JC, Lehmler HJ, Srinivasan C, Morris JS, Spate VL, Robertson LW, Spear BT, Glauert HP. Effect of dietary selenium on the promotion of hepatocarcinogenesis by 3,3', 4,4'-tetrachlorobiphenyl and 2,2', 4,4', 5,5'-hexachlorobiphenyl. Exp Biol Med (Maywood) 2008; 233:366-76. [PMID: 18296742 DOI: 10.3181/0708-rm-211] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that have promoting activity in the liver. PCBs induce oxidative stress, which may influence carcinogenesis. Epidemiological studies strongly suggest an inverse relationship between dietary selenium (Se) and cancer. Despite evidence linking Se deficiency to hepatocellular carcinoma and liver necrosis, the underlying mechanisms for Se cancer protection in the liver remain to be determined. We examined the effect of dietary Se on the tumor promoting activities of two PCBs congeners, 3,3', 4,4'-tetrachlorobiphenyl (PCB-77) and 2,2', 4,4', 5,5'-hexachlorobiphenyl (PCB-153) using a 2-stage carcinogenesis model. An AIN-93 torula yeast-based purified diet containing 0.02 (deficient), 0.2 (adequate), or 2.0 mg (supplemental) selenium/kg diet was fed to Sprague-Dawley female rats starting ten days after administering a single dose of diethylnitrosamine (150 mg/kg). After being fed the selenium diets for 3 weeks, rats received four i.p. injections of either PCB-77 or PCB-153 (150 micromol/kg) administered every 14 days. The number of placental glutathione S-transferase (PGST)-positive foci per cm(3) and per liver among the PCB-77-treated rats was increased as the Se dietary level increased. Unlike PCB-77, rats receiving PCB-153 did not show the same Se dose-response effect; nevertheless, Se supplementation did not confer protection against foci development. However, the 2.0 ppm Se diet reduced the mean focal volume, indicating a possible protective effect by inhibiting progression of preneoplastic lesions into larger foci. Cell proliferation was not inhibited by Se in the liver of the PCB-treated groups. Se did not prevent the PCB-77-induced decrease of hepatic Se and associated reduction in glutathione peroxidase (GPx) activity. In contrast, thioredoxin reductase (TrxR) activity was not affected by the PCBs treatment or by Se supplementation. These findings indicate that Se does not inhibit the number of PGST-positive foci induced during promotion by PCBs, but that the size of the lesions may be inhibited. The effects of Se on altered hepatic foci do not correlate with its effects on GPx and TrxR.
Collapse
Affiliation(s)
- Divinia N Stemm
- Graduate Center for Nutritional Sciences, 222 Funkhouser Building, University of Kentucky, Lexington, KY 40506-0054, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang J, Wang X, Xu T. Elemental Selenium at Nano Size (Nano-Se) as a Potential Chemopreventive Agent with Reduced Risk of Selenium Toxicity: Comparison with Se-Methylselenocysteine in Mice. Toxicol Sci 2007; 101:22-31. [PMID: 17728283 DOI: 10.1093/toxsci/kfm221] [Citation(s) in RCA: 337] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Selenium (Se) is an essential trace element with a narrow margin between beneficial and toxic effects. As a promising chemopreventive agent, its use requires consumption over the long term, so the toxicity of Se is always a crucial concern. Based on clinical findings and recent studies in selenoprotein gene-modified mice, it is likely that the antioxidant function of one or more selenoproteins is responsible for the chemopreventive effect of Se. Furthermore, upregulation of phase 2 enzymes by Se has been implicated as a possible chemopreventive mechanism at supranutritional dietary levels. Se-methylselenocysteine (SeMSC), a naturally occurring organic Se product, is considered as one of the most effective chemopreventive selenocompounds. The present study revealed that, as compared with SeMSC, elemental Se at nano size (Nano-Se) possessed equal efficacy in increasing the activities of glutathione peroxidase, thioredoxin reductase, and glutathione S-transferase, but had much lower toxicity as indicated by median lethal dose, acute liver injury, survival rate, and short-term toxicity. Our results suggest that Nano-Se can serve as a potential chemopreventive agent with reduced risk of Se toxicity.
Collapse
Affiliation(s)
- Jinsong Zhang
- University of Science and Technology of China, Hefei 230052, Anhui, P.R. China
| | | | | |
Collapse
|
42
|
Wang H, Zhang J, Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med 2007; 42:1524-33. [PMID: 17448899 DOI: 10.1016/j.freeradbiomed.2007.02.013] [Citation(s) in RCA: 435] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 02/05/2007] [Accepted: 02/10/2007] [Indexed: 11/22/2022]
Abstract
Glutathione peroxidase and thioredoxin reductase are major selenoenzymes through which selenium exerts powerful antioxidant effects. Selenium also elicits pro-oxidant effects at toxic levels. The antioxidant and pro-oxidant effects, or bioavailability and toxicity, of selenium depend on its chemical form. Selenomethionine is considered to be the most appropriate supplemental form due to its excellent bioavailability and lower toxicity compared to various selenium compounds. The present studies reveal that, compared with selenomethionine, elemental selenium at nano size (Nano-Se) possesses equal efficacy in increasing the activities of glutathione peroxidase and thioredoxin reductase but has much lower toxicity as indicated by median lethal dose, acute liver injury, and short-term toxicity. Our results suggest that Nano-Se can serve as an antioxidant with reduced risk of selenium toxicity.
Collapse
Affiliation(s)
- Huali Wang
- University of Science and Technology of China, Hefei 230052, People's Republic of China
| | | | | |
Collapse
|
43
|
Hwang ES, Bowen PE. DNA damage, a biomarker of carcinogenesis: its measurement and modulation by diet and environment. Crit Rev Food Sci Nutr 2007; 47:27-50. [PMID: 17364694 DOI: 10.1080/10408390600550299] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Free radicals and other reactive oxygen or nitrogen species are constantly generated in vivo and can cause oxidative damage to DNA. This damage has been implicated to be important in many diseases, including cancer. The assessment of damage in various biological matrices, such as tissues, cells, and urine, is vital to understanding this role and subsequently devising intervention strategies. During the last 20 years, many analytical techniques have been developed to monitor oxidative DNA base damage. High-performance liquid chromatography-electrochemical detection and gas chromatography-mass spectrometry are the two pioneering contributions to the field. Currently, the arsenal of methods available include the promising high-performance liquid chromatography-tandem mass spectrometry technique, capillary electrophoresis, 32P-postlabeling, antibody-base immunoassays, and assays involving the use of DNA repair glycosylases such as the comet assay. The objective of this review is to discuss the biological significance of oxidative DNA damage, evaluate the effectiveness of several techniques for measurement of oxidative DNA damage in various biological samples and review current research on factors (dietary and non-dietary) that influence DNA oxidative damage using these techniques.
Collapse
Affiliation(s)
- Eun-Sun Hwang
- Department of Human Nutrition, University of Illinois at Chicago. Chicago, IL, 60612, USA
| | | |
Collapse
|
44
|
Astratinei V, van Hullebusch E, Lens P. Bioconversion of selenate in methanogenic anaerobic granular sludge. JOURNAL OF ENVIRONMENTAL QUALITY 2006; 35:1873-83. [PMID: 16973629 DOI: 10.2134/jeq2005.0443] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The capacity of anaerobic granular sludge to remove selenate from contaminated wastewater was investigated. The potential of different types of granular sludge to remove selenate from the liquid phase was compared to that of suspended sludge and contaminated soil and sediment samples. The selenate removal rates ranged from 400 to 1500 microg g VSS(-1) h(-1), depending on the source of biomass, electron donor, and the initial selenate concentration. The granular structure protects the microorganisms when exposed to high selenate concentrations (0.1 to 1 mM). Anaerobic granular sludge "Eerbeek," originating from a UASB reactor treating paper mill wastewater, removed about 90, 50, and 36% of 0.1, 0.5, and 1 mM of Se, respectively, from the liquid phase when incubated with 20 mM lactate at 30 degrees C and pH 7.5. Selenite, elemental Se (Se(o)), and metal selenide precipitates were the conversion products. Enrichments from the anaerobic granular sludge "Eerbeek" were able to convert 90% of the 10-mM selenate to Se(o) at a rate of 1505 microg Se(VI) g cells(-1) h(-1), a specific growth rate of 0.0125 g cells h(-1), and a yield of 0.083 g cells mg Se(-1). Both microbial metabolic processes (e.g dissimilatory reduction) as well as microbially mediated physicochemical mechanisms (adsorption and precipitation) contribute to the removal of selenate from the Se-containing medium.
Collapse
Affiliation(s)
- Violeta Astratinei
- National Research and Development Institute for Environmental Protection, Splaiul Independentei 294, Bucharest, Romania
| | | | | |
Collapse
|
45
|
El-Sayed WM, Franklin MR. Hepatic chemoprotective enzyme responses to 2-substituted selenazolidine-4(R)-carboxylic acids. J Biochem Mol Toxicol 2006; 20:292-301. [PMID: 17163488 DOI: 10.1002/jbt.20148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In epidemiology and human supplementation studies, as well as many animal models, selenium has shown antitumorigenic activity. The mechanism of action, however, has not been satisfactorily resolved. Selenium supplementation affects many enzymes in addition to those where selenocysteine is an essential component. Such enzymes include cytoprotective detoxifying enzymes, and the regulation of these enzymes by a set of 2-substituted selenazolidine-4(R)-carboxylic acids (SCAs) has been investigated. Following seven consecutive daily doses of these prodrugs of L-selenocysteine, changes in hepatic enzyme activities and/or mRNA levels of glutathione transferase (GST), microsomal epoxide hydrolase (mEH), NAD(P)H-quinone oxidoreductase (NQO), UDP-glucuronosyltransferase (UGT), glutathione peroxidase (GPx), and thioredoxin reductase (TR) have been observed. Among the enzymes examined, UGTs and GPx were found to be the least affected. Among the compounds, 2-oxoSCA produced the most changes and 2-phenylSCA produced the least, none. For no two compounds was the pattern of changes identical, and for a single compound, few changes were reproduced in common by the two routes of administration investigated. In general, more changes were elicited following intraperitoneal (i.p.) administration than with the intragastric (i.g.) route. This dominance was typified by 2-butylSCA and 2-cyclohexylSCA where enzyme activity elevations (TR and mEH with both, NQO with 2-butylSCA) were seen only with the i.p. route. With 2-oxoSCA, however, GST, TR, and NQO activities were found to be elevated independent of route. Only with GST (both routes) and TR (i.p. route), elevations in mRNAs accompanied the 2-oxoSCA elicited elevations of activities at the time of sacrifice. For some enzymes, most notably mEH with compounds administered i.p., elevations in mRNAs were not manifest as increased enzyme activity. Thus, although constituting a closely related series of compounds, each 2-substituted SCA produced its own unique pattern of changes, and for most members, changes were predominant following i.p. administration.
Collapse
Affiliation(s)
- Wael M El-Sayed
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|