1
|
Rodriguez-Hernandez Z, Paredes-Douton A, Galvez-Fernandez M, Grau-Perez M, Sotos-Prieto M, Rentero-Garrido P, Gonzalez-Estecha M, Llorente-Ballesteros MT, Gomez-Ariza JL, Callejon-Leblic B, Fernandez-Navarro P, Laclaustra M, Cenarro A, Civeira F, Glabonjat RA, Monleon D, Pastor-Barriuso R, Moreno-Franco B, Garcia-Barrera T, Tellez-Plaza M. Non-genetic and genetic determinants of serum selenium and selenium species in the Aragon Workers Health Study. Free Radic Biol Med 2025; 233:365-377. [PMID: 40164364 DOI: 10.1016/j.freeradbiomed.2025.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Understanding potential determinants of selenium biomarkers can help to unravel selenium health effects. We evaluated the contribution of non-genetic (sociodemographic and lifestyle) and genetic factors to serum selenium biomarkers and selenium species (quantified as selenium) including selenium in glutathione peroxidase (GPx), selenoprotein P (SeP), selenoalbumin (SeAlb) and total selenometabolites (Se-metabolites) in the Aragon Workers Health Study (AWHS), a predominantly male cohort of car assembly factory workers in Spain. Total serum selenium and selenium species were measured by HPLC/ICP-QQQ-MS in 1624 AWHS participants. Blood and urine selenium, measured by ICP-MS, were available in a subset. A Healthy Lifestyle Score (HLS) included Mediterranean diet, physical activity, smoking, BMI and alcohol intake. Candidate gene and genome-wide discovery analyses (CGA and GDA, respectively) were based on TOPMed imputed SNPs. In sex and age-adjusted models, overall HLS, physical activity, and specific foods intake showed positive associations with serum total selenium, SeAlb and Se-metabolites concentrations. The associations between smoking status and BMI with total serum selenium; age, smoking status, BMI and meat intake with SeAlb; and smoking status with Se-metabolites, were inverse. In the GDA, we identified 20, 24, 21, 26, 16, 20 and 68 independent genetic loci for serum total selenium, GPx, SeP, SeAlb, Se-metabolites, and total blood and urine selenium, respectively, with some overlapping genes also relevant in the CGA. Enrichment analysis pointed to biological pathways including circadian rhythm regulation, immune system processes, signaling and receptor- and transporter-related pathways. The explained variability of selenium markers ranged from 15 % for SeP to 21 % for SeAlb and from 0.2 % for SeP to 3.5 % for SeAlb in environmental determinants-adjusted models with and without the specific selenium biomarker polygenic score, respectively. While the genetic contribution is substantial, selenium status might be influenced by reinforced healthy lifestyle interventions. Follow-up genetic studies to evaluate selenium health consequences are granted.
Collapse
Affiliation(s)
- Zulema Rodriguez-Hernandez
- Integrative Epidemiology Group, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain; Institute of Genetic Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Anabel Paredes-Douton
- Department of Preventive Medicine and Public Health, Hospital Clínico San Carlos, Madrid, Spain
| | - Marta Galvez-Fernandez
- Integrative Epidemiology Group, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; Department of Preventive Medicine, Public Health and Epidemiology, Universidad Autonoma de Madrid, Madrid, Spain
| | - Maria Grau-Perez
- Integrative Epidemiology Group, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain; Instituto de Investigación Sanitaria Hospital Clinic de Valencia INCLIVA, Valencia, Spain
| | - Mercedes Sotos-Prieto
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Preventive Medicine, Public Health and Epidemiology, Universidad Autonoma de Madrid, Madrid, Spain; Department of Environmental Health. Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Pilar Rentero-Garrido
- Instituto de Investigación Sanitaria Hospital Clinic de Valencia INCLIVA, Valencia, Spain
| | | | | | - Jose L Gomez-Ariza
- Research Center on Health and The Environment (RENSMA), Department of Chemistry "Prof.J.C.Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., Huelva, Spain
| | - Belen Callejon-Leblic
- Research Center on Health and The Environment (RENSMA), Department of Chemistry "Prof.J.C.Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., Huelva, Spain
| | - Pablo Fernandez-Navarro
- Integrative Epidemiology Group, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Martin Laclaustra
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain; CIBERCV (CIBER de Enfermedades Cardiovasculares), Madrid, Spain; Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Ana Cenarro
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain; CIBERCV (CIBER de Enfermedades Cardiovasculares), Madrid, Spain
| | - Fernando Civeira
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain; CIBERCV (CIBER de Enfermedades Cardiovasculares), Madrid, Spain; Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Daniel Monleon
- Department of Pathology, Universitat de Valencia, Valencia, Spain
| | - Roberto Pastor-Barriuso
- Integrative Epidemiology Group, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Belen Moreno-Franco
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain; CIBERCV (CIBER de Enfermedades Cardiovasculares), Madrid, Spain; Department of Preventive Medicine and Public Health, Universidad de Zaragoza, Zaragoza, Spain
| | - Tamara Garcia-Barrera
- Research Center on Health and The Environment (RENSMA), Department of Chemistry "Prof.J.C.Vílchez Martín", University of Huelva, Fuerzas Armadas Ave., Huelva, Spain
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain; Department of Preventive Medicine, Public Health and Epidemiology, Universidad Autonoma de Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Li H, Kelley J, Ye Y, Ye ZW, Townsend DM, Zhang J, Wu Y. REDOX Imbalance and Oxidative Stress in the Intervertebral Disc: The Effect of Mechanical Stress and Cigarette Smoking on ER Stress and Mitochondrial Dysfunction. Cells 2025; 14:613. [PMID: 40277939 PMCID: PMC12025608 DOI: 10.3390/cells14080613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
Low back pain is a widespread condition that significantly impacts quality of life, with intervertebral disc degeneration (IDD) being a major contributing factor. However, the underlying mechanisms of IDD remain poorly understood, necessitating further investigation. Environmental risk factors, such as mechanical stress and cigarette smoke, elevate reactive oxygen species levels from both endogenous and exogenous sources, leading to redox imbalance and oxidative stress. The endoplasmic reticulum (ER) and mitochondria, two key organelles responsible for protein folding and energy production, respectively, are particularly vulnerable to oxidative stress. Under oxidative stress conditions, ER stress and mitochondrial dysfunction occur, resulting in unfolded protein response activation, impaired biosynthetic processes, and disruptions in the tricarboxylic acid cycle and electron transport chain, ultimately compromising energy metabolism. Prolonged and excessive ER stress can further trigger apoptosis through ER-mitochondrial crosstalk. Given the unique microenvironment of the intervertebral disc (IVD)-characterized by hypoxia, glucose starvation, and region-specific cellular heterogeneity-the differential effects of environmental stressors on distinct IVD cell populations require further investigation. This review explores the potential mechanisms through which environmental risk factors alter IVD cell activities, contributing to IDD progression, and discusses future therapeutic strategies aimed at mitigating disc degeneration.
Collapse
Affiliation(s)
- Hui Li
- Department of Bioengineering, Clemson University, Charleston, SC 29425, USA; (H.L.); (J.K.)
| | - Joshua Kelley
- Department of Bioengineering, Clemson University, Charleston, SC 29425, USA; (H.L.); (J.K.)
| | - Yiqing Ye
- Department of Orthopaedics and Physical Medicine & Rehabilitation, Medical University of South Carolina, Charleston, SC 29425, USA
- Academic Magnet High School, North Charleston, SC 29405, USA
| | - Zhi-Wei Ye
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Danyelle M. Townsend
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jie Zhang
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yongren Wu
- Department of Bioengineering, Clemson University, Charleston, SC 29425, USA; (H.L.); (J.K.)
- Department of Orthopaedics and Physical Medicine & Rehabilitation, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
3
|
Seo YS, Park JM, Kim JH, Lee MY. Cigarette Smoke-Induced Reactive Oxygen Species Formation: A Concise Review. Antioxidants (Basel) 2023; 12:1732. [PMID: 37760035 PMCID: PMC10525535 DOI: 10.3390/antiox12091732] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Smoking is recognized as a significant risk factor for numerous disorders, including cardiovascular diseases, respiratory conditions, and various forms of cancer. While the exact pathogenic mechanisms continue to be explored, the induction of oxidative stress via the production of excess reactive oxygen species (ROS) is widely accepted as a primary molecular event that predisposes individuals to these smoking-related ailments. This review focused on how cigarette smoke (CS) promotes ROS formation rather than the pathophysiological repercussions of ROS and oxidative stress. A comprehensive analysis of existing studies revealed the following key ways through which CS imposes ROS burden on biological systems: (1) ROS, as well as radicals, are intrinsically present in CS, (2) CS constituents generate ROS through chemical reactions with biomolecules, (3) CS stimulates cellular ROS sources to enhance production, and (4) CS disrupts the antioxidant system, aggravating the ROS generation and its functions. While the evidence supporting these mechanisms is chiefly based on in vitro and animal studies, the direct clinical relevance remains to be fully elucidated. Nevertheless, this understanding is fundamental for deciphering molecular events leading to oxidative stress and for developing intervention strategies to counter CS-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | - Moo-Yeol Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (Y.-S.S.); (J.-M.P.); (J.-H.K.)
| |
Collapse
|
4
|
Jena AB, Samal RR, Dandapat J, Subudhi U. Thermodynamics of benzoquinone-induced conformational changes in nucleic acids and human serum albumin. Chem Biol Interact 2023; 369:110281. [PMID: 36436547 DOI: 10.1016/j.cbi.2022.110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Biological macromolecules such as proteins, nucleic acids, carbohydrates and lipids, play a crucial role in biochemical and molecular processes. Thus, the study of the structure-function relationship of biomolecules in presence of ligands is an important aspect of structural biology. The current communication describes the chemico-biological interaction between benzene metabolite para-benzoquinone (BQ) with B-form of nucleic acids (B-DNA) and human serum albumin (HSA). The binding ability of HSA towards bromocresol green (BCG) was significantly suppressed when exposed to increasing concentrations of BQ in the presence of various physiological buffers. Further, the native fluorescence of HSA was drastically reduced and the secondary structures of HSA were significantly compromised with increasing concentrations of BQ. In vitro and in silico studies also revealed that BQ binds to domains I and II of HSA and thus altering the conformation of HSA which may potentially affect plasma osmotic pressure, as well as the binding and transport of numerous endogenous and exogenous molecules. Similarly, BQ interacts directly to the GC region of B-DNA particularly in the minor groove which was also assessed by computational docking studies. Isothermal titration calorimetry data suggest higher binding affinity of BQ towards DNA than HSA. Various spectroscopic observations also suggest that BQ binds to DNA preferably in the minor grooves. Thus, the results revealed that BQ may play a key role in inducing mutagenicity, either by formation of adducts on GC regions or by accelerating oxidative damage to biomacromolecules through chemico-biological interactions.
Collapse
Affiliation(s)
- Atala B Jena
- Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India; Centre of Excellence in Integrated Omics & Computational Biology, Utkal University, Bhubaneswar, 751004, Odisha, India
| | - Rashmi R Samal
- Biochemistry & Biophysics Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Jagneshwar Dandapat
- Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India; Centre of Excellence in Integrated Omics & Computational Biology, Utkal University, Bhubaneswar, 751004, Odisha, India.
| | - Umakanta Subudhi
- Biochemistry & Biophysics Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
5
|
Hong SW, Teesdale-Spittle P, Page R, Truman P. A review of monoamine oxidase (MAO) inhibitors in tobacco or tobacco smoke. Neurotoxicology 2022; 93:163-172. [PMID: 36155069 DOI: 10.1016/j.neuro.2022.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
Abstract
Tobacco smoking is reputed to be the most difficult addiction of all to give up, and nicotine has been noted as the major addictive agent in tobacco smoke. However, research shows that nicotine addiction is due to more than nicotine alone. One hypothesis is that monoamine oxidase (MAO) inhibition from non-nicotinic components in, or derived from, tobacco smoke contributes to nicotine addiction. Harman and norharman, have been recognised as major and potent MAO inhibitors in tobacco smoke, but these two inhibitors together comprise perhaps less than 10% of the total MAO A inhibitory activity in cigarette smoke suggesting other unidentified components may make significant contributions to total inhibitory activity. Therefore, we reviewed an index of the chemical components of tobacco and tobacco smoke and identified those known to be MAO inhibitors. Amongst these inhibitors, phenols and phenolic acids with MAO inhibitory activity are commonly reversible and selective MAO A inhibitors, whereas trans,trans-farnesol, 2-methyl-1,4-naphthoquinone (menadione), 1,4-naphthoquinone, scopoletin, and diosmetin with MAO inhibitory activity are reversible and selective MAO B inhibitors. The compound, 1,4-benzoquinone is an irreversible MAO A inhibitor and to the best of our knowledge, this is the first irreversible MAO A inhibitor to be reported in tobacco smoke. MAO inhibitors have been used clinically to treat depression, anxiety, and Parkinson's disease. The MAO inhibitors identified from tobacco and tobacco smoke and summarized in this review, are potential pharmacological candidates to be investigated further. This review will enhance our knowledge of the way tobacco smoke affects MAO activity in smokers and will also be important in helping to understand nicotine addiction.
Collapse
Affiliation(s)
- Sa Weon Hong
- School of Health Sciences, Massey University, Wellington 6021, New Zealand.
| | - Paul Teesdale-Spittle
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Rachel Page
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
| | - Penelope Truman
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
| |
Collapse
|
6
|
Tentscher PR, Escher BI, Schlichting R, König M, Bramaz N, Schirmer K, von Gunten U. Toxic effects of substituted p-benzoquinones and hydroquinones in in vitro bioassays are altered by reactions with the cell assay medium. WATER RESEARCH 2021; 202:117415. [PMID: 34348209 DOI: 10.1016/j.watres.2021.117415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Substituted para-benzoquinones and hydroquinones are ubiquitous transformation products that arise during oxidative water treatment of phenolic precursors, for example through ozonation or chlorination. The benzoquinone structural motive is associated with mutagenicity and carcinogenicity, and also with induction of the oxidative stress response through the Nrf2 pathway. For either endpoint, toxicological data for differently substituted compounds are scarce. In this study, oxidative stress response, as indicated by the AREc32 in vitro bioassay, was induced by differently substituted para-benzoquinones, but also by the corresponding hydroquinones. Bioassays that indicate defense against genotoxicity (p53RE-bla) and DNA repair activity (UmuC) were not activated by these compounds. Stability tests conducted under incubation conditions, but in the absence of cell lines, showed that tested para-benzoquinones reacted rapidly with constituents of the incubation medium. Compounds were abated already in phosphate buffer, but even faster in biological media, with reactions attributed to amino- and thiol-groups of peptides, proteins, and free amino acids. The products of these reactions were often the corresponding substituted hydroquinones. Conversely, differently substituted hydroquinones were quantitatively oxidized to p-benzoquinones over the course of the incubation. The observed induction of the oxidative stress response was attributed to hydroquinones that are presumably oxidized to benzoquinones inside the cells. Despite the instability of the tested compounds in the incubation medium, the AREc32 in vitro bioassay could be used as an unspecific sum parameter to detect para-benzoquinones and hydroquinones in oxidatively treated waters.
Collapse
Affiliation(s)
- Peter R Tentscher
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf CH-8600, Switzerland; Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Beate I Escher
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany; Center for Applied Geoscience, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, Tübingen 72076, Germany
| | - Rita Schlichting
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Maria König
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Nadine Bramaz
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf CH-8600, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf CH-8600, Switzerland; Department of Environmental Systems Science, ETH Zürich, Zürich CH-8092, Switzerland; Civil and Environmental Engineering (ENAC), School of Architecture, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf CH-8600, Switzerland; Civil and Environmental Engineering (ENAC), School of Architecture, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| |
Collapse
|
7
|
Jena AB, Samal RR, Kumari K, Pradhan J, Chainy GBN, Subudhi U, Pal S, Dandapat J. The benzene metabolite p-benzoquinone inhibits the catalytic activity of bovine liver catalase: A biophysical study. Int J Biol Macromol 2020; 167:871-880. [PMID: 33181220 DOI: 10.1016/j.ijbiomac.2020.11.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 01/06/2023]
Abstract
The current communication reports the inhibitory effect of para-benzoquinone (p-BQ) on the structure and function of bovine liver catalase (BLC), a vital antioxidant enzyme. Both BLC and p-BQ were dissolved in respective buffers and the biophysical interaction was studied at physiological concentrations. For the first time our data reveals an enthalpy-driven interaction between BLC and p-BQ which is due to hydrogen bonding and van der Waals interactions. The binding affinity of p-BQ with BLC is nearly 2.5 folds stronger in MOPS buffer than Phosphate buffer. Importantly, the binding affinity between BLC and p-BQ was weak in HEPES buffer as compared to other buffers being the strongest in Tris buffer. Molecular docking studies reveal that binding affinity of p-BQ with BLC differ depending upon the nature of buffers rather than on the participating amino acid residues of BLC. This is further supported by the differential changes in secondary structures of BLC. The p-BQ-induced conformational change in BLC was evident from the reduced BLC activity in presence of different buffers in the following order, Phosphate>MOPS>Tris>HEPES. The absorbance peak of BLC was gradually increased and fluorescence spectra of BLC were drastically decreased when BLC to p-BQ molar ratio was incrementally enhanced from 0 to 10,000 times in presence of all buffers. Nevertheless, the declined activity of BLC was positively correlated with the reduced fluorescence and negatively correlated with the enhanced absorbance. Electrochemical study with cyclic voltammeter also suggests a direct binding of p-BQ with BLC in presence of different buffers. Thus, p-BQ-mediated altered secondary structure in BLC results into compromised activity of BLC.
Collapse
Affiliation(s)
- Atala B Jena
- Centre of Excellence in Integrated Omics & Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Rashmi R Samal
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi 110025, India
| | - Kanchan Kumari
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Jyotsnarani Pradhan
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Gagan B N Chainy
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Umakanta Subudhi
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi 110025, India.
| | - Satyanarayan Pal
- Post Graduate Department of Chemistry, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Jagnehswar Dandapat
- Centre of Excellence in Integrated Omics & Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India; Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
8
|
Shu N, Hägglund P, Cai H, Hawkins CL, Davies MJ. Modification of Cys residues in human thioredoxin-1 by p-benzoquinone causes inhibition of its catalytic activity and activation of the ASK1/p38-MAPK signalling pathway. Redox Biol 2019; 29:101400. [PMID: 31926625 PMCID: PMC6926358 DOI: 10.1016/j.redox.2019.101400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 01/27/2023] Open
Abstract
Quinones can modify biological molecules through both redox-cycling reactions that yield radicals (semiquinone, superoxide and hydroxyl) and via covalent adduction to nucleophiles (e.g. thiols and amines). Kinetic data indicate that Cys residues in GSH and proteins are major targets. In the studies reported here, the interactions of a prototypic quinone compound, p-benzoquinone (BQ), with the key redox protein, thioredoxin-1 (Trx1) were examined. BQ binds covalently with isolated Trx1 forming quinoprotein adducts, resulting in a concentration-dependent loss of enzyme activity and crosslink formation. Mass spectrometry peptide mass mapping data indicate that BQ forms adducts with all of the Trx1 Cys residues. Glutathione (GSH) reacts competitively with BQ, and thereby modulates the loss of activity and crosslink formation. Exposure of macrophage-like (J774A.1) cells to BQ results in a dose-dependent loss of Trx and thioredoxin reductase (TrxR) activities, quinoprotein formation, and a decrease in GSH levels without a concomitant increase in oxidized glutathione. GSH depletion aggravates the loss of Trx and TrxR activity. These data are consistent with adduction of GSH to BQ being a primary protective pathway. Reaction of BQ with Trx in cells resulted in the activation of apoptosis signal-regulating kinase 1 (ASK1), and p38 mitogen-activated protein kinase (MAPK) leading to apoptotic cell death. These data suggest that BQ reacts covalently with Cys residues in Trx, including at the active site, leading to enzyme inactivation and protein cross-linking. Modification of the Cys residues in Trx also results in activation of the ASK1/p38-MAPK signalling pathway and promotion of apoptotic cell death. Quinone (e.g. p-benzoquinone, BQ) toxicity is linked to Michael adduction reactions. Adduction of BQ to Cys residues in proteins are rapid (≤105 M−1 s−1) and selective. BQ reaction with Cys inactivates thioredoxin (Trx) and yields quinone- and disulfide-linked dimers. GSH reacts competitively with BQ and modulates damage, without GSSG formation. BQ activates ASK1 and p38 pathways and induced apoptosis in cells via Trx damage.
Collapse
Affiliation(s)
- Nan Shu
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Huan Cai
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
9
|
Li F, Liu T, Wang H, Dong Y, Wang GL. Immobilization-free, split-mode cathodic photoelectrochemical strategy combined with cascaded amplification for versatile biosensing. Biosens Bioelectron 2019; 142:111572. [PMID: 31400730 DOI: 10.1016/j.bios.2019.111572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 12/23/2022]
Abstract
We propose herein an immobilization-free, split-mode cathodic photoelectrochemical (PEC) strategy coupled with a cascaded amplification for versatile biosensing. Taking DNA and microRNA (miRNA) as the model targets, the hybridization between the targets and the hairpin probe triggers the digestion of the probe DNA by T7 exonuclease (T7 Exo), thus to generate G-quadruplex (G4) forming sequences, and then the released targets (DNA or miRNA) initiate the subsequent cycling processes and generate a large amount of G4 forming sequences. Subsequently, the formed G4 sequences associate with hemin to form the G4/hemin DNAzyme, which catalytically produces 1,4-bezoquinone (BQ) for conjugating onto the surface of the chitosan (CS) deposited BiOI/ITO photocathode via the quinone-chitosan conjugation chemistry (QCCC). Under photo excitation, the covalently attached quinones can act as electron acceptors of bismuth oxyiodine (BiOI), promoting the photocurrent generation and thus allowing the elegant and "signal-on" mode for probing targets of interest. Highly sensitive and selective PEC bioassays are readily realized, with the detection limits down to 2.2 fM (for DNA) and 0.2 fM (for miRNA). Since no labeling and no electrode modification processes are needed, this split-mode PEC biosensing strategy is amenable to convenient, time/labor saving, and high-throughput detections. More significantly, it provides a novel concept to design immobilization-free and label-free cathodic PEC biosensing systems, and showcases promise in general and versatile bioanalysis research.
Collapse
Affiliation(s)
- Fang Li
- International Joint Research Center for Photoresponsive Molecules and Materials, Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Tianli Liu
- International Joint Research Center for Photoresponsive Molecules and Materials, Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hong Wang
- International Joint Research Center for Photoresponsive Molecules and Materials, Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuming Dong
- International Joint Research Center for Photoresponsive Molecules and Materials, Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guang-Li Wang
- International Joint Research Center for Photoresponsive Molecules and Materials, Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
10
|
Jin Z, Chi M, He Q, Pan Y, Sun C. Perfluoroalkane sulfonyl fluorides non-covalently bind to human serum albumin at Sudlow’s sites. Toxicol Lett 2019; 301:17-23. [DOI: 10.1016/j.toxlet.2018.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/10/2018] [Accepted: 11/04/2018] [Indexed: 01/29/2023]
|
11
|
Mitra A, Mandal AK. Conjugation of para-benzoquinone of Cigarette Smoke with Human Hemoglobin Leads to Unstable Tetramer and Reduced Cooperative Oxygen Binding. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2048-2058. [PMID: 29967937 DOI: 10.1007/s13361-018-2011-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/27/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Besides multiple life-threatening diseases like lung cancer and cardiovascular disease, cigarette smoking is known to produce hypoxia, a state of inadequate oxygen supply to tissues. Hypoxia plays a pivotal role in the development of chronic obstructive pulmonary disease. Smoking during pregnancy imposes risk for the unborn child. In addition to carbon monoxide, conjugation of para-benzoquinone (pBQ), derived from cigarette smoke, with human hemoglobin (HbA) was also reported to contribute in hypoxia. In fact, conjugation of pBQ is more alarming than carbon monoxide as it is an irreversible covalent modification. In the present study, the functional assay of Hb-pBQ, performed through oxygen equilibrium curve, showed a significant decrease in both P50 and cooperativity. However, the structural changes associated with the observed functional perturbation of the hemoglobin conjugate (Hb-pBQ) are unknown to date. Enhanced sensitivity and high resolution of nano-ESI mass spectrometry platform have enabled to investigate the native structure of oligomers of hemoglobin in a single scan. The structural integrity of Hb-pBQ measured through the dissociation equilibrium constants (Kd) indicated that compared to HbA, Kd of tetramer-dimer and dimer-monomer equilibria were increased by 4.98- and 64.3-folds, respectively. Using isotope exchange mass spectrometry, we observed perturbations in the inter-subunit interactions of deoxy and oxy states of Hb-pBQ. However, the three-dimensional architecture of Hb-pBQ, monitored through collision cross-sectional area, did not show any change. We propose that the significant destabilization of the functionally active structure of hemoglobin upon conjugation with pBQ results in tighter oxygen binding that leads to hypoxia. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Amrita Mitra
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences, 100ft Road, Koramangala, Bangalore, 560034, India
| | - Amit Kumar Mandal
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences, 100ft Road, Koramangala, Bangalore, 560034, India.
| |
Collapse
|
12
|
Chowdhury A, Choudhury A, Chakraborty S, Ghosh A, Banerjee V, Ganguly S, Bhaduri G, Banerjee R, Das K, Chatterjee IB. p-Benzoquinone-induced aggregation and perturbation of structure and chaperone function of α-crystallin is a causative factor of cigarette smoke-related cataractogenesis. Toxicology 2018; 394:11-18. [PMID: 29196190 DOI: 10.1016/j.tox.2017.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 02/08/2023]
Abstract
Cigarette smoking is a significant risk factor for cataract. However, the mechanism by which cigarette smoke (CS) causes cataract remains poorly understood. We had earlier shown that in CS-exposed guinea pig, p-benzoquinone (p-BQ) derived from CS in the lungs is carried by the circulatory system to distant organs and induces various smoke-related pathogeneses. Here, we observed that CS exposure caused accumulation of the p-BQ-protein adduct in the eye lens of guinea pigs. We also observed accumulation of the p-BQ-protein adduct in resected lens from human smokers with cataract. No such accumulation was observed in the lens of never smokers. p-BQ is a strong arylating agent that forms Michael adducts with serum albumin and haemoglobin resulting in alterations of structure and function. A major protein in the mammalian eye lens is αA-crystallin, which is a potent molecular chaperone. αA-crystallin plays a key role in maintaining the integrity and transparency of the lens. SDS-PAGE indicated that p-BQ induced aggregation of αA-crystallin. Various biophysical techniques including UV-vis spectroscopy, fluorescence spectroscopy, FT-IR, bis-ANS titration suggested a perturbation of structure and chaperone function of αA-crystallin upon p-BQ modification. Our results indicate that p-BQ is a causative agent involved in the modification of αA-crystallin and pathogenesis of CS-induced cataract. Our findings would educate public about the impacts of smoking on eye health and help to discourage them from smoking. The study might also help scientists to develop new drugs for the intervention of CS-induced cataract at an early stage.
Collapse
Affiliation(s)
- Aritra Chowdhury
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata 700019, India
| | - Aparajita Choudhury
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata 700019, India
| | - Shruti Chakraborty
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata 700019, India
| | - Arunava Ghosh
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata 700019, India
| | - Victor Banerjee
- Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata, 700 009, India
| | - Shinjini Ganguly
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata 700019, India
| | - Gautam Bhaduri
- Regional Institute of Opthalmology, Medical College, Kolkata, India
| | - Rajat Banerjee
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata 700019, India.
| | - Kalipada Das
- Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata, 700 009, India.
| | - Indu B Chatterjee
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata 700019, India.
| |
Collapse
|
13
|
Banerjee S, Bhattacharyya P, Mitra S, Kundu S, Panda S, Chatterjee IB. Anti- p-benzoquinone antibody level as a prospective biomarker to identify smokers at risk for COPD. Int J Chron Obstruct Pulmon Dis 2017; 12:1847-1856. [PMID: 28684907 PMCID: PMC5485895 DOI: 10.2147/copd.s134455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background and objective Identification of smokers having predisposition to COPD is important for early intervention to reduce the huge global burden of the disease. Using a guinea pig model, we have shown that p-benzoquinone (p-BQ) derived from cigarette smoke (CS) in the lung is a causative factor for CS-induced emphysema. p-BQ is also derived from CS in smokers and it elicits the production of anti-p-BQ antibody in humans. We therefore hypothesized that anti-p-BQ antibody might have a protective role against COPD and could be used as a predictive biomarker for COPD in smokers. The objective of this study was to compare the serum anti-p-BQ antibody level between smokers with and without COPD for the evaluation of the hypothesis. Methods Serum anti-p-BQ antibody concentrations of current male smokers with (n=227) or without (n=308) COPD were measured by an indirect enzyme-linked immunoabsorbent assay (ELISA) developed in our laboratory. COPD was diagnosed by spirometry according to Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines. Results and discussion A significant difference was observed in the serum anti-p-BQ antibody level between smokers with and without COPD (Mann–Whitney U-test =4,632.5, P=0.000). Receiver operating characteristic (ROC) curve analysis indicated that the ELISA had significant precision (area under the curve [AUC] =0.934, 95% confidence interval [CI]: 0.913–0.935) for identifying smokers with COPD from their low antibody level. The antibody cutoff value of 29.4 mg/dL was constructed from the ROC coordinates to estimate the risk for COPD in smokers. While 90.3% of smokers with COPD had a low antibody value (≤29.4 mg/dL), the majority (86.4%) of smokers without COPD had a high antibody value (≤29.4 mg/dL); 13.6% of current smokers without COPD having an antibody level below this cutoff value (odds ratio [OR] =59.3, 95% CI: 34.15–101.99) were considered to be at risk for COPD. Conclusion and future directions Our results indicate that serum anti-p-BQ antibody level may be used as a biomarker to identify asymptomatic smokers at risk for COPD for early intervention of the disease.
Collapse
Affiliation(s)
- Santanu Banerjee
- Department of Biotechnology and Dr B C Guha Centre for Genetic Engineering and Biotechnology, University College of Science and Technology, University of Calcutta
| | | | - Subhra Mitra
- Department of Pulmonary Medicine, Calcutta National Medical College
| | - Somenath Kundu
- Department of Chest Medicine, Institute of Post Graduate Medical Education and Research
| | - Samiran Panda
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Indu B Chatterjee
- Department of Biotechnology and Dr B C Guha Centre for Genetic Engineering and Biotechnology, University College of Science and Technology, University of Calcutta
| |
Collapse
|
14
|
Ganguly S, Chandra A, Chattopadhyay DJ, Chatterjee IB. p-Benzoquinone initiates non-invasive urothelial cancer through aberrant tyrosine phosphorylation of EGFR, MAP kinase activation and cell cycle deregulation: Prevention by vitamin C. Toxicol Rep 2017; 4:296-305. [PMID: 28959653 PMCID: PMC5615141 DOI: 10.1016/j.toxrep.2017.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/23/2017] [Accepted: 06/13/2017] [Indexed: 12/26/2022] Open
Abstract
p-Benzoquinone induces non-invasive urothelial carcinoma in a guinea pig model. The mechanisms involved are persistent growth signaling and cell cycle deregulation. Vitamin C prevents p-benzoquinone-induced non-invasive urothelial carcinoma.
According to WHO classification system, non-invasive urothelial carcinoma represents urothelial carcinoma in situ (CIS) and dysplasia. Dysplastic urothelium often progresses to CIS that further advances to urothelial carcinoma (UC). The strongest risk factor for UC is cigarette smoking. However, the pathogenesis of cigarette smoke (CS)-induced UC is poorly understood. Earlier we had shown that p-benzoquinone (p-BQ), a major toxic quinone derived from p-benzosemiquinone of CS in vivo, is a causative factor for various CS-induced diseases. Here, using a guinea pig model we showed that prolonged treatment with p-BQ led to non-invasive UC, specifically carcinoma in situ (CIS) of the renal pelvis and dysplasia in the ureter and bladder. The mechanisms of carcinogenesis were p-BQ-induced oxidative damage and apoptosis that were later suppressed and followed by activation of epidermal growth factor receptor, aberrant phosphorylation of intracellular tyrosine residues, activation of MAP kinase pathway and persistent growth signaling. This was accompanied by deregulation of cell cycle as shown by marked decrease in the expression of p21waf1/cip1 and cyclin D1 proteins as well as hyperphosphorylation of pRb. UC has been characterised by histopathology and immunohistochemistry showing aberrant CK20, increased Ki-67, and marked p53 nuclear immunopositivity with uniformly negative labelling of CD44. Oral supplementation of vitamin C (30 mg/kg body weight/day) prevented CIS of the renal pelvis and dysplasia in the ureter and bladder. Since majority of non-invasive UC progresses to invasive cancer with increased risk of mortality, our preclinical study might help to devise effective strategies for early intervention of the disease.
Collapse
Key Words
- Aberrant EGFR activation
- Bax, BCL2-associated X protein
- Bcl-2, B-cell lymphoma 2
- CIS, carcinoma in situ
- CS, cigarette smoke
- Carcinoma in situ
- Cell cycle deregulation
- DNPH, 2 4-dinitrophenylhydrazine
- Dysplasia
- EGFR, epidermal growth factor receptor
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- IARC, International Agency for Research on Cancer
- MAPK, mitogen activated protein kinase
- PAHs, polycyclic aromatic hydrocarbons
- PBS, phosphate buffered saline
- ROS, reactive oxygen species
- SDS PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labelling
- UC, urothelial carcinoma
- Vitamin C
- WHO, World Health Organization
- p-BQ, p-benzoquinone
- p-BSQ, p-benzosemiquinone
- p-Benzoquinone
Collapse
Affiliation(s)
- Shinjini Ganguly
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata 700019, India
| | - Ayan Chandra
- Department of Statistics, St. Xavier's College (Autonomous), Kolkata 700016, India
| | - Dhruba J Chattopadhyay
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata 700019, India
| | - Indu B Chatterjee
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, Calcutta University College of Science, Kolkata 700019, India
| |
Collapse
|
15
|
Li Y, Jongberg S, Andersen ML, Davies MJ, Lund MN. Quinone-induced protein modifications: Kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins. Free Radic Biol Med 2016; 97:148-157. [PMID: 27212016 DOI: 10.1016/j.freeradbiomed.2016.05.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 12/23/2022]
Abstract
Oxidation of polyphenols to quinones serves as an antioxidative mechanism, but the resulting quinones may induce damage to proteins as they react through a Michael addition with nucleophilic groups, such as thiols and amines to give protein adducts. In this study, rate constants for the reaction of 4-methylbenzoquinone (4MBQ) with proteins, thiol and amine compounds were determined under pseudo first-order conditions by UV-vis stopped-flow spectrophotometry. The chemical structures of the adducts were identified by LC-ESI-MS/MS. Proteins with free thiols were rapidly modified by 4MBQ with apparent second order rate constants, k2 of (3.1±0.2)×10(4)M(-1)s(-1) for bovine serum albumin (BSA) and (4.8±0.2)×10(3)M(-1)s(-1) for human serum albumin at pH 7.0. These values are at least 12-fold greater than that for α-lactalbumin (4.0±0.2)×10(2)M(-1)s(-1), which does not contain any free thiols. Reaction of Cys-34 of BSA with N-ethylmaleimide reduced the thiol concentration by ~59%, which resulted in a decrease in k2 by a similar percentage, consistent with rapid adduction at Cys-34. Reaction of 4MBQ with amines (Gly, Nα-acetyl-l-Lys, Nε-acetyl-l-Lys and l-Lys) and the guanidine group of Nα-acetyl-l-Arg was at least 5×10(5) slower than with low-molecular-mass thiols (l-Cys, Nα-acetyl-l-Cys, glutathione). The thiol-quinone interactions formed colorless thiol-phenol products via an intermediate adduct, while the amine-quinone interactions generated colored amine-quinone products that require oxygen involvement. These data provide strong evidence for rapid modification of protein thiols by quinone species which may be of considerable significance for biological and food systems.
Collapse
Affiliation(s)
- Yuting Li
- School of Food Science and Technology, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China; Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China.
| | - Sisse Jongberg
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark.
| | - Mogens L Andersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark.
| | - Michael J Davies
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Marianne N Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| |
Collapse
|
16
|
Kurgat C, Kibet J, Cheplogoi P. Molecular modeling of major tobacco alkaloids in mainstream cigarette smoke. Chem Cent J 2016; 10:43. [PMID: 27429644 PMCID: PMC4947291 DOI: 10.1186/s13065-016-0189-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/04/2016] [Indexed: 11/25/2022] Open
Abstract
Background Consensus of opinion in literature regarding tobacco research has shown that cigarette smoke can cause irreparable damage to the genetic material, cell injury, and general respiratory landscape. The alkaloid family of tobacco has been implicated is a series of ailments including addiction, mental illnesses, psychological disorders, and cancer. Accordingly, this contribution describes the mechanistic degradation of major tobacco alkaloids including the widely studied nicotine and two other alkaloids which have received little attention in literature. The principal focus is to understand their energetics, their environmental fate, and the formation of intermediates considered harmful to tobacco consumers. Method The intermediate components believed to originate from tobacco alkaloids in mainstream cigarette smoke were determined using as gas-chromatography hyphenated to a mass spectrometer fitted with a mass selective detector (MSD) while the energetics of intermediates were conducted using the density functional theory framework (DFT/B3LYP) using the 6-31G basis set. Results The density functional theory calculations conducted using B3LYP correlation function established that the scission of the phenyl C–C bond in nicotine and β-nicotyrine, and C–N phenyl bond in 3,5-dimethyl-1-phenylpyrazole were respectively 87.40, 118.24 and 121.38 kcal/mol. The major by-products from the thermal degradation of nicotine, β-nicotyrine and 3,5-dimethyl-1-phenylpyrazole during cigarette smoking are predicted theoretically to be pyridine, 3-methylpyridine, toluene, and benzene. This was found to be consistent with experimental data presented in this work. Conclusion Clearly, the value of the bond dissociation energy was found to be dependent on the π–π interactions which plays a primary role in stabilizing the phenyl C–C in nicotine and β-nicotyrine and the phenyl C–N linkages in 3,5-dimethyl-1-phenylpyrazole. This investigation has elucidated the energetics for the formation of free radicals and intermediates considered detrimental to human health in cigarette smoking.Some molecular alkaloids of tobacco the plant ![]() Electronic supplementary material The online version of this article (doi:10.1186/s13065-016-0189-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caren Kurgat
- Department of Chemistry, Egerton University, P.O Box 536, Egerton, 20115 Kenya
| | - Joshua Kibet
- Department of Chemistry, Egerton University, P.O Box 536, Egerton, 20115 Kenya
| | - Peter Cheplogoi
- Department of Chemistry, Egerton University, P.O Box 536, Egerton, 20115 Kenya
| |
Collapse
|
17
|
Ghosh A, Banerjee S, Mitra A, Muralidharan M, Roy B, Banerjee R, Mandal AK, Chatterjee IB. Interaction of p-benzoquinone with hemoglobin in smoker's blood causes alteration of structure and loss of oxygen binding capacity. Toxicol Rep 2016; 3:295-305. [PMID: 28959550 PMCID: PMC5615826 DOI: 10.1016/j.toxrep.2016.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 11/12/2022] Open
Abstract
Cigarette smoke (CS) is an important source of morbidity and early mortality worldwide. Besides causing various life-threatening diseases, CS is also known to cause hypoxia. Chronic hypoxia would induce early aging and premature death. Continuation of smoking during pregnancy is a known risk for the unborn child. Although carbon monoxide (CO) is considered to be a cause of hypoxia, the effect of other component(s) of CS on hypoxia is not known. Here we show by immunoblots and mass spectra analyses that in smoker's blood p-benzoquinone (p-BQ) derived from CS forms covalent adducts with cysteine 93 residues in both the β chains of hemoglobin (Hb) producing Hb-p-BQ adducts. UV-vis spectra and CD spectra analyses show that upon complexation with p-BQ the structure of Hb is altered. Compared to nonsmoker's Hb, the content of α-helix decreased significantly in smoker's Hb (p = 0.0224). p-BQ also induces aggregation of smoker's Hb as demonstrated by SDS-PAGE, dynamic light scattering and atomic force microscopy. Alteration of Hb structure in smoker's blood is accompanied by reduced oxygen binding capacity. Our results provide the first proof that p-BQ is a cause of hypoxia in smokers. We also show that although both p-BQ and CO are responsible for causing hypoxia in smokers, exposure to CO further affects the function over and above that produced by Hb-p-BQ adduct.
Collapse
Affiliation(s)
- Arunava Ghosh
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, University College of Science, Kolkata 700019, India
| | - Santanu Banerjee
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, University College of Science, Kolkata 700019, India
| | - Amrita Mitra
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John’s Research Institute, 100 ft Road, Koramangala, Bangalore 560034, India
| | - Monita Muralidharan
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John’s Research Institute, 100 ft Road, Koramangala, Bangalore 560034, India
| | - Bappaditya Roy
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, University College of Science, Kolkata 700019, India
| | - Rajat Banerjee
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, University College of Science, Kolkata 700019, India
| | - Amit Kumar Mandal
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John’s Research Institute, 100 ft Road, Koramangala, Bangalore 560034, India
| | - Indu B. Chatterjee
- Department of Biotechnology and Dr. B. C. Guha Centre for Genetic Engineering & Biotechnology, University College of Science, Kolkata 700019, India
| |
Collapse
|
18
|
Kibet JK, Khachatryan L, Dellinger B. Phenols from pyrolysis and co-pyrolysis of tobacco biomass components. CHEMOSPHERE 2015; 138:259-65. [PMID: 26091866 DOI: 10.1016/j.chemosphere.2015.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/15/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Phenol and its derivatives (phenol, o-, m-, p-cresols, catechol, hydroquinone, methoxy substituted phenols, etc. referred to as phenolic compounds or phenols) are well-known toxicants that exist in the environment and affect both human and natural ecosystems. This study explores quantitatively the yields of phenolic compounds from the thermal degradation (pyrolysis and oxidative pyrolysis) of common tobacco biomass components (lignin, tyrosine, ethyl cellulose, sodium alginate, and laminarin) as well as some mixtures (lignin/tyrosine, ethyl cellulose/tyrosine and sodium alginate/tyrosine) considered important in high temperature cooking, tobacco smoking, and forest fires. Special attention has been given to binary mixtures including those containing tyrosine-pyrolysis of binary mixtures of tyrosine with lignin and ethyl cellulose results in significant reductions in the yields of majority phenols relative to those from the thermal degradation of tyrosine. These results imply that the significant reductions of phenol yields in mixtures are not only dependent upon the mass fractions of the components but also the synergetic inhibition effect of biomass components on the thermal degradation of tyrosine. A mechanistic description of this phenomenon is suggested. The results may also be implied in tobacco industry that the cigarette paper (as ethyl cellulose derivative) may play a critical role in reducing the concentration of phenolic compounds released during tobacco burning.
Collapse
Affiliation(s)
- Joshua K Kibet
- Department of Chemistry, Egerton University, P.O. Box 536, Egerton, Kenya
| | - Lavrent Khachatryan
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Barry Dellinger
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
19
|
Porter CJ, Bereman MS. Data-independent-acquisition mass spectrometry for identification of targeted-peptide site-specific modifications. Anal Bioanal Chem 2015; 407:6627-35. [PMID: 26105512 PMCID: PMC5257204 DOI: 10.1007/s00216-015-8819-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/17/2015] [Accepted: 06/01/2015] [Indexed: 12/22/2022]
Abstract
We present a novel strategy based on data-independent acquisition coupled to targeted data extraction for the detection and identification of site-specific modifications of targeted peptides in a completely unbiased manner. This method requires prior knowledge of the site of the modification along the peptide backbone from the protein of interest, but not the mass of the modification. The procedure, named multiplex adduct peptide profiling (MAPP), consists of three steps: 1) A fragment-ion tag is extracted from the data, consisting of the b-type and y-type ion series from the N and C-terminus, respectively, up to the amino-acid position that is believed to be modified; 2) MS1 features are matched to the fragment-ion tag in retention-time space, using the isolation window as a pre-filter to enable calculation of the mass of the modification; and 3) modified fragment ions are overlaid with the unmodified fragment ions to verify the mass calculated in step 2. We discuss the development, applications, and limitations of this new method for detection of unknown peptide modifications. We present an application of the method in profiling adducted peptides derived from abundant proteins in biological fluids with the ultimate objective of detecting biomarkers of exposure to reactive species.
Collapse
Affiliation(s)
- Caleb J Porter
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | | |
Collapse
|
20
|
Roy A, Sikdar J, Seal P, Haldar R. Cigarette smokers develop structurally modified hemoglobin: a possible way of increasing oxidative stress. Inhal Toxicol 2015; 27:300-7. [DOI: 10.3109/08958378.2015.1045052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Ghosh A, Ganguly S, Dey N, Banerjee S, Das A, Chattopadhyay DJ, Chatterjee IB. Causation of Cigarette Smoke–Induced Emphysema by p-Benzoquinone and Its Prevention by Vitamin C. Am J Respir Cell Mol Biol 2015; 52:315-22. [DOI: 10.1165/rcmb.2013-0545oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
22
|
WITHDRAWN: Cigarette smoke induces alterations in the drug binding properties of human serum albumin. Blood Cells Mol Dis 2014. [DOI: 10.1016/j.bcmd.2014.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Clerici M, Colombo G, Secundo F, Gagliano N, Colombo R, Portinaro N, Giustarini D, Milzani A, Rossi R, Dalle-Donne I. Cigarette smoke induces alterations in the drug-binding properties of human serum albumin. Blood Cells Mol Dis 2014; 52:166-74. [PMID: 24388826 DOI: 10.1016/j.bcmd.2013.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/27/2013] [Indexed: 12/01/2022]
Abstract
Albumin is the most abundant plasma protein and serves as a transport and depot protein for numerous endogenous and exogenous compounds. Earlier we had shown that cigarette smoke induces carbonylation of human serum albumin (HSA) and alters its redox state. Here, the effect of whole-phase cigarette smoke on HSA ligand-binding properties was evaluated by equilibrium dialysis and size-exclusion HPLC or tryptophan fluorescence. The binding of salicylic acid and naproxen to cigarette smoke-oxidized HSA resulted to be impaired, unlike that of curcumin and genistein, chosen as representative ligands. Binding of the hydrophobic fluorescent probe 4,4'-bis(1-anilino-8-naphtalenesulfonic acid) (bis-ANS), intrinsic tryptophan fluorescence, and susceptibility to enzymatic proteolysis revealed slight changes in albumin conformation. These findings suggest that cigarette smoke-induced modifications of HSA may affect the binding, transport and bioavailability of specific ligands in smokers.
Collapse
Affiliation(s)
- Marco Clerici
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Graziano Colombo
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Francesco Secundo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Milan, Italy
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Roberto Colombo
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Nicola Portinaro
- Department of Medical Biotechnology and Translational Medicine, Clinica ortopedica e traumatologica, Università degli Studi di Milano and Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | | | - Aldo Milzani
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Ranieri Rossi
- Department of Life Sciences, University of Siena, Siena, Italy
| | | |
Collapse
|
24
|
Kibet JK, Khachatryan L, Dellinger B. Molecular products from the thermal degradation of glutamic acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7696-7704. [PMID: 23875713 DOI: 10.1021/jf401846t] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The thermal behavior of glutamic acid was investigated in N2 and 4% O2 in N2 under flow reactor conditions at a constant residence time of 0.2 s, within a total pyrolysis time of 3 min at 1 atm. The identification of the main pyrolysis products has been reported. Accordingly, the principal products for pyrolysis in order of decreasing abundance were succinimide, pyrrole, acetonitrile, and 2-pyrrolidone. For oxidative pyrolysis, the main products were succinimide, propiolactone, ethanol, and hydrogen cyanide. Whereas benzene, toluene, and a few low molecular weight hydrocarbons (propene, propane, 1-butene, and 2-butene) were detected during pyrolysis, no polycyclic aromatic hydrocarbons (PAHs) were detected. Oxidative pyrolysis yielded low molecular weight hydrocarbon products in trace amounts. The mechanistic channels describing the formation of the major product succinimide have been explored. The detection of succinimide (major product) and maleimide (minor product) from the thermal decomposition of glutamic acid has been reported for the first time in this study. Toxicological implications of some reaction products (HCN, acetonitrile, and acyrolnitrile), which are believed to form during heat treatment of food, tobacco burning, and drug processing, have been discussed in relation to the thermal degradation of glutamic acid.
Collapse
Affiliation(s)
- Joshua K Kibet
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | | | | |
Collapse
|
25
|
Phillips DH, Venitt S. DNA and protein adducts in human tissues resulting from exposure to tobacco smoke. Int J Cancer 2012; 131:2733-53. [PMID: 22961407 DOI: 10.1002/ijc.27827] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/03/2012] [Indexed: 12/15/2022]
Abstract
Tobacco smoke contains a variety of genotoxic carcinogens that form adducts with DNA and protein in the tissues of smokers. Not only are these biochemical events relevant to the carcinogenic process, but the detection of adducts provides a means of monitoring exposure to tobacco smoke. Characterization of smoking-related adducts has shed light on the mechanisms of smoking-related diseases and many different types of smoking-derived DNA and protein adducts have been identified. Such approaches also reveal the potential harm of environmental tobacco smoke (ETS) to nonsmokers, infants and children. Because the majority of tobacco-smoke carcinogens are not exclusive to this source of exposure, studies comparing smokers and nonsmokers may be confounded by other environmental sources. Nevertheless, certain DNA and protein adducts have been validated as biomarkers of exposure to tobacco smoke, with continuing applications in the study of ETS exposures, cancer prevention and tobacco product legislation. Our article is a review of the literature on smoking-related adducts in human tissues published since 2002.
Collapse
Affiliation(s)
- David H Phillips
- Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King's College London, London, United Kingdom.
| | | |
Collapse
|
26
|
Das A, Dey N, Ghosh A, Das S, Chattopadhyay DJ, Chatterjee IB. Molecular and cellular mechanisms of cigarette smoke-induced myocardial injury: prevention by vitamin C. PLoS One 2012; 7:e44151. [PMID: 22970172 PMCID: PMC3435405 DOI: 10.1371/journal.pone.0044151] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) remains one of the major killers in modern society. One strong risk factor of CVD is cigarette smoking that causes myocardial injury and leads to the genesis of pathological cardiovascular events. However, the exact toxic component(s) of cigarette smoke (CS) and its molecular and cellular mechanisms for causing myocardial injury leading to heart damage and its prevention are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS Using a guinea pig model, here we show that chronic exposure to CS produces myocardial injury that is prevented by vitamin C. Male guinea pigs were fed either vitamin C-deficient (0.5 mg/day) or vitamin C-sufficient (15 mg/day) diet and subjected to CS exposure from 5 Kentucky Research cigarettes (3R4F)/day (6 days/week) in a smoke chamber up to 8 weeks. Pair-fed sham controls were subjected to air exposure instead of CS exposure under similar conditions. Myocardial injury was produced in CS-exposed marginal vitamin C-deficient guinea pigs as evidenced by release of cardiac Troponin-T and I in the serum, oxidative stress, inflammation, apoptosis, thrombosis and collagen deposition in the myocardium. Treatment of rat cardiomyocyte cells (H9c2) in vitro and guinea pigs in vivo with p-benzoquinone (p-BQ) in amounts derived from CS revealed that p-BQ was a major factor responsible for CS-induced myocardial damage. A moderately large dose of vitamin C (15 mg/day) prevented CS/p-BQ-induced myocardial injury. Population based studies indicated that plasma vitamin C levels of smokers without disease were significantly lower (p = 0,0000) than that of non-smokers. Vitamin C levels of CS-related cardiovascular patients were further lower (p = 0.0000) than that of smokers without disease. CONCLUSIONS/SIGNIFICANCE The results indicate that dietary supplementation of vitamin C may be a novel and simple therapy for the prevention of pathological cardiovascular events in habitual smokers.
Collapse
Affiliation(s)
- Archita Das
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, Calcutta University College of Science, Kolkata, India
| | - Neekkan Dey
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, Calcutta University College of Science, Kolkata, India
| | - Arunava Ghosh
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, Calcutta University College of Science, Kolkata, India
| | | | - Dhruba J. Chattopadhyay
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, Calcutta University College of Science, Kolkata, India
| | - Indu B. Chatterjee
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, Calcutta University College of Science, Kolkata, India
| |
Collapse
|