1
|
Das AS, Basu A, Mukhopadhyay R. Ribosomal proteins: the missing piece in the inflammation puzzle? Mol Cell Biochem 2025; 480:785-797. [PMID: 38951378 DOI: 10.1007/s11010-024-05050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
Ribosomal proteins (RPs) are constituents of macromolecular machinery, ribosome that translates genetic information into proteins. Besides ribosomal functions, RPs are now getting appreciated for their 'moonlighting'/extra-ribosomal functions modulating many cellular processes. Accumulating evidence suggests that a number of RPs are involved in inflammation. Though acute inflammation is a part of the innate immune response, uncontrolled inflammation is a driving factor for several chronic inflammatory diseases. An in-depth understanding of inflammation regulation has always been valued for the better management of associated diseases. Hence, this review first outlines the common livelihood of RPs and then provides a comprehensive account of five RPs that significantly contribute to the inflammation process. Finally, we discuss the possible therapeutic uses of RPs against chronic inflammatory diseases.
Collapse
Affiliation(s)
- Anindhya Sundar Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, 02912, USA.
| | - Anandita Basu
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, 02903, USA
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India.
| |
Collapse
|
2
|
Kim J, Song B, Kim KH, Moon Y. Ribosomal proteins mediate non-canonical regulation of gut inflammatory signature by crop contaminant deoxynivalenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117645. [PMID: 39788032 DOI: 10.1016/j.ecoenv.2024.117645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Deoxynivalenol (DON), a prevalent mycotoxin produced by Fusarium species, contaminates global agricultural products and poses significant health risks, particularly to the gastrointestinal (GI) system. DON exposure disrupts ribosomal function, inducing stress responses linked to various inflammatory diseases, including inflammatory bowel disease (IBD). In this study, we elucidate a novel regulatory mechanism involving ribosomal proteins (RPs) RPL13A and RPS3, which mediate proinflammatory chemokine production in DON-exposed gut epithelial cells. Through a combination of transcriptomic analysis and experimental models, we demonstrate that while RPL13A negatively regulates inflammation by enhancing the anti-inflammatory transcription factor ATF3, RPS3 acts as a proinflammatory driver, promoting chemokine production via activation of MAPK pathways, transcriptional upregulation of EGR-1, and stabilization of mRNA through cytosolic translocation of HuR. Our findings reveal a dynamic interplay between RPL13A and RPS3, wherein RPL13A counteracts the proinflammatory effects of RPS3, offering a finely tuned regulatory axis in the inflammatory response to environmental toxins. These insights provide potential molecular targets for therapeutic intervention in toxin-induced inflammatory diseases of the gut, highlighting the non-canonical roles of ribosomal proteins in modulating immune responses to environmental stressors.
Collapse
Affiliation(s)
- Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea; Department of Obstetrics and Gynecology, College of Medicine, Pusan National University, Pusan National University, Busan, Republic of Korea; Program of Total Foodtech and PNU-Korea Maritime Institute (KMI) Collaborative Research Center, Busan, Republic of Korea
| | - BoGyoung Song
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
| | - Ki-Hyung Kim
- Department of Obstetrics and Gynecology, College of Medicine, Pusan National University, Pusan National University, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University, Busan, Republic of Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea; Biomedical Research Institute, Pusan National University, Busan, Republic of Korea; Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, Republic of Korea; Program of Total Foodtech and PNU-Korea Maritime Institute (KMI) Collaborative Research Center, Busan, Republic of Korea.
| |
Collapse
|
3
|
Kim G, Lee SY, Oh S, Jang JW, Lee J, Kim HS, Son KH, Byun K. Anti-Inflammatory Effects of Extracellular Vesicles from Ecklonia cava on 12-O-Tetradecanoylphorbol-13-Acetate-Induced Skin Inflammation in Mice. Int J Mol Sci 2024; 25:12522. [PMID: 39684233 DOI: 10.3390/ijms252312522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Steroids, which are often used to treat the inflammation associated with various skin diseases, have several negative side effects. As Ecklonia cava extract has anti-inflammatory effects in various diseases, we evaluated the efficacy of Ecklonia cava-derived extracellular vesicles (EVEs) in decreasing 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation. We determined the effect of the EVEs on the TLR4/NF-κB/NLRP3 inflammasome in human keratinocytes and mouse ear skin. TPA-treated human keratinocytes showed an increased expression of TLR4 and its ligands HMGB1 and S100A8. TPA also increased the expression of (1) NF-κB; (2) the NLRP3 inflammasome components NLRP3, ASC, and caspase 1; and (3) the pyroptosis-related factors GSDMD-NT, IL-18, and IL-1β. However, the expression of these molecules decreased in the TPA-treated human keratinocytes after EVE treatment. Similar to the in vitro results, TPA increased the expression of these molecules in mouse ear skin, and EVE treatment decreased their expression. The TPA treatment of skin increased edema, redness, neutrophil infiltration, and epidermal thickness, and EVE reduced these symptoms of inflammation. In conclusion, the EVEs decreased TPA-induced skin inflammation, which was associated with a decrease in the TLR4/NF-κB/NLRP3 inflammasome.
Collapse
Affiliation(s)
- Geebum Kim
- Misogain Dermatology Clinic, Gimpo 10108, Republic of Korea
| | - So Young Lee
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Jong-Won Jang
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Jehyuk Lee
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Doctorbom Clinic, Seoul 06614, Republic of Korea
| | - Hyun-Seok Kim
- Kim Hyun Seok Plastic Surgery Clinic, Seoul 06030, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
4
|
Bernardette Martínez-Rizo A, Fosado-Rodríguez R, César Torres-Romero J, César Lara-Riegos J, Alberto Ramírez-Camacho M, Ly Arroyo Herrera A, Elizabeth Villa de la Torre F, Ceballos Góngora E, Ermilo Arana-Argáez V. Models in vivo and in vitro for the study of acute and chronic inflammatory activity: A comprehensive review. Int Immunopharmacol 2024; 135:112292. [PMID: 38788446 DOI: 10.1016/j.intimp.2024.112292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Inflammatory conditions are among the principal causes of morbidity worldwide, and their treatment continues to be a challenge, given the restricted availability of effective and safe drugs. Thus, the identification of new compounds with biological activity that can be used for the treatment of inflammatory disorders is an essential field in medical and health research, in order to improve the health and quality of life of patients suffering from these diseases. Evaluation of the anti-inflammatory activity of drugs requires the implementation of models that accurately depict the biochemical and/or physiological responses that characterize human inflammation; for this reason, several in vitro and in vivo models have been developed, providing a platform for discovering novel or repurposed compounds. For this reason, in the present review we have selected twelve commonly used models for the evaluation of the anti-inflammatory effect, and extensively describes the difference between in vivo and in vitro models of inflammation, highlighting their advantages and limitations. On the other hand, the inflammatory mechanisms involved in them, the methods employed for their establishment, and the different parameters assessed to determine the anti-inflammatory activity of a given compound are extensively discussed. We expect to provide a comprehensive guide for the improved selection of a suitable model for the preclinical evaluation of plausible anti-inflammatory agents.
Collapse
Affiliation(s)
- Abril Bernardette Martínez-Rizo
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México; Laboratorio de Investigación Biomédica, Unidad Académica de Medicina, Universidad Autónoma de Nayarit, Nayarit, México
| | - Ricardo Fosado-Rodríguez
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julio César Torres-Romero
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julio César Lara-Riegos
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Mario Alberto Ramírez-Camacho
- Centro de Información de Medicamentos, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Ana Ly Arroyo Herrera
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | | | - Emanuel Ceballos Góngora
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Víctor Ermilo Arana-Argáez
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México.
| |
Collapse
|
5
|
Kim S, Kim NH, Khaleel ZH, Sa DH, Choi D, Ga S, Kim CG, Jang J, Kim K, Kim YJ, Chang SN, Park SM, Park SY, Lee B, Kim J, Lee J, An S, Park JG, Kim YH. Mussel‐Inspired Recombinant Adhesive Protein‐Based Functionalization for Consistent and Effective Antimicrobial Treatment in Chronic Inflammatory Skin Diseases. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Indexed: 08/07/2024]
Abstract
AbstractChronic inflammatory skin diseases, characterized by a vicious cycle of infection and hyperinflammation, necessitate consistent and effective antimicrobial treatment of target lesions to achieve practical therapeutic outcomes. Antimicrobial dressing materials offer notable advantages over conventional therapeutic drugs, including ease of application, extended contact time, and targeted antimicrobial action, resulting in enhanced efficacy in breaking the vicious cycle. In line with these advantages, this study aims to develop a plug‐and‐playable recombinant adhesive protein (RAP) inspired by the adhesive properties of marine mussels, serving as a durable and effective surface functionalization strategy. By genetically recombining mussel foot protein with antimicrobial peptides, RAP effectively incorporates antimicrobial properties into biomaterials for treating chronic inflammatory skin diseases. The durable adhesion of RAP ensures long‐lasting antimicrobial functionality on target surfaces, MFP making it a promising approach to inhibit chronic inflammation. In addition, when dip‐coated onto cotton gauze, RAP can be utilized as an antimicrobial patch, effectively suppressing chronic inflammation through the inhibition of bacteria‐induced toll‐like receptor signaling. These findings underscore the potential of nature‐inspired protein‐based surface functionalization of biomaterials as a compelling approach to advance the treatment of chronic inflammatory skin diseases.
Collapse
Affiliation(s)
- Suhyeon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Nano Science and Technology Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Nam Hyeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Nano Science and Technology Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Zinah Hilal Khaleel
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Nano Science and Technology Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Deok Hyang Sa
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Nano Science and Technology Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Daekyu Choi
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Seongmin Ga
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Nano Science and Technology Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Chang Geon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Advanced Bio Convergence Center (ABCC) Pohang Technopark Foundation Pohang Gyeongbuk 37668 Republic of Korea
| | - Jiye Jang
- School of Pharmacy Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Biopharmaceutical Convergence Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Kyeonghyun Kim
- Department of Nano Science and Technology Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Ye Ji Kim
- Department of Nano Science and Technology Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Sukkum Ngullie Chang
- Advanced Bio Convergence Center (ABCC) Pohang Technopark Foundation Pohang Gyeongbuk 37668 Republic of Korea
| | - Seon Min Park
- Advanced Bio Convergence Center (ABCC) Pohang Technopark Foundation Pohang Gyeongbuk 37668 Republic of Korea
| | - Su Yeon Park
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Nano Science and Technology Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Bok‐Soo Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Jin‐Chul Kim
- Natural Products Research Institute Korea Institute of Science and Technology Gangneung Gangwon‐do 25451 Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Biopharmaceutical Convergence Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Imnewrun Inc. 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Seongpil An
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Jae Gyu Park
- Advanced Bio Convergence Center (ABCC) Pohang Technopark Foundation Pohang Gyeongbuk 37668 Republic of Korea
- Department of Nano Engineering Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Nano Science and Technology Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Imnewrun Inc. 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Nano Engineering Sungkyunkwan University (SKKU) 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| |
Collapse
|
6
|
Sadeghian I, Akbarpour M, Chafjiri FMA, Chafjiri PMA, Heidari R, Morowvat MH, Sadeghian R, Raee MJ, Negahdaripour M. Potential of oligonucleotide- and protein/peptide-based therapeutics in the management of toxicant/stressor-induced diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1275-1310. [PMID: 37688622 DOI: 10.1007/s00210-023-02683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Exposure to toxicants/stressors has been linked to the development of many human diseases. They could affect various cellular components, such as DNA, proteins, lipids, and non-coding RNAs (ncRNA), thereby triggering various cellular pathways, particularly oxidative stress, inflammatory responses, and apoptosis, which can contribute to pathophysiological states. Accordingly, modulation of these pathways has been the focus of numerous investigations for managing related diseases. The involvement of various ncRNAs, such as small interfering RNA (siRNA), microRNAs (miRNA), and long non-coding RNAs (lncRNA), as well as various proteins and peptides in mediating these pathways, provides many target sites for pharmaceutical intervention. In this regard, various oligonucleotide- and protein/peptide-based therapies have been developed to treat toxicity-induced diseases, which have shown promising results in vitro and in vivo. This comprehensive review provides information about various aspects of toxicity-related diseases including their causing factors, main underlying mechanisms and intermediates, and their roles in pathophysiological states. Particularly, it highlights the principles and mechanisms of oligonucleotide- and protein/peptide-based therapies in the treatment of toxicity-related diseases. Furthermore, various issues of oligonucleotides and proteins/peptides for clinical usage and potential solutions are discussed.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Akbarpour
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Sadeghian I, Heidari R, Raee MJ, Negahdaripour M. Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 2022; 74:1085-1116. [PMID: 35728949 DOI: 10.1093/jpp/rgac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Peptides and proteins represent great potential for modulating various cellular processes including oxidative stress, inflammatory response, apoptosis and consequently the treatment of related diseases. However, their therapeutic effects are limited by their inability to cross cellular barriers. Cell-penetrating peptides (CPPs), which can transport cargoes into the cell, could resolve this issue, as would be discussed in this review. KEY FINDINGS CPPs have been successfully exploited in vitro and in vivo for peptide/protein delivery to treat a wide range of diseases involving oxidative stress, inflammatory processes and apoptosis. Their in vivo applications are still limited due to some fundamental issues of CPPs, including nonspecificity, proteolytic instability, potential toxicity and immunogenicity. SUMMARY Totally, CPPs could potentially help to manage the diseases involving oxidative stress, inflammatory response and apoptosis by delivering peptides/proteins that could selectively reach proper intracellular targets. More studies to overcome related CPP limitations and confirm the efficacy and safety of this strategy are needed before their clinical usage.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Han Y, Itenberg SA, Wu X, Xiao H. Guidelines for inflammation models in mice for food components. EFOOD 2022. [DOI: 10.1002/efd2.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yanhui Han
- Department of Food Science University of Massachusetts Amherst Amherst Massachusetts USA
| | - Sasha A. Itenberg
- Department of Kinesiology, Nutrition, and Health Miami University Oxford Ohio USA
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health Miami University Oxford Ohio USA
| | - Hang Xiao
- Department of Food Science University of Massachusetts Amherst Amherst Massachusetts USA
| |
Collapse
|
9
|
Ryan F, Khoshnam SE, Khodagholi F, Ashabi G, Ahmadiani A. How cytosolic compartments play safeguard functions against neuroinflammation and cell death in cerebral ischemia. Metab Brain Dis 2021; 36:1445-1467. [PMID: 34173922 DOI: 10.1007/s11011-021-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
Ischemic stroke is the second leading cause of mortality and disability globally. Neuronal damage following ischemic stroke is rapid and irreversible, and eventually results in neuronal death. In addition to activation of cell death signaling, neuroinflammation is also considered as another pathogenesis that can occur within hours after cerebral ischemia. Under physiological conditions, subcellular organelles play a substantial role in neuronal functionality and viability. However, their functions can be remarkably perturbed under neurological disorders, particularly cerebral ischemia. Therefore, their biochemical and structural response has a determining role in the sequel of neuronal cells and the progression of disease. However, their effects on cell death and neuroinflammation, as major underlying mechanisms of ischemic stroke, are still not understood. This review aims to provide a comprehensive overview of the contribution of each organelle on these pathological processes after ischemic stroke.
Collapse
Affiliation(s)
- Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Centre, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, PO Box: 1417613151, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Quan W, Kong S, Ouyang Q, Tao J, Lu S, Huang Y, Li S, Luo H. Use of 18β-glycyrrhetinic acid nanocrystals to enhance anti-inflammatory activity by improving topical delivery. Colloids Surf B Biointerfaces 2021; 205:111791. [PMID: 34022703 DOI: 10.1016/j.colsurfb.2021.111791] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/17/2021] [Accepted: 04/24/2021] [Indexed: 01/05/2023]
Abstract
18β-Glycyrrhetinic acid (GA) is often topically applied in clinical treatment of inflammatory skin diseases. However, GA has poor solubility in water, which results in poor skin permeability and low bioavailability. Nanocrystallization of drugs can enhance their permeability and improve bioavailability. We prepared GA nanocrystals (Nano GA) by high-pressure homogenization. These nanocrystals were characterized by photon correlation spectroscopy, scanning electron microscopy, thermogravimetric analysis, and X-ray diffractometry. The ability of Nano GA to improve dermal permeability was investigated ex vivo using Franz diffusion vertical cells and mouse skin. The topical anti-inflammatory activity of Nano GA was assessed in vivo by a 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced model in mouse ears. The average particle size of a GA nanocrystalline suspension was 288.6 ± 7.3 nm, with a narrow particle-size distribution (polydispersity index ∼0.13 ± 0.10), and the particle size of the lyophilized powder increased (552.0 ± 9.8 nm). After nanocrystallization, the thermal stability and crystallinity decreased but solubility increased significantly. Nano GA showed higher dermal permeability than Coarse GA. Macroscopic and staining-based observations of mouse ears and the levels of proinflammatory factors and myeloperoxidase revealed that the Nano GA hydrogel exhibited better anti-edema ability and more strongly inhibited inflammation development than the Coarse GA hydrogel and indomethacin hydrogel (positive drug). These results suggest that Nano GA could be an efficacious topical therapeutic agent for skin inflammation.
Collapse
Affiliation(s)
- Weiyan Quan
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Songzhi Kong
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Qianqian Ouyang
- The Marine Biomedical Research Institute of Guangdong Zhangjiang, Zhanjiang, 524023, China
| | - Jinlong Tao
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524001, China
| | - Sitong Lu
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yongmei Huang
- The Marine Biomedical Research Institute of Guangdong Zhangjiang, Zhanjiang, 524023, China
| | - Sidong Li
- Department of Applied Chemistry, School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China; The Marine Biomedical Research Institute of Guangdong Zhangjiang, Zhanjiang, 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute of Guangdong Zhangjiang, Zhanjiang, 524023, China.
| |
Collapse
|
11
|
Park YJ, Kim SH, Kim TS, Lee SM, Cho BS, Seo CI, Kim HD, Kim J. Ribosomal protein S3 associates with the TFIIH complex and positively regulates nucleotide excision repair. Cell Mol Life Sci 2021; 78:3591-3606. [PMID: 33464383 PMCID: PMC11072392 DOI: 10.1007/s00018-020-03754-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
In mammalian cells, the bulky DNA adducts caused by ultraviolet radiation are mainly repaired via the nucleotide excision repair (NER) pathway; some defects in this pathway lead to a genetic disorder known as xeroderma pigmentosum (XP). Ribosomal protein S3 (rpS3), a constituent of the 40S ribosomal subunit, is a multi-functional protein with various extra-ribosomal functions, including a role in the cellular stress response and DNA repair-related activities. We report that rpS3 associates with transcription factor IIH (TFIIH) via an interaction with the xeroderma pigmentosum complementation group D (XPD) protein and complements its function in the NER pathway. For optimal repair of UV-induced duplex DNA lesions, the strong helicase activity of the TFIIH complex is required for unwinding damaged DNA around the lesion. Here, we show that XP-D cells overexpressing rpS3 showed markedly increased resistance to UV radiation through XPD and rpS3 interaction. Additionally, the knockdown of rpS3 caused reduced NER efficiency in HeLa cells and the overexpression of rpS3 partially restored helicase activity of the TFIIH complex of XP-D cells in vitro. We also present data suggesting that rpS3 is involved in post-excision processing in NER, assisting TFIIH in expediting the repair process by increasing its turnover rate when DNA is damaged. We propose that rpS3 is an accessory protein of the NER pathway and its recruitment to the repair machinery augments repair efficiency upon UV damage by enhancing XPD helicase function and increasing its turnover rate.
Collapse
Affiliation(s)
- Y J Park
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - S H Kim
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - T S Kim
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - S M Lee
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - B S Cho
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - C I Seo
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - H D Kim
- TechnoComplex Building, HAEL Lab, Korea University, Seoul, 02841, Korea
| | - J Kim
- Lab of Biochemistry, Division of Life Sciences, Korea University, Seoul, 02841, Korea.
- TechnoComplex Building, HAEL Lab, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
12
|
Kong JS, Park JH, Yoo SA, Kim KM, Bae YJ, Park YJ, Cho CS, Hwang D, Kim WU. Dynamic transcriptome analysis unveils key proresolving factors of chronic inflammatory arthritis. J Clin Invest 2020; 130:3974-3986. [PMID: 32407294 PMCID: PMC7410073 DOI: 10.1172/jci126866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Despite recent advances in understanding chronic inflammation remission, global analyses have not been explored to systematically discover genes or pathways underlying the resolution dynamics of chronic inflammatory diseases. Here, we performed time-course gene expression profiling of mouse synovial tissues along progression and resolution of collagen-induced arthritis (CIA) and identified genes associated with inflammation resolution. Through network analysis of these genes, we predicted 3 key secretory factors responsible for the resolution of CIA: Itgb1, Rps3, and Ywhaz. These factors were predominantly expressed by Tregs and antiinflammatory M2 macrophages, suppressing production of proinflammatory cytokines. In particular, Ywhaz was elevated in the sera of mice with arthritis resolution and in the urine of rheumatoid arthritis (RA) patients with good therapeutic responses. Moreover, adenovirus-mediated transfer of the Ywhaz gene to the affected joints substantially inhibited arthritis progression in mice with CIA and suppressed expression of proinflammatory cytokines in joint tissues, lymph nodes, and spleens, suggesting Ywhaz is an excellent target for RA therapy. Therefore, our comprehensive analysis of dynamic synovial transcriptomes provides previously unidentified antiarthritic genes, Itgb1, Rps3, and Ywhaz, which can serve as molecular markers to predict disease remission, as well as therapeutic targets for chronic inflammatory arthritis.
Collapse
Affiliation(s)
- Jin-Sun Kong
- Center for Integrative Rheumatoid Transcriptomics and Dynamics and
- Department of Biomedicine and Health Sciences, Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Hwan Park
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seung-Ah Yoo
- Center for Integrative Rheumatoid Transcriptomics and Dynamics and
| | - Ki-Myo Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics and
| | - Yeung-Jin Bae
- Center for Integrative Rheumatoid Transcriptomics and Dynamics and
| | - Yune-Jung Park
- Center for Integrative Rheumatoid Transcriptomics and Dynamics and
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Chul-Soo Cho
- Center for Integrative Rheumatoid Transcriptomics and Dynamics and
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Daehee Hwang
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics and
- Department of Biomedicine and Health Sciences, Catholic University of Korea, Seoul, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
13
|
Kim TS, Kim HD, Park YJ, Kong E, Yang HW, Jung Y, Kim Y, Kim J. JNK activation induced by ribotoxic stress is initiated from 80S monosomes but not polysomes. BMB Rep 2019. [PMID: 30670151 PMCID: PMC6726213 DOI: 10.5483/bmbrep.2019.52.8.273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Translation is a costly, but inevitable, cell maintenance process. To reduce unnecessary ATP consumption in cells, a fine-tuning mechanism is needed for both ribosome biogenesis and translation. Previous studies have suggested that the ribosome functions as a hub for many cellular signals such as ribotoxic stress response, mammalian target of rapamycin (mTOR), and ribosomal S6 kinase (RSK) signaling. Therefore, we investigated the relationship between ribosomes and mitogen-activated protein kinase (MAPK) activation under ribotoxic stress conditions and found that the activation of c-Jun N-terminal kinases (JNKs) was suppressed by ribosomal protein knockdown but that of p38 was not. In addition, we found that JNK activation is driven by the association of inactive JNK in the 80S monosomes rather than the polysomes. Overall, these data suggest that the activation of JNKs by ribotoxic stress is attributable to 80S monosomes. These 80S monosomes are active ribosomes that are ready to initiate protein translation, rather than polysomes that are already acting ribosomes involved in translation elongation.
Collapse
Affiliation(s)
- Tae-Sung Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hag Dong Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
- HAEL Lab, TechnoComplex Building, Korea University, Seoul 02841, Korea
| | - Yong Jun Park
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - EunBin Kong
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hee Woong Yang
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Youjin Jung
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - YongJoong Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul 02841, Korea
- HAEL Lab, TechnoComplex Building, Korea University, Seoul 02841, Korea
| |
Collapse
|
14
|
Chen W, Huang Z, Tay NES, Giglio B, Wang M, Wang H, Wu Z, Nicewicz DA, Li Z. Direct arene C-H fluorination with 18F - via organic photoredox catalysis. Science 2019; 364:1170-1174. [PMID: 31221856 PMCID: PMC6680023 DOI: 10.1126/science.aav7019] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/06/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
Positron emission tomography (PET) plays key roles in drug discovery and development, as well as medical imaging. However, there is a dearth of efficient and simple radiolabeling methods for aromatic C-H bonds, which limits advancements in PET radiotracer development. Here, we disclose a mild method for the fluorine-18 (18F)-fluorination of aromatic C-H bonds by an [18F]F- salt via organic photoredox catalysis under blue light illumination. This strategy was applied to the synthesis of a wide range of 18F-labeled arenes and heteroaromatics, including pharmaceutical compounds. These products can serve as diagnostic agents or provide key information about the in vivo fate of the labeled substrates, as showcased in preliminary tracer studies in mice.
Collapse
Affiliation(s)
- Wei Chen
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Zeng Huang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Nicholas E S Tay
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin Giglio
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Mengzhe Wang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Hui Wang
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Zhanhong Wu
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA.
| |
Collapse
|
15
|
Camponogara C, Silva CR, Brusco I, Piana M, Faccin H, de Carvalho LM, Schuch A, Trevisan G, Oliveira SM. Nasturtium officinale R. Br. effectively reduces the skin inflammation induced by croton oil via glucocorticoid receptor-dependent and NF-κB pathways without causing toxicological effects in mice. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:190-204. [PMID: 30339978 DOI: 10.1016/j.jep.2018.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory skin diseases treatments currently used cause adverse effects. Nasturtium officinale (watercress) is used popularly as an anti-inflammatory. However, until now, no study proved its effectiveness as a topical treatment to inflammatory skin diseases. The topical anti-inflammatory activity of N. officinale crude extract leaves (NoE) on an irritant contact dermatitis (ICD) model croton oil-induced in mice was investigated. MATERIALS AND METHODS ICD models were induced by a single (1 mg/ear; acute) or repeated (0.4 mg/ear; chronic; 9 days total) croton oil application. NoE and dexamethasone solutions' (diluted in acetone; 20 μL/ear) or NoE gel, dexamethasone gel and base gel (15 mg/ear) were topically applied immediately after croton oil application. The NoE topical anti-inflammatory effect was evaluated for inflammatory parameters (ear edema, inflammatory cells infiltration, and inflammatory cytokines levels). NoE topical anti-inflammatory mechanism (NF-κB pathway and effect glucocorticoid-like) were assessed by western blot and ear edema analyses, respectively. UHPLC-MS/MS chromatography, gels accelerated stability and preliminary study of adverse effects was also performed. RESULTS UHPLC-MS/MS of the NoE revealed the presence of coumaric acid, rutin, and ferulic acid. NoE gels stability study showed no relevant changes at low temperature. NoE, dexamethasone, NoE gel and dexamethasone gel inhibited the ear edema croton oil-induced by 82 ± 6% (1 mg/ear), 99 ± 1% (0.1 mg/ear), 81 ± 8% (3%) and 70 ± 6% (0.5%) for the acute model, and 49 ± 7% (1 mg/ear), 80 ± 4% (0.1 mg/ear), 41 ± 8% (3%) and 46 ± 14% (0.5%) for the chronic model, respectively. The same treatments also reduced the inflammatory cells infiltration by 62 ± 3% (1 mg/ear), 97 ± 2% (0.1 mg/ear), 60 ± 3% (3%) and 66 ± 6% (0.5%) for the acute model, respectively, and 25 ± 8% (1 mg/ear) to NoE and 83 ± 13% to dexamethasone to the chronic model. NoE and NoE gel reduced the pro-inflammatory cytokines levels (acute ICD model) by 62 ± 5% and 71 ± 3% (MIP-2) and 32 ± 3% and 44 ± 4% (IL-1β), while dexamethasone solution's and gel reduced by 79 ± 7% and 44 ± 4% to MIP-2 and 98 ± 2% and 83 ± 9% to IL-1β, respectively. NoE' and dexamethasone' solutions inhibited the reduction of IkB-α protein expression induced by croton oil by 100% and 80 ± 14%, respectively. Besides, the mifepristone (glucocorticoid receptor antagonist) pre-treatment prevented the topical anti-edematogenic effect of NoE' and dexamethasone' solutions by 61 ± 5% to NoE and 78 ± 16% to dexamethasone. The repeated topical application of NoE did not cause adverse effects. CONCLUSION Our results suggest the N. officinale use in the cutaneous inflammatory process treatment and demonstrate the NoE potential to develop a promising topical anti-inflammatory agent to treat inflammatory disorders.
Collapse
Affiliation(s)
- Camila Camponogara
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cássia R Silva
- Graduate Program in Genetics and Biochemistry, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Indiara Brusco
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Mariana Piana
- Phytochemical Research Laboratory, Graduate Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Henrique Faccin
- Graduate Program in Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Leandro Machado de Carvalho
- Graduate Program in Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - André Schuch
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Trevisan
- Graduate Program in Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Camobi, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Laboratory Neurotoxicity and Psychopharmacology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
16
|
Camponogara C, Casoti R, Brusco I, Piana M, Boligon AA, Cabrini DA, Trevisan G, Ferreira J, Silva CR, Oliveira SM. Tabernaemontana catharinensis leaves effectively reduce the irritant contact dermatitis by glucocorticoid receptor-dependent pathway in mice. Biomed Pharmacother 2019; 109:646-657. [DOI: 10.1016/j.biopha.2018.10.132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/09/2018] [Accepted: 10/21/2018] [Indexed: 12/26/2022] Open
|
17
|
Wu PP, He H, Hong WD, Wu TR, Huang GY, Zhong YY, Tu BR, Gao M, Zhou J, Zhao SQ, Li DL, Xu XT, Sheng ZJ, Ward SA, O'Neill PM, Zhang K. The biological evaluation of fusidic acid and its hydrogenation derivative as antimicrobial and anti-inflammatory agents. Infect Drug Resist 2018; 11:1945-1957. [PMID: 30498366 PMCID: PMC6207271 DOI: 10.2147/idr.s176390] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background Fusidic acid (FA) (WU-FA-00) is the only commercially available antimicrobial from the fusidane family that has a narrow spectrum of activity against Gram-positive bacteria. Methods Herein, the hydrogenation derivative (WU-FA-01) of FA was prepared and both compounds were examined against a panel of six bacterial strains. In addition, their anti-inflammatory properties were evaluated using a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema model. Results The results of the antimicrobial assay revealed that both WU-FA-00 and WU-FA-01 displayed a high level of antimicrobial activity against Gram-positive strains. Moreover, killing kinetic studies were performed and the results were in accordance with the minimum inhibitory concentration and minimum bactericidal concentration results. We also demonstrated that the topical application of WU-FA-00 and WU-FA-01 effectively decreased TPA-induced ear edema in a dose-dependent manner. This inhibitory effect was associated with the inhibition of TPA-induced upregulation of proinflammatory cytokines IL-1β, TNF-α, and COX-2. WU-FA-01 significantly suppressed the expression levels of p65, IκB-α, and p-IκB-α in the TPA-induced mouse ear model. Conclusion Overall, our results showed that WU-FA-00 and WU-FA-01 not only had effective antimicrobial activities in vitro, especially to the Gram-positive bacteria, but also possessed strong anti-inflammatory effects in vivo. These results provide a scientific basis for developing FA derivatives as antimicrobial and anti-inflammatory agents.
Collapse
Affiliation(s)
- Pan-Pan Wu
- Faculty of Chemical and Environmental Engineering, Wuyi University, Jiangmen, China, ; .,Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China, ; .,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China, ;
| | - Hao He
- Faculty of Chemical and Environmental Engineering, Wuyi University, Jiangmen, China, ; .,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China, ;
| | - W David Hong
- Faculty of Chemical and Environmental Engineering, Wuyi University, Jiangmen, China, ; .,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China, ; .,Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK.,Department of Chemistry, University of Liverpool, UK
| | - Tong-Rong Wu
- Faculty of Chemical and Environmental Engineering, Wuyi University, Jiangmen, China, ; .,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China, ;
| | - Gui-Ying Huang
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China, ;
| | - Ying-Ying Zhong
- Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China, ;
| | - Bo-Rong Tu
- Faculty of Chemical and Environmental Engineering, Wuyi University, Jiangmen, China, ; .,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China, ;
| | - Min Gao
- Faculty of Chemical and Environmental Engineering, Wuyi University, Jiangmen, China, ; .,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China, ;
| | - Jun Zhou
- Faculty of Chemical and Environmental Engineering, Wuyi University, Jiangmen, China, ; .,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China, ;
| | - Su-Qing Zhao
- Faculty of Chemical and Environmental Engineering, Wuyi University, Jiangmen, China, ; .,Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China, ; .,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China, ;
| | - Dong-Li Li
- Faculty of Chemical and Environmental Engineering, Wuyi University, Jiangmen, China, ; .,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China, ;
| | - Xue-Tao Xu
- Faculty of Chemical and Environmental Engineering, Wuyi University, Jiangmen, China, ; .,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China, ;
| | - Zhao-Jun Sheng
- Faculty of Chemical and Environmental Engineering, Wuyi University, Jiangmen, China, ; .,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China, ;
| | - Stephen A Ward
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Kun Zhang
- Faculty of Chemical and Environmental Engineering, Wuyi University, Jiangmen, China, ; .,Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China, ; .,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China, ;
| |
Collapse
|
18
|
Xie X, Wang L, Zhao B, Chen Y, Li J. SIRT3 mediates decrease of oxidative damage and prevention of ageing in porcine fetal fibroblasts. Life Sci 2017; 177:41-48. [PMID: 28131761 DOI: 10.1016/j.lfs.2017.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/05/2017] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
AIMS Sirtuin 3 (SIRT3) is a mitochondria-specific protein required for the deacetylation of metabolic enzymes and the action of oxidative phosphorylation by acting as a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase. SIRT3 increases oxidative stress resistance and prevents mitochondrial decay associated with ageing in response to caloric restriction. However, the effects of SIRT3 on oxidative damage and ageing are not well understood. We investigated the physiological functions of porcine SIRT3 on the damage and ageing in porcine fetal fibroblasts (PFFs). MAIN METHODS Overexpression and knockdown of SIRT3 were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis, respectively. All cells were treated with three different stress reagents 12-o-tetradecanoylphorbol-13-acetate (TPA), methanesulfonic acid methylester (MMS), and tert-butylhydroperoxide (t-BHP), respectively, and then examined by flow cytometry following JC-1 (5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazol-carbocyanine iodide) staining. KEY FINDINGS SIRT3 overexpression enhanced the ability of superoxide dismutase 2 (SOD2) to reduce cellular reactive oxygen species (ROS), which further decreased the damage to the membranes and the organelles of the cells, especially to mitochondria. It inhibited the initial decrease of mitochondrial membrane potential, and prevented the decrease of adenosine triphosphate (ATP) production and activity of Nampt. In contrast, SIRT3 knockdown reduced the ability of SOD2 to increase cellular ROS which was directly correlated with stress-induced oxidative damage and ageing in PFFs. SIGNIFICANCE Our findings identify one function of SIRT3 in PFFs was to dampen cytotoxicity, and, therefore, to decrease oxidative damage and attenuate ageing possibly by enhancing the activity of SOD2.
Collapse
Affiliation(s)
- Xiaoxian Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Liangliang Wang
- College of Ecology, Lishui University, Lishui 323000, China; College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Binggong Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yangyang Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiaqi Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
19
|
Kiani-Esfahani A, Kazemi Sheykhshabani S, Peymani M, Hashemi MS, Ghaedi K, Nasr-Esfahani MH. Overexpression of Annexin A1 Suppresses Pro-Inflammatory Factors in PC12 Cells Induced by 1-Methyl-4-Phenylpyridinium. CELL JOURNAL 2016; 18:197-204. [PMID: 27540524 PMCID: PMC4988418 DOI: 10.22074/cellj.2016.4314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 07/28/2015] [Indexed: 01/19/2023]
Abstract
Objective Annexin A1 (ANXA1) is suggested to have anti-inflammatory function. However, the precise function of ANXA1 has remained unclear. In this study, we therefore
examined the potency of ANXA1 in regulating reactive oxygen species (ROS) production
and suppressing pro-inflammatory responses in PC12 cells induced by 1-methyl-4-phenylpyridinium (MPP+).
Materials and Methods In this experimental study, cDNA of ANXA1 was cloned and
inserted to the PGL268 pEpi-FGM18F vector to produce a recombinant PGL/ANXA1 vector for transfection into the PC12 cells. ANXA1 transfected cells were then treated with
MPP+. Apoptosis and the content of pro-inflammatory factors including ROS, Interlukin-6
(IL-6), inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB) were
assessed by flow-cytometry, real-time quantitative polymerase chain reaction (RT-qPCR)
and western blot in ANXA1-transfected cells and the data were compared with those obtained from mock and control cells.
Results Data revealed that overexpression of ANXA1 is associated with decreased levels of ROS and expression level of IL-6 and iNOS transcripts, and NF-κB protein in MPP+
treated PC12 cells.
Conclusion ANXA1 may be considered as an agent for prevention of neurodegenerative
or inflammatory conditions.
Collapse
Affiliation(s)
- Abbas Kiani-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Maryam Peymani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Sahrekord, Iran
| | - Motahare-Sadat Hashemi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
20
|
Kim DW, Lee SH, Ku SK, Lee JE, Cha HJ, Youn JK, Kwon HY, Park JH, Park EY, Cho SW, Han KH, Park J, Eum WS, Choi SY. The effects of PEP-1-FK506BP on dry eye disease in a rat model. BMB Rep 2015; 48:153-8. [PMID: 24998262 PMCID: PMC4453030 DOI: 10.5483/bmbrep.2015.48.3.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Indexed: 11/20/2022] Open
Abstract
As FK506 binding proteins (FK506BPs) are known to play an important role in the regulation of a variety of biological processes related to cell survival, this study was designed to examined the protective effects of FK506 binding protein 12 (FK506BP) on low humidity air flow induced dry eye in a rat model using transduced PEP-1-FK506BP. After the topical application of PEP-1-FK506BP, tear volumes were markedly increased and significant prevention of cornea damage was observed compared with dry eye rats. Further, immunohistochemical analysis demonstrated that PEP-1-FK506BP markedly prevented damage to the cornea, the bulbar conjunctiva, and the palpebral conjunctiva epithelial lining compared with dry eye rats. In addition, caspase-3 and PARP expression levels were found to be decreased. These results demonstrated that topical application of PEP-1-FK506BP significantly ameliorates dry eye injury in an animal model. Thus, we suggest that PEP-1-FK506BP can be developed as a new ophthalmic drop to treat dry eye diseases.
Collapse
Affiliation(s)
- Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung 210-702, Korea
| | - Sung Ho Lee
- R&D center, Lumieye Genetics Co., Ltd., Seoul 135-280, Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Korea
| | - Ji Eun Lee
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Korea
| | - Hyun Ju Cha
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Jong Kyu Youn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Hyeok Yil Kwon
- Department of Physiology, College of Medicine, Hallym University, Chunchon 200-702, Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Korea
| | - Eun Young Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| |
Collapse
|
21
|
Youn JK, Kim DW, Kim ST, Park SY, Yeo EJ, Choi YJ, Lee HR, Kim DS, Cho SW, Han KH, Park J, Eum WS, Hwang HS, Choi SY. PEP-1-HO-1 prevents MPTP-induced degeneration of dopaminergic neurons in a Parkinson's disease mouse model. BMB Rep 2015; 47:569-74. [PMID: 24499676 PMCID: PMC4261515 DOI: 10.5483/bmbrep.2014.47.10.286] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Indexed: 11/20/2022] Open
Abstract
Heme oxygenase-1 (HO-1) degrades heme to carbon dioxide, biliverdin, and Fe2+, which play important roles in various biochemical processes. In this study, we examined the protective function of HO-1 against oxidative stress in SH-SY5Y cells and in a Parkinson's disease mouse model. Western blot and fluorescence microscopy analysis demonstrated that PEP-1-HO-1, fused with a PEP-1 peptide can cross the cellular membranes of human neuroblastoma SH-SY5Y cells. In addition, the transduced PEP-1-HO-1 inhibited generation of reactive oxygen species (ROS) and cell death caused by 1-methyl-4-phenylpyridinium ion (MPP+). In contrast, HO-1, which has no ability to transduce into SH-SY5Y cells, failed to reduce MPP+-induced cellular toxicity and ROS production. Furthermore, intraperitoneal injected PEP-1-HO-1 crossed the blood-brain barrier in mouse brains. In a PD mouse model, PEP-1-HO-1 significantly protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity and dopaminergic neuronal death. Therefore, PEP-1-HO-1 could be a useful agent in treating oxidative stress induced ailments including PD.
Collapse
Affiliation(s)
- Jong Kyu Youn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung 210-702, Korea
| | - Seung Tae Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Sung Yeon Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Hae-Ran Lee
- Department of Pediatrics, Hallym University Medical Center, Pyungchon 431-796, Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 330-090, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Hyun Sook Hwang
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| |
Collapse
|
22
|
Kim DW, Lee SH, Ku SK, Lee JE, Cha HJ, Youn JK, Kwon HY, Park JH, Park EY, Cho SW, Han KH, Park J, Eum WS, Choi SY. The effects of PEP-1-FK506BP on dry eye disease in a rat model. BMB Rep 2015. [PMID: 24998262 DOI: 10.5483/bmbrep.2015.483.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
As FK506 binding proteins (FK506BPs) are known to play an important role in the regulation of a variety of biological processes related to cell survival, this study was designed to examined the protective effects of FK506 binding protein 12 (FK506BP) on low humidity air flow induced dry eye in a rat model using transduced PEP-1-FK506BP. After the topical application of PEP-1-FK506BP, tear volumes were markedly increased and significant prevention of cornea damage was observed compared with dry eye rats. Further, immunohistochemical analysis demonstrated that PEP-1-FK506BP markedly prevented damage to the cornea, the bulbar conjunctiva, and the palpebral conjunctiva epithelial lining compared with dry eye rats. In addition, caspase-3 and PARP expression levels were found to be decreased. These results demonstrated that topical application of PEP-1-FK506BP significantly ameliorates dry eye injury in an animal model. Thus, we suggest that PEP-1-FK506BP can be developed as a new ophthalmic drop to treat dry eye diseases.
Collapse
Affiliation(s)
- Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung 210-702, Korea
| | - Sung Ho Lee
- R&D center, Lumieye Genetics Co., Ltd., Seoul 135-280, Korea
| | - Sae Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Korea
| | - Ji Eun Lee
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Korea
| | - Hyun Ju Cha
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Jong Kyu Youn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Hyeok Yil Kwon
- Department of Physiology, College of Medicine, Hallym University, Chunchon 200-702, Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Korea
| | - Eun Young Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| |
Collapse
|
23
|
Tat-biliverdin reductase A inhibits inflammatory response by regulation of MAPK and NF-κB pathways in Raw 264.7 cells and edema mouse model. Mol Immunol 2015; 63:355-66. [DOI: 10.1016/j.molimm.2014.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 12/17/2022]
|
24
|
Jeong HJ, Park M, Kim DW, Ryu EJ, In Yong J, Cha HJ, Kim SJ, Yeo HJ, Jeong JH, Kim DS, Kim HC, Shin EJ, Park EY, Park JH, Kwon HY, Park J, Eum WS, Choi SY. Down-regulation of MAPK/NF-κB signaling underlies anti-inflammatory response induced by transduced PEP-1-Prx2 proteins in LPS-induced Raw 264.7 and TPA-induced mouse ear edema model. Int Immunopharmacol 2014; 23:426-33. [DOI: 10.1016/j.intimp.2014.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/06/2014] [Accepted: 09/08/2014] [Indexed: 01/09/2023]
|
25
|
Sadeghi H, Zarezade V, Sadeghi H, Akbartabar Toori M, Jafari Barmak M, Azizi A, Ghavamizadeh M, Mostafazadeh M. Anti-inflammatory Activity of Stachys Pilifera Benth. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e19259. [PMID: 25593730 PMCID: PMC4270644 DOI: 10.5812/ircmj.19259] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/07/2014] [Accepted: 06/30/2014] [Indexed: 12/16/2022]
Abstract
Background: Stachys piliferaBenth has long been used to treat infectious diseases as well as respiratory and rheumatoid disorders in Iranian folk medicine. Antioxidants, antitumor, and antimicrobial properties of the plant have been reported. Objectives: This experimental study was designed to evaluate systemic and topical anti-inflammatory effects of the hydro-alcoholic extract from aerial parts of Stachys pilifera (HESP). Materials and Methods: Anti-inflammatory effects of HESP was studied in four well-known animal models of inflammation, including carrageenan- or formalin-induced paw edema in rat (thirteen groups, 6 rats per each group), and 12-O-tetradecanoylphorbol-13-acetate (TPA)- or xylene-induced ear edema in mouse (ten groups, 6 mice per each group). The rats received HESP (50-400 mg/ kg) orally 45 minutes before the subplantar injection of carrageenan or formalin. In TPA or xylene tests, HESP (1, 2.5, and 5 mg/ear) was applied topically simultaneous with these phlogistic agents on the ear mice. Finally, pathological examination of the inflamed tissues (paw and ear) was carried out. Results: Acute toxicity study of the extract showed that no rats were killed at 5000 mg/kg (LD50 > 5000 mg/kg). The extract (100 and 200 mg/ kg) significantly suppressed carrageenan-induced paw edema 1, 2, 3, and 4 hours after carrageenan challenge in comparison with the control group (P < 0.001). The HESP (100 and 200 mg/kg) also produced a considerable antiedematogenic effect in the formalin test over a period of 24 hours (P < 0.01). Furthermore, topical administration of the HESP (1, 2.5, and 5 mg/ear) inhibited TPA- and xylene-induced ear edema in comparison with the control group (P < 0.001). The pathological analysis of the paws and ears revealed that HESP was capable of reducing tissue destruction, cellular infiltration, and subcutaneous edema induced by the indicated phlogistic agents. Conclusions: The present data confirmed systemic and topical anti-inflammatory effects of Stachys pilifera which is comparable to indomethacin.
Collapse
Affiliation(s)
- Heibatollah Sadeghi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, IR Iran
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, IR Iran
| | - Vahid Zarezade
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, IR Iran
| | - Hossein Sadeghi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, IR Iran
- Corresponding Author: Hossein Sadeghi, Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, IR Iran. Tel: +98-7413346070, Fax: +98-7413346071, E-mail:
| | - Mehdi Akbartabar Toori
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, IR Iran
| | - Mehrzad Jafari Barmak
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, IR Iran
| | - Arsalan Azizi
- Department of Pathology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, IR Iran
| | - Mehdi Ghavamizadeh
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, IR Iran
| | - Mostafa Mostafazadeh
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, IR Iran
| |
Collapse
|
26
|
Kim YN, Jung HY, Eum WS, Kim DW, Shin MJ, Ahn EH, Kim SJ, Lee CH, Yong JI, Ryu EJ, Park J, Choi JH, Hwang IK, Choi SY. Neuroprotective effects of PEP-1-carbonyl reductase 1 against oxidative-stress-induced ischemic neuronal cell damage. Free Radic Biol Med 2014; 69:181-96. [PMID: 24440593 DOI: 10.1016/j.freeradbiomed.2014.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/30/2013] [Accepted: 01/06/2014] [Indexed: 12/11/2022]
Abstract
Human carbonyl reductase 1 (CBR1) is a member of the NADPH-dependent short-chain dehydrogenase/reductase superfamily that is known to play an important role in neuronal cell survival via its antioxidant function. Oxidative stress is one of the major causes of degenerative disorders including ischemia. However, the role CBR1 plays with regard to ischemic injury is as yet poorly understood. Protein transduction domains such as PEP-1 are well known and now commonly used to deliver therapeutic proteins into cells. In this study, we prepared PEP-1-CBR1 protein and examined whether it protects against oxidative-stress-induced neuronal cell damage. PEP-1-CBR1 protein was efficiently transduced into hippocampal neuronal HT-22 cells and protected against hydrogen peroxide (H2O2)-induced neuronal cell death. Transduced PEP-1-CBR1 protein drastically inhibited H2O2-induced reactive oxygen species production, the oxidation of intracellular macromolecules, and the activation of mitogen-activated protein kinases, as well as cellular apoptosis. Furthermore, we demonstrated that transduced PEP-1-CBR1 protein markedly protected against neuronal cell death in the CA1 region of the hippocampus resulting from ischemic injury in an animal model. In addition, PEP-1-CBR1 protein drastically reduced activation of glial cells and lipid peroxidation in an animal model. These results indicate that PEP-1-CBR1 protein significantly protects against oxidative-stress-induced neuronal cell death in vitro and in vivo. Therefore, we suggest that PEP-1-CBR1 protein may be a therapeutic agent for the treatment of ischemic injuries as well as oxidative-stress-induced cell damage and death.
Collapse
Affiliation(s)
- Young Nam Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, South Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, South Korea
| | - Dae Won Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, South Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, South Korea
| | - Eun Hee Ahn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, South Korea
| | - Sang Jin Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, South Korea
| | - Chi Hern Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, South Korea
| | - Ji In Yong
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, South Korea
| | - Eun Ji Ryu
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, South Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chunchon 200-701, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, South Korea.
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, South Korea.
| |
Collapse
|
27
|
Graifer D, Malygin A, Zharkov DO, Karpova G. Eukaryotic ribosomal protein S3: A constituent of translational machinery and an extraribosomal player in various cellular processes. Biochimie 2014; 99:8-18. [DOI: 10.1016/j.biochi.2013.11.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/05/2013] [Indexed: 01/26/2023]
|
28
|
Sohn EJ, Shin MJ, Kim DW, Ahn EH, Jo HS, Kim DS, Cho SW, Han KH, Park J, Eum WS, Hwang HS, Choi SY. Tat-fused recombinant human SAG prevents dopaminergic neurodegeneration in a MPTP-induced Parkinson's disease model. Mol Cells 2014; 37:226-33. [PMID: 24625574 PMCID: PMC3969043 DOI: 10.14348/molcells.2014.2314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/18/2014] [Accepted: 01/27/2014] [Indexed: 02/03/2023] Open
Abstract
Excessive reactive oxygen species (ROS) generated from abnormal cellular process lead to various human diseases such as inflammation, ischemia, and Parkinson's disease (PD). Sensitive to apoptosis gene (SAG), a RING-FINGER protein, has anti-apoptotic activity and anti-oxidant activity. In this study, we investigate whether Tat-SAG, fused with a Tat domain, could protect SH-SY5Y neuroblastoma cells against 1-methyl-4-phenylpyridinium (MPP(+)) and dopaminergic (DA) neurons in the substantia nigra (SN) against 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) toxicity. Western blot and immunohistochemical analysis showed that, unlike SAG, Tat-SAG transduced efficiently into SH-SY5Y cells and into the brain, respectively. Tat-SAG remarkably suppressed ROS generation, DNA damage, and the progression of apoptosis, caused by MPP(+) in SH-SY5Y cells. Also, immunohistochemical data using a tyrosine hydroxylase antibody and cresyl violet staining demonstrated that Tat-SAG obviously protected DA neurons in the SN against MPTP toxicity in a PD mouse model. Tat-SAG-treated mice showed significant enhanced motor activities, compared to SAG- or Tat-treated mice. Therefore, our results suggest that Tat-SAG has potential as a therapeutic agent against ROS-related diseases such as PD.
Collapse
Affiliation(s)
- Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung 210-702,
Korea
| | - Eun Hee Ahn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 330-090,
Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736,
Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Hyun Sook Hwang
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| |
Collapse
|
29
|
An JJ, Eum WS, Kwon HS, Koh JS, Lee SY, Baek JH, Cho YJ, Kim DW, Han KH, Park J, Jang SH, Choi SY. Protective effects of skin permeable epidermal and fibroblast growth factor against ultraviolet-induced skin damage and human skin wrinkles. J Cosmet Dermatol 2013; 12:287-95. [DOI: 10.1111/jocd.12067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2013] [Indexed: 01/30/2023]
Affiliation(s)
- Jae Jin An
- Bioceltran co., Ltd.; Chuncheon Gangwon-do South Korea
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology; Hallym University; Chuncheon Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology; Hallym University; Chuncheon Korea
| | | | - Jae Sook Koh
- Dermapro Skin Research Center; Seoul South Korea
| | - Soo Yun Lee
- Dermapro Skin Research Center; Seoul South Korea
| | | | - Yong-Jun Cho
- Department of Neurosurgery; Hallym University Medical Center; Chuncheon Korea
| | - Dae Won Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology; Hallym University; Chuncheon Korea
| | - Kyu Huyng Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology; Hallym University; Chuncheon Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology; Hallym University; Chuncheon Korea
| | - Sang Ho Jang
- Bioceltran co., Ltd.; Chuncheon Gangwon-do South Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology; Hallym University; Chuncheon Korea
| |
Collapse
|
30
|
Kim MJ, Kim DW, Park JH, Kim SJ, Lee CH, Yong JI, Ryu EJ, Cho SB, Yeo HJ, Hyeon J, Cho SW, Kim DS, Son O, Park J, Han KH, Cho YS, Eum WS, Choi SY. PEP-1-SIRT2 inhibits inflammatory response and oxidative stress-induced cell death via expression of antioxidant enzymes in murine macrophages. Free Radic Biol Med 2013; 63:432-45. [PMID: 23770196 DOI: 10.1016/j.freeradbiomed.2013.06.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 05/11/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
Sirtuin 2 (SIRT2), a member of the sirtuin family of proteins, plays an important role in cell survival. However, the biological function of SIRT2 protein is unclear with respect to inflammation and oxidative stress. In this study, we examined the protective effects of SIRT2 on inflammation and oxidative stress-induced cell damage using a cell permeative PEP-1-SIRT2 protein. Purified PEP-1-SIRT2 was transduced into RAW 264.7 cells in a time- and dose-dependent manner and protected against lipopolysaccharide- and hydrogen peroxide (H₂O₂)-induced cell death and cytotoxicity. Also, transduced PEP-1-SIRT2 significantly inhibited the expression of cytokines as well as the activation of NF-κB and mitogen-activated protein kinases (MAPKs). In addition, PEP-1-SIRT2 decreased cellular levels of reactive oxygen species (ROS) and of cleaved caspase-3, whereas it elevated the expression of antioxidant enzymes such as MnSOD, catalase, and glutathione peroxidase. Furthermore, topical application of PEP-1-SIRT2 to 12-O-tetradecanoylphorbol 13-acetate-treated mouse ears markedly inhibited expression levels of COX-2 and proinflammatory cytokines as well as the activation of NF-κB and MAPKs. These results demonstrate that PEP-1-SIRT2 inhibits inflammation and oxidative stress by reducing the levels of expression of cytokines and ROS, suggesting that PEP-1-SIRT2 may be a potential therapeutic agent for various disorders related to ROS, including skin inflammation.
Collapse
Affiliation(s)
- Mi Jin Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kim DW, Lee SH, Ku SK, Cho SH, Cho SW, Yoon GH, Hwang HS, Park J, Eum WS, Kwon OS, Choi SY. Transduced PEP-1-FK506BP ameliorates corneal injury in Botulinum toxin A-induced dry eye mouse model. BMB Rep 2013; 46:124-9. [PMID: 23433117 PMCID: PMC4133854 DOI: 10.5483/bmbrep.2013.46.2.272] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
FK506 binding protein 12 (FK506BP) belongs to a family of immunophilins, and is involved in multiple biological processes. However, the function of FK506BP in corneal disease remains unclear. In this study, we examined the protective effects on dry eye disease in a Botulinum toxin A (BTX-A) induced mouse model, using a cell-permeable PEP-1-FK506BP protein. PEP-1-FK506BP efficiently transduced into human corneal epithelial cells in a time- and dose-dependent manner, and remained stable in the cells for 48 h. In addition, we demonstrated that topical application of PEP-1-FK506BP was transduced into mouse cornea and conjunctiva by immunohistochemistry. Furthermore, topical application of PEP-1-FK506BP to BTX-A-induced mouse model markedly inhibited expression levels of pro-inflammatory cytokines such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and macrophage inhibitory factor (MIF) in corneal and conjunctival epithelium. These results suggest PEP-1-FK506BP as a potential therapeutic agent for dry eye diseases. [BMB Reports 2013; 46(2): 124-129]
Collapse
Affiliation(s)
- Dae Won Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ahn EH, Kim DW, Shin MJ, Kim YN, Kim HR, Woo SJ, Kim SM, Kim DS, Kim J, Park J, Eum WS, Hwang HS, Choi SY. PEP-1-ribosomal protein S3 protects dopaminergic neurons in an MPTP-induced Parkinson's disease mouse model. Free Radic Biol Med 2013. [PMID: 23178948 DOI: 10.1016/j.freeradbiomed.2012.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by a gradual loss of dopaminergic (DA) neurons in the substantia nigra (SN) of the brain. Ribosomal protein S3 (rpS3) has multiple functions related to protein synthesis, antioxidative activity, and UV endonuclease III activity. We have previously shown that PEP-1-rpS3 inhibits skin inflammation and provides neuroprotection against experimental cerebral ischemic damage. In this study, we examined whether PEP-1-rpS3 can protect DA neurons against oxidative stress in SH-SY5Y neuroblastoma cells and in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. PEP-1-rpS3 was efficiently delivered to SH-SY5Y cells and the SN of the brain as confirmed by Western blot and immunohistochemical analysis. PEP-1-rpS3 significantly inhibited reactive oxygen species generation and DNA fragmentation induced by 1-methyl-4-phenylpyridinium, consequently leading to the survival of SH-SY5Y cells. The neuroprotection was related to the antiapoptotic activity of PEP-1-rpS3 that affected the levels of proapoptotic and antiapoptotic mediators. In addition, immunohistochemical data collected using a tyrosine hydroxylase antibody and cresyl violet staining demonstrated that PEP-1-rpS3 markedly protected DA cells in the SN against MPTP-induced oxidative stress. Therefore, our results suggest that PEP-1-rpS3 may be a potential therapy for PD.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/antagonists & inhibitors
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Animals
- Disease Models, Animal
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Dopaminergic Neurons/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Neuroprotective Agents/metabolism
- Oxidative Stress
- Parkinson Disease/metabolism
- Parkinson Disease/pathology
- Parkinson Disease/prevention & control
- Protein Structure, Tertiary
- Protein Transport
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Ribosomal Proteins/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Eun Hee Ahn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim MJ, Kim DW, Lee BR, Shin MJ, Kim YN, Eom SA, Park BJ, Cho YS, Han KH, Park J, Hwang HS, Eum WS, Choi SY. Transduced Tat-glyoxalase protein attenuates streptozotocin-induced diabetes in a mouse model. Biochem Biophys Res Commun 2013; 430:294-300. [DOI: 10.1016/j.bbrc.2012.10.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 10/31/2012] [Indexed: 01/10/2023]
|
34
|
Lee SH, Kim DW, Eom SA, Jun SY, Park M, Kim DS, Kwon HJ, Kwon HY, Han KH, Park J, Hwang HS, Eum WS, Choi SY. Suppression of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mice by transduced Tat-Annexin protein. BMB Rep 2012; 45:354-9. [PMID: 22732221 DOI: 10.5483/bmbrep.2012.45.6.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined that the protective effects of ANX1 on 12-O-tetradecanoylphorbol- 13-acetate (TPA)-induced skin inflammation in animal models using a Tat-ANX1 protein. Topical application of the Tat-ANX1 protein markedly inhibited TPAinduced ear edema and expression levels of cyclooxygenase-2 (COX-2) as well as pro-inflammatory cytokines such as interleukin- 1 beta (IL-1 β), IL-6, and tumor necrosis factor-alpha (TNF-α). Also, application of Tat-ANX1 protein significantly inhibited nuclear translocation of nuclear factor-kappa B (NF-κ B) and phosphorylation of p38 and extracellular signalregulated kinase (ERK) mitogen-activated protein kinase (MAPK) in TPA-treated mice ears. The results indicate that Tat-ANX1 protein inhibits the inflammatory response by blocking NF-κ B and MAPK activation in TPA-induced mice ears. Therefore, the Tat-ANX1 protein may be useful as a therapeutic agent against inflammatory skin diseases.
Collapse
Affiliation(s)
- Sun Hwa Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sohn EJ, Kim DW, Kim MJ, Jeong HJ, Shin MJ, Ahn EH, Kwon SW, Kim YN, Kim DS, Han KH, Park J, Hwang HS, Eum WS, Choi SY. PEP-1–metallothionein-III protein ameliorates the oxidative stress-induced neuronal cell death and brain ischemic insults. Biochim Biophys Acta Gen Subj 2012; 1820:1647-55. [DOI: 10.1016/j.bbagen.2012.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 06/06/2012] [Accepted: 06/19/2012] [Indexed: 01/13/2023]
|
36
|
Kim DS, Sohn EJ, Kim DW, Kim YN, Eom SA, Yoon GH, Cho SW, Lee SH, Hwang HS, Cho YS, Park JS, Eum WS, Choi SY. PEP-1-p18 prevents neuronal cell death by inhibiting oxidative stress and Bax expression. BMB Rep 2012; 45:532-7. [DOI: 10.5483/bmbrep.2012.45.9.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Kim DW, Hwang HS, Kim DS, Sheen SH, Heo DH, Hwang G, Kang SH, Kweon H, Jo YY, Kang SW, Lee KG, Park KW, Han KH, Park J, Eum WS, Cho YJ, Choi HC, Choi SY. Effect of silk fibroin peptide derived from silkworm Bombyx mori on the anti-inflammatory effect of Tat-SOD in a mice edema model. BMB Rep 2012; 44:787-92. [PMID: 22189681 DOI: 10.5483/bmbrep.2011.44.12.787] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated whether silk fibroin peptide derived from the silkworm, Bombyx mori, could inhibit inflammation and enhance the anti-inflammatory activity of Tat-superoxide dismutase (Tat-SOD), which was previously reported to effectively penetrate various cells and tissues and exert anti-oxidative activity in a mouse model of inflammation. Inflammation was induced by topical treatment of mouse ears with 12-O-tetradecanoylphorbol-13-acetate (TPA). Histological, Western blot, and reverse transcription-polymerase chain reaction data demonstrated that silk fibroin peptide or Tat-SOD alone could suppress elevated levels of cyclooxygenase-2, interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha induced by TPA. Moreover, silk fibroin peptide significantly enhanced the anti-inflammatory activity of Tat-SOD, although it had no influence on in vitro and in vivo transduction of Tat-SOD. Silk fibroin peptide exhibited anti- inflammatory activity in a mice model of inflammation. Therefore, silk fibroin peptide alone or in combination with Tat-SOD might be used as a therapeutic agent for various inflammatory diseases.
Collapse
Affiliation(s)
- Dae Won Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lee HY, Park JH, Lee CH, Yan B, Ahn JH, Lee YJ, Park CW, Cho JH, Choi SY, Won MH. Changes of ribosomal protein S3 immunoreactivity and its new expression in microglia in the mice hippocampus after lipopolysaccharide treatment. Cell Mol Neurobiol 2012; 32:577-86. [PMID: 22274408 PMCID: PMC11498381 DOI: 10.1007/s10571-012-9802-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 01/10/2012] [Indexed: 01/06/2023]
Abstract
Lipopolysaccharide (LPS) has been used as a reagent for a model of systemic inflammatory response. Ribosomal protein S3 (rpS3) is a multi-functional protein that is involved in transcription, metastasis, DNA repair, and apoptosis. In the present study, we examined the changes of rpS3 immunoreactivity in the mouse hippocampus after systemic administration of 1 mg/kg of LPS. From 6 h after LPS treatment, rpS3 immunoreactivity was decreased in pyramidale cells of the hippocampus proper (CA1-CA3 regions) and in granule cells of the dentate gyrus. At this point in time, rpS3 immunoreactivity began to increase in non-pyramidal cells and non-granule cells. From 1 day after LPS treatment, rpS3 immunoreactivity in pyramidal and granule cells was hardly detected; however, strong rpS3 immunoreactivity was shown in non-pyramidal and non-granule cells. Based on double immunofluorescence staining for rpS3/ionized calcium-binding adapter 1 (Iba-1, a marker for microglia) and glial fibrillary acidic protein (GFAP, a marker for astrocytes), strong rpS3 immunoreactivity was expressed in Iba-1-immunoreactive microglia, not in GFAP-immunoreactive astrocytes, at 1 and 2 days after LPS treatment. These results indicate that rpS3 immunoreactivity changes only in pyramidal and granule cells, and rpS3 is expressed only in activated microglia after LPS treatment: this may be associated with the neuroinflammatory responses in the brain.
Collapse
Affiliation(s)
- Hui Young Lee
- Department of Internal Medicine, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Joon Ha Park
- Department of Neurobiology, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Choong Hyun Lee
- Department of Anatomy and Physiology, College of Pharmacy, Dankook University, Cheonan, 330-714 South Korea
| | - Bingchun Yan
- Department of Neurobiology, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Ji Hyeon Ahn
- Laboratory of Neuroscience, Department of Physical Therapy, College of Rehabilitation Science, Daegu University, Daegu, 712-714 South Korea
| | - Young Joo Lee
- Department of Emergency Medicine, Seoul Hospital, College of Medicine, Sooncheonhyang University, Seoul, 140-743 South Korea
| | - Chan Woo Park
- Department of Emergency Medicine, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Soo Young Choi
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, 200-702 South Korea
| | - Moo-Ho Won
- Department of Neurobiology, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| |
Collapse
|
39
|
Lee YP, Kim DW, Kang HW, Hwang JH, Jeong HJ, Sohn EJ, Kim MJ, Ahn EH, Shin MJ, Kim DS, Kang TC, Kwon OS, Cho SW, Park J, Eum WS, Choi SY. PEP-1-heat shock protein 27 protects from neuronal damage in cells and in a Parkinson’s disease mouse model. FEBS J 2012; 279:1929-42. [DOI: 10.1111/j.1742-4658.2012.08574.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
40
|
Lee SH, Kim DW, Kim HR, Woo SJ, Kim SM, Jo HS, Jeon SG, Cho SW, Park JH, Won MH, Park J, Eum WS, Choi SY. Anti-inflammatory effects of Tat-Annexin protein on ovalbumin-induced airway inflammation in a mouse model of asthma. Biochem Biophys Res Commun 2011; 417:1024-9. [PMID: 22222376 DOI: 10.1016/j.bbrc.2011.12.084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 12/19/2011] [Indexed: 01/10/2023]
Abstract
Chronic airway inflammation is a key feature of bronchial asthma. Annexin-1 (ANX1) is an anti-inflammatory protein that is an important modulator and plays a key role in inflammation. Although the precise action of ANX1 remains unclear, it has emerged as a potential drug target for inflammatory diseases such as asthma. To examine the protective effects of ANX1 protein on ovalbumin (OVA)-induced asthma in animal models, we used a cell-permeable Tat-ANX1 protein. Mice sensitized and challenged with OVA antigen had an increased amount of cytokines and eosinophils in their bronchoalveolar lavage (BAL) fluid. However, administration of Tat-ANX1 protein before OVA challenge significantly decreased the levels of cytokines (interleukin (IL)-4, IL-5, and IL-13) and BAL fluid in lung tissues. Furthermore, OVA significantly increased the activation of mitogen-activated protein kinase (MAPK) in lung tissues, whereas Tat-ANX1 protein markedly reduced phosphorylation of MAPKs such as extracellular signal-regulated protein kinase, p38, and stress-activated protein kinase/c-Jun N-terminal kinase. These results suggest that transduced Tat-ANX1 protein may be a potential protein therapeutic agent for the treatment of lung disorders including asthma.
Collapse
Affiliation(s)
- Sun Hwa Lee
- Department of Biomedical Science, Hallym University, Chunchon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kim DW, Kim DS, Kim MJ, Kwon SW, Ahn EH, Jeong HJ, Sohn EJ, Dutta S, Lim SS, Cho SW, Lee KS, Park JS, Eum WS, Hwang HS, Choi SY. Imipramine enhances neuroprotective effect of PEP-1-Catalase against ischemic neuronal damage. BMB Rep 2011; 44:647-52. [DOI: 10.5483/bmbrep.2011.44.10.647] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Xian YF, Mao QQ, Ip SP, Lin ZX, Che CT. Comparison on the anti-inflammatory effect of Cortex Phellodendri Chinensis and Cortex Phellodendri Amurensis in 12-O-tetradecanoyl-phorbol-13-acetate-induced ear edema in mice. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1425-1430. [PMID: 21875660 DOI: 10.1016/j.jep.2011.08.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/15/2011] [Accepted: 08/04/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cortex Phellodendri is derived from the dried bark of Phellodendron chinense Schneid. or Phellodendron amurense Rupr. Traditionally, Cortex Phellodendron Chinensis (CPC) and Cortex Phellodendron Amurensis (CPA) are used interchangeably under the name "Huang Bai" for the treatment of gastroenteritis, abdominal pain or diarrhea. The present study aims to compare the anti-inflammatory effect of ethanol extracts of Cortex Phellodendri Chinensis (ECPC) and Cortex Phellodendri Amurensis (ECPA) in a mouse model of inflammation induced by 12-O-tetradecanoylphorbol-acetate (TPA). MATERIALS AND METHODS The anti-inflammatory effect was evaluated by measuring the ear thickness, activity of myeloperoxidase (MPO) and the production reactive oxygen species (ROS). The anti-inflammatory mechanism was explored by determining the protein and mRNA levels of cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6. RESULTS The results showed that both ECPC and ECPA significantly decreased the ear thickness, MPO activity and the ROS level in mouse model of inflammation induced by TPA. In addition, ECPC and ECPA also remarkably inhibited the protein and mRNA levels of TNF-α, IL-1β, IL-6 and COX-2. Interestingly, ECPC has better anti-inflammatory effect than that of ECPA. CONCLUSIONS These results indicate that both ECPC and ECPA have potential anti-inflammatory effect on TPA-induced inflammatory in mice, and ECPC is more effective than ECPA. The anti-inflammatory effect of the herbal drugs may be mediated, at least in part, by down-regulating the mRNA expression of a panel of inflammatory mediators including TNF-α, IL-1β, IL-6 and COX-2.
Collapse
Affiliation(s)
- Yan-Fang Xian
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, PR China
| | | | | | | | | |
Collapse
|
43
|
Lee SH, Kim DW, Back SS, Hwang HS, Park EY, Kang TC, Kwon OS, Park JH, Cho SW, Han KH, Park JS, Eum WS, Choi SY. Transduced Tat-Annexin protein suppresses inflammation-associated gene expression in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells. BMB Rep 2011; 44:484-9. [DOI: 10.5483/bmbrep.2011.44.7.484] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
44
|
Kwon SW, Sohn EJ, Kim DW, Jeong HJ, Kim MJ, Ahn EH, Kim YN, Dutta S, Kim DS, Park J, Eum WS, Hwang HS, Choi SY. Anti-inflammatory effect of transduced PEP-1-heme oxygenase-1 in Raw 264.7 cells and a mouse edema model. Biochem Biophys Res Commun 2011; 411:354-9. [DOI: 10.1016/j.bbrc.2011.06.147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 06/22/2011] [Indexed: 10/18/2022]
|
45
|
Ahn EH, Kim DW, Kim DS, Woo SJ, Kim HR, Kim J, Lim SS, Kang TC, Kim DJ, Suk KT, Park J, Luo Q, Eum WS, Hwang HS, Choi SY. Levosulpiride, (S)-(-)-5-Aminosulfonyl-N-[(1-ethyl-2-pyrrolidinyl) methyl]-2-methoxybenzamide, enhances the transduction efficiency of PEP-1-ribosomal protein S3 in vitro and in vivo. BMB Rep 2011; 44:329-334. [PMID: 21615988 DOI: 10.5483/bmbrep.2011.44.5.329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Many proteins with poor transduction efficiency were reported to be delivered to cells by fusion with protein transduction domains (PTDs). In this study, we investigated the effect of levosulpiride on the transduction of PEP-1 ribosomal protein S3 (PEP-1-rpS3), and examined its influence on the stimulation of the therapeutic properties of PEP-1-rpS3. PEP-1-rpS3 transduction into HaCaT human keratinocytes and mouse skin was stimulated by levosulpiride in a manner that did not directly affect the cell viability. Following 12-O-tetradecanoylphorbol- 13-acetate (TPA)-induced inflammation in mice, levosulpiride alone was ineffective in reducing TPA-induced edema and in inhibiting the elevated productions of inflammatory mediators and cytokines, such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1β, and tumor necrosis factor- α. Anti-inflammatory activity by PEP-1-rpS3 + levosulpiride was significantly more potent than by PEP-1-rpS3 alone. These results suggest that levosulpiride may be useful for enhancing the therapeutic effect of PEP-1-rpS3 against various inflammatory diseases. [BMB reports 2011; 44(5): 329-334].
Collapse
Affiliation(s)
- Eun Hee Ahn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sohn EJ, Kim DW, Kim YN, Kim SM, Lim SS, Kang TC, Kwon HY, Kim DS, Cho SW, Han KH, Park J, Eum WS, Hwang HS, Choi SY. Effects of pergolide mesylate on transduction efficiency of PEP-1-catalase protein. Biochem Biophys Res Commun 2011; 406:336-40. [PMID: 21324306 DOI: 10.1016/j.bbrc.2011.02.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
Abstract
The low transduction efficiency of various proteins is an obstacle to their therapeutic application. However, protein transduction domains (PTDs) are well-known for a highly effective tool for exogenous protein delivery to cells. We examined the effects of pergolide mesylate (PM) on the transduction of PEP-1-catalase into HaCaT human keratinocytes and mice skin and on the anti-inflammatory activity of PEP-1-catatase against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation using Western blot and histological analysis. PM enhanced the time- and dose-dependent transduction of PEP-1-catalase into HaCaT cells without affecting the cellular toxicity. In a mouse edema model, PEP-1-catalase inhibited the increased expressions of inflammatory mediators and cytokines such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1β, and tumor necrosis factor-α induced by TPA. On the other hand, PM alone failed to exert any significant anti-inflammatory effects. However, the anti-inflammatory effect of co-treatment with PEP-1-catalase and PM was more potent than that of PEP-1-catalase alone. Our results indicate that PM may enhance the delivery of PTDs fusion therapeutic proteins to target cells and tissues and has potential to increase their therapeutic effects of such drugs against various diseases.
Collapse
Affiliation(s)
- Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Extra-Ribosomal Functions of the Ribosomal Protein, RPS3 as Predicted by In Silico Analysis. BORNEO JOURNAL OF RESOURCE SCIENCE AND TECHNOLOGY 1970. [DOI: 10.33736/bjrst.236.2014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Products of ribosomal protein (RP) genes have been found to play extra-ribosomal roles that range from DNA repair to RNA splicing. Their association with congenital disorders or cancers has also been widely documented. However, the relatively large number of different RPs, each with perhaps unique biological roles, has compounded the comprehensive elucidation of the physiological functions of each RPs. Experimental functional studies on the many and variegated RPs are labour intensive, time-consuming and costly. Moreover, experimental studies unguided by theoretically insights entail inaccurate results. Therefore, knowledge on the actual roles of these proteins remains largely undefined. A valid alternative is the use of bioinformatics resources to computationally predict functional roles of these biomolecules. Findings from such in silico studies of the RPS3 are reported herein. We reveal an array of possible extra-ribosomal functions that includes regulation of transcription (including via NF-κB-mediated, POK-induced and DNA-dependent), regulation of p53 activities and its stabilisation, inflammatory immune response, modulation of nNOS activities, and anti-oxidative capabilities. Our findings provide computational prediction of de novo extra-ribosomal functions of RPS3. These results will enhance the theoretical basis for designing future experimental studies on elucidating its definitive physiological roles.
Collapse
|