1
|
Wang Y, Hassan HM, Nisar A, Zahara SS, Akbar A, Al-Emam A. Cardioprotective potential of tectochrysin against vanadium induced heart damage via regulating NLRP3, JAK1/STAT3 and NF-κB pathway. J Trace Elem Med Biol 2025; 87:127588. [PMID: 39787653 DOI: 10.1016/j.jtemb.2025.127588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
BACKGROUND Vanadium (VAN) is a significant trace element, but its higher exposure is reported to cause severe organ toxicity. Tectochrysin (TEC) is a naturally derived flavonoid which demonstrates a wide range of pharmacological properties. AIM The current study was planned to assess the cardioprotective potential of TEC against VAN induced cardiotoxicity in rats via regulating biochemical, and histological profile. RESEARCH PLAN Thirty-six male Sprague Dawley rats were apportioned into four groups including the control, VAN (1.5 mg/kg) treated, VAN (1.5 mg/kg) + TEC (2.5 mg/kg) administrated as well as TEC (2.5 mg/kg) alone supplemented group. The doses were administrated for 28 days through oral gavage. The biochemical and histological parameters were evaluated by using qRT-PCR, ELISA, biochemical assays, histological as well as molecular simulation techniques. FINDINGS VAN intoxication reduced the activities of catalase (CAT) (84.25 %), glutathione peroxidase (GPx) (65.28 %), glutathione reductase (GSR) (78.52 %), heme oxygenase-1 (HO-1) (81.81 %), superoxide dismutase (SOD) (83.71 %) and glutathione (GSH) (76.86 %) contents while upregulating the levels of reactive oxygen species (ROS) (87.26 %) and malondialdehyde (MDA) (91.32 %). Moreover, VAN administration increased the gene expressions of nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) (91.47 %), monocyte chemoattractant protein-1 (MCP-1) (92.51 %), interleukin-6 (IL-6) (83.63 %), tumor necrosis factor-alpha (TNF-α) (89.43 %), janus kinase 1 (JAK1) (95.55 %), signal transducer and activator of transcription 3 (STAT3) (91.25 %), nuclear factor-kappa B (NF-κB) (81.31 %), interleukin-18 (IL-18) (93.27 %), interleukin-1 beta (IL-1β) (85.79 %) and cyclooxygenase-2 (COX-2) (82.12 %). The levels of CK-MB (89.43 %), BNP (91.73 %), NT-proBNP (93.64 %), CPK (87.56 %), LDH (92.62 %), troponin I (94.25 %), troponin T (97.53 %) and CRP (88.45 %) were increased following the VAN intoxication. Besides, VAN exposure upregulated the levels of Caspase-9 (89.52 %), Bax (95.52 %) and Caspase-3 (92.52 %) while reducing the levels of Bcl-2 (75.66 %). The structural integrity of cardiac tissues was extensively disrupted following VAN-induced intoxication. However, TEC treatment remarkably ameliorated cardiotoxicity via regulating abovementioned dysregulations induced by VAN exposure. At the end, molecular docking (MD) analysis was accomplished to confirm the potential protective effect of TEC against VAN prompted cardiac dysfunction. It was detected that TEC can strongly bind with the active site of JAK1, NF-kB and STAT3 which also confirm its cardioprotective effect against VAN provoked cardiac dysfunction. CONCLUSION VAN intoxication instigated cardiac impairments which is evident by dysregulations in biochemical as well as histological profile of cardiac tissues. Nonetheless, TEC treatment remarkably protected the cardiac tissues via regulating oxidative stress, inflammation and apoptosis. TEC could be employed as cardioprotective agent against VAN induced cardiotoxicity.
Collapse
Affiliation(s)
- Yahui Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Hesham M Hassan
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Abdullah Nisar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Syeda Sania Zahara
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Ali Akbar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt
| |
Collapse
|
2
|
Ullah A, Mostafa NM, Halim SA, Elhawary EA, Ali A, Bhatti R, Shareef U, Al Naeem W, Khalid A, Kashtoh H, Khan A, Al-Harrasi A. Phytoconstituents with cardioprotective properties: A pharmacological overview on their efficacy against myocardial infarction. Phytother Res 2024; 38:4467-4501. [PMID: 39023299 DOI: 10.1002/ptr.8292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Myocardial infarction (MI) is considered one of the most common cardiac diseases and major cause of death worldwide. The prevalence of MI and MI-associated mortality have been increasing in recent years due to poor lifestyle habits viz. residency, obesity, stress, and pollution. Synthetic drugs for the treatment of MI provide good chance of survival; however, the demand to search more safe, effective, and natural drugs is increasing. Plants provide fruitful sources for powerful antioxidant and anti-inflammatory agents for prevention and/or treatment of MI. However, many plant extracts lack exact information about their possible dosage, toxicity and drug interactions which may hinder their usefulness as potential treatment options. Phytoconstituents play cardioprotective role by either acting as a prophylactic or adjuvant therapy to the concurrently used synthetic drugs to decrease the dosage or relief the side effects of such drugs. This review highlights the role of different herbal formulations, examples of plant extracts and types of several isolated phytoconstituents (phenolic acids, flavonoids, stilbenes, alkaloids, phenyl propanoids) in the prevention of MI with reported activities. Moreover, their possible mechanisms of action are also discussed to guide future research for the development of safer substitutes to manage MI.
Collapse
Affiliation(s)
- Aman Ullah
- Department of Pharmacy, Saba Medical Center, Abu Dhabi, UAE
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ain Ali
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Rohail Bhatti
- Department of Pharmacology and Psychology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Usman Shareef
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Waiel Al Naeem
- Clinical Pharmacy Department, Sheikh Khalifa Medical City, Abu Dhabi, UAE
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
3
|
Jiang T, Sun L, Wang Y, Zhang F, Guo J, Sun L, Jiang Y, Xue J, Duan J, Liu C. Podophyllotoxin via SIRT1/PPAR /NF-κB axis induced cardiac injury in rats based on the toxicological evidence chain (TEC) concept. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155655. [PMID: 38838636 DOI: 10.1016/j.phymed.2024.155655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The study of cardiotoxicity of drugs has become an important part of clinical safety evaluation of drugs. It is commonly known that podophyllotoxin (PPT) and its many derivatives and congeners are broad-spectrum pharmacologically active substances. Clinical cardiotoxicity of PPT and its derivatives has been raised, basic research on the mechanism of cardiotoxicity remains insufficient. PURPOSE In present study, our group's innovative concept of toxicological evidence chain (TEC) was applied to reveal the cardiac toxicity mechanism of PPT by targeted metabolomics, TMT-based quantitative proteomics and western blot. METHODS The injury phenotype evidence (IPE) acquired from the toxicity manifestations, such as weight and behavior observation of Sprague-Dawley rat. The damage to rat hearts were assessed through histopathological examination and myocardial enzymes levels, which were defined as Adverse Outcomes Evidence (AOE). The damage to rat hearts was assessed through histopathological examination and myocardial enzyme levels, which were defined as evidence of adverse outcomes.Overall measurements of targeted metabolomics based on energy metabolism and TMT-based quantitative proteomics were obtained after exposure to PPT to acquire the Toxic Event Evidence (TEE). The mechanism of cardiac toxicity was speculated based on the integrated analysis of targeted metabolomics and TMT-based quantitative proteomics, which was verified by western blot. RESULTS The results indicated that exposure to PPT could result in significant elevation of myocardial enzymes and pathological alterations in rat hearts. In addition, we found that PPT caused disorders in cardiac energy metabolism, characterized by a decrease in energy metabolism fuels. TMT-based quantitative proteomics revealed that the PPAR (Peroxisome proliferators-activated receptor) signaling pathway needs further study. It is worth noting that PPT may suppress the expression of SIRT1, subsequently inhibiting AMPK, decreasing the expression of PGC-1α, PPARα and PPARγ. This results in disorders of glucose oxidation, glycolysis and ketone body metabolism. Additionally, the increase in the expression of p-IKK and p-IκBα, leads to the nuclear translocation of NF-κB p65 from the cytosol, thus triggering inflammation. CONCLUSION This study comprehensively evaluated cardiac toxicity of PPT and initially revealed the mechanism of cardiotoxicity,suggesting that PPT induced disorders of energy metabolism and inflammation via SIRT1/PPAR/NF-κB axis, potentially contributing to cardiac injury.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Lu Sun
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030600, China
| | - Yuming Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fangfang Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jia Guo
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Lingyun Sun
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Yalin Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Juan Xue
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jiajia Duan
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| | - Chuanxin Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
4
|
Adejare A, Oloyo A, Dahud Y, Adeshina M, Agbaje A, Ejim C, Ismail-Badmus K, Jaja S. Renal denervation ameliorated salt-induced hypertension by improving cardiac work, cardiac enzyme and oxidative balance in Sprague-Dawley rats. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2024; 21:200290. [PMID: 38828466 PMCID: PMC11139768 DOI: 10.1016/j.ijcrp.2024.200290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Background Hypertension is associated with cardiovascular dysfunction, dysregulation of the antioxidant system and alteration of the level of some enzymes in the metabolic pathway. The possible modulatory effect of acute renal denervation (ARD) on cardiovascular function and the antioxidant system is still a subject of intense debate. This study sought to ascertain the ameliorative effects of ARD on cardiovascular parameters, antioxidant system, creatine kinase and lactate dehydrogenase levels. Methods Thirty-six Sprague-Dawley rats (5-6 weeks old) were divided into 6 groups of 6 animals each consisting of Normal Salt, High Salt, Normal Salt + Sham Denervation, High Salt + Sham Denervation, Normal Salt + Renal Denervation and High Salt + Renal Denervation. Induction of hypertension with 8 % salt in the diet lasted for 8 weeks. Renal or Sham denervation was thereafter done on selected groups. At the end of the experimental period, cardiovascular parameters, plasma antioxidant status, plasma creatine kinase (CK) and lactate dehydrogenase (LDH) levels were assessed. Significance level was set at p < 0.05. Results Salt-loading significantly increased systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial blood pressure (MABP), rate pressure product (RPP) while reducing superoxide dismutase (SOD), reduced glutathione (GSH) and catalase (CAT). Acute renal denervation significantly (p < 0.0001) reduced SBP, DBP, MABP, RPP, LDH and norepinephrine level while increasing SOD, GSH and CAT. ARD did not significantly alter CK level. Conclusion Acute renal denervation, by reducing sympathetic activity, ameliorates cardiovascular and antioxidant functions as well as reduces LDH level without significantly altering CK level in salt-induced hypertension.
Collapse
Affiliation(s)
- Abdullahi Adejare
- Cardiovascular-Renal Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Lagos, Nigeria
| | - Ahmed Oloyo
- Cardiovascular-Renal Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Lagos, Nigeria
| | - Yusuf Dahud
- Cardiovascular-Renal Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Lagos, Nigeria
| | - Morufat Adeshina
- Cardiovascular-Renal Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Lagos, Nigeria
| | - Abiola Agbaje
- Cardiovascular-Renal Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Lagos, Nigeria
| | - Clinton Ejim
- Cardiovascular-Renal Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Lagos, Nigeria
| | - Khadijah Ismail-Badmus
- Cardiovascular-Renal Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Lagos, Nigeria
| | - Smith Jaja
- Cardiovascular-Renal Unit, Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine of the University of Lagos, Lagos, Nigeria
| |
Collapse
|
5
|
Aktaş İ, Gur FM, Bilgiç S. Protective effect of misoprostol against paclitaxel-induced cardiac damage in rats. Prostaglandins Other Lipid Mediat 2024; 171:106813. [PMID: 38253234 DOI: 10.1016/j.prostaglandins.2024.106813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
OBJECTIVE One of the most critical reasons for limiting cancer treatment is the toxic effects of anti-cancer drugs on healthy tissues and organs. This study aims to investigate the possible protective effects of misoprostol (MS) against the damage that arises from paclitaxel (PT), an anti-cancer pharmacological agent, in the rat heart using histopathological and biochemical analyses. METHODS In this study, four groups, each containing seven animals, were formed by random selection from 28 Sprague Dawley female rats. Control group rats were administered 1 ml of normal saline orally and intraperitoneally (i.p.) for six days. While the PT group rats were administered PT at a dose of 2 mg/kg intraperitoneally (i.p.) on days 0, 2, 4, and 6, the MS group was administered MS at a dose of 0.2 mg/kg in 1 ml normal saline by oral gavage for six days. PT and MS were administered to the PT + MS group rats in the same dose and route as the previous groups. RESULTS Administration of PT increased serum lactate dehydrogenase (LDH), cardiac troponin I (cTn-I), creatine kinase isoenzyme MB (CK-MB), and brain natriuretic peptide (BNP) levels. PT administration also decreased the levels of glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) in the heart tissue while increasing the level of malondialdehyde (MDA) (p < 0.05). In histopathological examinations, pathological changes, such as edema, congestion, hemorrhage, apoptosis, and degeneration, occurred in the heart tissue of PT-treated rats. The negative changes in histopathological and biochemical parameters that occurred in the PT group were almost not observed in the PT + MS group (p < 0.005). CONCLUSION When the findings were evaluated, it was concluded that MS protects the heart tissue from the harmful effects of PT, probably due to its antioxidant, anti-apoptotic and TNF-alpha suppressive effects.
Collapse
Affiliation(s)
- İbrahim Aktaş
- Adıyaman University, Department of Pharmacology, Vocational School of Health Services, Adıyaman, Turkey
| | - Fatih Mehmet Gur
- Niğde Ömer Halisdemir University, Department of Histology and Embryology, Faculty of Medicine, Nigde, Turkey
| | - Sedat Bilgiç
- Adıyaman University, Department of Medical Biochemistry, Vocational School of Health Services, Adıyaman, Turkey.
| |
Collapse
|
6
|
Jghef MM, Boukholda K, Chtourou Y, Fiebich BL, Kebieche M, Soulimani R, Chigr F, Fetoui H. Punicalagin attenuates myocardial oxidative damage, inflammation, and apoptosis in isoproterenol-induced myocardial infarction in rats: Biochemical, immunohistochemical, and in silico molecular docking studies. Chem Biol Interact 2023; 385:110745. [PMID: 37806379 DOI: 10.1016/j.cbi.2023.110745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Myocardial infarction (MI) is a life-threatening ischemic disease and is one of the leading causes of morbidity and mortality worldwide. Punicalagin (PU), the major ellagitannin found in pomegranates, is characterized by multiple antioxidant activities. The aim of this study is to assess the protective effects of PU against isoproterenol (ISO)-induced acute myocardial damage and to investigate its underlying vascular mechanisms using rat model. METHODS: Rats were randomly divided into five groups and were treated orally (p.o.) with PU (25 and 50 mg/kg) for 14 days. ISO was administered subcutaneously (S.C.) (85 mg/kg) on the 15th and 16th days to induce Myocardial infarction. Cardiac markers, oxidative stress markers, and inflammatory cytokines levels were determined in the heart tissue. Immunohistochemistry analysis was performed to determine the protein expression pathways of inflammation, apoptosis and oxidative stress (Nuclear factor erythroid 2-related factor 2 (Nrf-2), and heme oxygenase-1 (HO-1) in all the groups. In silico study was carried out to evaluate the molecular interaction of PU with some molecular targets. RESULTS: Our results showed that ISO-induced cardiac tissue injury was evidenced by increased serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH), associated with several histopathological changes. ISO also induced an increase of MDA, PCO, NO, and 8-hydroxy-2-deoxyguanosine (8-OHdG), along with a decrease of antioxidant enzyme activities in the myocardial tissues. In addition, an increase of TNF-α, NF-κB, IL-6, IL-1β, iNOS, Nrf2 and (HO-1) was observed. Pre-treatment with PU reduced myocardial infract area, ameliorated histopathological alterations in myocardium, and decreased activities of myocardial injury marker enzymes in ISO-induced rats. In addition, PU remarkably restored ISO-induced elevation of lipid peroxidation and decrease of antioxidants, significantly reduced myocardial pro-inflammatory cytokines concentrations in this animal model. Molecular docking analysis of PU with protein targets showed potent interactions with negative binding energies. In conclusion, PU can protect the myocardium from oxidative injury, inflammatory response, and cell death induced by ISO by upregulating Nrf2/HO-1 signaling and antioxidants.
Collapse
Affiliation(s)
- Muthana M Jghef
- Department of Radiology, Medical Technical College, Alkitab University, Alton Kubri, Kirkuk, Iraq; Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| | - Khadija Boukholda
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| | - Yassine Chtourou
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany.
| | - Mohammed Kebieche
- Faculty of Natural and Life Sciences, LMAGECA and BMBP Research Laboratories, University of Batna2, Route de Constantine, 05078, Fesdis, Batna2, Algeria.
| | - Rachid Soulimani
- Université de Lorraine, LCOMS/Neurotoxicologie Alimentaire et Bioactivité, 57000, Metz, France.
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco.
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| |
Collapse
|
7
|
Li SH, Ma GL, Zhang SL, Yang YY, Liu HF, Luo A, Wen J, Cao ZZ, Jia YZ. Naringin exerts antiarrhythmic effects by inhibiting channel currents in mouse cardiomyocytes. J Electrocardiol 2023; 80:69-80. [PMID: 37262953 DOI: 10.1016/j.jelectrocard.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Naringin, a flavonoid extracted from citrus plants, has a variety of biological effects. Studies have shown that increasing the consumption of flavonoid-rich foods can reduce the incidence of cardiac arrhythmia. Naringin has been reported to have beneficial cardiovascular effects and thus can be used to prevent cardiovascular diseases, but the electrophysiological mechanism through which it prevents arrhythmias has not been elucidated. This study was conducted to investigate the effect of naringin on the transmembrane ion channel currents in mouse ventricular myocytes and the antiarrhythmic effect of this compound on Langendorff-perfused mouse hearts. METHODS Action potentials (APs) and ionic currents were recorded in isolated ventricular myocytes using the whole-cell patch-clamp technique. Anemone toxin II (ATX II) and CaCl2 were used to induce early afterdepolarizations (EADs) and delayed afterdepolarizations (DADs), respectively. Electrocardiogram (ECG) recordings were conducted in Langendorff-perfused mouse hearts with a BL-420F biological signal acquisition and analysis system. RESULTS At the cellular level, naringin shortened the action potential duration (APD) of ventricular myocytes and decreased the maximum depolarization velocity (Vmax) of APs.Naringin inhibited the L-type calcium current (ICa.L) and ATX II enhanced the late sodium current (INa.L) in a concentration-dependent manner with IC50 values of 508.5 μmol/L (n = 9) and 311.6 μmol/L (n = 10), respectively. In addition, naringin also inhibited the peak sodium current (INa·P) and delayed the rectifier potassium current (IK) and the transient outward potassium current (Ito). Moreover, naringin reduced ATX II-induced APD prolongation and EADs and had a significant inhibitory effect on CaCl2-induced DADs as well. At the organ level, naringin reduced the incidence of ventricular tachycardia (VT) and ventricular fibrillation (VF) induced by ATX II and shortened the duration of both in isolated hearts. CONCLUSION Naringin can inhibit the occurrence of EADs and DADs at the cellular level; furthermore, it can inhibit INa.L, ICa.L, INa·P, IK, and Ito in ventricular myocytes. Naringin also inhibits arrhythmias induced by ATX II in hearts. By investigating naringin with this electrophysiological method for the first time, we determined that this flavonoid may be a multichannel blocker with antiarrhythmic effects.
Collapse
Affiliation(s)
- Shi-Han Li
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Guo-Lan Ma
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shuang-Lin Zhang
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yan-Yan Yang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Han-Feng Liu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Antao Luo
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jie Wen
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhen-Zhen Cao
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yu-Zhong Jia
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
8
|
Ahmad T, Khan T, Kirabo A, Shah AJ. Antioxidant Flavonoid Diosmetin Is Cardioprotective in a Rat Model of Myocardial Infarction Induced by Beta 1-Adrenergic Receptors Activation. Curr Issues Mol Biol 2023; 45:4675-4686. [PMID: 37367046 PMCID: PMC10297416 DOI: 10.3390/cimb45060297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Myocardial infarction (MI) is a common and life-threatening manifestation of ischemic heart diseases (IHD). The most important risk factor for MI is hypertension. Natural products from medicinal plants have gained considerable attention globally due to their preventive and therapeutic effects. Flavonoids have been found to be efficacious in ischemic heart diseases (IHD) by alleviating oxidative stress and beta-1 adrenergic activation, but the mechanistic link is not clear. We hypothesized that antioxidant flavonoid diosmetin is cardioprotective in a rat model of MI induced by beta 1-adrenergic receptor activation. To test this hypothesis, we evaluated the cardioprotective potential of diosmetin on isoproterenol-induced MI in rats by performing lead II electrocardiography (ECG), cardiac biomarkers including troponin I (cTnI) and creatinine phosphokinase (CPK), CK-myocardial band, (CK-MB), lactate dehydrogenase (LDH), alanine aminotransferase (ALT), and aspartate aminotranferase (AST) by using biolyzer 100, as well as histopathological analysis. We found that diosmetin (1 and 3 mg/kg) attenuated isoproterenol-induced elevation in the T-wave and deep Q-wave on the ECG, as well as heart-to-body weight ratio and infarction size. In addition, pretreatment with diosmetin attenuated the isoproterenol-induced increase in serum troponin I. These results demonstrate that flavonoid diosmetin may provide therapeutic benefit in myocardial infarction.
Collapse
Affiliation(s)
- Taseer Ahmad
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, University Road, Abbottabad 22060, Pakistan
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Pakistan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taous Khan
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Pakistan
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Abdul Jabbar Shah
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Pakistan
| |
Collapse
|
9
|
Sun S, Dawuti A, Gong D, Wang R, Yuan T, Wang S, Xing C, Lu Y, Du G, Fang L. Puerarin-V Improve Mitochondrial Respiration and Cardiac Function in a Rat Model of Diabetic Cardiomyopathy via Inhibiting Pyroptosis Pathway through P2X7 Receptors. Int J Mol Sci 2022; 23:13015. [PMID: 36361807 PMCID: PMC9653882 DOI: 10.3390/ijms232113015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 08/26/2023] Open
Abstract
There is a new form of puerarin, puerarin-V, that has recently been developed, and it is unclear whether puerarin-V has a cardioprotective effect on diabetic cardiomyopathy (DCM). Here, we determined whether puerarin-V had any beneficial influence on the pathophysiology of DCM and explored its possible mechanisms. By injecting 30 mg/kg of STZ intraperitoneally, diabetes was induced in rats. After a week of stability, the rats were injected subcutaneously with ISO (5 mg/kg). We randomly assigned the rats to eight groups: (1) control; (2) model; (3) metformin; (4-6) puerarin-V at different doses; (7) puerarin (API); (8) puerarin injection. DCM rats were found to have severe cardiac insufficiency (arrythmia, decreased LVdP/dt, and increased E/A ratio). In addition, cardiac injury biomarkers (cTn-T, NT-proBNP, AST, LDH, and CK-MB), inflammatory cytokines (IL-1β, IL-18, IL-6, and TNF-α), and oxidative damage markers (MDA, SOD and GSH) were markedly increased. Treatment with puerarin-V positively adjusts these parameters mentioned above by improving cardiac function and mitochondrial respiration, suppressing myocardial inflammation, and maintaining the structural integrity of the cardiac muscle. Moreover, treatment with puerarin-V inhibits the P2X7 receptor-mediated pyroptosis pathway that was upregulated in diabetic hearts. Given these results, the current study lends credence to the idea that puerarin-V can reduce myocardial damage in DCM rats. Furthermore, it was found that the effect of puerarin-V in diabetic cardiomyopathy is better than the API, the puerarin injection, and metformin. Collectively, our research provides a new therapeutic option for the treatment of DCM in clinic.
Collapse
Affiliation(s)
- Shuchan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Awaguli Dawuti
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Difei Gong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ranran Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shoubao Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cheng Xing
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Lu
- Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lianghua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
10
|
Sweed E, Sweed D, Galal N, Abd-Elhafiz HI. Dapagliflozin Protection against Myocardial Ischemia by Modulating Sodium-glucose Transporter 2 Inhibitor, Silent Information Regulator 1, and Fatty Acid Synthase Expressions. Open Access Maced J Med Sci 2022; 10:1544-1554. [DOI: 10.3889/oamjms.2022.10861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND: The emerging role of sodium-glucose transporter 2 (SGLT2) inhibitors drugs as potential therapeutic agents in myocardial ischemic (MI) injury treatment has raised the concern for possible mechanisms of action.
AIM: The current experimental study aimed to investigate the possible protective effects of dapagliflozin (DAPA) a SGLT2i, on isoproterenol (ISO)-induced MI in rats.
MATERIALS AND METHODS: Thirty Wistar rats were divided randomly and equally into three groups. Group 1 (control group): Received 1.0 mL of normal saline through an orogastric tube for 14 days. Group 2 (ISO group): Received 1.0 mL of normal saline orally through an orogastric tube for 14 days. In the last 2 days (days 13 and 14), ISO (100 mg/kg) was freshly dissolved in normal saline and injected subcutaneously once daily. Group 3 (ISO + DAPA-treated group): Received DAPA 1.0 mg/kg/day orally for 14 days. In the last 2 days (days 13 and 14), ISO (100 mg/kg) was introduced like that described in Group 2.
RESULTS: DAPA protects MI development by reversal of blood pressure changes, electrocardiographic alterations, stabilization of cardiac enzymes, inflammation restoration, oxidative stress, and lipid profile. SGLT2 was overexpressed in the ISO-induced MI, which declined in the ISO + DAPA group. Moreover, DAPA induced silent information regulator 1 (SIRT1)/fatty acid synthase (FASN) overexpression in ISO-induced MI. DAPA could have a potential protective role against acute MI.
CONCLUSION: DAPA protects against acute MI by modulating SIRT1 and FASN expression in cardiac muscles, suppressing oxidative stress, and downregulating inflammatory mediators.
Collapse
|
11
|
Xia J, Hu JN, Zhang RB, Liu W, Zhang H, Wang Z, Jiang S, Wang YP, Li W. Icariin exhibits protective effects on cisplatin-induced cardiotoxicity via ROS-mediated oxidative stress injury in vivo and in vitro. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154331. [PMID: 35878553 DOI: 10.1016/j.phymed.2022.154331] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/22/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cisplatin-induced cardiotoxicity severely limits its clinical application as an antitumor drug and increases the risk of cardiovascular disease. Icariin (ICA), the main flavonoid isolated from Epimedii Folium, has been demonstrated to have various beneficial effects on cardiovascular disease. However, the protective effect of ICA against cisplatin-induced cardiotoxicity remains unclear. PURPOSE In present study, we explored the protective action of ICA against cisplatin-induced cardiotoxicity and its possible molecular mechanisms in vitro and in vivo. METHODS Mice were intraperitoneally injected with cisplatin 4 mg/kg every other day for 7 times to establish myocardial injury model. ICA (15, 30 mg/kg) was administered to mice by gavage for 21 days. H9c2 cells were treated with ICA (3, 6, 12 µM) in the presence or absence of cisplatin (40 µM), and then cell viability, oxidative stress, apoptosis, and mitochondrial function were evaluated. RESULTS Biochemical index detection and histopathological staining analysis showed that ICA had a good protective effect on cisplatin-induced cardiotoxicity. Cellular experiments showed that ICA inhibited cisplatin-induced oxidative stress in a dose-dependent manner by regulating the levels of glutathione peroxidase (GSH-Px), catalase (CAT), superoxide dismutase (SOD) and malondialdehyde (MDA). ICA could inhibit the expression of NF-κB and the secretion of inflammatory factors, thereby alleviating the inflammatory injury caused by cisplatin. In addition, ICA could alleviate cisplatin-induced myocardial injury by activating SIRT1 and PI3K/Akt signaling pathways and inhibiting MAPKs signaling pathway. CONCLUSION These results suggest that ICA could attenuate cisplatin-induced cardiac injury by inhibiting oxidative stress, inflammation and apoptosis, laying a foundation for ICA to reduce chemotherapy-induced cardiotoxicity in clinical practice.
Collapse
Affiliation(s)
- Juan Xia
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ruo-Bing Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Wei Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Hao Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China.
| |
Collapse
|
12
|
Ahmad T, Khan T, Tabassum T, Alqahtani YS, Mahnashi MH, Alyami BA, Alqarni AO, Alasmary MY, Almedhesh SA, Shah AJ. Juglone from Walnut Produces Cardioprotective Effects against Isoproterenol-Induced Myocardial Injury in SD Rats. Curr Issues Mol Biol 2022; 44:3180-3193. [PMID: 35877444 PMCID: PMC9319353 DOI: 10.3390/cimb44070220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Therapeutic and/or preventive interventions using phytochemical constituents for ischemic heart disease have gained considerable attention worldwide, mainly due to their antioxidant activity. This study investigated the cardioprotective effect and possible mechanism of juglone, a major constituent of the walnut tree, using an isoproterenol (ISO)-induced myocardial infarction (MI) model in rats. Rats were pretreated for five (5) days with juglone (1, 3 mg/kg, i.p) and atenolol (1 mg/kg, i.p) in separate experiments before inducing myocardial injury by administration of ISO (80 mg/kg, s.c) at an interval of 24 h for 2 consecutive days (4th and 5th day). The cardioprotective effect of juglone was confirmed through a lead II electrocardiograph (ECG), cardiac biomarkers (cTnI, CPK, CK-MB, LDH, ALT and AST) and histopathological study. The results of our present study suggest that prior administration of juglone (1 and 3 mg/kg) proved to be effective as a cardioprotective therapeutic agent in reducing the extent of myocardial damage (induced by ISO) by fortifying the myocardial cell membrane, preventing elevated T-waves, deep Q-waves in the ECG, heart to body weight ratio, infarction and also by normalizing cardiac marker enzymes (cTnI, CPK, CK-MB, LDH, ALT and AST) and histopathological changes, such as inflammation, edema and necrosis. In conclusion, this study has identified phytochemical constituents, in particular juglone, as a potential cardioprotective agent.
Collapse
Affiliation(s)
- Taseer Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan; (T.A.); (T.K.)
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan; (T.A.); (T.K.)
| | - Tahira Tabassum
- Department Pathology, Sargodha Medical College, University of Sargodha, Sargodha 40100, Pakistan;
| | - Yahya S. Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia; (Y.S.A.); (M.H.M.); (B.A.A.); (A.O.A.)
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia; (Y.S.A.); (M.H.M.); (B.A.A.); (A.O.A.)
| | - Bandar A. Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia; (Y.S.A.); (M.H.M.); (B.A.A.); (A.O.A.)
| | - Ali O. Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia; (Y.S.A.); (M.H.M.); (B.A.A.); (A.O.A.)
| | - Mohammed Y. Alasmary
- Medical Department, College of Medicine, Najran University, Najran 61441, Saudi Arabia;
| | - Sultan A. Almedhesh
- Pediatric Department, College of Medicine, Najran University, Najran 61441, Saudi Arabia;
| | - Abdul Jabbar Shah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan; (T.A.); (T.K.)
- Correspondence:
| |
Collapse
|
13
|
Yin Y, Wang L, Chen G, You H. Effect of Fraxetin on Oxidative Damage Caused by Isoproterenol-Induced Myocardial Infarction in Rats. Appl Biochem Biotechnol 2022; 194:5666-5679. [PMID: 35802243 DOI: 10.1007/s12010-022-04019-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
At present, cardiovascular disorders are the most prominent factors for the high morbidity rate globally. The occurrence of myocardial infarction followed by myocardial ischemia is the important cause of high death rates. Various medical treatments are available, yet the mortality and morbidity rate is high. In the present investigation, the cardioprotective property of fraxetin (Fx) is evaluated in myocardial infarction-induced experimental rats. Fraxetin, a phytochemical known as coumarin isolated from Fraxinus rhynchophylla. Fraxetin has numerous pharmacological activities including antioxidant, apoptosis inhibitor, anti-inflammatory, and antimicrobial agent. The experimental mice were split into 4 groups each comprising six animals. Group I was considered the control group; 0.1% NaCl solution was given as dosage. Group II received only Fx; group III was treated with ISO. Group IV was treated with Fx followed by ISO to induce myocardial infarction. In ISO administrated rats, there were changes in the heart weight, activities of cardiac markers, transmembrane protein activity, antioxidant enzymes, pro-inflammatory proteins, lipid profile, and myocardial structures. Pre-treatment of fraxetin in group IV experimental rats resulted in decreased cardiac weight, diminished level of cardiac markers (cardiac troponin T (cTnT), creatine kinase, creatine kinase-MB, and cardiac troponin I (cTnI)), reduced level of oxidative stress biomarkers (LOOH and TBARS) in the plasma and cardiac tissue, amplified level of enzymes in antioxidant defense system (catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GPx)) in the plasma and heart tissue, and elevated level of ATPase activities. The histopathological studies also revealed the potent activity of fraxetin in protecting the cardiac tissues from inflammation and damage. ISO-administrated experimental rats treated with fraxetin exhibit increased antioxidants activity and decreased free radicals. Our study revealed that the administration of fraxetin significantly reduced the extent of myocardial damage during myocardial infarction in rats caused by isoproterenol. Thus, the results prove the cardioprotective effect of fraxetin in MI-induced rats.
Collapse
Affiliation(s)
- Yu Yin
- Department of Medical Insurance, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong Province, China
| | - Lihui Wang
- Department of Internal Medicine, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong Province, China
| | - Guifang Chen
- Department of Integrated Traditional Chinese and Western Medicine & Rheumatology and Immunology, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong Province, China
| | - Hongwen You
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwuweiqi Road, Jinan City, 250021, Shandong Province, China.
| |
Collapse
|
14
|
Sambu S, Hemaram U, Murugan R, Alsofi AA. Toxicological and Teratogenic Effect of Various Food Additives: An Updated Review. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6829409. [PMID: 35782077 PMCID: PMC9249520 DOI: 10.1155/2022/6829409] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Scientific evidence is mounting that synthetic chemicals used as food additives may have harmful impacts on health. Food additives are chemicals that are added to food to keep it from spoiling, as well as to improve its colour and taste. Some are linked to negative health impacts, while others are healthy and can be ingested with little danger. According to several studies, health issues such as asthma, attention deficit hyperactivity disorder (ADHD), heart difficulties, cancer, obesity, and others are caused by harmful additives and preservatives. Some food additives may interfere with hormones and influences growth and development. It is one of the reasons why so many children are overweight. Children are more likely than adults to be exposed to these types of dietary intakes. Several food additives are used by women during pregnancy and breast feeding that are not fully safe. We must take specific precaution to avoid consuming dangerous compounds before they begin to wreak havoc on our health. This study is intended to understand how the preservatives induce different health problem in the body once it is consumed. This review focuses on some specific food additives such as sodium benzoate, aspartame, tartrazine, carrageenan, and potassium benzoate, as well as vitamin A. Long-term use of food treated with the above-mentioned food preservatives resulted in teratogenicity and other allergens, according to the study. Other health issues can be avoided in the future by using natural food additives derived from plants and other natural sources.
Collapse
Affiliation(s)
- Saseendran Sambu
- Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Urmila Hemaram
- Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Rajadurai Murugan
- Department of Food Technology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Ahmed A. Alsofi
- Department of Pharmacy, Faculty of Medical Sciences, Aljanad University for Science and Technology, Taiz, Yemen
| |
Collapse
|
15
|
Cardioprotective Potential of Aqueous Extract of Fumaria indica on Isoproterenol-Induced Myocardial Infarction in SD Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2112956. [PMID: 35757502 PMCID: PMC9232377 DOI: 10.1155/2022/2112956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
Ischemic heart disease (IHD) treatments and preventions by using plant extract and its phytochemical constituents have achieved considerable attention globally due to its cardioprotective effects. This study is aimed at investigating the cardioprotective and vascular effects of Fumaria indica (F. indica) crude extract on isoproterenol- (ISO-) induced myocardial infarction (MI) in Sprague-Dawley (SD) rats. Rats treated with isoproterenol (85 mg/kg, s.c), administered. Twice at an interval of 24 h showed a significant ST-segment elevation in ECG, edema, and necrosis in histopathology and also in troponin I (cTnI), creatine phosphokinase (CPK), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST). Pretreatment with F. indica (10, 30, and 100 mg/kg, p.o) for 21 days significantly reversed the effects of isoproterenol-induced ischemic changes in the ECG, levels of cTnI, CPK, LDH, and AST, and histopathological changes. In isolated rat atrial strips, F. indica induced negative chronotropic and inotropic effects which were not affected by pretreatment with atropine, excluding role of cardiac muscarinic receptors. Cumulative addition of the extract induced a vasorelaxant effect on phenylephrine-evoked contractions in isolated rat aortic rings, which remained unchanged when challenged with L-NAME, excluding role of endothelial NO. However, extract of F. indica concentration dependently reversed contractions evoked with high K+, indicating calcium entry blocking effect. In conclusion, the F. indica extract is a cardioprotective remedy that ameliorates the isoproterenol-induced cardiotoxic effects and reverses cardiac ischemia, and the calcium antagonistic effect might be of useful in the treatment of MI.
Collapse
|
16
|
Attenuation of isoprenaline-induced myocardial infarction by Rheum turkestanicum. Biomed Pharmacother 2022; 148:112775. [PMID: 35240528 DOI: 10.1016/j.biopha.2022.112775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Oxidative stress plays a major role in the pathogenesis of myocardial infarction. This study evaluated the cardioprotective effects of the hydroalcoholic extract of Rheum turkestanicum on isoprenaline-induced myocardial infarction (MI) in Wistar rats. METHODS In this study, we used liquid chromatography-mass spectrometry to determine the active compounds present in the extract. Thirty rats were divided to 5 groups (6 rats in each group). The extract was administered orally at the doses of 100 and 300 mg/kg body weight and then a subcutaneous injection of isoprenaline (85 mg/kg) was administered on the 8th and 9th days. Serum levels of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and creatinine kinase (CPK) were measured using standard commercial kits. Serum activities of superoxide dismutase, catalase, and cardiac levels of thiol and lipid peroxidation were also determined. Hematoxylin and eosin were used for histopathological staining. RESULTS Phytochemical analysis revealed the presence of 24 compounds in the hydro-ethanolic extract of R. turkestanicum. Isoprenaline increased malondialdehyde (4.002 ± 0178, P < 0.001) while decreased thiol content (101.7 ± 6.186, P < 0.001). Moreover, reduced activities of superoxide dismutase (139 ± 10.88, P < 0.001) and catalase (2.812 ± 0.215, P < 0.001), and elevated levels of LDH (1245 ± 62.28, P < 0.001), CPK (898 ± 23.06, P < 0.001) and CK-MB (697 ± 50.22, P < 0.001) were observed. Pretreatment with the R. turkestanicum extract significantly reduced cardiac markers and increased thiol content as well as the activity of antioxidant enzymes. The extract attenuated the histopathological changes induced by isoprenaline. CONCLUSION According to the obtained results, R. turkestanicum may be an appropriate candidate to reduce isoprenaline-induced MI through modulation of oxidative stress. Administration of the extract attenuated cardiac enzymes following isoprenaline administration. The cardioprotective action of the extract can be attributed to the bioactive antioxidant ingredients of R. turkestanicum. To identify the precise mechanisms, further investigations are required.
Collapse
|
17
|
Ibrahim KA, Abdelgaid HA, Eleyan M, Mohamed RA, Gamil NM. Resveratrol alleviates cardiac apoptosis following exposure to fenitrothion by modulating the sirtuin1/c-Jun N-terminal kinases/p53 pathway through pro-oxidant and inflammatory response improvements: In vivo and in silico studies. Life Sci 2022; 290:120265. [PMID: 34968465 DOI: 10.1016/j.lfs.2021.120265] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023]
Abstract
Fenitrothion (FNT), a commonly used organophosphate, can cause oxidative damage and apoptosis on various organs. However, the underlying mechanisms for FNT-induced cardiotoxicity did not formally report. Here, we have evaluated the possible ameliorative roles of resveratrol (RSV) against FNT-induced cardiac apoptosis in male rats through the sirtuin1 (SIRT1)/c-Jun N-terminal kinase (c-JNK)/p53 pathway concerning pro-oxidant and inflammatory cytokines. Forty-eight male rats were equally grouped into control, RSV (20 mg/kg), 5-FNT (5 mg/kg), 10-FNT (10 mg/kg), 20-FNT (20 mg/kg), 5-FNT-RSV, 10-FNT-RSV, and 20-FNT-RSV where all doses administrated by gavage for four weeks. The present findings demonstrated that RSV markedly diminished the level of hyperlipidemia and elevation in lactate dehydrogenase (LDH), total creatine kinase (CK-T), and troponin T (TnT) levels following FNT intoxication. Furthermore, RSV significantly reduced FNT-induced cardiac oxidative injury by reducing malondialdehyde (MDA) level and improving the levels of glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), and acetylcholinesterase (AchE). Also, the levels of interleukin-1β (IL1β,), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were significantly attenuated in the co-treated groups. Moreover, RSV alleviated the histopathological changes promoted by FNT and repaired the transcript levels of SIRT1, c-JNK, and caspase-9/3 along with p53 immunoreactivity. In silico study revealed that the free binding energies of RSV complexes with protein and DNA sequences of SIRT1 were lower than docked complexes of FNT. Therefore, RSV reserved myocardial injury-induced apoptosis following exposure to FNT by modulating the SIRT1/c-JNK/p53 pathway through cellular redox status and inflammatory response improvements.
Collapse
Affiliation(s)
- Khairy A Ibrahim
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza 12618, Egypt.
| | - Hala A Abdelgaid
- Biochemistry Department, National Hepatology and Tropical Medicine Research Institute, Cairo 11796, Egypt
| | - Mohammed Eleyan
- Department of Laboratory Medical Sciences, Alaqsa University, Gaza, 4051, Palestine
| | - Rania A Mohamed
- Mammalian Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Noha M Gamil
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6(th) of October City, Egypt
| |
Collapse
|
18
|
Viswanatha GL, Shylaja H, Keni R, Nandakumar K, Rajesh S. A systematic review and meta‐analysis on the cardio‐protective activity of naringin based on pre‐clinical evidences. Phytother Res 2022; 36:1064-1092. [DOI: 10.1002/ptr.7368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/15/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022]
Affiliation(s)
| | | | - Raghuvir Keni
- Department of Pharmacology Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education Manipal India
| | - Krishnadas Nandakumar
- Department of Pharmacology Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education Manipal India
| | - Subbanna Rajesh
- Department of Pharmacology Government College of Pharmacy Bangalore India
| |
Collapse
|
19
|
Antithrombotic Activity of the Antiplatelet Agent Angipur on the Model of Arterial Thrombosis in Rats with Isoproterenol-Induced Myocardial Infarction. Bull Exp Biol Med 2022; 172:314-317. [PMID: 35001313 DOI: 10.1007/s10517-022-05383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 10/19/2022]
Abstract
We studied the effect of Angipur on the process of experimental thrombosis induced by damage to the carotid artery wall by surface application of 50% ferric chloride (III) solution in rats without comorbidities and with isoproterenol-induced myocardial infarction. In animals without comorbidities, Angipur administered intravenously was 1.2 times less effective, in terms of ED50, than the well-known inhibitor of GPIIb/IIIa platelet receptors tirofiban. However, under conditions of non-coronary myocardial infarction, Angipur significantly prolonged the time of thrombus formation and exhibited 1.4-fold higher activity than the reference drug tirofiban.
Collapse
|
20
|
Abdelmonem M, Ibrahim SM, Essam RM, Amin HAA, Abd-Elmawla MA. Lutein exerts its cardioprotective effect against the experimental model of isoprenaline-induced myocardial infarction via MIAT/miR-200a/Nrf2/TXINP pathway. J Biochem Mol Toxicol 2021; 35:e22899. [PMID: 34435724 DOI: 10.1002/jbt.22899] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022]
Abstract
Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. Lutein (LU) possesses numerous pharmacological activities, including anti-inflammatory, antioxidant, and antiapoptotic effects. This study aimed to investigate the cardioprotective potential of LU in isoprenaline (ISO)-induced MI and to explore its molecular mechanisms of action. AMI was induced by two consecutive subcutaneous doses of ISO (65 mg/kg; s.c.). The LU group was pretreated with LU (20 mg/kg; p.o.) for 30 days followed by ISO injections on Days 29 and 30. ISO group showed elevated serum creatine kinas-MB (CK-MB) and considerable electrocardiographic changes along with reduced ejection fraction compared to the normal group. LU pretreatment could decrease serum CK-MB activity, normalize QRS and QTc intervals and restore ejection fraction compared to the untreated group. The ISO group demonstrated infarcted-like lesions, which were ameliorated in the LU-pretreated group. Immunohistochemical investigation revealed upregulated cardiac troponin T (cTn T) and desmin expressions in the LU-pretreated group. LU pretreatment also enhanced cardiac thioredoxin (Trx) and glutathione (GSH) contents as well as reduced lipid peroxidation, compared to the untreated group. Importantly, LU pretreatment could downregulate long noncoding MI associated transcript (lncRNA MIAT) and thioredoxin-interacting protein (TXNIP) and augment micro RNA (miR)-200a and nuclear factor erythroid 2-related factor 2 (Nrf2) expressions compared to the ISO group. Moreover, a significant inverse correlation between MIAT and miR-200a was observed. In conclusion, this study revealed that LU could ameliorate ISO-induced MI in rats by modulating MIAT/miR-200a/Nrf2 pathway.
Collapse
Affiliation(s)
- Maha Abdelmonem
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sherehan M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hebat Allah A Amin
- Department of Pathology, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother 2021; 139:111708. [PMID: 34243633 DOI: 10.1016/j.biopha.2021.111708] [Citation(s) in RCA: 428] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/06/2022] Open
Abstract
Doxorubicin (Dox) is a secondary metabolite of the mutated strain of Streptomyces peucetius var. Caesius and belongs to the anthracyclines family. The anti-cancer activity of Dox is mainly exerted through the DNA intercalation and inhibiting topoisomerase II enzyme in fast-proliferating tumors. However, Dox causes cumulative and dose-dependent cardiotoxicity, which results in increased risks of mortality among cancer patients and thus limiting its wide clinical applications. There are several mechanisms has been proposed for doxorubicin-induced cardiotoxicity and oxidative stress, free radical generation and apoptosis are most widely reported. Apart from this, other mechanisms are also involved in Dox-induced cardiotoxicity such as impaired mitochondrial function, a perturbation in iron regulatory protein, disruption of Ca2+ homeostasis, autophagy, the release of nitric oxide and inflammatory mediators and altered gene and protein expression that involved apoptosis. Dox also causes downregulation of DNA methyltransferase 1 (DNMT1) enzyme activity which leads to a reduction in the DNA methylation process. This hypomethylation causes dysregulation in the mitochondrial genes like peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1-alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) unit in the heart. Apart from DNA methylation, Dox treatment also alters the micro RNAs levels and histone deacetylase (HDAC) activity. Therefore, in the current review, we have provided a detailed update on the current understanding of the pathological mechanisms behind the well-known Dox-induced cardiotoxicity. Further, we have provided some of the most plausible pharmacological strategies which have been tested against Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Pushkar Singh Rawat
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Aiswarya Jaiswal
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT), Delhi 110016, India.
| | - Jasvinder Singh Bhatti
- Department of human genetics and molecular medicine, School of health sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
22
|
Aziz FTA, Sanad FAA, Temraz A, El-Tantawy WH, Hassan MA. Study of cardioprotective activity of the methanolic extract of the aerial parts of Bauhinia madagascariensis compared to Bauhinia purpurea against adrenaline-induced myocardial toxicity in rats. Drug Chem Toxicol 2021; 45:2341-2351. [PMID: 34167392 DOI: 10.1080/01480545.2021.1942486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cardiovascular ailments result in a great rate of mortality all over the world. Myocardial infarction is a common presentation of cardiovascular disease. The current work aimed to investigate and compare the cardioprotective potentials of methanolic extracts from the aerial parts from Bauhinia purpurea and Bauhinia madagascariensis in adrenaline-induced cardiotoxicity in rats. The rats were categorized into five groups as follows: control group, adrenaline-treated group, Bauhinia purpurea extract + adrenaline treated group, Bauhinia madagascariensis+ adrenaline treated group, reference drug (captopril) + adrenaline treated group. The extracts as well as the reference drug were orally administered for 21 consecutive days. On day 22, adrenaline was injected as a single dose for 2 consecutive days. The adrenaline injection caused a significant increase (p < 0.05) in serum cardiac markers (ALT, AST, CK-MB, LDH), angiotensin-converting enzyme (ACE) and matrix metalloproteinase (MMP-9), inducible nitric oxide synthase (iNOS) activities, tumor necrosis factor-α (TNF-α) cardiac lipid peroxides (MDA) levels and a significant decline (p < 0.05) in cardiac reduced glutathione (GSH) levels compared to their corresponding controls. The pretreatment extracts significantly ameliorated (p < 0.05) these alterations. Histopathological investigations supported the biochemical data. Bauhinia madagascariensis extract exerted a significant anti-inflammatory activity than that of Bauhinia purpurea. In addition, Bauhinia madagascariensis extract revealed a significant inhibitory activity on ACE compared to that of Bauhinia purpurea, (p < 0.05). These data reveal that both extracts had a strong protective activity against adrenaline-induced cardiotoxicity via improving cardiac function, reducing ECG and histopathological changes that could be mediated in part through its anti-oxidant, anti-inflammatory effects, inhibition of ACE, MMP-9, and iNOS.
Collapse
Affiliation(s)
| | | | - Abeer Temraz
- Pharmacognosy Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | | | - Madiha Amin Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
23
|
Ahmad S, Mahmood T, Kumar R, Bagga P, Ahsan F, Shamim A, Ansari A, Shariq M. Comparative evaluation of cardioprotective activity of Gala and Fuji apple juice against isoprenaline-induced cardiotoxicity in rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:27-36. [PMID: 33977685 DOI: 10.1515/jcim-2020-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/02/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Comparative evaluation of cardioprotective activity of Gala and Fuji apple juice against isoprenaline induced cardiotoxicity in rats. METHODS Rats (125-150 g) were orally administered Gala (GA) and Fuji (FA) apple juice (3 mL/day, per oral) for 13 days. Myocardial injury was inducted on 14th and 15th day by the administration of Isoprenaline (85 mg/kg/day, subcutaneous). RESULTS In treated group i.e. GA and FA, aspartate aminotransferase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH), creatine kinase (CK), Troponin-I level and malondialdehyde (MDA) content was reduced while glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) level was significantly increased. Marked reduction in cholesterol, triglyceride, phospholipids, low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) was observed while high-density lipoprotein (HDL) level increased significantly. In tissue and serum total serum protein (TSP) level, Albumin, Globulin and A/G ratio increased very significantly in the treated group while the level of white blood corpuscles (WBC), haemoglobin (Hb), erythrocyte sedimentation rate (ESR), total fibrinogen (TF), bleeding time (BT), c-reactive protein (C-rP), red blood corpuscles (RBC), clotting time (CT) and prothrombin time (PT) showed a significant rise in the level. The level of Sialic acid, hexose, fucose and hexosamine was highly significantly increased, there was an increase in the level of K+ and glycogen while a significant reduction in electrolyte and glucose level was observed when all these parameters were compared to Isoprenaline (ISO) group. The above findings were supported by histopathological examination of hearts. Cardioprotective activity was compared with standard drug, metoprolol. On comparative analysis of both juices, GA juices have found more effective when compared to FA juice. CONCLUSIONS The study was concluded that Gala and Fuji apple possessed significant prophylactic and protective effects against Isoprenaline-induced cardiotoxicity in rats through maintaining inhibiting lipid peroxidation, endogenous antioxidant enzyme activities and cytokine levels.
Collapse
Affiliation(s)
- Shoaib Ahmad
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Tarique Mahmood
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Ranjan Kumar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Paramdeep Bagga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Farogh Ahsan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Arshiya Shamim
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Abdullah Ansari
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohammad Shariq
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
24
|
Zhao Y, Wang Y, Zhang M, Gao Y, Yan Z. Protective Effects of Ginsenosides (20R)-Rg3 on H 2 O 2 -Induced Myocardial Cell Injury by Activating Keap-1/Nrf2/HO-1 Signaling Pathway. Chem Biodivers 2021; 18:e2001007. [PMID: 33624427 DOI: 10.1002/cbdv.202001007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/23/2021] [Indexed: 12/30/2022]
Abstract
Ginsenosides (20S)-Rg3 and (20R)-Rg3 are famous rare ginsenosides from red ginseng, and their configurations in C-20 are different. This study aimed to investigate the protective mechanism of ginsenosides (20S)-Rg3 and (20R)-Rg3 on H2 O2 -induced H9C2 cells and compare their activity. The results showed that the ginsenosides (20S)-Rg3 and (20R)-Rg3 could increase the cell activity and the levels of GSH-Px, SOD and CAT, and decrease activities of LDH, MDA and ROS. Further studies showed that ginsenosides (20S)-Rg3 and (20R)-Rg3 could prevent oxidative stress injury of H9C2 cells by H2 O2 through the Keap-1/Nrf2/HO-1 pathway. But the ML385 counteracts these effects. Interestingly, among these results, ginsenoside (20R)-Rg3 was superior to (20S)-Rg3, indicating that ginsenoside (20R)-Rg3 have a stronger effect of antioxidative stress. This study reflected that ginsenoside (20R)-Rg3 could be used as a potential Nrf2 activator and a safe effective Chinese herbal monomer in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Yu Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Min Zhang
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.,College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yugang Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Zhaowei Yan
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China.,College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
25
|
Bilgic S, Ozgocmen M, Ozer MK, Asci H. Misoprostol ameliorates doxorubicin induced cardiac damage by decreasing oxidative stress and apoptosis in rats. Biotech Histochem 2020; 95:514-521. [PMID: 32180467 DOI: 10.1080/10520295.2020.1727013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We investigated the potential cardioprotective effects of misoprostol (MP) on doxorubicin (DOX) induced cardiac damage using histologic and biochemical assessment of rat heart. We used 21 male rats divided randomly into three groups: group 1, control; group 2, DOX; group 3, DOX + MP. The control group was given 0.5 ml 0.9% NaCl intraperitoneally (i.p.) and 1 ml 0.9% NaCl orally for 6 days. DOX was administered as a single dose of 20 mg/kg i.p. on day 3. MP was administered orally for 6 days. We found that treatment with MP decreased significantly serum cardiac troponin-I, brain natriuretic peptide levels, and lactate dehydrogenase, aspartate aminotransferase, alanine transaminase and creatine kinase isoenzyme-MB activities. DOX increased the malondialdehyde level and decreased the catalase, superoxide dismutase activities and glutathione levels; MP prevented these alterations. MP also decreased NADPH oxidase-4 and caspase-3 levels. In the DOX + MP group, oxidative stress was decreased, antioxidant activity was increased and histopathological changes were decreased compared to the DOX group. Cardiac damage caused by DOX was attenuated by MP treatment owing to the antioxidative and anti-apoptotic effects of MP. MP may be useful for reducing the severity of DOX induced damage.
Collapse
Affiliation(s)
- S Bilgic
- Department of Medical Biochemistry, Vocational School of Health Services, University of Adıyaman , Adıyaman, Turkey
| | - M Ozgocmen
- Department of Histology, and Embryology, Faculty of Medicine, Suleyman Demirel University , Isparta, Turkey
| | - M K Ozer
- Department of Pharmacology, Faculty of Medicine, Adıyaman University , Adıyaman, Turkey
| | - H Asci
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University , Isparta, Turkey
| |
Collapse
|
26
|
S M, Shaik AH, E MP, Al Omar SY, Mohammad A, Kodidhela LD. Combined cardio-protective ability of syringic acid and resveratrol against isoproterenol induced cardio-toxicity in rats via attenuating NF-kB and TNF-α pathways. Sci Rep 2020; 10:3426. [PMID: 32099011 PMCID: PMC7042357 DOI: 10.1038/s41598-020-59925-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
The study was conducted to evaluate the cardio-protective activity of combination (COMB) of syringic acid (SA) and resveratrol (RV) against isoproterenol (ISO) induced cardio-toxicity in rats. Rats were pre-treated orally with SA (50 mg/kg), RV (50 mg/kg) and combination of SA (25 mg/kg) and RV (25 mg/kg) along with positive control gallic acid (50 mg/kg) for 30 days. The effects of ISO on cardiac markers, lipid profile and lipid peroxidation marker, anti-oxidant enzymes and m-RNA expression of nuclear factor-kappa B (NF-kB) and tumor necrosis factor-α (TNF-α) were observed along with histopathological observations of simple and transmission electron microscopes (TEM). Serum creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH) and alkaline phosphatase were significantly increased while cardiac tissue CK-MB, LDH, superoxide dismutase and catalase were significantly decreased in ISO administered rats, which also exhibited a significant increase in total cholesterol, triglycerides, low density lipoprotein cholesterol, very low density lipoprotein cholesterol and thiobarbutyric acid reactive substances and significant decrease in high density lipoprotein cholesterol in serum and heart. The m-RNA levels of inflammatory markers NF-kB and TNF-α were significantly increased in ISO treated rats. COMB Pre-treatment significantly reversed the ISO actions. Histopathological studies of simple and TEM were also co-related with the above biochemical parameters. Docking studies with NF-kB were also performed. Evidence has shown for the first time in this approach that COMB pre-treatment ameliorated ISO induced cardio-toxicity in rats and revealed cardio-protection.
Collapse
Affiliation(s)
- Manjunatha S
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | - Althaf Hussain Shaik
- Central Laboratory, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Maruthi Prasad E
- Shenzhen key of Laboratory of Translational medicine of Tumor, A7, 451, Department of Cell Biology and Genetics, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| | - Suliman Yousef Al Omar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Altaf Mohammad
- Central Laboratory, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lakshmi Devi Kodidhela
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| |
Collapse
|
27
|
Zhao C, Yin X, Zhao C. The Renoprotective Effects of Naringenin (NGN) in Gestational Pregnancy. Diabetes Metab Syndr Obes 2020; 13:53-63. [PMID: 32021351 PMCID: PMC6955625 DOI: 10.2147/dmso.s231851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) is defined as glucose intolerance that is first diagnosed during pregnancy, a condition risking the health of both the mother and the baby. Naringenin (NGN) has been demonstrated to have multiple therapeutic functions, while it is also considered to exhibit antidiabetic properties. The present study aimed to investigate the protective effects of NGN in pregnant diabetic rats. METHODS GDM was induced by feeding the rats with a high-fat diet for 5 weeks, followed by intraperitoneal injection of streptozotocin (35 mg/kg). The fasting blood glucose were determined with a glucometer and the 24-h urine protein (24-UPro) were determined by the sulfonyl salicylic acid method. The pathological morphological changes and apoptosis of glomeruli cells of kidney tissue using hematoxylin and eosin (H&E) staining and TUNEL analysis. Enzyme-linked immunosorbent assay (ELISA) kits were used to detect the serum T-AOC, the activity of SOD, the levels of GSH-Px, CAT and MDA, TNF-α, IL-6, TGF-β, ICAM-1.The expression of related genes were measured by RT-qPCR and Western blot analyses. RESULTS In the NGN-treated group, it was observed that the general status of the rats was improved, while the levels of blood glucose and 24-UPro were significantly decreased. In addition, the histopathological changes in renal tissues and renal cell apoptosis were significantly improved upon treatment with NGN. The expression levels of oxidative stress and inflammation-associated factors also differed signifigcantly between the model and NGN-treated groups. Upon treatment with NGN, the levels of peroxisome proliferator-activated receptor α were significantly increased, while the activity of enzymes involved in the oxidative metabolism of fatty acids was significantly decreased. CONCLUSION These preliminary experimental findings demonstrate that NGN has a certain renoprotective effect on GDM, which provides a novel therapeutic option for this condition.
Collapse
Affiliation(s)
- Chunrong Zhao
- Department of Obstetrics, Linyi Central Hospital of Shandong Province, Linyi, Shandong276400, People’s Republic of China
| | - Xiufeng Yin
- Department of Obstetrics and Gynecology, Yixing People’s Hospital, Wuxi, Jiangsu214200, People’s Republic of China
- Correspondence: Xiufeng Yin Department of Obstetrics and Gynecology, Yixing People’s Hospital, No. 75 Tongzhen Guan Road, Yicheng, Yixing, Jiangsu214200, People’s Republic of ChinaTel +86-510-8733 0741 Email
| | - Chunping Zhao
- Department of Obstetrics, Linyi Central Hospital of Shandong Province, Linyi, Shandong276400, People’s Republic of China
| |
Collapse
|
28
|
Naringin Reverses High-Cholesterol Diet-Induced Vascular Dysfunction and Oxidative Stress in Rats via Regulating LOX-1 and NADPH Oxidase Subunit Expression. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3708497. [PMID: 31781614 PMCID: PMC6855071 DOI: 10.1155/2019/3708497] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022]
Abstract
Hypercholesterolaemia is associated with oxidative stress and endothelial dysfunction and leads to the development of atherosclerosis. Naringin exhibits cardiovascular protective and antioxidant properties. Therefore, the aim of this study was to assess the effect of naringin administration on vascular oxidative stress and endothelial dysfunction in hypercholesterolaemic rats and to elucidate its underlying mechanism. Sprague Dawley rats were fed a diet with 1.5% cholesterol (HCD) for 8 weeks to induce hypercholesterolaemia. Naringin (100 mg/kg body weight) was orally administrated to rats during the last 4 weeks of the diet treatment. After 8 weeks, the thoracic aorta was isolated to determine vascular function and nitric oxide (NO) levels. The aortic superoxide anion (O2−) level was detected using dihydroethidium (DHE) fluorescence staining. Protein expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits, and inducible nitric oxide synthase (iNOS), as well as oxidative damage markers, was also evaluated in aortae. Naringin treatment of hypercholesterolaemic rats enhanced aortic NO levels, restored endothelium-dependent responses to acetylcholine (ACh), and reduced aortic O2− levels. Furthermore, naringin treatment decreased LOX-1, NADPH oxidase subunits (p47phox, Nox2, and Nox4), and iNOS as well as oxidative damage markers (3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE)) expression in aortic tissues from hypercholesterolaemic rats. These results demonstrate that naringin treatment improves endothelium dysfunction in hypercholesterolaemic rats, at least partially by decreasing oxidative stress via downregulation of LOX-1 and NADPH oxidase.
Collapse
|
29
|
See Hoe LE, Bartnikowski N, Wells MA, Suen JY, Fraser JF. Hurdles to Cardioprotection in the Critically Ill. Int J Mol Sci 2019; 20:E3823. [PMID: 31387264 PMCID: PMC6695809 DOI: 10.3390/ijms20153823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/26/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the largest contributor to worldwide mortality, and the deleterious impact of heart failure (HF) is projected to grow exponentially in the future. As heart transplantation (HTx) is the only effective treatment for end-stage HF, development of mechanical circulatory support (MCS) technology has unveiled additional therapeutic options for refractory cardiac disease. Unfortunately, despite both MCS and HTx being quintessential treatments for significant cardiac impairment, associated morbidity and mortality remain high. MCS technology continues to evolve, but is associated with numerous disturbances to cardiac function (e.g., oxidative damage, arrhythmias). Following MCS intervention, HTx is frequently the destination option for survival of critically ill cardiac patients. While effective, donor hearts are scarce, thus limiting HTx to few qualifying patients, and HTx remains correlated with substantial post-HTx complications. While MCS and HTx are vital to survival of critically ill cardiac patients, cardioprotective strategies to improve outcomes from these treatments are highly desirable. Accordingly, this review summarizes the current status of MCS and HTx in the clinic, and the associated cardiac complications inherent to these treatments. Furthermore, we detail current research being undertaken to improve cardiac outcomes following MCS/HTx, and important considerations for reducing the significant morbidity and mortality associated with these necessary treatment strategies.
Collapse
Affiliation(s)
- Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia.
- Faculty of Medicine, University of Queensland, Chermside 4032, Australia.
| | - Nicole Bartnikowski
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia
- Science and Engineering Faculty, Queensland University of Technology, Chermside 4032, Australia
| | - Matthew A Wells
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia
- School of Medical Science, Griffith University, Southport 4222, Australia
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia
- Faculty of Medicine, University of Queensland, Chermside 4032, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Chermside 4032, Australia
- Faculty of Medicine, University of Queensland, Chermside 4032, Australia
| |
Collapse
|
30
|
Afsar T, Razak S, Almajwal A, Shabbir M, Khan MR. Evaluating the protective potency of Acacia hydaspica R. Parker on histological and biochemical changes induced by Cisplatin in the cardiac tissue of rats. Altern Ther Health Med 2019; 19:182. [PMID: 31337380 PMCID: PMC6651963 DOI: 10.1186/s12906-019-2575-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/24/2019] [Indexed: 12/30/2022]
Abstract
Background Increase oxidative trauma is the main cause behind Cisplatin (CP) induced cardiotoxicity which restricts its clinical application as anti-neoplastic prescription. Acacia hydaspica is a natural shrub with diverse bioactivities. Acacia hydaspica ethyl acetate extract (AHE) ameliorated drug-induced cardiotoxicity in animals with anti-oxidative mechanisms. Current study aimed to evaluate the protective potential of A. hydaspica against cisplatin-induced myocardial injury. Methods Rats were indiscriminately distributed into six groups (n = 6). Group 1: control; Groups 2: Injected with CP (7.5 mg/kg bw, i.p, single dose) on day 16; Group 3: Treated for 21 days with AHE (400 mg/kg b.w, oral); Group 4: Received CP injection on day 16 and treated with AHE for 5 days post injection; Group 5: Received AHE (400 mg/kg b.w/day, p.o.) for 21 days and CP (7.5 mg/kg b.w., i.p.) on day 16; Group 6: Treated with silymarin (100 mg/kg b.w., p.o.) after 1 day interval for 21 days and CP injection (7.5 mg/kg b.w., i.p.) on day 16. On 22nd day, the animals were sacrificed and their heart tissues were removed. Cisplatin induced cardiac toxicity and the influence of AHE were evaluated by examination of serum cardiac function markers, cardiac tissue antioxidant enzymes, oxidative stress markers and histology. Results CP inoculation considerably altered cardiac function biomarkers in serum and diminished the antioxidant enzymes levels, while increased oxidative stress biomarkers in cardiac tissues AHE treatment attenuated CP-induced deteriorations in creatine kinase (CK), Creatine kinase isoenzymes MB (CK-MB), cardiac Troponin I (cTNI) and lactate dehydrogenase (LDH) levels and ameliorated cardiac oxidative stress markers as evidenced by decreasing lipid peroxidation, H2O2 and NO content along with augmentation in phase I and phase II antioxidant enzymes. Additionally, CP inoculation also induced morphological alterations which were ameliorated by AHE. In pretreatment group more significant protection was observed compared to post-treatment group indicating preventive potential of AHE. The protective potency of AHE was comparable to silymarin. Conclusion Results demonstrate that AHE attenuated CP induce cardiotoxicity. The polyphenolic metabolites and antioxidant properties of AHE might be responsible for its protective influence.
Collapse
|
31
|
Protective effect of Ziziphora clinopodioides flavonoids against H 2O 2-induced oxidative stress in HUVEC cells. Biomed Pharmacother 2019; 117:109156. [PMID: 31387192 DOI: 10.1016/j.biopha.2019.109156] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
The present study was designed to study the protective effect of Ziziphora clinopodioides flavonoids (ZCF) against H2O2-induced oxidative stress in HUVEC cells. MTT assay was carried out to determine the cell viability of HUVEC cells following pretreatment with ZCF. Fluorescent microscopy measurements were performed to evaluate apoptosis of HUVEC cells. Furthermore, the effects of ZCF on the activities of antioxidants superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), malondialdehyde production (MDA) and lactic dehydrogenase (LDH) levels were analyzed. Apoptosis was observed by Hoechst33258 staining and AO staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the expression of B-cell lymphoma/leukemia-2 (Bcl-2), Bcl-2-associated X protein (Bax) and aspartate proteolytic enzyme-3 (Caspase-3) mRNA. The expression of vascular endothelial growth factor receptor 2 (VEGFR2), protein kinase B (Akt), phosphorylated protein kinase B (p-Akt), Bax, Bcl-2 and Caspase-3 were detected by western blot. ZCF attenuated H2O2-induced cell death, as determined by the MTT assay. ZCF decreased malondialdehyde and lactic dehydrogenase levels, increased superoxide dismutase, glutathione peroxidase, catalase activities and inhibited apoptosis. Moreover, pretreatment with ZCF decreased the expression of Bax and Caspase-3 at mRNA level, increased the expression of Bcl-2 mRNA level, decreased the levels of VEGFR2, Bax and Caspase-3 protein, and increased the level of p-Akt / Akt and Bcl-2 protein in HUVEC cells. These results suggested that ZCF protected against H2O2-induced injury in HUVEC cells. The mechanism for this effect is related to the enhancement of antioxidant capacity, suppression of angiogenesis and apoptosis.
Collapse
|
32
|
Eltobshy SAG, Hussein AM, Elmileegy AA, Askar MH, Khater Y, Metias EF, Helal GM. Effects of heme oxygenase-1 upregulation on isoproterenol-induced myocardial infarction. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:203-217. [PMID: 31080351 PMCID: PMC6488703 DOI: 10.4196/kjpp.2019.23.3.203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/23/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022]
Abstract
The present study was designed to examine the effect of heme oxygenase-1 (HO-1) induction by cobalt protoporphyrin (CoPP) on the cardiac functions and morphology, electrocardiogram (ECG) changes, myocardial antioxidants (superoxide dismutase [SOD] and glutathione [GSH]), and expression of heat shock protein (Hsp) 70 and connexin 43 (Cx-43) in myocardial muscles in isoproterenol (ISO) induced myocardial infarction (MI). Thirty two adult male Sprague Dawely rats were divided into 4 groups (each 8 rats): normal control (NC) group, ISO group: received ISO at dose of 150 mg/kg body weight intraperitoneally (i.p.) for 2 successive days; ISO + Trizma group: received (ISO) and Trizma (solvent of CoPP) at dose of 5 mg/kg i.p. injection 2 days before injection of ISO, with ISO at day 0 and at day 2 after ISO injections; and ISO + CoPP group: received ISO and CoPP at a dose of 5 mg/kg dissolved in Trizma i.p. injection as Trizma. We found that, administration of ISO caused significant increase in heart rate, corrected QT interval, ST segment, cardiac enzymes (lactate dehydrogenase, creatine kinase-muscle/brain), cardiac HO-1, Hsp70 with significant attenuation in myocardial GSH, SOD, and Cx-43. On the other hand, administration of CoPP caused significant improvement in ECG parameters, cardiac enzymes, cardiac morphology; antioxidants induced by ISO with significant increase in HO-1, Cx-43, and Hsp70 expression in myocardium. In conclusions, we concluded that induction of HO-1 by CoPP ameliorates ISO-induced myocardial injury, which might be due to up-regulation of Hsp70 and gap junction protein (Cx-43).
Collapse
Affiliation(s)
- Somaia A G Eltobshy
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Abdelaziz M Hussein
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Asaad A Elmileegy
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mona H Askar
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Yomna Khater
- Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Emile F Metias
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ghada M Helal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
33
|
Feki A, Ben Saad H, Bkhairia I, Ktari N, Naifar M, Boudawara O, Droguet M, Magné C, Nasri M, Ben Amara I. Cardiotoxicity and myocardial infarction-associated DNA damage induced by thiamethoxam in vitro and in vivo: Protective role of Trigonella foenum-graecum seed-derived polysaccharide. ENVIRONMENTAL TOXICOLOGY 2019; 34:271-282. [PMID: 30520268 DOI: 10.1002/tox.22682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/24/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
The risk of pesticides on the human health and environment has drawn increasing attention. Today, new tools are developed to reduce pesticide adverse effects. This study aimed to evaluate the toxicity induced by, thiamethoxam (TMX), and the cytoprotective effect of a novel polysaccharide, named fenugreek seed water polysaccharide (FWEP) in vitro using H9c2 cardiomyoblastes and in vivo using Wistar rat model. Animals were assigned into four groups per eight rats each: group 1 served as a control group, group 2 received TMX, group 3, and group 4 received both FWEP and TMX tested at two doses (100 and 200 mg/kg, respectively). Regarding the in vitro study, our results demonstrated that TMX induced a decrease in H9c2 cell viability up to 70% with the highest concentration. In vivo, TMX injection induced marked heart damage noted by a significant increase in plasma lactate dehydrogenase, creatine phosphokinase, troponin-T, aspartate amino transferase activities, cholesterol, and triglyceride levels. Concomitant alterations in cardiac antioxidant defense system revealed depletion in the levels of glutathione and non-protein thiol and an increase in the activity of superoxide dismutase, catalase, and glutathione peroxidase. Similarly, a significant increase in heart lipid, malondialdehyde, advanced oxidation protein product and in protein carbonyls levels was also noted. In addition, heart tissues histo-architecture displayed major presence of apoptosis and necrosis as confirmed by DNA degradation. However, supplementation with FWEP alleviated heart oxidative damage and genotoxicity. In this manner, ABTS radical-scavenging activity, linoleic acid oxidation tests and heart genomic and DNA nicking assay had proved FWEP strong antioxidant potential. In conclusion, FWEP provided significant protection against TMX-induced heart injury, and could be a useful and efficient agent against cardiotoxicity and atherosclerosis.
Collapse
Affiliation(s)
- Amal Feki
- Laboratory of Enzyme Engineering and Microbiology, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - Hajer Ben Saad
- Laboratory of Enzyme Engineering and Microbiology, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - Intidhar Bkhairia
- Laboratory of Enzyme Engineering and Microbiology, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - Naourez Ktari
- Laboratory of Enzyme Engineering and Microbiology, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - Manel Naifar
- Hematology laboratory, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Ons Boudawara
- Anatomopathology laboratory, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Mickaël Droguet
- ORPHY, Optimization of Physiological Regulation, EA4324, Brest Institute of Health, Agronomy and Material (IBSAM), Faculty of Medicine and Health Sciences, University of Western Brittany, Brest, France
| | - Christian Magné
- EA 7462 Géoarchitecture_TUBE, UFR Sciences & Techniques, University of Brest, Brest, France
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - Ibtissem Ben Amara
- Laboratory of Enzyme Engineering and Microbiology, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
34
|
Wang R, Zhang J, Wang S, Wang M, Ye T, Du Y, Xie X, Ye J, Sun G, Sun X. The Cardiotoxicity Induced by Arsenic Trioxide is Alleviated by Salvianolic Acid A via Maintaining Calcium Homeostasis and Inhibiting Endoplasmic Reticulum Stress. Molecules 2019; 24:molecules24030543. [PMID: 30717322 PMCID: PMC6384753 DOI: 10.3390/molecules24030543] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/02/2022] Open
Abstract
Arsenic trioxide (ATO) has been verified as a breakthrough with respect to the management of acute promyelocytic leukemia (APL) in recent decades but associated with some serious adverse phenomena, particularly cardiac functional abnormalities. Salvianolic acid A (Sal A) is a major effective component in treating ATO-induced cardiotoxicity. Therefore, the objective of our study was to assess whether Sal A had protective effects by the regulation of calcium homeostasis and endoplasmic reticulum (ER) stress. For the in vivo study, BALB/c mice were treated with ATO and/or Sal A via daily tail vein injections for two weeks. For the in vitro study, we detected the effects of ATO and/or Sal A in real time using adult rat ventricular myocytes (ARVMs) and an IonOptix MyoCam system. Our results showed that Sal A pretreatment alleviated cardiac dysfunction and Ca2+ overload induced by ATO in vivo and vitro. Moreover, Sal A increased sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA) activity and expression, alleviated [Ca2+]ER depletion, and decreased ER stress-related protein expression. Sal A protects the heart from ATO-induced injury and its administration correlates with the modulation of SERCA, the recovery of Ca2+ homeostasis, and the down-regulation of ER stress-mediated apoptosis.
Collapse
Affiliation(s)
- Ruiying Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Jingyi Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Shan Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Tianyuan Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Yuyang Du
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Xueheng Xie
- Harbin University of Commerce, Harbin 150028, China.
| | - Jingxue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| |
Collapse
|
35
|
Cardioprotective Effects of Puerarin-V on Isoproterenol-Induced Myocardial Infarction Mice Is Associated with Regulation of PPAR-Υ/NF-κB Pathway. Molecules 2018; 23:molecules23123322. [PMID: 30558188 PMCID: PMC6321361 DOI: 10.3390/molecules23123322] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 01/10/2023] Open
Abstract
Puerarin is a well-known traditional Chinese medicine which has been used for the treatment of cardiovascular diseases. Recently, a new advantageous crystal form of puerarin, puerarin-V, has been developed. However, the cardioprotective effects of puerarin-V on myocardial infarction (MI) heart failure are still unclear. In this research, we aim to evaluate the cardioprotective effects of puerarin-V on the isoproterenol (ISO)-induced MI mice and elucidate the underlying mechanisms. To induce MI in C57BL/6 mice, ISO was administered at 40 mg/kg subcutaneously every 12 h for three times in total. The mice were randomly divided into nine groups: (1) control; (2) ISO; (3) ISO + puerarin injection; (4⁻9) ISO + puerarin-V at different doses and timings. After treatment, cardiac function was evaluated by electrocardiogram (ECG), biochemical and histochemical analysis. In vitro inflammatory responses and apoptosis were evaluated in human coronary artery endothelial cells (HCAECs) challenged by lipopolysaccharide (LPS). LPS-induced PPAR-Υ/NF-κB and subsequently activation of cytokines were assessed by the western blot and real-time polymerase chain reaction (PCR). Administration of puerarin-V significantly inhibits the typical ST segment depression compared with that in MI mice. Further, puerarin-V treatment significantly improves ventricular wall infarction, decreases the incidence of mortality, and inhibits the levels of myocardial injury markers. Moreover, puerarin-V treatment reduces the inflammatory milieu in the heart of MI mice, thereby blocking the upregulation of proinflammatory cytokines (TNF-α, IL-1β and IL-6). The beneficial effects of puerarin-V might be associated with the normalization in gene expression of PPAR-Υ and PPAR-Υ/NF-κB /ΙκB-α/ΙΚΚα/β phosphorylation. In the in vitro experiment, treatment with puerarin-V (0.3, 1 and 3 μM) significantly reduces cell death and suppresses the inflammation cytokines expression. Likewise, puerarin-V exhibits similar mechanisms. The cardioprotective effects of puerarin-V treatment on MI mice in the pre + post-ISO group seem to be more prominent compared to those in the post-ISO group. Puerarin-V exerts cardioprotective effects against ISO-induced MI in mice, which may be related to the activation of PPAR-γ and the inhibition of NF-κB signaling in vivo and in vitro. Taken together, our research provides a new therapeutic option for the treatment of MI in clinic.
Collapse
|
36
|
Zhong W, Sun B, Gao W, Qin Y, Zhang H, Huai L, Tang Y, Liang Y, He L, Zhang X, Tao H, Chen S, Yang W, Yang L, Liu Y, Liu H, Zhou H, Sun T, Yang C. Salvianolic acid A targeting the transgelin-actin complex to enhance vasoconstriction. EBioMedicine 2018; 37:246-258. [PMID: 30361065 PMCID: PMC6286650 DOI: 10.1016/j.ebiom.2018.10.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/13/2018] [Accepted: 10/13/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Salvia miltiorrhiza is used extensively to treat cardiovascular diseases. SAA is a major bioactive component in Salvia miltiorrhiza and mediates myocardial ischemia (MI). However, the industrial production of SAA is limited due to low yields. In addition, the direct targets of SAA are unknown. Here we explore cardioprotective mechanisms and targets of SAA in the cardiovascular system. METHODS Transgelin and actin were identified as targets of SAA using a chemical biology method and were validated by Biacore analysis, microscale thermophoresis and single-molecule imaging. Studies of transgelin (-/-) knockout mice further verify the target. Cardioprotective mechanisms and targets of SAA were studied in cultured vascular smooth muscle cells and transgenic mice. FINDINGS In WT mice, SAA targeted transgelin and had a protective effect on myocardium but did not have the same protective effect on transgelin (-/-) mice. SAA stabilizes the transgelin-actin complex, modulates the reorganization of the actin cytoskeleton, facilitates F-actin bundling, further enhances the contractility and blood flows of coronary arteries, and improves outcomes of myocardial ischemia. Based on the target, a more active SAA derivative offering myocardial protection, SAA-30, was obtained. INTERPRETATION We report on the direct targets of SAA and mechanisms of myocardial ischemia treatment. We also find that transgelin may act as a novel therapeutic target of myocardial ischemia. Furthermore, a more effective derivative of SAA provides the basis for further clinical translational research.
Collapse
Affiliation(s)
- Weilong Zhong
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Bo Sun
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Wenqing Gao
- Heart Center, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Yuan Qin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Longcong Huai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Yuanhao Tang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Yuan Liang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Lingfei He
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Xiaoyun Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Honglian Tao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Shuang Chen
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Wei Yang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Lan Yang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Yanrong Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China.
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China.
| |
Collapse
|
37
|
Kammoun I, Ben Salah H, Ben Saad H, Cherif B, Droguet M, Magné C, Kallel C, Boudawara O, Hakim A, Gharsallah N, Ben Amara I. Hypolipidemic and cardioprotective effects of Ulva lactuca ethanolic extract in hypercholesterolemic mice. Arch Physiol Biochem 2018; 124:313-325. [PMID: 29171301 DOI: 10.1080/13813455.2017.1401641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
CONTEXT Hypercholesterolemia has significant cardiac consequences, since it is among the major risk factors of ischemic heart diseases. OBJECTIVE The aim was searching the cardioprotective effect of chemical constituents from the sea lettuce Ulva lactuca upon hypercholesterolemic regime in mice. MATERIAL AND METHODS Mice were randomly divided into three groups: untreated group, hypercholesterolemic group, and mice receiving 1% cholesterol associated with U. lactuca ethanolic extract. RESULTS In vitro study demonstrated that algal extract has antioxidant efficacy attributable to the presence of phenolic compounds. Additionally, the alga alleviated cardiotoxicity, as shown by the improvement of haematological parameters, white cell viability, heart oxidative stress, plasma biochemical parameters and index of atherogenesis. Gene expression of the proinflammatory cytokines TNF-α, IL-1β and IL-6 significantly decreased in the heart of U. lactuca supplemented hypercholesterolemic animals. CONCLUSION It was established that the green alga, thanks to its bioactive compounds, effectively counteracts cardiotoxic effects of hypercholesterolemic regime.
Collapse
Affiliation(s)
- Intissar Kammoun
- a Unit of Functional Genomics and Plant Physiology , Higher Institute of Biotechnology of Sfax, University of Sfax , Tunisia
- b Laboratory of Biotechnology Applied on Culture Improvement of Plants, (99/UR/08-73) Faculty of Sciences of Sfax , University of Sfax , Tunisia
| | - Hichem Ben Salah
- c Laboratory of Organic Chemistry LR17ES08 (Natural Substances Team) , University of Sfax, Faculty of Sciences of Sfax , Tunisia
| | - Hajer Ben Saad
- d Laboratory of Pharmacology, Faculty of Medicine , University of Sfax , Tunisia
| | - Boutheina Cherif
- e Immunochemistry Laboratory, Commissariat (CEA)-Grenoble/Department Response and Cellular Dynamics (DRDC) , National Institute of Health and Medical Research (INSERM) U548, University J. Fourier (UJF) , Grenoble , France
| | - Mickaël Droguet
- f ORPHY, Optimization of Physiological Regulation, EA4324, Brest Institute of Health, Agronomy and Material (IBSAM) , Faculty of Medicine and Health Sciences, University of Western Brittany , Brest Cedex 3 , France
| | - Christian Magné
- g EA 2219 Géoarchitecture , University of Western Brittany, UFR Sciences & Techniques , Brest Cedex 3 , France
| | - Choumous Kallel
- h Hematology Laboratory , CHU Habib Bourguiba , Sfax , Tunisia
| | - Ons Boudawara
- i Laboratory of Anatomopathology , CHU Habib Bourguiba , Sfax , Tunisia
| | - Ahmed Hakim
- d Laboratory of Pharmacology, Faculty of Medicine , University of Sfax , Tunisia
| | - Neji Gharsallah
- b Laboratory of Biotechnology Applied on Culture Improvement of Plants, (99/UR/08-73) Faculty of Sciences of Sfax , University of Sfax , Tunisia
| | - Ibtissem Ben Amara
- a Unit of Functional Genomics and Plant Physiology , Higher Institute of Biotechnology of Sfax, University of Sfax , Tunisia
| |
Collapse
|
38
|
Khodayar MJ, Kalantari H, Mahdavinia M, Khorsandi L, Alboghobeish S, Samimi A, Alizadeh S, Zeidooni L. Protective effect of naringin against BPA-induced cardiotoxicity through prevention of oxidative stress in male Wistar rats. Drug Chem Toxicol 2018; 43:85-95. [PMID: 30264589 DOI: 10.1080/01480545.2018.1504958] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mohammad Javad Khodayar
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatollah Kalantari
- Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Alboghobeish
- Department of Pharmacology, School of Pharmacy, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azin Samimi
- Department of Toxicology, School of Pharmacy, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Alizadeh
- Department of Toxicology, School of Pharmacy, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Zeidooni
- Department of Toxicology, School of Pharmacy, Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
39
|
Oyagbemi AA, Omobowale TO, Olopade JO, Farombi EO. Kolaviron and Garcinia kola attenuate doxorubicin-induced cardiotoxicity in Wistar rats. ACTA ACUST UNITED AC 2018; 15:/j/jcim.ahead-of-print/jcim-2016-0168/jcim-2016-0168.xml. [DOI: 10.1515/jcim-2016-0168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 06/06/2017] [Indexed: 01/06/2023]
Abstract
AbstractBackgroundTheMethodsSixty male rats (Wistar strain) were used in this study. They were divided into 6 groups (A-F) each containing 10 animals. Group A was the control. Rats in Groups B, C, D, E and F were treated with doxorubicin at the dosage of 15 mg/kg body weight i.p. Prior to this treatment, rats in groups C, D, E and F were pre-treated orally with Kolaviron at the dosage of 100 mg/kg and 200 mg/kg, andResultsThe results show that doxorubicin caused a significant increase in heart rate and prolonged QT, reduced antioxidant status, increased oxidative stress, inflammation and markers of cardiac damage which were reversed by pre-treatment with Kolaviron andConclusionsOverall, pre-treatment with Kolaviron or
Collapse
|
40
|
Jiang X, Hong Y, Zhao D, Meng X, Zhao L, Du Y, Wang Z, Zheng Y, Cai L, Jiang H. Low dose radiation prevents doxorubicin-induced cardiotoxicity. Oncotarget 2018; 9:332-345. [PMID: 29416617 PMCID: PMC5787469 DOI: 10.18632/oncotarget.23013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/26/2017] [Indexed: 02/02/2023] Open
Abstract
This study aimed to develop a novel and non-invasive approach, low-dose radiation (LDR, 75 mGy X-rays), to prevent doxorubicin (DOX)-induced cardiotoxicity. BALB/c mice were randomly divided into five groups, Control, LDR (a single exposure), Sham (treated same as LDR group except for irradiation), DOX (a single intraperitoneal injection of DOX at 7.5 mg/kg), and LDR/DOX (received LDR and 72 h later received DOX). Electrocardiogram analysis displayed several kinds of abnormal ECG profiles in DOX-treated mice, but less in LDR/DOX group. Cardiotoxicity indices included histopathological changes, oxidative stress markers, and measurements of mitochondrial membrane permeability. Pretreatment of DOX group with LDR reduced oxidative damages (reactive oxygen species formation, protein nitration, and lipid peroxidation) and increased the activities of antioxidants (superoxide dismutase and glutathione peroxidase) in the heart of LDR/DOX mice compared to DOX mice. Pretreatment of DOX-treated mice with LDR also decreased DOX-induced cardiac cell apoptosis (TUNEL staining and cleaved caspase-3) and mitochondrial apoptotic pathway (increased p53, Bax, and caspase-9 expression and decreased Bcl2 expression and ΔΨm dissipation). These results suggest that LDR could induce adaptation of the heart to DOX-induced toxicity. Cardiac protection by LDR may attribute to attenuate DOX-induced cell death via suppressing mitochondrial-dependent oxidative stress and apoptosis signaling.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yaqiong Hong
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Di Zhao
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xinxin Meng
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lijing Zhao
- The School of Basic Medicine, Jilin University, Changchun, Jilin 130021, China
| | - Yanwei Du
- Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Zan Wang
- Department of Internal Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yan Zheng
- Department of Gerontology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lu Cai
- Pediatric Research Institute, The Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, The University of Louisville, Louisville, KY 40202, USA
| | - Hongyu Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
41
|
Afsar T, Razak S, Batoo KM, Khan MR. Acacia hydaspica R. Parker prevents doxorubicin-induced cardiac injury by attenuation of oxidative stress and structural Cardiomyocyte alterations in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:554. [PMID: 29284479 PMCID: PMC5747129 DOI: 10.1186/s12906-017-2061-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 12/15/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND The use of doxorubicin (DOX) an anthracycline antineoplastic agent is withdrawn due to its cardio-toxic side effects. Oxidative stress has been recognized as the primary cause of DOX induced cardiotoxicity. We have investigated whether polyphenol rich ethyl acetate extract of Acacia hydaspica (AHE) can attenuate doxorubicin-induced cardiotoxicity via inhibition of oxidative stress. METHODS AHE was administered orally to rats once daily for 6 weeks at doses of 200 and 400 mg/kg b.w. DOX (3 mg/kg b.w. i.p., single dose/week) was administered for 6 weeks (chronic model). The parameters studied to evaluate cardioprotective potential were the serum cardiac function biomarkers (CK, CKMB, AST and LDH), hematological parameters, cardiac tissue antioxidant enzymatic status and oxidative stress markers, and histopathological analysis to validate biochemical findings. RESULTS Chronic 6 week treatment of DOX significantly deteriorated cardiac function biomarkers and decreased the activities of antioxidant enzymes, whereas significant increase in oxidative stress biomarkers was noticed in comparison to control group. AHE dose dependently protected DOX-induced leakage of cardiac enzymes in serum and ameliorated DOX-induced oxidative stress; as evidenced by decreasing lipid peroxidation, H2O2 and NO content with increase in phase I and phase II antioxidant enzymes. Doxorubicin treatment produced severe morphological lesions, leucopenia, decrease in red blood cell counts and hemoglobin concentrations. AHE co-treatment protected the heart and blood elements from the toxic effects of doxorubicin as indicated by the recovery of hematological parameters to normal values and prevention of myocardial injuries in a dose dependent way. The protective potency of AHE (400 mg/kg b.w) was equivalent to silymarin. CONCLUSION Results revealed that AHE showed protective effects against DOX induce cardiotoxicity. The protective effect might attribute to its polyphenolic constituents and antioxidant properties. AHE might be helpful in combination therapies as safer and efficient.
Collapse
|
42
|
Panda S, Kar A, Biswas S. Preventive effect of Agnucastoside C against Isoproterenol-induced myocardial injury. Sci Rep 2017; 7:16146. [PMID: 29170391 PMCID: PMC5701045 DOI: 10.1038/s41598-017-16075-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
An iridoid glycoside, agnucastoside C (ACC) was isolated from the leaves of Moringa oliefera and its cardio protective potential was investigated in adult rats by examining the effects of this test compound, ACC at 30 mg/kg for 14 days in isoproterenol (100 mg/kg)-induced myocardial injury. Isoproterenol (ISO) administration induced the myocardial injury as evidenced by the altered ECG pattern with ST-segment elevation and an increase in the levels of cardiac injury markers including troponin-I, creatine kinase-MB, alanine transaminase, aspartate transaminase, lactate dehydrogenase; inflammatory markers, interleukine-6 and tumor necrosis factor. In this group, there was also an increase in cardiac lipid peroxidation and a decrease in cellular antioxidants. However, pretreatment with ACC maintained the normal ECG pattern and nearly normal levels of all the cardiac markers in ISO-induced animals. Electron microscopic and histological studies also showed marked reduction in ISO-induced cardiac damages including infarct size by ACC. Analysis by 2-DE revealed the involvement of 19 different cardiac proteins, associated with energy metabolism, oxidative stress and maintenance of cytoskeleton. The expression of those proteins were altered by ISO, but maintained in ACC pretreated rats. Our findings reveal the potential of isolated ACC in the prevention of myocardial damage.
Collapse
Affiliation(s)
- Sunanda Panda
- School of Life Sciences, Takshashila Campus, Devi Ahilya University, Indore, India
| | - Anand Kar
- School of Life Sciences, Takshashila Campus, Devi Ahilya University, Indore, India.
| | - Sagarika Biswas
- Department of Genomics & Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
43
|
Zhao X, Dou M, Zhang Z, Zhang D, Huang C. Protective effect of Dendrobium officinale polysaccharides on H2O2-induced injury in H9c2 cardiomyocytes. Biomed Pharmacother 2017; 94:72-78. [DOI: 10.1016/j.biopha.2017.07.096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/26/2022] Open
|
44
|
Zebra blenny protein hydrolysates as a source of bioactive peptides with prevention effect against oxidative dysfunctions and DNA damage in heart tissues of rats fed a cholesterol-rich diet. Food Res Int 2017; 100:423-432. [DOI: 10.1016/j.foodres.2017.07.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/15/2017] [Accepted: 07/16/2017] [Indexed: 11/24/2022]
|
45
|
Cardiopreventive effect of ethanolic extract of Date Palm Pollen against isoproterenol induced myocardial infarction in rats through the inhibition of the angiotensin-converting enzyme. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.etp.2017.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
46
|
Zhang W, Li Y, Ge Z. Cardiaprotective effect of crocetin by attenuating apoptosis in isoproterenol induced myocardial infarction rat model. Biomed Pharmacother 2017; 93:376-382. [PMID: 28651239 DOI: 10.1016/j.biopha.2017.06.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/09/2017] [Indexed: 12/12/2022] Open
Abstract
Given study evaluates the cardioprotective effect of crocetin in myocardial infracted (MI) rats. MI was produced by administering isoproterenol (90mg/kg/day, i.p.) in rats for two consecutive days. all the animals were divided in to four groups such as control group receives only saline; MI group which receives only isoproterenol and crocetin treated group which receives crocetin (50, 100 and 200mg/kg/day, p.o.) for the duration of 15 days. At the end of dosing left ventricular functions was assessed to estimate its effect on cardiac functions. Catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), creatine kinase (CK-MB), lactate dehydrogenase (LDH) and inflammatory cytokines were determined in the cardiac tissue homogenate. Histopathology study was also carried out using hematoxylin and eosin staining. Immunohistochemistry was done for the estimation of Caspase-3, Bcl-2, Bax and Nrf-2 level in the myocardial tissues of MI rats. Result of the study suggested that GSH, CAT, CK-MB, and LDH were (p<0.01) increased in the tissue homogenate of crocetin treated group than MI group. However crocetin significantly (p<0.01) decreases the level of MDA and activity of SOD in the tissue homogenate than MI group. It was observed that treatment with crocetin attenuates the level of inflammatory cytokines in the myocardial tissues of MI rats. Moreover level of caspase-3, Bax and Nrf-2 significantly reduced and Bcl-2 enhanced in the myocardial tissues of MI rats than MI group. The altered cellular architecture of heart tissue sections in the myocardial infracted rats were reversed by administration of crocetin treatment. Taking all these data together, it may be suggested that the crocetin act as a possible protective agent in myocardial infarction by decreasing oxidative stress and inflammatory cytokines and thereby attenuates the apoptosis of myocardial cells.
Collapse
Affiliation(s)
- Weili Zhang
- Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, China; Department of Cardiology, Yantaishan hospital, Shandong, 264000, China
| | - Yuhui Li
- Department of Cardiology, Yantaishan hospital, Shandong, 264000, China
| | - Zhiming Ge
- Department of Cardiology, Qilu Hospital of Shandong University, Shandong, 250012, China.
| |
Collapse
|
47
|
Zhou J, Ma X, Shi M, Chen C, Sun Y, Li J, Xiong Y, Chen J, Li F. Serum metabolomics analysis reveals that obvious cardioprotective effects of low dose Sini decoction against isoproterenol-induced myocardial injury in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 31:18-31. [PMID: 28606513 DOI: 10.1016/j.phymed.2017.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Sini decoction (SND) is used for cardiovascular disease over thousands of years in China. However, it is still lacking of dose-response relationship of SND in cardiovascular disease at the metabolic level. PURPOSE The present study is designed to explore the cardioprotective effects of different dosages of SND pretreatment on the isoproterenol (ISO)-induced myocardial injury and elucidate the mechanism underlying this protective effect. METHODS The cardioprotective effects of different dosages of SND pretreatment on the isoproterenol-induced myocardial injury were compared through a serum metabolomics approach based on ultraperformance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS). In addition, the cardioprotective effects were evaluated by serum biochemical analysis and histopathological examination of myocardial tissue. Finally, in view of the fact that these perturbed bile acid and phospholipid metabolisms are connected with NF-κB signaling pathway, nuclear expression of NF-κB p65 and the activation of NF-κB were analyzed by immunohistochemistry, immunoblotting and electrophoretic mobility shift assay (EMSA), respectively. RESULTS The cardioprotective effect was observed in SND pretreatment groups, especially in low dosage SND group. The results of serum enzyme activities and histopathology were consistent with the above effect. Meanwhile, fifteen latent biomarker candidates were identified involving glucose, phospholipid, bile acid and amino acid metabolisms. Among them, five bile acids including ursodeoxycholic acid, murideoxycholic acid, muricholic acid, hyodeoxycholic acid and cholic acid, were for the first time identified as latent pathological biomarkers related to ISO-induced myocardial injury. Further, different dose SND groups exerted different of inhibition degrees to the activation of NF-κB, which was obvious in the SND-L group. CONCLUSION The results revealed that Sini decoction protreatment protects myocardium better at a low dose level and one of possible cardioprotective mechanisms is modulating NF-κB signaling pathway against isoproterenol-induced myocardial injury through regulating phospholipid and bile acid metabolisms.
Collapse
Affiliation(s)
- Jun Zhou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China; School of Basic Medical Science, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Xiaoqiong Ma
- National Clinical Research Base of Traditional Chinese Medicine, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Min Shi
- School of Basic Medical Science, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Cuiwei Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yue Sun
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jingjing Li
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Youxiang Xiong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Junjie Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Fanzhu Li
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
48
|
El-Gohary OA, Allam MM. Effect of vitamin D on isoprenaline-induced myocardial infarction in rats: possible role of peroxisome proliferator-activated receptor-γ. Can J Physiol Pharmacol 2017; 95:641-646. [DOI: 10.1139/cjpp-2016-0150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infarct-like lesion induced by isoprenaline is a well-known model to study myocardial infarction (MI). Vitamin D has been shown to have anti-inflammatory and antioxidant effects. Recent studies highlighted cross talk between vitamin D and peroxisome proliferator-activated receptor gamma (PPAR-γ). The present study was designed to investigate the effect of pretreatment with vitamin D on the isoprenaline-induced infarct-like lesion in rats and the role of PPAR-γ as a novel mechanism in vitamin-D-mediated cardioprotective effect. Markers chosen to assess cardiac damage included serum level of creatine kinase (CK), lactate dehydrogenase (LDH), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). Cardiac contents of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH) were also assessed. Furthermore, ECG monitoring and measurement of injury extension were carried out. Isoprenaline increased the level of cardiac enzymes, as well as inflammatory and oxidative stress biomarkers. In addition, it produced ST-segment elevation. Pretreatment with vitamin D significantly improved previous parameters. The prior treatment with bisphenol A diglycidyl ether (BADGE), a PPAR-γ antagonist, significantly attenuated the protective effect of vitamin D. In conclusion, vitamin D can be demonstrated as a promising cardioprotective agent in MI and PPAR-γ significantly contributes toward vitamin-D-mediated protection.
Collapse
Affiliation(s)
- Ola Ahmed El-Gohary
- Physiology Department, Faculty of Medicine, Benha University, Egypt
- Physiology Department, Faculty of Medicine, Benha University, Egypt
| | - Mona Maher Allam
- Physiology Department, Faculty of Medicine, Benha University, Egypt
- Physiology Department, Faculty of Medicine, Benha University, Egypt
| |
Collapse
|
49
|
Vutharadhi S, Jolapuram U, Kodidhela LD. Nutraceutical inherent of Spinacia oleracea Linn. methanolic leaf extract ameliorates isoproterenol induced myocardial necrosis in male albino Wistar rats via mitigating inflammation. Biomed Pharmacother 2017; 85:239-247. [DOI: 10.1016/j.biopha.2016.10.103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 11/24/2022] Open
|
50
|
Zhu Y, Di S, Hu W, Feng Y, Zhou Q, Gong B, Tang X, Liu J, Zhang W, Xi M, Jiang L, Guo C, Cao J, Fan C, Ma Z, Yang Y, Wen A. A new flavonoid glycoside (APG) isolated from Clematis tangutica attenuates myocardial ischemia/reperfusion injury via activating PKCε signaling. Biochim Biophys Acta Mol Basis Dis 2016; 1863:701-711. [PMID: 28024940 DOI: 10.1016/j.bbadis.2016.12.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 11/26/2022]
Abstract
Clematis tangutica has been shown to be beneficial for the heart; however, the mechanism of this effectremains unknown. Apigenin-7-O-β-D-(-6″-p-coumaroyl)-glucopyranoside (APG) is a new flavonoid glycoside isolated from Clematis tangutica. This study investigates the effects of APG on myocardial ischemia/reperfusion (IR) injury (IRI). An IRI model of primary myocardial cells and mice was used in this study. Compared with the IR group, APG preconditioning is protective against IRI in primary myocardial cells and in mice hearts in a dose-dependent manner. The cardioprotective mechanisms of APG may involve a significant PKCε translocation into the mitochondria and an activation of the Nrf2/HO-1 pathway, which respectively suppressesmitochondrial oxidative stress and inhibits apoptosis. In addition, PKCε-targeted siRNA and a PKCε specialized inhibitor (ε-V1-2) were used to inhibit PKCε expression and activity. The inhibition of PKCε reversed the cardioprotective effect of APG, with an inhibition of Nrf2/HO-1 activation and increased mitochondrial oxidative stress and cardiomyocyte apoptosis. In conclusion, PKCε activation plays an important role in the cardioprotective effects of APG. PKCε activation induced by APG preconditioning reduces mitochondrial oxidative stress and promotes Nrf2/HO-1-mediated anti-apoptosis signaling.
Collapse
Affiliation(s)
- Yanrong Zhu
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, 127, Changle West Road, Xi'an 710032, China; Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Shouyin Di
- Department of Biomedical Engineering, The Fourth Military Medical University, 169, Changle West Road, Xi'an 710032, China; Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1, Xinsi Road, Xi'an 710038, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169, Changle West Road, Xi'an 710032, China
| | - Yingda Feng
- Institute of Materia Medica, School of Pharmacy, The Fourth Military Medical University, 169, Changle West Road, Xi'an 710032, China
| | - Qing Zhou
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Bing Gong
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Xinlong Tang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Juntian Liu
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, 127, Changle West Road, Xi'an 710032, China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, 127, Changle West Road, Xi'an 710032, China
| | - Miaomiao Xi
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, 127, Changle West Road, Xi'an 710032, China
| | - Lin Jiang
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, 127, Changle West Road, Xi'an 710032, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, 127, Changle West Road, Xi'an 710032, China
| | - Jingyi Cao
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, 127, Changle West Road, Xi'an 710032, China
| | - Chongxi Fan
- Department of Biomedical Engineering, The Fourth Military Medical University, 169, Changle West Road, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1, Xinsi Road, Xi'an 710038, China
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, Jiangsu, China.
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, The Fourth Military Medical University, 127, Changle West Road, Xi'an 710032, China.
| |
Collapse
|