1
|
Yusoff NA, Abd Hamid Z, Budin SB, Taib IS. Hematopoietic stem cell discovery: unveiling the historical and future perspective of colony-forming units assay. PeerJ 2025; 13:e18854. [PMID: 39897489 PMCID: PMC11786707 DOI: 10.7717/peerj.18854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Stem cells are special cells with the distinctive capability to self-renew, forming a new pool of undifferentiated stem cells. They are also able to differentiate into lineage-specific cell types that are specialized and matured. Thus, stem cells are considered as the building blocks of tissues and organs in which they reside. Among the many types of stem cells, hematopoietic stem cells (HSCs) are the most studied adult stem cells and are considered as a promising source of cells for applications in the clinical and basic sciences. Historically, research on HSCs was initiated in the 1940s, where in a groundbreaking experiment, intravenously injected bone marrow (BM) cells prevented the death of irradiated mice by restoring blood cell production. Since then, HSCs have been studied and utilized in medical therapies and research for over several decades. Over time, more sophisticated tools have been developed to evaluate the behaviour of specifically purified subsets of hematopoietic cells that have the capacity to produce blood cells. One of the established tools is the colony-forming units (CFUs) assay. This assay facilitates the identification, enumeration, and analysis of colonies formed by differentiated hematopoietic stem and progenitor cells (HSPCs) from myeloid, erythroid and lymphoid lineages. Hence, the CFUs assay is a fundamental in vitro platform that allows functional studies on the lineage potential of an individual HSPCs. The outcomes of such studies are crucial in providing critical insights into hematopoiesis. In this review, we explore the fundamental discoveries concerning the CFUs assay by covering the following aspects: (i) the historical overview of the CFUs assay for the study of clonal hematopoiesis involving multilineage potential of HSPCs, (ii) its use in various experimental models comprising humans, mice/rodents, zebrafish and induced pluripotent stem cells (iPSCs) and (iii) research gaps and future direction concerning the role of CFUs assay in clinical and basic sciences. Overall, the CFUs assay confers a transformative platform for a better understanding of HSPCs biology in governing hematopoiesis.
Collapse
Affiliation(s)
- Nur Afizah Yusoff
- Biomedical Science Programme and Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zariyantey Abd Hamid
- Biomedical Science Programme and Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Biomedical Science Programme and Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Izatus Shima Taib
- Biomedical Science Programme and Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Juarez MN, McDermott A, Wade MG, Plante I. Exposure to brominated flame retardants in utero and through lactation delays the development of DMBA-induced mammary cancer: potential effects on subtypes? Front Endocrinol (Lausanne) 2024; 15:1429142. [PMID: 39610845 PMCID: PMC11602300 DOI: 10.3389/fendo.2024.1429142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Brominated flame retardants (BFRs) are chemical compounds used to reduce the flammability of various products; some BFRs exhibit endocrine-disrupting properties and can leach into the environment leading to human and wildlife exposure. The mammary gland has specific vulnerability windows during which it is more sensitive to the effects of endocrine disrupting compounds (EDCs), such as the in utero life, puberty and pregnancy. Our previous studies revealed precocious mammary gland development, disruptions in junctional proteins, and altered proliferation-apoptosis balance during puberty in rats exposed to BFRs in utero and through lactation. Such effects have been associated with increased mammary cancer risk. Objective The current study aimed to determine if in utero and lactational exposure to BFRs renders the mammary gland more susceptible to 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary cancer. Methods Dams were exposed to a BFRs mixture (0. 0.06 or 60 mg/kg/day), and mammary cancer was induced in pups using DMBA at post-natal day 46. Tumors onset and growth were monitored, and tumors were characterized using histology and molecular biology. Results Although BFRs exposure did not significantly affect mammary tumor number or burden, it showed significant delay in mammary tumor onset and growth in BFR-exposed animal. These effects could potentially be due to BFRs' impact on cellular responses, DMBA metabolism, or mammary gland shift of the sensitivity window. Molecular analysis of mammary tumors showed a shift in the ratio of luminal A, luminal B, and (HER2)-enriched tumors, and an increase in triple-negative breast cancer (TNBC) subtypes in BFR-exposed animals. Additionally, BFRs exposure showed lung lesions indicative of inflammation, independent of mammary cancer development. Conclusion Our study highlights the complex relationship between BFRs exposure and mammary cancer risk, emphasizing the need for further investigation into underlying mechanisms and long-term effects of BFRs on mammary gland development and carcinogenesis.
Collapse
MESH Headings
- Animals
- Female
- Flame Retardants/toxicity
- 9,10-Dimethyl-1,2-benzanthracene/toxicity
- Pregnancy
- Lactation
- Rats
- Prenatal Exposure Delayed Effects/chemically induced
- Prenatal Exposure Delayed Effects/pathology
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/metabolism
- Rats, Sprague-Dawley
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Endocrine Disruptors/toxicity
- Carcinogens/toxicity
- Halogenated Diphenyl Ethers/toxicity
- Maternal Exposure/adverse effects
Collapse
Affiliation(s)
- Melany N. Juarez
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Alec McDermott
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Michael G. Wade
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| |
Collapse
|
3
|
Larsen MC, Rondelli CM, Almeldin A, Song YS, N’Jai A, Alexander DL, Forsberg EC, Sheibani N, Jefcoate CR. AhR and CYP1B1 Control Oxygen Effects on Bone Marrow Progenitor Cells: The Enrichment of Multiple Olfactory Receptors as Potential Microbiome Sensors. Int J Mol Sci 2023; 24:16884. [PMID: 38069208 PMCID: PMC10706615 DOI: 10.3390/ijms242316884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollutants and microbiome products converge on the aryl hydrocarbon receptor (AhR) to redirect selective rapid adherence of isolated bone marrow (BM) cells. In young adult mice, Cyp1b1-deficiency and AhR activation by PAH, particularly when prolonged by Cyp1a1 deletion, produce matching gene stimulations in these BM cells. Vascular expression of Cyp1b1 lowers reactive oxygen species (ROS), suppressing NF-κB/RelA signaling. PAH and allelic selectivity support a non-canonical AhR participation, possibly through RelA. Genes stimulated by Cyp1b1 deficiency were further resolved according to the effects of Cyp1b1 and Cyp1a1 dual deletions (DKO). The adherent BM cells show a cluster of novel stimulations, including select developmental markers; multiple re-purposed olfactory receptors (OLFR); and α-Defensin, a microbial disruptor. Each one connects to an enhanced specific expression of the catalytic RNA Pol2 A subunit, among 12 different subunits. Mesenchymal progenitor BMS2 cells retain these features. Cyp1b1-deficiency removes lymphocytes from adherent assemblies as BM-derived mesenchymal stromal cells (BM-MSC) expand. Cyp1b1 effects were cell-type specific. In vivo, BM-MSC Cyp1b1 expression mediated PAH suppression of lymphocyte progenitors. In vitro, OP9-MSC sustained these progenitors, while Csf1 induced monocyte progenitor expansion to macrophages. Targeted Cyp1b1 deletion (Cdh5-Cre; Cyp1b1fl/fl) established endothelium control of ROS that directs AhR-mediated suppression of B cell progenitors. Monocyte Cyp1b1 deletion (Lyz2-Cre; Cyp1b1fl/fl) selectively attenuated M1 polarization of expanded macrophages, but did not enhance effects on basal M2 polarization. Thus, specific sources of Cyp1b1 link to AhR and to an OLFR network to provide BM inflammatory modulation via diverse microbiome products.
Collapse
Affiliation(s)
- Michele C. Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | | | - Ahmed Almeldin
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Alhaji N’Jai
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA;
| | - David L. Alexander
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - E. Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - Nader Sheibani
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| |
Collapse
|
4
|
salah E, El esh H, Abdel-Reheim ES, Abdul-Hamid M. Ameliorative effects of Artemisia and Echinacea extracts against hepato and cardiotoxicity induced by DMBA on albino rats: experimental and molecular docking analyses. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Herbal therapy for healing disease has many advantages than drugs. This study investigates the protective efficacy of Artemisia annua (Art) and Echinacea pupurea (Ech) extracts against 7, 12-dimethylbenz (α) anthracene (DMBA) toxicity.
Results
DMBA-treated rats showed a significant increase in the level of serum ALT, AST, LDH and CKMB, also reduction in body weight gain (BWG) ℅, HB, WBCs, RBCs and platelet counts, in addition to histopathological and ultrastructural alterations. Rats treated with Art or Ech after DMBA showed little improvements in the biochemical, hematological, histopathological, ultrastructural and molecular docking results than before DMBA.
Conclusions
This study suggested the ameliorative effect of Ech and Art due to their antioxidant properties, but Ech and Art were more effective if they are given before than after DMBA administration and the marked effect against DMBA toxicity with Ech before DMBA exposure. Also, the molecular docking, molecular properties descriptors, and pharmacoinformatic studies of constituents of extract from Artemisia annua L. and Echinacea purpurea L. exhibited that all studied compounds have better ADMET and physicochemical properties, especially compounds extract from Echinacea purpurea L.
Graphical Abstract
Collapse
|
5
|
Beyaz S, Aslan A, Gok O, Uslu H, Agca CA, Ozercan IH. In vivo, in vitro and in silico anticancer investigation of fullerene C 60 on DMBA induced breast cancer in rats. Life Sci 2022; 291:120281. [PMID: 34982963 DOI: 10.1016/j.lfs.2021.120281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 12/14/2022]
Abstract
AIMS The aim of the study was to determine the protective and therapeutic effect of fullerene C60 nanoparticle on DMBA-induced breast cancer in rats. MAIN METHODS In vitro cell viability was determined by the WST-1 test. In vivo analysis was performed in female Wistar Albino rats. The expression of caspase-3, Bcl-2, Nrf-2, NF-κB, TNF-α, COX-2, p53, IL-6, IL-1α ve p38α (MAPK) proteins were assessed by western blotting. Furthermore, malondialdehyde (MDA), glutathione (GSH), catalase activity (CAT), total protein levels and DNA damage were investigated. In addition, tissues were evaluated by histopathologically. In in silico analysis, the binding affinities of the fullerene C60 nanoparticle to transcription factors such as caspase-3, Bcl-2, Nrf-2, NF-κB, TNF-α, COX-2, VEGF and Akt were demonstrated by molecular docking. KEY FINDINGS Treatment of MCF-7 cells at various concentrations of fullerene C60 (0.1 to 100 mg/ml) inhibited cell viability in a dose dependent manner. Fullerene C60 treated rats exhibited considerable increase in the level of caspase-3 while decrease in the level of pro-survival protein Bcl-2. Bcl-2, NF-κB, TNF-α, COX-2, IL-6, IL-1α and p38α (MAPK) protein expression levels and malondialdehyde (MDA) levels were decreased in the C60 + DMBA groups compared to the DMBA group. It was observed that caspase-3, Nrf-2 and p53 protein expression levels, glutathione (GSH) level, catalase activities (CAT) and total protein levels increased significantly which was further confirmed through the resulting DNA fragmentation. SIGNIFICANCE In silico assays, fullerene C60 has been observed to have similar affinity to some crystal ligands, especially against cancer.
Collapse
Affiliation(s)
- Seda Beyaz
- Firat University, Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Elazig, Turkey
| | - Abdullah Aslan
- Firat University, Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Elazig, Turkey.
| | - Ozlem Gok
- Firat University, Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Elazig, Turkey
| | - Harun Uslu
- Firat University, Vocational School of Health Services, Department of Medical Services and Techniques, Elazig, Turkey
| | - Can Ali Agca
- Bingol University, Faculty of Science, Department of Molecular Biology and Genetics, Bingol, Turkey
| | | |
Collapse
|
6
|
Frömel T, Naeem Z, Pirzeh L, Fleming I. Cytochrome P450-derived fatty acid epoxides and diols in angiogenesis and stem cell biology. Pharmacol Ther 2021; 234:108049. [PMID: 34848204 DOI: 10.1016/j.pharmthera.2021.108049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Cytochrome P450 (CYP) enzymes are frequently referred to as the third pathway for the metabolism of arachidonic acid. While it is true that these enzymes generate arachidonic acid epoxides i.e. the epoxyeicosatrienoic acids (EETs), they are able to accept a wealth of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) to generate a large range of regio- and stereo-isomers with distinct biochemical properties and physiological actions. Probably the best studied are the EETs which have well documented effects on vascular reactivity and angiogenesis. CYP enzymes can also participate in crosstalk with other PUFA pathways and metabolize prostaglandin G2 and H2, which are the precursors of effector prostaglandins, to affect macrophage function and lymphangiogenesis. The activity of the PUFA epoxides is thought to be kept in check by the activity of epoxide hydrolases. However, rather than being inactive, the diols generated have been shown to regulate neutrophil activation, stem and progenitor cell proliferation and Notch signaling in addition to acting as exercise-induced lipokines. Excessive production of PUFA diols has also been implicated in pathologies such as severe respiratory distress syndromes, including COVID-19, and diabetic retinopathy. This review highlights some of the recent findings related to this pathway that affect angiogenesis and stem cell biology.
Collapse
Affiliation(s)
- Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Zumer Naeem
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Lale Pirzeh
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany; German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany; The Cardio-Pulmonary Institute, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Latif A, Issa Khan M, Rakha A, Ali Khan J. Evaluating the therapeutic potential of white button mushroom (Agaricus bisporus) against DMBA-induced breast cancer in Sprague Dawley rats. J Food Biochem 2021; 45:e13979. [PMID: 34698374 DOI: 10.1111/jfbc.13979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/10/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022]
Abstract
The current research work was designed to investigate the protective effects of white button mushroom (Agaricus bisporus) against 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer. Breast cancer was induced in rats by the administration of a single dose of 50 mg/kg DMBA via gavage. The rats were divided into four groups: G1 (negative control group), G2 (positive control group), G3 (rats receiving mushroom extract), and G4 (rats administered with doxorubicin). The mushroom extract significantly (p < .001) improved the activity of antioxidant enzymes in carcinogenic rats. Moreover, the mushroom extract also prevented the increase in the concentration of tumor biomarkers that are CEA, CA 15.3, and CRP in experimental rats. Liver function enzymes were also raised in G2 and G4 compared with G3. Besides, the RBCs and Hb were also reduced significantly in G4 while in G3. The mushroom extract effectively controlled the level of RBCs and Hb. An improvement in lipid profile was also measured in mushroom extract receiving rats. Conclusively, the mushroom extract alleviated DMBA-induced breast cancer potentially via improving antioxidants, reducing lipid peroxidation, and decreasing tumor biomarkers. PRACTICAL APPLICATIONS: The present research study examined the antitumor potential of white button mushroom. The mushroom effectively prevented the increase in tumor biomarkers, reduction in antioxidant enzymes, and increase in lipid peroxidation in rats with DMBA-induced breast cancer. The mushroom can be used as a potential source to prevent breast cancer and further research can be conducted to explore its anticancer mechanisms.
Collapse
Affiliation(s)
- Anam Latif
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Allah Rakha
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Junaid Ali Khan
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
8
|
Ge J, Yang H, Lu X, Wang S, Zhao Y, Huang J, Xi Z, Zhang L, Li R. Combined exposure to formaldehyde and PM 2.5: Hematopoietic toxicity and molecular mechanism in mice. ENVIRONMENT INTERNATIONAL 2020; 144:106050. [PMID: 32861163 PMCID: PMC7839661 DOI: 10.1016/j.envint.2020.106050] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 05/24/2023]
Abstract
PM2.5 and formaldehyde (FA) are major outdoor and indoor air pollutants in China, respectively, and both are known to be harmful to human health and to be carcinogenic. Of all the known chronic health effects, leukaemia is one of the most serious health risks associated with these two pollutants. To explore the influence and underlying mechanisms of exposure to formaldehyde and PM2.5 on hematopoietic toxicity, we systematically studied the toxicity induced in hematopoietic organs: bone marrow (BM); spleen; and myeloid progenitor cells (MPCs). Male Balb/c mice were exposed to: PM2.5 (20, 160 μg/kg·d) at a dose of 40 μL per mouse or formaldehyde (0.5, 3.0 mg/m3) for 8 h per day for 2 weeks or co-exposed to formaldehyde and PM2.5 (20 μg/kg·d PM2.5 + 0.5 mg/m3 FA, 20 μg/kg·d PM2.5 + 3 mg/m3 FA, 160 μg/kg·d PM2.5 + 0.5 mg/m3 FA, 160 μg/kg·d PM2.5 + 3 mg/m3 FA) for 2 weeks. Similar toxic effects were found in the formaldehyde-only and PM2.5-only groups, including significant decrease of blood cells and MPCs, along with decreased expression of hematopoietic growth factors. In addition, individual exposure of formaldehyde or PM2.5 increased oxidative stress, DNA damage and immune system disorder by destroying the balance of Th1/Th2, and Treg/Th17. DNA repair was markedly inhibited by deregulating the mammalian target of rapamycin (mTOR) pathway. Combined exposure to PM2.5 and formaldehyde led to more severe effects. Administration of Vitamin E (VE) was shown to attenuate these effects. In conclusion, our findings suggested that PM2.5 and formaldehyde may induce hematopoietic toxicity by reducing the expression of hematopoietic growth factors, increasing oxidative stress and DNA damage, activating the 'immune imbalance' pathway and suppressing the DNA-repair related mTOR pathway. The hematopoietic toxicity induced by combined exposure of PM2.5 and formaldehyde might provide further insights into the increased incidence of hematological diseases, including human myeloid leukaemia.
Collapse
Affiliation(s)
- Jing Ge
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Honglian Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xianxian Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Shenqi Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yun Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jiawei Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
9
|
Larsen MC, Almeldin A, Tong T, Rondelli CM, Maguire M, Jaskula-Sztul R, Jefcoate CR. Cytochrome P4501B1 in bone marrow is co-expressed with key markers of mesenchymal stem cells. BMS2 cell line models PAH disruption of bone marrow niche development functions. Toxicol Appl Pharmacol 2020; 401:115111. [PMID: 32553695 PMCID: PMC7293885 DOI: 10.1016/j.taap.2020.115111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/27/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants that are metabolized to carcinogenic dihydrodiol epoxides (PAHDE) by cytochrome P450 1B1 (CYP1B1). This metabolism occurs in bone marrow (BM) mesenchymal stem cells (MSC), which sustain hematopoietic stem and progenitor cells (HSPC). In BM, CYP1B1-mediated metabolism of 7, 12-dimethylbenz[a]anthracene (DMBA) suppresses HSPC colony formation within 6 h, whereas benzo(a)pyrene (BP) generates protective cytokines. MSC, enriched from adherent BM cells, yielded the bone marrow stromal, BMS2, cell line. These cells express elevated basal CYP1B1 that scarcely responds to Ah receptor (AhR) inducers. BMS2 cells exhibit extensive transcriptome overlap with leptin receptor positive mesenchymal stem cells (Lepr+ MSC) that control the hematopoietic niche. The overlap includes CYP1B1 and the expression of HSPC regulatory factors (Ebf3, Cxcl12, Kitl, Csf1 and Gas6). MSC are large, adherent fibroblasts that sequester small HSPC and macrophage in the BM niche (Graphic abstract). High basal CYP1B1 expression in BMS2 cells derives from interactions between the Ah-receptor enhancer and proximal promoter SP1 complexes, boosted by autocrine signaling. PAH effects on BMS2 cells model Lepr+MSC niche activity. CYP1B1 metabolizes DMBA to PAHDE, producing p53-mediated mRNA increases, long after the in vivo HSPC suppression. Faster, direct p53 effects, favored by stem cells, remain possible PAHDE targets. However, HSPC regulatory factors remained unresponsive. BP is less toxic in BMS2 cells, but, in BM, CYP1A1 metabolism stimulates macrophage cytokines (Il1b > Tnfa> Ifng) within 6 h. Although absent from BMS2 and Lepr+MSC, their receptors are highly expressed. The impact of this cytokine signaling in MSC remains to be determined. BMS2 and Lepr+MSC cells co-express CYP1B1 and 12 functional niche activity markers. CYP1B1 mRNA in BMS2 cells depends on activation of SP1 coupled to an AhR enhancer unit. DMBA metabolism by CYP1B1 activates p53 gene targets in BMS2 cells far more than BP. HSPC suppression by CYP1B1 generation of PAHDE requires rapid, non-genomic targets. BMS2 and Lepr+MSC share receptors activated by BP stimulation of macrophage cytokines.
Collapse
Affiliation(s)
- Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, United States of America
| | - Ahmed Almeldin
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, United States of America; Physiology Department, Faculty of Medicine, Tanta University, Egypt
| | - Tiegang Tong
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, United States of America
| | - Catherine M Rondelli
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705, United States of America
| | - Meghan Maguire
- Endocrinology and Reproductive Physiology Program, University of Wisconsin, Madison, WI 53705, United States of America
| | - Renata Jaskula-Sztul
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705, United States of America
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, United States of America; Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53705, United States of America; Endocrinology and Reproductive Physiology Program, University of Wisconsin, Madison, WI 53705, United States of America.
| |
Collapse
|
10
|
Polycyclic aromatic hydrocarbons exposure and hematotoxicity in occupational population: A two-year follow-up study. Toxicol Appl Pharmacol 2019; 378:114622. [DOI: 10.1016/j.taap.2019.114622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/13/2019] [Accepted: 06/07/2019] [Indexed: 01/29/2023]
|
11
|
Falero-Perez J, Larsen MC, Teixeira LBC, Zhang HF, Lindner V, Sorenson CM, Jefcoate CR, Sheibani N. Targeted deletion of Cyp1b1 in pericytes results in attenuation of retinal neovascularization and trabecular meshwork dysgenesis. TRENDS IN DEVELOPMENTAL BIOLOGY 2019; 12:1-12. [PMID: 32255961 PMCID: PMC7120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mutations in cytochrome P450 1B1 (CYP1B1) gene are reported in patients with primary congenital glaucoma. Cyp1b1-deficient (Cyp1b1-/-) mice show dysgenesis of the trabecular meshwork (TM) tissue and attenuation of retinal neovascularization during oxygen-induced ischemic retinopathy (OIR). Although retinal vascular cells, including endothelial cells (EC), pericytes (PC), astrocytes (AC), and TM endothelial cells express CYP1B1, the cell autonomous contribution of CYP1B1 to attenuation of retinal neovascularization and TM tissue dysgenesis remains unknown. Here we determined the impact lack of CYP1B1 expression in EC, PC or AC has on retinal neovascularization and TM tissue integrity. We generated Cyp1b1-transgenic mice with vascular cell-specific targeted Cre+-deletion in EC (Cyp1b1 EC), in PC (Cyp1b1 PC) and in AC (Cyp1b1 AC). Pathologic retinal neovascularization during OIR was evaluated by collagen IV staining of retinal wholemounts. Structural morphology of TM tissue was examined by transmission electron microscopy (TEM). The assessment of retinal neovascularization indicated a significant decrease in retinal neovascular tufts only in Cyp1b1 PC mice compared with control mice. TEM evaluation demonstrated Cyp1b1 PC mice also exhibited a defect in TM tissue morphology and integrity similar to that reported in Cyp1b1-/- mice. Thus, Cyp1b1 expression in PC plays a significant role in retinal neovascularization and the integrity of TM tissue.
Collapse
Affiliation(s)
- Juliana Falero-Perez
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Michele C. Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Leandro B. C. Teixeira
- Department of Pathological Sciences, School of Veterinary Medicine, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Volkhard Lindner
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Christine M. Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
12
|
PAHs Target Hematopoietic Linages in Bone Marrow through Cyp1b1 Primarily in Mesenchymal Stromal Cells but Not AhR: A Reconstituted In Vitro Model. Stem Cells Int 2016; 2016:1753491. [PMID: 27891153 PMCID: PMC5116507 DOI: 10.1155/2016/1753491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 07/06/2016] [Accepted: 09/04/2016] [Indexed: 01/23/2023] Open
Abstract
7,12-Dimethylbenz(a)anthracene (DMBA) rapidly suppresses hematopoietic progenitors, measured as colony forming units (CFU), in mouse bone marrow (BM) leading to mature cell losses as replenishment fails. These losses are mediated by Cyp1b1, independent of the AhR, despite induction of Cyp1b1. BM mesenchymal progenitor cells (MPC) may mediate these responses since basal Cyp1b1 is minimally induced. PreB colony forming unit activity (PreB CFU) is lost within 24 hours in isolated BM cells (BMC) unless cocultured with cells derived from primary MPC (BMS2 line). The mouse embryonic OP9 line, which provides more efficient coculture support, shares similar induction-resistant Cyp1b1 characteristics. This OP9 support is suppressed by DMBA, which is then prevented by Cyp1b1 inhibitors. OP9-enriched medium partially sustains CFU activities but loses DMBA-mediated suppression, consistent with mediation by OP9 Cyp1b1. PreB CFU activity in BMC from Cyp1b1-ko mice has enhanced sensitivity to DMBA. BMC gene expression profiles identified cytokines and developmental factors that are substantially changed in Cyp1b1-ko mice. DMBA had few effects in WT mice but systematically modified many clustered responses in Cyp1b1-ko mice. Typical BMC AhR-responsive genes were insensitive to Cyp1b1 deletion. TCDD replicated Cyp1b1 interventions, suggesting alternative AhR mediation. Cyp1b1 also diminishes oxidative stress, a key cause of stem cell instability.
Collapse
|
13
|
Larsen MC, N'Jai AU, Alexander DL, Rondelli CM, Forsberg EC, Czuprynski CJ, Jefcoate CR. Cyp1b1-mediated suppression of lymphoid progenitors in bone marrow by polycyclic aromatic hydrocarbons coordinately impacts spleen and thymus: a selective role for the Ah Receptor. Pharmacol Res Perspect 2016; 4:e00245. [PMID: 28116098 PMCID: PMC5242170 DOI: 10.1002/prp2.245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 02/05/2023] Open
Abstract
Bone marrow (BM) hematopoietic stem cells differentiate to common lymphoid progenitors (CLP) that emigrate to the thymus to form T cells or differentiate into immature B cells that then migrate to the spleen for maturation. Rapid in vivo suppression of BM progenitor cells by a single oral or intraperitoneal dose of 7,12-dimethylbenz(a)anthracene (DMBA) subsequently decreased mature lymphoid populations in BM, spleen, and thymus. These suppressions depended on BM CYP1B1, but not on aryl hydrocarbon receptor (AhR) activity. Suppression of pre-B colony formation at 6 h, correlated with subsequent decreases in mature BM, spleen, and thymus populations (48-168 h). Thymus T-cell ratios were unaffected, suggesting low local toxicity. DMBA treatment suppressed progenitor cells 24-h post treatment in wild type (WT), AhRb mice, but not in Cyp1b1-ko mice. The stem cell populations were sustained. Benzo(a)pyrene (BP) mediated a similar progenitor suppression up to 6 h, but reversal rapidly ensued. This recovery was absent in mice with a polycyclic aromatic hydrocarbon (PAH)-resistant, AhRd genotype. This AhR-dependent progenitor recovery with BP induction accounts for the absence of suppression of B220+ BM and spleen populations at 48-168 h. However, DMBA and BP produced similar profiles for thymus cell suppression, independent of AhR genotype. Thus, lymphoid progenitors may exit the BM to the thymus prior to the BP reversal. This progenitor recovery is associated with elevated chemokines and cytokines that depend on AhR-mediated induction of CYP1A1. This response increased constitutively in Cyp1b1-ko BM, demonstrating that CYP1B1 metabolizes local stimulants that impact a basal progenitor protection process.
Collapse
Affiliation(s)
| | - Alhaji U N'Jai
- Molecular and Environmental Toxicology Center University of Wisconsin Madison Wisconsin 53706; Department of Pathobiological Sciences University of Wisconsin Madison Wisconsin 53706
| | - David L Alexander
- Department of Biomolecular Engineering Institute for the Biology of Stem Cells, University of California Santa Cruz California 95064
| | - Catherine M Rondelli
- Molecular and Environmental Toxicology Center University of Wisconsin Madison Wisconsin 53706
| | - E C Forsberg
- Department of Biomolecular Engineering Institute for the Biology of Stem Cells, University of California Santa Cruz California 95064
| | - Charles J Czuprynski
- Molecular and Environmental Toxicology Center University of Wisconsin Madison Wisconsin 53706; Department of Pathobiological Sciences University of Wisconsin Madison Wisconsin 53706; Food Research Institute University of Wisconsin Madison Wisconsin 53706
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology University of Wisconsin Madison Wisconsin; Molecular and Environmental Toxicology Center University of Wisconsin Madison Wisconsin 53706
| |
Collapse
|
14
|
Yang Y, Poe JC, Yang L, Fedoriw A, Desai S, Magnuson T, Li Z, Fedoriw Y, Araki K, Gao Y, Tateishi S, Sarantopoulos S, Vaziri C. Rad18 confers hematopoietic progenitor cell DNA damage tolerance independently of the Fanconi Anemia pathway in vivo. Nucleic Acids Res 2016; 44:4174-88. [PMID: 26883629 PMCID: PMC4872084 DOI: 10.1093/nar/gkw072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/31/2016] [Indexed: 01/09/2023] Open
Abstract
In cultured cancer cells the E3 ubiquitin ligase Rad18 activates Trans-Lesion Synthesis (TLS) and the Fanconi Anemia (FA) pathway. However, physiological roles of Rad18 in DNA damage tolerance and carcinogenesis are unknown and were investigated here. Primary hematopoietic stem and progenitor cells (HSPC) co-expressed RAD18 and FANCD2 proteins, potentially consistent with a role for Rad18 in FA pathway function during hematopoiesis. However, hematopoietic defects typically associated with fanc-deficiency (decreased HSPC numbers, reduced engraftment potential of HSPC, and Mitomycin C (MMC) -sensitive hematopoiesis), were absent in Rad18−/− mice. Moreover, primary Rad18−/− mouse embryonic fibroblasts (MEF) retained robust Fancd2 mono-ubiquitination following MMC treatment. Therefore, Rad18 is dispensable for FA pathway activation in untransformed cells and the Rad18 and FA pathways are separable in hematopoietic cells. In contrast with responses to crosslinking agents, Rad18−/− HSPC were sensitive to in vivo treatment with the myelosuppressive agent 7,12 Dimethylbenz[a]anthracene (DMBA). Rad18-deficient fibroblasts aberrantly accumulated DNA damage markers after DMBA treatment. Moreover, in vivo DMBA treatment led to increased incidence of B cell malignancy in Rad18−/− mice. These results identify novel hematopoietic functions for Rad18 and provide the first demonstration that Rad18 confers DNA damage tolerance and tumor-suppression in a physiological setting.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan C Poe
- Department of Medicine, Division of Hematological Malignancies & Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Lisong Yang
- Department of Medicine, Division of Hematological Malignancies & Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Andrew Fedoriw
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Siddhi Desai
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Terry Magnuson
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27710, USA
| | - Yuri Fedoriw
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kimi Araki
- Institute of Resource Development and Analysis (IRDA) Kumamoto University, Kumamoto 860-0811, Japan
| | - Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Satoshi Tateishi
- Division of Cell Maintenance, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematological Malignancies & Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
Ezeh PC, Xu H, Wang SC, Medina S, Burchiel SW. Evaluation of Toxicity in Mouse Bone Marrow Progenitor Cells. ACTA ACUST UNITED AC 2016; 67:18.9.1-18.9.12. [PMID: 26828331 DOI: 10.1002/0471140856.tx1809s67] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Development of blood cells through hematopoiesis occurs in the bone marrow (BM), and can be adversely impacted by various substances and/or conditions ranging from known therapeutic, intentionally administered xenobiotics to unintentional food additives and exposure to environmental chemicals. The principles underlying the techniques for evaluating toxicity to BM progenitors (erythroid, myeloid, and lymphoid) exploit changes in the normal hematopoietic process, biochemical cell surface and intracellular markers, as well as components of the BM microenvironment. Toxicological investigations following in vivo exposures of mice or in vitro exposures of mouse primary BM cell cultures allow the assessment of the developmental and functional integrity of BM cells, cell population shifts, and adverse biochemical effects due to toxicity. Colony forming unit (CFU) assays and flow cytometry are indispensable techniques in these toxicity studies.
Collapse
Affiliation(s)
- Peace C Ezeh
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona
| | - Huan Xu
- College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico
| | - Shu Chun Wang
- College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico
| | - Sebastian Medina
- College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico
| | - Scott W Burchiel
- College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
16
|
Ezeh PC, Lauer FT, Liu KJ, Hudson LG, Burchiel SW. Arsenite Interacts with Dibenzo[def,p]chrysene (DBC) at Low Levels to Suppress Bone Marrow Lymphoid Progenitors in Mice. Biol Trace Elem Res 2015; 166:82-8. [PMID: 25739538 PMCID: PMC4470818 DOI: 10.1007/s12011-015-0279-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 02/18/2015] [Indexed: 12/01/2022]
Abstract
Arsenite (As(+3)) and dibenzo[def,p]chrysene (DBC), a polycyclic aromatic hyrdrocarbon (PAH), are found in nature as environmental contaminants. Both are known to individually suppress the immune system of humans and mice. In order to determine their potential interactive and combined immunosuppressive effects, we examined murine bone marrow (BM) immune progenitor cells' responses following combined oral exposures at very low levels of exposure to As(+3) and DBC. Oral 5-day exposure to DBC at 1 mg/kg (cumulative dose) was found to suppress mouse BM lymphoid progenitor cells, but not the myeloid progenitors. Previously established no-effect doses of As(+3) in drinking water (19 and 75 ppb for 30 days) produced more lymphoid suppression in the bone marrow when mice were concomitantly fed a low dose of DBC during the last 5 days. The lower dose (19 ppb) As(+3) had a stronger suppressive effect with DBC than the higher dose (75 ppb). Thus, the interactive toxicity of As(+3) and DBC in vivo could be As(+3) dose dependent. In vitro, the suppressive interaction of As(+3) and DBC was also evident at low concentrations (0.5 nM), but not at higher concentrations (5 nM) of As(+3). These studies show potentially important interactions between As(+3) and DBC on mouse BM at extremely low levels of exposure in vivo and in vitro.
Collapse
|
17
|
Murakami S, Yamamoto M, Motohashi H. Hematopoietic stem and progenitor cell activation during chronic dermatitis provoked by constitutively active aryl-hydrocarbon receptor driven by Keratin 14 promoter. Toxicol Sci 2013; 138:47-58. [PMID: 24287212 DOI: 10.1093/toxsci/kft273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) activate aryl-hydrocarbon receptor (AhR). Because PAHs are known as a risk factor for allergic diseases, PAH-induced AhR activation is expected to be involved in the development of the pathology. We previously generated transgenic mice expressing a constitutively active AhR (AhR-CA) under the control of Keratin 14 (K14) promoter (AhR-CA mouse). The mice develop chronic dermatitis with immune imbalance toward Th2 predominance, indicating that the AhR activation driven by K14 promoter provokes allergic response. Because hematopoietic cells actively participate in the development of allergic inflammation, it is important to understand the hematopoietic status under allergic conditions. To clarify how the K14 promoter-driven AhR activation influences hematopoiesis, we analyzed bone marrow and spleen of AhR-CA mice. We verified that AhR-CA was expressed in keratinocytes and thymic epithelial cells but not in hematopoietic cells. The AhR-CA mice with full-blown dermatitis exhibited leukocytosis and skewed differentiation of hematopoietic progenitor cells toward granulocyte-monocyte lineages. They also showed a significant expansion of short-term hematopoietic stem cells and multipotent progenitors and a subtle reduction in long-term hematopoietic stem cells (LT-HSCs). Their spleens were enlarged and abundantly accumulated hematopoietic stem and progenitor cells. AhR-CA mice at the early stage of dermatitis did not show leukocytosis or splenomegaly but exhibited the granulocyte-monocyte skewing and the reduction in LT-HSCs. Thus, AhR activation driven by K14 promoter already alters the hematopoietic differentiation and reduces LT-HSCs at the initial stage of dermatitis development. These results suggest that nonhematopoietic exposure to PAHs triggers allergic response and concomitantly affects hematopoiesis.
Collapse
Affiliation(s)
- Shohei Murakami
- * Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | | | | |
Collapse
|
18
|
Nebert DW, Shi Z, Gálvez-Peralta M, Uno S, Dragin N. Oral benzo[a]pyrene: understanding pharmacokinetics, detoxication, and consequences--Cyp1 knockout mouse lines as a paradigm. Mol Pharmacol 2013; 84:304-13. [PMID: 23761301 PMCID: PMC3876811 DOI: 10.1124/mol.113.086637] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/12/2013] [Indexed: 12/31/2022] Open
Abstract
Benzo[a]pyrene (BaP) is a prototypical polycyclic aromatic hydrocarbon (PAH); this ubiquitous environmental carcinogenic agent is found in tobacco smoke, charcoal-grilled foods, and PAH-contaminated surfaces of roofs, playgrounds, and highways. Cytochrome P450 1 wild-type, Cyp1a2(-/-), Cyp1b1(-/-), or Cyp1a2/1b1(-/-) knockouts, and mice with Cyp1a1 expression deleted in hepatocytes can ingest large oral BaP doses (125 mg/kg/d) without apparent toxicity. Cyp1a1(-/-) and Cyp1a1/1a2(-/-) knockouts and mice with Cyp1a1 expression deleted in gastrointestinal (GI) tract epithelial cells develop immunotoxicity and die within 32 days, indicating that GI tract inducible CYP1A1 is absolutely required for detoxication of oral BaP. Cyp1a1/1b1(-/-) and Cyp1a1/1a2/1b1(-/-) mice are rescued from immunosuppression and early death due to absent metabolic activation of BaP by CYP1B1 in immune cells. Ten-fold lower oral BaP doses result in adenocarcinoma of the proximal small intestine (PSI) in Cyp1a1(-/-) mice; Cyp1a1/1b1(-/-) double-knockout mice show no PSI cancer but develop squamous cell carcinoma of the preputial gland duct (PGD). BaP-metabolizing CYP1B1 in the PSI and CYP3A59 in the PGD are the most likely candidates to participate in tumor initiation in the epithelial cells of these two tissues; oncogenes and tumor-suppressor genes upregulated and downregulated during tumorigenesis are completely different between these tissues. This "oral BaP Cyp1" mouse paradigm represents a powerful teaching tool, showing that gene-environment interactions depend on route-of-administration: the same oral, but not intraperitoneal, BaP exposure leads to dramatic differences in target-organ toxicity and tumor type as a function of dose and Cyp1 genotype.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Aryl Hydrocarbon Hydroxylases/genetics
- Aryl Hydrocarbon Hydroxylases/metabolism
- Benzo(a)pyrene/administration & dosage
- Benzo(a)pyrene/pharmacokinetics
- Benzo(a)pyrene/toxicity
- Carcinogens, Environmental/administration & dosage
- Carcinogens, Environmental/pharmacokinetics
- Carcinogens, Environmental/toxicity
- Cytochrome P-450 CYP1A1/genetics
- Cytochrome P-450 CYP1A1/metabolism
- Cytochrome P-450 CYP1A2/genetics
- Cytochrome P-450 CYP1A2/metabolism
- Cytochrome P-450 CYP1B1
- Dose-Response Relationship, Drug
- Gene-Environment Interaction
- Intestinal Neoplasms/chemically induced
- Intestinal Neoplasms/enzymology
- Intestinal Neoplasms/pathology
- Metabolic Detoxication, Phase II
- Mice
- Mice, Knockout
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/enzymology
- Neoplasms, Experimental/pathology
- Organ Specificity
- Scent Glands/enzymology
- Scent Glands/pathology
- Species Specificity
Collapse
Affiliation(s)
- Daniel W Nebert
- Department of Environmental Health, and the Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267-0056, USA.
| | | | | | | | | |
Collapse
|
19
|
N'jai AU, Kemp MQ, Metzger BT, Hanlon PR, Robbins M, Czuyprynski C, Barnes DM. Spanish black radish (Raphanus sativus L. Var. niger) diet enhances clearance of DMBA and diminishes toxic effects on bone marrow progenitor cells. Nutr Cancer 2013; 64:1038-48. [PMID: 23061907 DOI: 10.1080/01635581.2012.714831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vegetables of the Cruciferae family contain high levels of glucosinolates, metabolites of which are believed to enhance detoxification. Spanish black radishes (SBR) contain 4× more glucosinolates than other crucifers. This study examined whether feeding mice a diet containing 20% SBR for 2 wk could enhance metabolism of 7,12-dimethylbenz(a)anthracene (DMBA) and inhibit DMBA-mediated bone marrow toxicity. Expression of Phase I and II detoxification enzymes was significantly greater for mice fed SBR than control diet. Six hours after DMBA administration, the blood levels of DMBA in mice fed the SBR diet were significantly lower than mice fed a control diet. DMBA reduced bone marrow cells in mice fed control diet to a significantly greater extent than mice fed the SBR diet. Colony forming assays demonstrated that mice on the SBR diet had 1) less reduction in lymphoid CFU-preB progenitor cells, 2) greater recovery of CFU-preB progenitor cells at 168 h, and 3) less reduction of CFU-GM progenitor cells at 6 h. Therefore, mice fed a 20% SBR diet for 2 wk had greater expression of detoxification enzymes, faster metabolism of DMBA, and a reduction in DMBA-induced bone marrow toxicity. Overall, these results support the hypothesis that glucosinolates in SBR are protective against acute toxicity.
Collapse
Affiliation(s)
- Alhaji U N'jai
- Department of Pathobiological Sciences and Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Nadda N, Vaish V, Setia S, Sanyal SN. Angiostatic role of the selective cyclooxygenase-2 inhibitor etoricoxib (MK0663) in experimental lung cancer. Biomed Pharmacother 2012; 66:474-83. [PMID: 22681911 DOI: 10.1016/j.biopha.2012.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 04/15/2012] [Indexed: 10/28/2022] Open
Abstract
Lung cancer was induced in Sprague-Dawley rats by a single intra-tracheal instillation of 9,10-dimethybenz(a)anthracene (DMBA) and evaluated the anti-angiogenic action of etoricoxib, which is a selective cyclooxygenase-2 (COX-2) inhibitor. The animals were divided into four groups. Group 1 (Control) received 0.9% (w/v) normal saline intra-tracheal and 0.5% (w/v) carboxymethyl cellulose per oral daily as the vehicle of the drug, Group 2 received DMBA (20 mg/kg) intra-tracheal once, Group 3 received a daily oral dose of etoricoxib (0.6 mg/kg bw) in addition to the DMBA while Group 4 received etoricoxib alone. Morphological and histological analysis confirmed the presence of lung tumors 20 weeks after the administration of DMBA. Expressions of COX-2, MMP-2, MMP-9, MCP-1, MIP-1β and VEGF were studied by immunofluorescence, Western immunoblot and mRNA studies, which showed a higher expression of these proteins in the DMBA-treated animals but much lower in DMBA+etoricoxib. Gelatin zymography as applied for the detection of the extracellular protein degrading enzymes, matrix metalloproteinases showed more intense activity in DMBA-treated rats as compared to the other groups. Also, the isolated alveolar macrophages were stained with Merocyanine540 (MC540) to study the membrane fluidity and lipid packing effect. DMBA treatment resulted in a significant increase in the number of lung cells exhibiting a high intensity of MC540 staining, which was reduced by the co-administration of etoricoxib. Thus the effects of etoricoxib on the expression of the angiogenic proteins have been observed, which clearly shows an anti-angiogenic mechanism of action of etoricoxib in lung cancer chemoprevention.
Collapse
Affiliation(s)
- N Nadda
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | | | | | | |
Collapse
|
21
|
N'jai AU, Larsen MC, Bushkofsky JR, Czuprynski CJ, Jefcoate CR. Acute disruption of bone marrow hematopoiesis by benzo(a)pyrene is selectively reversed by aryl hydrocarbon receptor-mediated processes. Mol Pharmacol 2011; 79:724-34. [PMID: 21252291 PMCID: PMC3063725 DOI: 10.1124/mol.110.070631] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/20/2011] [Indexed: 11/22/2022] Open
Abstract
Bone marrow (BM) hematopoietic cells are selectively sensitive to polycyclic aromatic hydrocarbons (PAH) in vivo. 7,12-Dimethylbenz(a)anthracene (DMBA), but not benzo(a)pyrene (BP), depletes BM hematopoietic cells in C57BL/6 mice. This difference is due to a BP-selective aryl hydrocarbon receptor (AhR)-mediated recovery. Colony-forming unit assays show suppression of lymphoid progenitors by each PAH within 6 h but a subsequent recovery, exclusively after BP treatment. Suppression of myeloid progenitors (6 h) occurs only for DMBA. Each progenitor responded equally to DMBA and BP in congenic mice expressing the PAH-resistant AhR (AhR(d)). AhR, therefore, mediates this BP recovery in each progenitor type. These PAH suppressions depend on Cyp1b1-mediated metabolism. Paradoxically, few genes responded to DMBA, whereas 12 times more responded to BP. Progenitor suppression by DMBA, therefore, occurs with minimal effects on the general BM population. Standard AhR-mediated stimulations (Cyp1a1, Cyp1b1, Ahrr) were similar for each PAH and for the specific agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin but were absent in AhR(d) mice. A group of 12 such AhR responses was sustained from 6 to 24 h. A second, larger set of BP responses (chemokines, cytokines, cyclooxygenase 2) differed in two respects; DMBA responses were low and BP responses declined extensively from 6 to 24 h. A third cluster exhibited BP-induced increases in protective genes (Nqo1, GST-mu) that appeared only after 12 h. Conversion of BP to quinones contributes oxidative signaling not seen with DMBA. We propose that genes in this second cluster, which share oxidative signaling and AhR activation, provide the AhR-dependent protection of hematopoietic progenitors seen for BP.
Collapse
Affiliation(s)
- Alhaji U N'jai
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|