1
|
Zhang L, Liu X, Wang J, Li Z, Wang S, Yang W, Hai Y, Liu D. Kaempferol protects against doxorubicin-induced myocardial damage by inhibiting mitochondrial ROS-dependent ferroptosis. Redox Rep 2025; 30:2503130. [PMID: 40361284 DOI: 10.1080/13510002.2025.2503130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Doxorubicin (DOX), a widely used chemotherapeutic agent, is limited in clinical application due to its dose-dependent cardiotoxicity. Therefore, it is crucial to explore alternative therapeutic molecules or drugs for mitigating DOX-induced cardiomyopathy (DIC). In this study aimed to explore underlying mechanisms of the cardioprotective effects of Kaempferol (KP) against DIC. METHODS H9c2 cell-based DIC model were established to explore the pharmacological mechanism. The levels of mitochondrial membrane potential, mitochondrial ROS, mitochondrial Fe2+ and lipid peroxidation were detected using JC-1, TMRE, Mito-SOX, Mito-Ferro Green and C11-BODIPY 581/591 probes. Furthermore, Western blot analysis measured the expression of key regulatory proteins, and NRF2-targeting siRNA was transfected into H9c2 cells. The nuclear translocation of NRF2 was assessed by immunofluorescence. RESULTS Data revealed that KP mitigated DOX-induced mitochondrial damage and ferroptosis via reducing membrane potential, mitochondrial ROS/Fe²+, and regulating lipid metabolism. Mechanistically, Western blot analysis revealed that KP inhibited DOX-induced ferroptosis by activating NRF2/SLC7A11/GPX4 axis. Moreover, KP promoted the accumulation and nuclear translocation of NRF2 protein. CONCLUSION These findings demonstrated that KP protected against DOX-induced myocardial damage by inhibiting mitochondrial ROS-dependent ferroptosis. This provides novel insights into KP as a promising drug candidate for cardioprotection.
Collapse
Affiliation(s)
- Lin Zhang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, People's Republic of China
| | - Xiaorui Liu
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, People's Republic of China
| | - Juan Wang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, People's Republic of China
| | - Zimu Li
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, People's Republic of China
| | - Siqi Wang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, People's Republic of China
| | - Wen Yang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, People's Republic of China
| | - Yang Hai
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, People's Republic of China
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, People's Republic of China
| | - Dongling Liu
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, People's Republic of China
- Gansu Pharmaceutical Industry Innovation Research Institute, Gansu University of Chinese Medicine, Lanzhou, People's Republic of China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine, Lanzhou, People's Republic of China
| |
Collapse
|
2
|
Calabrese EJ, Pressman P, Hayes AW, Baldwin L, Agathokleous E, Kapoor H, Dhawan G, Kapoor R, Calabrese V. Kaempferol, a widely ingested dietary flavonoid and supplement, enhances biological performance via hormesis, especially for ageing-related processes. Mech Ageing Dev 2025; 225:112065. [PMID: 40287100 DOI: 10.1016/j.mad.2025.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Kaempferol is a polyphenol in various fruits and vegetables. It is also commercially developed and sold to consumers as a supplement. It has been extensively assessed in clinical trials for clinical utility based upon its numerous experimentally based chemopreventive properties. Kaempferol has been evaluated at the levels of molecule, cell, and individual animal, showing a broad spectrum of biological effects. Kaempferol-induced hormetic concentration responses are common, being reported in many cell types and biological models for numerous endpoints. While the hormetic effects of kaempferol are biologically diverse, there has been a strong focus on age-related endpoints affecting numerous organ systems and endpoints, indicating that kaempferol is a senolytic agent, showing similar properties as quercetin and fisetin. This paper offers the first integrated evaluation of kaempferol-induced hormetic dose responses, their quantitative characteristics, mechanistic explanations, extrapolative strengths or limitations, and related experimental design, biomedical, therapeutic, ageing, and public health, including ageing related applications.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health, University of Massachusetts, Morrill I-N344, Amherst, MA 01003, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Linda Baldwin
- Independent Researcher, Sapphire Lane, Greenfield, MA 01301, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Harshita Kapoor
- Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India; Independent Consultant, Hartford, CT, USA.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy.
| |
Collapse
|
3
|
Tillman L, Margalef Rieres J, Ahjem E, Bishop-Guest F, McGrath M, Hatrick H, Pranjol MZI. Thinking Outside the Therapeutic Box: The Potential of Polyphenols in Preventing Chemotherapy-Induced Endothelial Dysfunction. Cells 2025; 14:566. [PMID: 40277892 PMCID: PMC12026109 DOI: 10.3390/cells14080566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
The numerous side effects and adverse health implications associated with chemotherapies have long plagued the field of cancer care. Whilst in some cases a curative measure, this highly toxic intervention consistently scores poorly on quantitative measures of tolerability and safety. Of these side effects, cardiac and microvascular defects pose the greatest health risk and are the leading cause of death amongst cancer survivors who do not succumb to relapse. In fact, in many low-grade cancers, the risk of recurrence is far outweighed by the cardiovascular risk of morbidity. As such, there is a pressing need to improve outcomes within these populations. Polyphenols are a group of naturally occurring metabolites that have shown potential vasoprotective effects. Studies suggest they possess antioxidant and anti-inflammatory activities, in addition to directly modulating vascular signalling pathways and gene expression. Leveraging these properties may help counteract the vascular toxicity induced by chemotherapy. In this review, we outline the main mechanisms by which the endothelium is damaged by chemotherapeutic agents and discuss the ability of polyphenols to counteract such side effects. We suggest future considerations that may help overcome some of the published limitations of these compounds that have stalled their clinical success. Finally, we briefly explore their pharmacological properties and how novel approaches could enhance their efficacy while minimising treatment-related side effects.
Collapse
Affiliation(s)
- Luke Tillman
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Jaume Margalef Rieres
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Elena Ahjem
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Fynn Bishop-Guest
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Meghan McGrath
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | - Helena Hatrick
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (L.T.); (J.M.R.); (M.M.); (H.H.)
| | | |
Collapse
|
4
|
Tayal R, Mannan A, Singh S, Dhiman S, Singh TG. Unveiling the Complexities: Exploring Mechanisms of Anthracyclineinduced Cardiotoxicity. Curr Cardiol Rev 2025; 21:42-77. [PMID: 39484769 PMCID: PMC12060933 DOI: 10.2174/011573403x322928241021100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 11/03/2024] Open
Abstract
The coexistence of cancer and heart disease, both prominent causes of illness and death, is further exacerbated by the detrimental impact of chemotherapy. Anthracycline-induced cardiotoxicity is an unfortunate side effect of highly effective therapy in treating different types of cancer; it presents a significant challenge for both clinicians and patients due to the considerable risk of cardiotoxicity. Despite significant progress in understanding these mechanisms, challenges persist in identifying effective preventive and therapeutic strategies, rendering it a subject of continued research even after three decades of intensive global investigation. The molecular targets and signaling pathways explored provide insights for developing targeted therapies, emphasizing the need for continued research to bridge the gap between preclinical understanding and clinical applications. This review provides a comprehensive exploration of the intricate mechanisms underlying anthracycline-induced cardiotoxicity, elucidating the interplay of various signaling pathways leading to adverse cellular events, including cardiotoxicity and death. It highlights the extensive involvement of pathways associated with oxidative stress, inflammation, apoptosis, and cellular stress responses, offering insights into potential and unexplored targets for therapeutic intervention in mitigating anthracycline-induced cardiac complications. A comprehensive understanding of the interplay between anthracyclines and these complexes signaling pathways is crucial for developing strategies to prevent or mitigate the associated cardiotoxicity. Further research is needed to outline the specific contributions of these pathways and identify potential therapeutic targets to improve the safety and efficacy of anthracycline-based cancer treatment. Ultimately, advancements in understanding anthracycline-induced cardiotoxicity mechanisms will facilitate the development of more efficacious preventive and treatment approaches, thereby improving outcomes for cancer patients undergoing anthracycline-based chemotherapy.
Collapse
Affiliation(s)
- Rohit Tayal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
5
|
Xie L, Liu H, Zhang K, Pan Y, Chen M, Xue X, Wan G. Exploring the molecular mechanism of ginseng against anthracycline-induced cardiotoxicity based on network pharmacology, molecular docking and molecular dynamics simulation. Hereditas 2024; 161:31. [PMID: 39243097 PMCID: PMC11378563 DOI: 10.1186/s41065-024-00334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Previous clinical and basic studies have revealed that ginseng might have cardioprotective properties against anthracycline-induced cardiotoxicity (AIC). However, the underlying mechanism of ginseng action against AIC remains insufficiently understood. The aim of this study was to explore the related targets and pathways of ginseng against AIC using network pharmacology, molecular docking, cellular thermal shift assay (CETSA) and molecular dynamics (MD) simulations. RESULTS Fourteen drug-disease common targets were identified. Enrichment analysis showed that the AGE-RAGE in diabetic complications, fluid shear stress and atherosclerosis, and TNF signaling pathway were potentially involved in the action of ginseng against AIC. Molecular docking demonstrated that the core components including Kaempferol, beta-Sitosterol, and Fumarine had notable binding activity with the three core targets CCNA2, STAT1, and ICAM1. Furthermore, the stable complex of STAT1 and Kaempferol with favorable affinity was further confirmed by CETSA and MD simulation. CONCLUSIONS This study suggested that ginseng might exert their protective effects against AIC through the derived effector compounds beta-Sitosterol, Kaempferol and Fumarine by targeting CCNA2, STAT1, and ICAM1, and modulating AGE-RAGE in diabetic complications, fluid shear stress and atherosclerosis, and TNF signaling pathways.
Collapse
Affiliation(s)
- Lin Xie
- Department of Oncology, Institute of Medicine and Nursing, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Hanze Liu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang Road, Shiyan, Hubei, 442000, China
| | - Ke Zhang
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang Road, Shiyan, Hubei, 442000, China
| | - Yijun Pan
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang Road, Shiyan, Hubei, 442000, China
| | - Mengyao Chen
- Department of Oncology, Institute of Medicine and Nursing, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Xiangyue Xue
- Department of Oncology, Institute of Medicine and Nursing, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Guoxing Wan
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39 Chaoyang Road, Shiyan, Hubei, 442000, China.
| |
Collapse
|
6
|
Szponar J, Niziński P, Dudka J, Kasprzak-Drozd K, Oniszczuk A. Natural Products for Preventing and Managing Anthracycline-Induced Cardiotoxicity: A Comprehensive Review. Cells 2024; 13:1151. [PMID: 38995002 PMCID: PMC11240786 DOI: 10.3390/cells13131151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
Doxorubicin (DOX) is an anthracycline anticancer agent that is highly effective in the treatment of solid tumors. Given the multiplicity of mechanisms involved in doxorubicin-induced cardiotoxicity, it is difficult to identify a precise molecular target for toxicity. The findings of a literature review suggest that natural products may offer cardioprotective benefits against doxorubicin-induced cardiotoxicity, both in vitro and in vivo. However, further confirmatory studies are required to substantiate this claim. It is of the utmost importance to direct greater attention towards the intricate signaling networks that are of paramount importance for the survival and dysfunction of cardiomyocytes. Notwithstanding encouraging progress made in preclinical studies of natural products for the prevention of DOX-induced cardiotoxicity, these have not yet been translated for clinical use. One of the most significant obstacles hindering the development of cardioprotective adjuvants based on natural products is the lack of adequate bioavailability in humans. This review presents an overview of current knowledge on doxorubicin DOX-induced cardiotoxicity, with a focus on the potential benefits of natural compounds and herbal preparations in preventing this adverse effect. As literature search engines, the browsers in the Scopus, PubMed, Web of Science databases and the ClinicalTrials.gov register were used.
Collapse
Affiliation(s)
- Jarosław Szponar
- Clinical Department of Toxicology and Cardiology, Toxicology Clinic, Stefan Wyszyński Regional Specialist Hospital, Medical University of Lublin, 20-718 Lublin, Poland;
| | - Przemysław Niziński
- Department of Pharmacology, Medical University of Lublin, Radziwiłłowska 11 Street, 20-080 Lublin, Poland;
| | - Jarosław Dudka
- Chair and Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| |
Collapse
|
7
|
Abohashem RS, Ahmed HH, Sayed AH, Effat H. Primary Protection of Diosmin Against Doxorubicin Cardiotoxicity via Inhibiting Oxido-Inflammatory Stress and Apoptosis in Rats. Cell Biochem Biophys 2024; 82:1353-1366. [PMID: 38743136 DOI: 10.1007/s12013-024-01289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Doxorubicin (DOX) is the cornerstone of chemotherapy. However, it has dose-dependent cardiotoxic events that limit its clinical use. This study was intended to investigate the efficiency of DOX as an anti-cancer against the MCF-7 cell line in the presence of diosmin (DIO) and to appraise the protective impact of DIO against DOX cardiotoxicity in vivo. In vitro study was carried out to establish the conservation of DOX cytotoxicity in the presence of DIO. In vivo study was conducted on 42 adult female Wistar rats that were equally allocated into 6 groups; control, DIO (100 mg/kg), DIO (200 mg/kg), DOX (20 mg/kg, single dose i.p.), DIO (100 mg/kg) + DOX, received DIO orally (100 mg/kg) for 30 days, then administrated with a single dose of DOX and DIO (200 mg/kg) + DOX, received DIO orally (200 mg/kg) for 30 days, then administrated with DOX. In vitro study showed preservation of cytotoxic activity of DOX on MCF-7 in the presence of DIO. In vivo study indicated that DOX altered electrocardiograph (ECG) parameters. Also, it yielded a significant rise in CK-MB, cTnT and LDH serum levels and cardiac contents of MDA, IL-1β; paralleled by a significant drop in cardiac IL-10 and SOD. Moreover, significant upregulation of Bax, TNF-α, and HIF-1α, in concomitant with significant downregulation of Bcl-2 mRNA in cardiac tissue have been recorded in the DOX group. Furthermore, histopathological description of cardiac tissues showed that DOX alters normal cardiac histoarchitecture. On the opposite side, DIO pretreatment could ameliorate ECG parameters, suppress IL-1β and enhanceIL-10, promote activity of SOD and repress MDA. Additionally, downregulation of Bax, TNF-α, HIF-1α and upregulation of Bcl-2 have been demonstrated in DIO-pretreated rats. Furthermore, the histopathological examination of cardiac tissues illustrated that DIO had a favorable impact on the protection of heart histoarchitecture. DIO is suggested for protection against acute cardiotoxicity caused by DOX without affecting antitumor activity.
Collapse
Affiliation(s)
- Rehab S Abohashem
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
- Stem Cell Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt.
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
- Stem Cell Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Alaa H Sayed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Heba Effat
- Medical Biochemistry and Molecular Biology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Chen G, Luo S, Guo H, Lin J, Xu S. Licochalcone A alleviates ferroptosis in doxorubicin-induced cardiotoxicity via the PI3K/AKT/MDM2/p53 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4247-4262. [PMID: 38078919 DOI: 10.1007/s00210-023-02863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/19/2023] [Indexed: 05/23/2024]
Abstract
Licochalcone A (Lico A), a flavonoid found in licorice, possesses multiple pharmacological activities in modulating oxidative stress, glycemia, inflammation, and lipid metabolism. This study aimed to explore the potential mechanism of Lico A in mitigating ferroptosis associated with doxorubicin-induced cardiotoxicity (DIC). Initially, network pharmacology analysis was applied to identify the active components present in licorice and their targeted genes associated with DIC. Subsequently, to assess the role of Lico A in a DIC mouse model, electrocardiograms, myocardial injury markers, and myocardial histopathological changes were measured. Additionally, cell viability, reactive oxygen species (ROS), ferrous iron, glutathione/glutathione disulfide (GSH/GSSG), and malondialdehyde (MDA) were measured in the cell model as hallmarks of ferroptosis. Finally, the PI3K/AKT/MDM2/p53 signaling pathway and ferroptosis-related proteins were measured in vitro and in vivo. Bioinformatics results revealed that 8 major compounds of licorice, including Lico A, primarily regulated targets such as p53 and the PI3K/AKT signaling pathways in DIC. In the mouse model of DIC, Lico A significantly ameliorated serum biomarkers, histopathology, and electrocardiogram abnormalities. Pretreatment with Lico A enhanced the viability of H9C2 cells treated with doxorubicin. Furthermore, Lico A administration resulted in decreased levels of ROS, ferrous iron, and MDA and increased levels of GSH/GSSG. At the protein level, Lico A increased the phosphorylation of PI3K/AKT/MDM2, reduced p53 accumulation, and induced the upregulation of SLC7A11 and GPX4 expression. However, selective inhibition of PI3K/AKT and plasmid-based overexpression of p53 significantly abolished the anti-ferroptosis functions of Lico A. In conclusion, Lico A attenuates DIC by suppressing p53-mediated ferroptosis through activating PI3K/AKT/MDM2 signaling.
Collapse
Affiliation(s)
- Ganxiao Chen
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China
| | - Shunxiang Luo
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China
| | - Hongdou Guo
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China
| | - Jiayi Lin
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China
| | - Shanghua Xu
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China.
| |
Collapse
|
9
|
Sahu R, Rawal RK. Modulation of the c-JNK/p38-MAPK signaling pathway: Investigating the therapeutic potential of natural products in hypertension. PHYTOMEDICINE PLUS 2024; 4:100564. [DOI: 10.1016/j.phyplu.2024.100564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Alrumaihi F, Almatroodi SA, Alharbi HOA, Alwanian WM, Alharbi FA, Almatroudi A, Rahmani AH. Pharmacological Potential of Kaempferol, a Flavonoid in the Management of Pathogenesis via Modulation of Inflammation and Other Biological Activities. Molecules 2024; 29:2007. [PMID: 38731498 PMCID: PMC11085411 DOI: 10.3390/molecules29092007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Natural products and their bioactive compounds have been used for centuries to prevent and treat numerous diseases. Kaempferol, a flavonoid found in vegetables, fruits, and spices, is recognized for its various beneficial properties, including its antioxidant and anti-inflammatory potential. This molecule has been identified as a potential means of managing different pathogenesis due to its capability to manage various biological activities. Moreover, this compound has a wide range of health-promoting benefits, such as cardioprotective, neuroprotective, hepatoprotective, and anti-diabetic, and has a role in maintaining eye, skin, and respiratory system health. Furthermore, it can also inhibit tumor growth and modulate various cell-signaling pathways. In vivo and in vitro studies have demonstrated that this compound has been shown to increase efficacy when combined with other natural products or drugs. In addition, kaempferol-based nano-formulations are more effective than kaempferol treatment alone. This review aims to provide detailed information about the sources of this compound, its bioavailability, and its role in various pathogenesis. Although there is promising evidence for its ability to manage diseases, it is crucial to conduct further investigations to know its toxicity, safety aspects, and mechanism of action in health management.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid A. Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wanian M. Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Fadiyah A. Alharbi
- Department of Obstetrics/Gynecology, Maternity and Children’s Hospital, Buraydah 52384, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
11
|
Li W, Cheng X, Zhu G, Hu Y, Wang Y, Niu Y, Li H, Aierken A, Li J, Feng L, Liu G. A review of chemotherapeutic drugs-induced arrhythmia and potential intervention with traditional Chinese medicines. Front Pharmacol 2024; 15:1340855. [PMID: 38572424 PMCID: PMC10987752 DOI: 10.3389/fphar.2024.1340855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Significant advances in chemotherapy drugs have reduced mortality in patients with malignant tumors. However, chemotherapy-related cardiotoxicity increases the morbidity and mortality of patients, and has become the second leading cause of death after tumor recurrence, which has received more and more attention in recent years. Arrhythmia is one of the common types of chemotherapy-induced cardiotoxicity, and has become a new risk related to chemotherapy treatment, which seriously affects the therapeutic outcome in patients. Traditional Chinese medicine has experienced thousands of years of clinical practice in China, and has accumulated a wealth of medical theories and treatment formulas, which has unique advantages in the prevention and treatment of malignant diseases. Traditional Chinese medicine may reduce the arrhythmic toxicity caused by chemotherapy without affecting the anti-cancer effect. This paper mainly discussed the types and pathogenesis of secondary chemotherapeutic drug-induced arrhythmia (CDIA), and summarized the studies on Chinese medicine compounds, Chinese medicine Combination Formula and Chinese medicine injection that may be beneficial in intervention with secondary CDIA including atrial fibrillation, ventricular arrhythmia and sinus bradycardia, in order to provide reference for clinical prevention and treatment of chemotherapy-induced arrhythmias.
Collapse
Affiliation(s)
- Weina Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaozhen Cheng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guanghui Zhu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, China
| | - Yunhan Wang
- Henan Province Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, China
| | - Yueyue Niu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongping Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aikeremu Aierken
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ling Feng
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guifang Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Kumar S, Chhabra V, Shenoy S, Daksh R, Ravichandiran V, Swamy RS, Kumar N. Role of Flavonoids in Modulation of Mitochondria Dynamics during Oxidative Stress. Mini Rev Med Chem 2024; 24:908-919. [PMID: 37861054 DOI: 10.2174/0113895575259219230920093214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Flavonoids are a widespread category of naturally occurring polyphenols distinguished by the flavan nucleus in plant-based foods and beverages, known for their various health benefits. Studies have suggested that consuming 150-500 mg of flavonoids daily is beneficial for health. Recent studies suggest that flavonoids are involved in maintaining mitochondrial activity and preventing impairment of mitochondrial dynamics by oxidative stress. OBJECTIVE This review emphasized the significance of studying the impact of flavonoids on mitochondrial dynamics, oxidative stress, and inflammatory response. METHODS This review analysed and summarised the findings related to the impact of flavonoids on mitochondria from publicly available search engines namely Pubmed, Scopus, and Web of Science. DESCRIPTION Any disruption in mitochondrial dynamics can contribute to cellular dysfunction and diseases, including cancer, cardiac conditions, and neurodegeneration. Flavonoids have been shown to modulate mitochondrial dynamics by regulating protein expression involved in fission and fusion events. Furthermore, flavonoids exhibit potent antioxidant properties by lowering the production of ROS and boosting the performance of antioxidant enzymes. Persistent inflammation is a characteristic of many different disorders. This is because flavonoids also alter the inflammatory response by controlling the expression of numerous cytokines and chemokines involved in the inflammatory process. Flavonoids exhibit an impressive array of significant health effects, making them an effective therapeutic agent for managing various disorders. Further this review summarised available mechanisms underlying flavonoids' actions on mitochondrial dynamics and oxidative stress to recognize the optimal dose and duration of flavonoid intake for therapeutic purposes. CONCLUSION This review may provide a solid foundation for developing targeted therapeutic interventions utilizing flavonoids, ultimately benefiting individuals afflicted with various disorders.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Rajni Daksh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| | - Ravindra Shantakumar Swamy
- Division of Anatomy, Department of Basic Medical Sciences (DBMS), Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Industrial Area Hajipur, Vaishali, 844102, India
| |
Collapse
|
13
|
Hosseini A, Ghorbani A, Alavi MS, Forouhi N, Rajabian A, Boroumand-Noughabi S, Sahebkar A, Eid AH. Cardioprotective effect of Sanguisorba minor against isoprenaline-induced myocardial infarction in rats. Front Pharmacol 2023; 14:1305816. [PMID: 38223198 PMCID: PMC10784747 DOI: 10.3389/fphar.2023.1305816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024] Open
Abstract
Introduction: Oxidative stress is a major instigator of various cardiovascular diseases, including myocardial infarction (MI). Despite available drugs, there is still an increased need to look for alternative therapies or identify new bioactive compounds. Sanguisorba minor (S. minor) is a native herb characterized by its potent antioxidant activity. This study was designed to evaluate the effect of S. minor against isoprenaline-induced MI. Methods: Rats were treated with the hydro-ethanolic extract of the aerial parts of S. minor at doses of 100 or 300 mg/kg orally for 9 days. Isoprenaline was injected subcutaneously at the dose of 85 mg/kg on days 8 and 9. Then, the activities of various cardiac injury markers including cardiac troponin (cTnT), lactate dehydrogenase (LDH), creatinine kinase muscle brain (CK-MB), creatinine phosphokinase (CPK), and antioxidant enzymes in serum were determined. Malondialdehyde (MDA) and thiol content were measured in cardiac tissue, and histopathological analysis was conducted. Results: Our results show that isoprenaline increased the serum levels of cTnT, LDH, CK-MB, and CPK (p < 0.001) and elevated MDA levels (p < 0.001) in cardiac tissue. Isoprenaline also reduced superoxide dismutase (SOD), catalase, and thiol content (p < 0.001). Importantly, the extract abolished isoprenaline-induced MI by elevating SOD and catalase (p < 0.001), reducing levels of MDA, and diminishing levels of cTnT, LDH, CK-MB, and CPK cardiac markers (p < 0.001). Histopathological studies of the cardiac tissue showed isoprenaline-induced injury that was significantly attenuated by the extract. Conclusion: Our results suggest that S. minor could abrogate isoprenaline-induced cardiac toxicity due to its ability to mitigate oxidative stress.
Collapse
Affiliation(s)
- Azar Hosseini
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Ghorbani
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Forouhi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Lin KH, Ramesh S, Agarwal S, Kuo WW, Kuo CH, Chen MYC, Lin YM, Ho TJ, Huang PC, Huang CY. Fisetin attenuates doxorubicin-induced cardiotoxicity by inhibiting the insulin-like growth factor II receptor apoptotic pathway through estrogen receptor-α/-β activation. Phytother Res 2023; 37:3964-3981. [PMID: 37186468 DOI: 10.1002/ptr.7855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 03/17/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023]
Abstract
Doxorubicin (DOX), an effective chemotherapeutic drug, has been used to treat various cancers; however, its cardiotoxic side effects restrict its therapeutic efficacy. Fisetin, a flavonoid phytoestrogen derived from a range of fruits and vegetables, has been reported to exert cardioprotective effects against DOX-induced cardiotoxicity; however, the underlying mechanisms remain unclear. This study investigated fisetin's cardioprotective role and mechanism against DOX-induced cardiotoxicity in H9c2 cardiomyoblasts and ovariectomized (OVX) rat models. MTT assay revealed that fisetin treatment noticeably rescued DOX-induced cell death in a dose-dependent manner. Moreover, western blotting and TUNEL-DAPI staining showed that fisetin significantly attenuated DOX-induced cardiotoxicity in vitro and in vivo by inhibiting the insulin-like growth factor II receptor (IGF-IIR) apoptotic pathway through estrogen receptor (ER)-α/-β activation. The echocardiography, biochemical assay, and H&E staining results demonstrated that fisetin reduced DOX-induced cardiotoxicity by alleviating cardiac dysfunction, myocardial injury, oxidative stress, and histopathological damage. These findings imply that fisetin has a significant therapeutic potential against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Research and Innovation, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, India
| | - Sakshi Agarwal
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Michael Yu-Chih Chen
- Department of Cardiology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yueh-Min Lin
- Department of Medical Technology, Jen-The Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Pei-Chen Huang
- Department of Obstetrics and Gynecology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
15
|
Atta AH, Atta SA, Khattab MS, El-Aziz THA, Mouneir SM, Ibrahim MA, Nasr SM, Emam SR. Ceratonia siliqua pods (Carob) methanol extract alleviates doxorubicin-induced nephrotoxicity via antioxidant, anti-inflammatory and anti-apoptotic pathways in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83421-83438. [PMID: 37341944 PMCID: PMC10359411 DOI: 10.1007/s11356-023-28146-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023]
Abstract
Doxorubicin (DOX) is an anti-neoplastic therapy, but its use is limited by its deleterious toxic effects including nephrotoxicity and cardiotoxicity. This work aimed at assessing the potential protective effect of Ceratonia siliqua methanol extract (CME) on DOX-induced nephrotoxicity in 5 groups of Wistar rats. Nephrotoxicity was induced experimentally by intraperitoneal (IP) injection of DOX (15 mg/kg). DOX increased serum creatinine, urea, sodium, and potassium levels. It elevated MDA levels in the renal tissue but decreased the concentration of GSH and the activity of GST, CAT, and SOD. Meanwhile, it decreased the level of immunomodulatory anti-inflammatory mediators: IL-10 and TGF-β, as well as the activity of MPO but increased the level of IL-6, TNF-α, and caspase-3 in the renal tissue. DOX has upregulated COX-2, caspase-9, and Bax gene expression and downregulated the Bcl-2 gene expression. Immunolabeling of renal tubular epithelium in DOX-intoxicated rats was moderate to strong against Bax, COX-2, and NF-kβ and weak against Bcl-2. Treatment with CME significantly restored the levels of kidney function parameters and the levels of oxidative stress markers. It stimulated the production of IL-10 and TGF-β and decreased the level of IL-6 and TNF-α. CME reverted the gene expression of COX-2, caspase-9, and Bax. Microscopically, CME alleviated the DOX-induced renal damage. Phytochemical analysis revealed the presence of 26 compounds in the CME. No signs of acute toxicity were recorded by CME up to 4000 mg/kg b. wt. orally into mice. Finally, CME could effectively alleviate the deleterious effects of DOX on the kidney. The safety of carob extract encourages its use in the preparation of valuable therapeutic agents.
Collapse
Affiliation(s)
- Attia H. Atta
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 1211 Egypt
| | - Shimaa A. Atta
- Immunology Department, Theodor Belharz Research Institute, Giza, 12411 Egypt
| | - Marwa S. Khattab
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 1211 Egypt
| | - Tamer H. Abd El-Aziz
- Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth St, DokkiGiza, 12622 Egypt
| | - Samar M. Mouneir
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 1211 Egypt
| | - Marwa A. Ibrahim
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 1211 Egypt
| | - Soad M. Nasr
- Department of Parasitology and Animal Diseases, National Research Centre, 33 Bohouth St, DokkiGiza, 12622 Egypt
| | - Shimaa R. Emam
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 1211 Egypt
| |
Collapse
|
16
|
Ali AA, Saad EB, El-Rhman RHA, El-Raouf OMA, Gad AM. Impact of peroxisome proliferator activated receptor agonist drugs in a model of nephrotoxicity in rats. J Biochem Mol Toxicol 2023; 37:e23350. [PMID: 36988379 DOI: 10.1002/jbt.23350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Doxorubicin (DOX) is one of the basic anticancer drugs, nonetheless its use is restricted due to noxious side effects. Kidney failure is one of the main side effects that restrict its medical use. The current study assessed the nephroprotective effects of fenofibrate and pioglitazone against the renal injury induced by doxorubicin in rats and illustrated the probable mechanisms underlying these protective effects. For this purpose, Male Sprague-Dawley rats weighing (200-230 g) were allocated into seven groups treated for 15 days as following: control (50% corn oil + 50% DMSO p.o), fenofibrate (100 mg/kg p.o) and pioglitazone (10 mg/kg p.o) as well as four groups of DOX (15 mg/kg i.p on 11th day). DOX groups included DOX alone and DOX with protective drugs fenofibrate, pioglitazone or both of them. As a result of doxorubicin nephrotoxicity; serum creatinine and blood urea nitrogen were remarkably elevated. Moreover, renal glutathione was significantly reduced while tissue lipid peroxidation malondialdehyde, tumor necrosis factor-α, nuclear factor-kappa B p65 (NF-κB p65), interleukin-1β, p38 mitogen activated protein kinase (p38-MAPK) and caspase-3 (Casp-3) were significantly augmented. Treatment with fenofibrate and pioglitazone either alone or in combination markedly attenuated DOX-induced injury by suppression of oxidative stress, inflammation and apoptosis. The above-mentioned biochemical markers were affirmed by histological assessment. In conclusion, fenofibrate, pioglitazone, and their combination possess potential prophylactic effects against doxorubicin-induced renal injury through modulation of p38-MAPK/NF-κB p65 pathway with superiority to the combination.
Collapse
Affiliation(s)
- Azza A Ali
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Eman B Saad
- The Department of Pharmacology, Egyptian Drug Authority, EDA, Formerly NODCAR, Giza, Egypt
| | - Rana H Abd El-Rhman
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| | - Ola M Abd El-Raouf
- The Department of Pharmacology, Egyptian Drug Authority, EDA, Formerly NODCAR, Giza, Egypt
| | - Amany M Gad
- The Department of Pharmacology, Egyptian Drug Authority, EDA, Formerly NODCAR, Giza, Egypt
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| |
Collapse
|
17
|
Kamisah Y, Jalil J, Yunos NM, Zainalabidin S. Cardioprotective Properties of Kaempferol: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112096. [PMID: 37299076 DOI: 10.3390/plants12112096] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Cardiac diseases, such as myocardial infarction and heart failure, have become a major clinical problem globally. The accumulating data demonstrate that bioactive compounds with antioxidant and anti-inflammatory properties have favorable effects on clinical problems. Kaempferol is a flavonoid found in various plants; it has demonstrated cardioprotective properties in numerous cardiac injury models. This review aims to collate updated information regarding the effects of kaempferol on cardiac injury. Kaempferol improves cardiac function by alleviating myocardial apoptosis, fibrosis, oxidative stress, and inflammation while preserving mitochondrial function and calcium homeostasis. However, the mechanisms of action of its cardioprotective properties remain unclear; therefore, elucidating its action could provide insight into directions for future studies.
Collapse
Affiliation(s)
- Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Juriyati Jalil
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Nurhanan Murni Yunos
- Natural Products Division, Forest Research Institute of Malaysia, Selangor 52109, Malaysia
| | - Satirah Zainalabidin
- Program of Biomedical Science, Centre of Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
18
|
Boeing T, Reis Lívero FAD, de Souza P, de Almeida DAT, Donadel G, Lourenço ELB, Gasparotto Junior A. Natural Products as Modulators of Mitochondrial Dysfunctions Associated with Cardiovascular Diseases: Advances and Opportunities. J Med Food 2023; 26:279-298. [PMID: 37186894 DOI: 10.1089/jmf.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The mitochondria have an important role in modulating cell cycle progression, cell survival, and apoptosis. In the adult heart, the cardiac mitochondria have a unique spatial arrangement and occupy nearly one-third the volume of a cardiomyocyte, being highly efficient for converting the products of glucose or fatty acid metabolism into adenosine triphosphate (ATP). In cardiomyocytes, the decline of mitochondrial function reduces ATP generation and increases the production of reactive oxygen species, which generates impaired heart function. This is because mitochondria play a key role in maintaining cytosolic calcium concentration and modulation of muscle contraction, as ATP is required to dissociate actin from myosin. Beyond that, mitochondria have a significant role in cardiomyocyte apoptosis because it is evident that patients who have cardiovascular diseases (CVDs) have increased mitochondrial DNA damage to the heart and aorta. Many studies have shown that natural products have mitochondria-modulating effects in cardiac diseases, determining them as potential candidates for new medicines. This review outlines the leading plant secondary metabolites and natural compounds derived from microorganisms as modulators of mitochondrial dysfunctions associated with CVDs.
Collapse
Affiliation(s)
- Thaise Boeing
- Graduate Program in Pharmaceutical Sciences, Chemical-Pharmaceutical Research Nucleus, University of Vale do Itajaí, Itajaí, Brazil
| | - Francislaine Aparecida Dos Reis Lívero
- Laboratory of Pre-Clinical Research of Natural Products, Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Priscila de Souza
- Graduate Program in Pharmaceutical Sciences, Chemical-Pharmaceutical Research Nucleus, University of Vale do Itajaí, Itajaí, Brazil
| | - Danielle Ayr Tavares de Almeida
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Guilherme Donadel
- Laboratory of Pre-Clinical Research of Natural Products, Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Emerson Luiz Botelho Lourenço
- Laboratory of Pre-Clinical Research of Natural Products, Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| |
Collapse
|
19
|
Deep Learning Approach for Predicting the Therapeutic Usages of Unani Formulas towards Finding Essential Compounds. Life (Basel) 2023; 13:life13020439. [PMID: 36836796 PMCID: PMC9959740 DOI: 10.3390/life13020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The use of herbal medicines in recent decades has increased because their side effects are considered lower than conventional medicine. Unani herbal medicines are often used in Southern Asia. These herbal medicines are usually composed of several types of medicinal plants to treat various diseases. Research on herbal medicine usually focuses on insight into the composition of plants used as ingredients. However, in the present study, we extended to the level of metabolites that exist in the medicinal plants. This study aimed to develop a predictive model of the Unani therapeutic usage based on its constituent metabolites using deep learning and data-intensive science approaches. Furthermore, the best prediction model was then utilized to extract important metabolites for each therapeutic usage of Unani. In this study, it was observed that the deep neural network approach provided a much better prediction model than other algorithms including random forest and support vector machine. Moreover, according to the best prediction model using the deep neural network, we identified 118 important metabolites for nine therapeutic usages of Unani.
Collapse
|
20
|
Atta AH, Atta SA, Khattab M, El-aziz THA, Mouneir SM, Ibrahim M, Nasr SM, Ramadan S. Ceratonia siliqua pods (Carob) methanol extract alleviates doxorubicin – induced nephrotoxicity via antioxidant, anti-inflammatory and anti-apoptotic pathways.. [DOI: 10.21203/rs.3.rs-2217042/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Doxorubicin (DOX) is an effective antitumor therapy but its use is limited by its deleterious toxic effects including nephrotoxicity and cardiotoxicity. The aim of this work was to assess the potential protective effect of Ceratonia siliqua methanol extract (CME) on DOX-induced nephrotoxicity in 5 groups of rats. Rats in groups 1and 2 were given normal saline while groups 3–5 were given Vitamin C (reference antioxidant, 250mg/kg), CME (500mg/kg) and CME (1000 mg/kg) for 5 days. On the 5th day, 1 hour after the last treatment dose, rats of groups 2–5 were given DOX in a dose of 15 mg/kg IP. DOX increased serum creatinine, urea, sodium and potassium and decreased GSH concentration, GST, CAT, SOD and MPO activities but increased MDA. It increased the inflammatory mediators (COX-2, IL-6, TNF-α, and NF-κβ) but decreased the anti-inflammatory cytokine (IL-10) and the Transforming growth factor-β (TGF-β). DOX has up-regulated COX-2, Caspase-3, Caspase-9, Bax and NF- κβ transcripts and down-regulated the anti-apoptotic Bcl-2 as assessed by immunohistochemistry and gene expression analysis. CME significantly improved the levels of kidney function parameters and restored the levels of the oxidative stress markers. It also decreased the level of COX-2, IL-6, TNF-α, and NF-κβ and stimulated the production of IL-10 and TGF-β. CME down-regulated the expression levels of the Bax, Cox-2 and caspases and up-regulated the anti-apoptotic Bcl-2. Microscopically, CME alleviated the DOX-induced renal damage in dose dependent manner. Phytochemical analysis revealed the presence of 26 compounds among which 4 major compounds (over 5%) in the CME. Acute toxicity test revealed that CME is not toxic up to 5 g/kg orally into rats. In conclusion, CME could effectively alleviate the deleterious effects of DOX on the kidney. The safety of carob extract encourages its use in the preparation of valuable therapeutic agents.
Collapse
|
21
|
Barbosa L, Barberino R, Gouveia B, Menezes V, Palheta Junior R, Matos M. Protective effect of kaempferol against cisplatin-induced acute ovarian damage in a mouse model. ARQ BRAS MED VET ZOO 2022. [DOI: 10.1590/1678-4162-12608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT The flavonoid kaempferol has attracted research attention as a potential adjuvant during chemotherapy. This study aimed to evaluate the protective effects of kaempferol against ovarian damage in cisplatin-treated mice. Two groups of mice received saline solution (intraperitoneal injection [i.p.]; control) or a single dose of cisplatin (5 mg/kg body weight, i.p.). Moreover, two other mice groups were pretreated with kaempferol (1 or 10 mg/kg body weight, i.p.) 30 min before of the cisplatin administration. Thereafter, their ovaries were harvested and subjected to histological (follicular morphology and activation) and fluorescence (reactive oxygen species [ROS] production, glutathione [GSH] concentration, and mitochondrial activity) analyses. Compared with cisplatin treatment alone, pretreatment with 1 mg/kg kaempferol maintained normal follicular morphology, reduced ROS production and mitochondrial damage, and enhanced GSH concentration. However, pretreatment with 10 mg/kg kaempferol did not prevent cisplatin-induced damage. The rate of primordial follicle activation was greater in mice pretreated with 1 mg/kg kaempferol than in the other treatment groups. In conclusion, pretreatment with 1 mg/kg kaempferol prevents cisplatin-induced ovarian damage and stimulates primordial follicle activation in mice.
Collapse
Affiliation(s)
| | | | - B.B. Gouveia
- Universidade Federal do Vale do São Francisco, Brazil
| | - V.G. Menezes
- Universidade Federal do Vale do São Francisco, Brazil
| | | | - M.H.T. Matos
- Universidade Federal do Vale do São Francisco, Brazil
| |
Collapse
|
22
|
Sun X, Zhu Y, Li F, Li M, Wan G. Cardioprotective Mechanism and Active Compounds of Folium Ginkgo on Adriamycin-Induced Cardiotoxicity: A Network Pharmacology Study. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4338260. [PMID: 36213575 PMCID: PMC9534669 DOI: 10.1155/2022/4338260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/19/2022] [Indexed: 12/06/2022]
Abstract
Objective To investigate the mechanism of Folium Ginkgo (FG) against adriamycin-induced cardiotoxicity (AIC) through a network pharmacology approach. Methods Active ingredients of FG were screened by TCMSP, and the targets of active ingredient were collected by Genclip3 and HERB databases. AIC-related target genes were predicted by Genecards, OMIM, and CTD databases. Protein-protein interaction (PPI) network was constructed by STRING platform and imported into Cytoscape software to construct the FG-active ingredients-targets-AIC network, and CytoNCA plug-in was used to analyze and identify the core target genes. The Metascape platform was used for transcription factor, GO and signaling pathway enrichment analysis. Results 27 active ingredients of FG and 1846 potential targets were obtained and 358 AIC target genes were retrieved. The intersection of FG and AIC targets resulted in 218 target genes involved in FG action. The top 5 active ingredients with most targets were quercetin, luteolin, kaempferol, isorhamnetin, and sesamin. After constructing the FG-active ingredients-targets-AIC network, CytoNCA analysis yielded 51 core targets, of which the top ranked target was STAT3. Ninety important transcription factors were enriched by transcription factor enrichment analysis, including RELA, TP53, NFKB1, SP1, JUN, STAT3, etc. The results of GO enrichment analysis showed that the effective active ingredient targets of FG were involved in apoptotic signaling, response to growth factor, cellular response to chemical stress, reactive oxygen species metabolic process, etc. The signaling pathway enrichment analysis showed that there were many signaling pathways involved in AIC, mainly including pathways in cancer, FOXO signaling pathway, AGE-RAGE signaling pathway in diabetic complications, signaling by interleukins, and PI3K-AKT signaling pathway,. Conclusions The study based on a network pharmacology approach demonstrates that the possible mechanisms of FG against AIC are the involvement of multicomponents, multitargets, and multipathways, and STAT3 may be a key target. Further experiments are needed to verify the results.
Collapse
Affiliation(s)
- Xue Sun
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39# Chaoyang Road, Shiyan, Hubei 442000, China
| | - Yiming Zhu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39# Chaoyang Road, Shiyan, Hubei 442000, China
| | - Fang Li
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39# Chaoyang Road, Shiyan, Hubei 442000, China
| | - Min Li
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39# Chaoyang Road, Shiyan, Hubei 442000, China
| | - Guoxing Wan
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, 39# Chaoyang Road, Shiyan, Hubei 442000, China
- Institute of Cancer, Renmin Hospital of Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
23
|
Comprehensive review of two groups of flavonoids in Carthamus tinctorius L. Biomed Pharmacother 2022; 153:113462. [DOI: 10.1016/j.biopha.2022.113462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
|
24
|
Long S, Ji S, Xue P, Xie H, Ma Y, Zhu S. Network pharmacology and molecular docking analysis reveal insights into the molecular mechanism of shiliao decoction in the treatment of cancer-associated malnutrition. Front Nutr 2022; 9:985991. [PMID: 36091226 PMCID: PMC9452828 DOI: 10.3389/fnut.2022.985991] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeShiliao Decoction (SLD) was developed for treatment and prevention of cancer-associated malnutrition (CAM) in China. In this study, we aim to discover SLD’s active compounds and demonstrate the mechanisms of SLD that combat CAM through network pharmacology and molecular docking techniques.MethodsAll components of SLD were retrieved from the pharmacology database of Traditional Chinese Medicine Systems Pharmacology (TCMSP). The GeneCards database and the Online Mendelian Inheritance in Man database (OMIM) were used to identify gene encoding target compounds, and Cytoscape was used to construct the drug compound–target network. The network of target protein-protein interactions (PPI) was constructed using the STRING database, while gene ontology (GO) functional terms and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways associated with potential targets were analyzed using a program in R language (version 4.2.0). Core genes linked with survival and the tumor microenvironment were analyzed using the Kaplan–Meier plotter and TIMER 2.0 databases, respectively. Protein expression and transcriptome expression levels of core gene were viewed using the Human Protein Atlas (HPA) and the Cancer Genome Atlas (TCGA). A component-target-pathway (C-T-P) network was created using Cytoscape, and Autodock Vina software was used to verify the molecular docking of SLD components and key targets.ResultsThe assembled compound–target network primarily contained 134 compounds and 147 targets of the SLD associated with JUN, TP53, MAPK3, MAPK1, MAPK14, STAT3, AKT1, HSP90AA1, FOS, and MYC, which were identified as core targets by the PPI network. KEGG pathway analysis revealed pathways involved in lipid and atherosclerosis, the PI3K/Akt signaling pathway, and immune-related pathways among others. JUN is expressed at different levels in normal and cancerous tissues, it is closely associated with the recruitment of different immune cells and has been shown to have a significant impact on prognosis. The C-T-P network suggests that the active component of SLD is capable of regulating target genes affecting these related pathways. Finally, the reliability of the core targets was evaluated using molecular docking technology.ConclusionThis study revealed insights into SLD’s active components, potential targets, and possible molecular mechanisms, thereby demonstrating a potential method for examining the scientific basis and therapeutic mechanisms of TCM formulae.
Collapse
Affiliation(s)
- Sidan Long
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Medical Oncology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuangshuang Ji
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Xue
- Medical Oncology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongting Xie
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yinjie Ma
- Medical Oncology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yinjie Ma,
| | - Shijie Zhu
- Medical Oncology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Shijie Zhu,
| |
Collapse
|
25
|
Afrin H, Huda MN, Islam T, Oropeza BP, Alvidrez E, Abir MI, Boland T, Turbay D, Nurunnabi M. Detection of Anticancer Drug-Induced Cardiotoxicity Using VCAM1-Targeted Nanoprobes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37566-37576. [PMID: 35939041 PMCID: PMC9994100 DOI: 10.1021/acsami.2c13019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Chemotherapy-induced cardiac toxicity is an undesirable yet very common effect that increases the risk of death and reduce the quality of life of individuals undergoing chemotherapy. However, no feasible methods and techniques are available to monitor and detect the degree of cardiotoxicity at an early stage. Therefore, in this project, we aim to develop a fluorescent nanoprobe to image the toxicity within the cardiac tissue induced by an anticancer drug. We have observed that vascular cell adhesion molecule 1 (VCAM1) protein alone with collagen was overly expressed within the heart, when an animal was treated with doxorubicin (DOX), because of inflammation in the epithelial cells. We hypothesize that developing a VCAM1-targeted peptide-based (VHPKQHRGGSKGC) fluorescent nanoprobe can detect and visualize the affected heart. In this regard, we prepared a poly(lactic-co-glycolic acid) (PLGA) nanoparticle linked with VCAM1 peptide and rhodamine B (PLGA-VCAM1-RhB). Selective binding and higher accumulation of the PLGA-VCAM1-RhB nanoprobes were detected in DOX-treated human cardiomyocyte cells (HCMs) compared to the untreated cells. For in vivo studies, DOX (5 mg/kg) was injected via the tail vein once in two weeks for 6 weeks (3 injection total). PLGA-VCAM1-RhB and PLGA-RhB were injected via the tail vein after 1 week of the last dose of DOX, and images were taken 4 h after administration. A higher fluorescent signal of PLGA-RhB-VCAM-1 (48.62% ± 12.79%) was observed in DOX-treated animals compared to the untreated control PLGA-RhB (10.61% ± 4.90) within the heart, indicating the specificity and targeting ability of PLGA-VCAM1-RhB to the inflamed tissues. The quantified fluorescence intensity of the homogenized cardiac tissue of PLGA-RhB-VCAM1 showed 156% higher intensity than the healthy control group. We conclude that PLGA-VCAM1-RhB has the potential to bind inflamed cardiac cells, thereby detecting DOX-induced cardiotoxicity and damaged heart at an early stage.
Collapse
Affiliation(s)
- Humayra Afrin
- Environmental Science and Engineering, University of Texas at El Paso, El Paso, Texas 79965, United States
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Md Nurul Huda
- Environmental Science and Engineering, University of Texas at El Paso, El Paso, Texas 79965, United States
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Tamanna Islam
- Environmental Science and Engineering, University of Texas at El Paso, El Paso, Texas 79965, United States
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Beu P Oropeza
- Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79965, United States
| | - Efren Alvidrez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, Texas 79965, United States
| | - Muhammad I Abir
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, Texas 79965, United States
| | - Thomas Boland
- Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79965, United States
| | - David Turbay
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Md Nurunnabi
- Environmental Science and Engineering, University of Texas at El Paso, El Paso, Texas 79965, United States
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79965, United States
- Aerospace Center (cSETR), University of Texas at El Paso, El Paso, Texas 79965, United States
| |
Collapse
|
26
|
Elnoury HA, Elgendy SA, Baloza SH, Ghamry HI, Soliman M, Abdel-Aziz EAM. Synergistic impacts of Montelukast and Klotho against doxorubicin-induced cardiac toxicity in Rats. Toxicol Res (Camb) 2022; 11:592-604. [DOI: 10.1093/toxres/tfac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/24/2022] [Accepted: 04/02/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Doxorubicin (DOX) is a powerful antitumor agent with a well-known cardiaotoxic side effects. In the current study, the ameliorative combined impacts of montelukast (Mont) and Klotho against doxorubicin-induced cardiac toxicity were examined. Fifty-six adult male rats (2 months age and weighting 150–200 g) were grouped into 7 groups (8 rats per group). Animals received doxorubicin alone or in combination with either Mont or Klotho. After 2 weeks of treatments, serum samples were examined to assess the changes in cardiac activity biomarkers such as LDH, CK-MB, cardiac troponin-I (cTn-I), and heart fatty acid binding protein (H-FABP). Serum changes of IL-6, inducible nitric oxide synthase (iNOS), and caspase-3 levels were assayed. The oxidative stress biomarkers such as total antioxidant capacity (TAC) and inflammatory (rat IL-1β and rat TNF-α,) and anti-inflammatory (rat IL-10) cytokines were examined. Heart histology and transforming growth factor-β1 (TGF-β1) immunoreactivity were measured. DOX induced cardiomyopathy, which was reflected by the increases in all examined cardiac parameters. Real-time PCR confirmed that DOX upregulated the expression of TNF-α and IL-1β and decreased the expression of IL-10. Moreover, DOX showed marked elevation in the ST segment T wave complex, causing profound tachycardia. Heart histology assessments showed cardiac cell necrosis, inflammatory cell infiltration, interstitial congestion, and increased TGF-β1 immunoreactivity. Montelukast and Klotho administration ameliorated all the altered parameters when administered alone or in combination to DOX-intoxicated rats. Klotho was more effective compared with montelukast in terms of reductions in heart rate, ST segment T wave complex elevation, cardiac enzymes (lactate dehydrogenase; LDH, creatine kinase-MB; CK-MB, cardiac troponin I; cTn-I, heart fatty acid binding protein; H-FABP) cardiac histology, and caspase-3 levels and increases in TAC activity. Montelukast was more effective in reducing serum levels of IL6 and iNOS, expression of TNF-α and IL-1β, and the upregulation of IL-10 expression. The co-administration of both drugs led to significantly more synergistic results in terms of reducing cardiac toxicity. In conclusion, montelukast and Klotho either alone or in combination were confirmed to be effective in suppressing DOX-induced cardiac toxicity in rats.
Collapse
Affiliation(s)
- Heba A Elnoury
- Department of Pharmacology , Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Salwa A Elgendy
- Department of Pharmacology , Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Samar H Baloza
- Genetic and Genetic Engineering , Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Heba I Ghamry
- Department of Home Economics , College of Home Economics, King Khalid University, P.O. Box 960, Abha, 61421, Saudi Arabia
| | - Mohamed Soliman
- Clinical Laboratory Sciences Department , Turabah University College, Taif University, 21995, Saudi Arabia
| | | |
Collapse
|
27
|
Liao W, Rao Z, Wu L, Chen Y, Li C. Cariporide Attenuates Doxorubicin-Induced Cardiotoxicity in Rats by Inhibiting Oxidative Stress, Inflammation and Apoptosis Partly Through Regulation of Akt/GSK-3β and Sirt1 Signaling Pathway. Front Pharmacol 2022; 13:850053. [PMID: 35747748 PMCID: PMC9209753 DOI: 10.3389/fphar.2022.850053] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Doxorubicin (DOX) is a potent chemotherapeutic agent with limited usage due to its cumulative cardiotoxicity. The Na+/H+ exchanger isoform 1 (NHE1) is a known regulator of oxidative stress, inflammation, and apoptosis. The present study was designed to investigate the possible protective effect of cariporide (CAR), a selective inhibitor of NHE1, against DOX-induced cardiotoxicity in rats. Methods: Male Sprague-Dawley rats were intraperitoneally injected with DOX to induce cardiac toxicity and CAR was given orally for treatment. The injured H9c2 cell model was established by incubation with DOX in vitro. Echocardiography, as well as morphological and ultra-structural examination were performed to evaluate cardiac function and histopathological changes. The biochemical parameters were determined according to the manufacturer’s guideline of kits. ROS were assessed by using an immunofluorescence assay. The serum levels and mRNA expressions of inflammatory cytokines were measured by using ELISA or qRT-PCR. Cardiac cell apoptosis and H9c2 cell viability were tested by TUNEL or MTT method respectively. The protein expressions of Cleaved-Caspase-3, Bcl-2, Bax, Akt, GSK-3β, and Sirt1 were detected by western blot. Results: Treatment with CAR protected against DOX-induced body weight changes, impairment of heart function, leakage of cardiac enzymes, and heart histopathological damage. In addition, CAR significantly attenuated oxidative stress and inhibited the levels and mRNA expressions of inflammatory cytokines (TNF-α, IL-6, IL-18, and IL-1β), which were increased by DOX treatment. Moreover, CAR significantly suppressed myocardial apoptosis and Cleaved-Caspase-3 protein expression induced by DOX, which was in agreement with the increased Bcl-2/Bax ratio. Also, DOX suppressed phosphorylation of Akt and GSK-3β, which was significantly reversed by administration of CAR. Furthermore, CAR treatment prevented DOX-induced down-regulation of Sirt1 at the protein level in vitro and in vivo. Finally, Sirt1 inhibitor reversed the protective effects of CAR, as evidenced by reduced cell viability and Sirt1 protein expression in vitro. Conclusion: Taken together, we provide evidence for the first time in the current study that CAR exerts potent protective effects against DOX-induced cardiotoxicity in rats. This cardio-protective effect is attributed to suppressing oxidative stress, inflammation, and apoptosis, at least in part, through regulation of Akt/GSK-3β and Sirt1 signaling pathway, which has not been reported to date.
Collapse
Affiliation(s)
- Wenli Liao
- National Demonstration Center for Experimental General Medicine Education, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhiwei Rao
- Central Hospital of Xianning, The First Affiliate Hospital of Hubei University of Science and Technology, Xianning, China
| | - Lingling Wu
- National Demonstration Center for Experimental General Medicine Education, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yong Chen
- Central Hospital of Xianning, The First Affiliate Hospital of Hubei University of Science and Technology, Xianning, China
- *Correspondence: Cairong Li, ; Yong Chen,
| | - Cairong Li
- National Demonstration Center for Experimental General Medicine Education, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Cairong Li, ; Yong Chen,
| |
Collapse
|
28
|
Yangzom P, Amruthanand S, Sharma M, Mahajan S, Lingaraju MC, Parida S, Sahoo M, Kumar D, Singh TU. Subacute 28 days oral toxicity study of kaempferol and biochanin-A in the mouse model. J Biochem Mol Toxicol 2022; 36:e23090. [PMID: 35502512 DOI: 10.1002/jbt.23090] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022]
Abstract
The present study was undertaken to investigate the safety of kaempferol (KEM) and biochanin-A (BCA) following subacute exposure in mice. KEM and BCA were administered in three different doses by oral administration for 28 days. Evaluation of general toxicity parameters by examining the clinical signs, body weight, organ weights, haematological, biochemical, oxidative stress parameters, and histopathology was done. Administration of KEM and BCA for 28 days did not show any clinical signs of toxicity, nor any treatment-related changes in body weight and organ weights in comparison to control. The haematological parameters such as red blood cell, white blood cell, platelets count, haemoglobin (Hb) level, haematocrit, mean corpuscular haemoglobin concentration, red cell distribution width, and platelet distribution width did not show any change in the treated groups and control. Furthermore, different biochemical parameters like markers of the liver (alanine aminotransferase and aspartate aminotransferase), kidney (creatinine and urea), and heart (creatinine kinase-myocardial band and lactate dehydrogenase) injury along with other biochemical parameters showed nonsignificant differences between treated groups and control. Results of oxidative stress parameters in treated groups showed insignificant variations with control. The level of antioxidant enzymes such as superoxide dismutase and catalase were markedly increased in the treated groups; however, these were nonsignificant in comparison to control. In histopathology, evaluation of all vital organs, such as liver, kidney, heart, and lungs, did not show any morphological abnormalities and lesions in treated groups and control. The present study suggests that KEM and BCA have no adverse effects on the general physiology in mice.
Collapse
Affiliation(s)
- Padma Yangzom
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - S Amruthanand
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Meemansha Sharma
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Sumit Mahajan
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Madhu Cholenahalli Lingaraju
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Monalisa Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
29
|
Hu B, Zhen D, Bai M, Xuan T, Wang Y, Liu M, Yu L, Bai D, Fu D, Wei C. Ethanol extracts of Rhaponticum uniflorum (L.) DC flowers attenuate doxorubicin-induced cardiotoxicity via alleviating apoptosis and regulating mitochondrial dynamics in H9c2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114936. [PMID: 35007682 DOI: 10.1016/j.jep.2021.114936] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Loulu flowers (LLF) is the inflorescence of Rhaponticum uniflorum (L.) DC. (R. uniflorum), a member of the Compositae family. This plant possesses heat-clearing properties, detoxification effects, and is therefore frequently used for the treatment of cardiovascular diseases. AIM OF THIS STUDY This study aimed to investigate the cardioprotective effects of ethanol extracts of LLF against doxorubicin (DOX)-induced cardiotoxicity and explore the associated mechanisms. MATERIAL AND METHODS Ethanol extracts of LLF were prepared and analyzed by LC-ESI-MS/MS. DOX-treated H9c2 cells and DOX-treated zebrafish models were used to explore the cardioprotective effect of ethanol extracts on myocardial function. The effects of LLF on DOX-induced cytotoxicity in H9c2 cells were investigated by MTT assay. Reactive Oxygen Species (ROS) levels, mitochondrial membrane potential (MMP), and nuclear translocation of NF-κB p65 were examined using fluorescent probes. The expression level of Bax, Bcl-2, PARP, caspase-3, cleaved-caspase3, caspase9, IκBα, p-IκBα, IKK, p-IKK, p65, p-p65, OPA1, Mfn1, MFF and Fis 1 and GAPDH was determined by western blotting. RESULTS Twenty-five compounds were detected in ethanol extracts of LLF, include Nicotinamide, Coumarin, Parthenolide, and Ligustilide. Pre-treatment with LLF attenuated the DOX-induced decrease in viability and ROS production in H9c2 cells. Moreover, LLF treatment maintained the mitochondrial membrane integrity and suppressed apoptosis by upregulating expression level of Bcl-2 and downregulating the expression level of Bax, cleaved-caspase-3, cleaved-caspase-9 and cleaved-PARP. In addition, LLF significantly inhibited the DOX-induced activation of NF-κB signaling. Cells treated with DOX showed aberrant expression of mitochondrial dynamics related proteins, and these effects were alleviated by LLF pre-treatment. In conclusion, these results show that LLF can alleviate DOX-induced cardiotoxicity by blocking NF-κB signaling and re-balancing mitochondrial dynamics. CONCLUSION Ethanol extracts of LLF is a potential treatment option to against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Boqin Hu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Dong Zhen
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Meirong Bai
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Tianqi Xuan
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Yu Wang
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Mingjie Liu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Lijun Yu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Dongsong Bai
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Danni Fu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| | - Chengxi Wei
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China; Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, 028000, Inner Mongolia Autonomous Region, PR China.
| |
Collapse
|
30
|
Alagal RI, AlFaris NA, Alshammari GM, ALTamimi JZ, AlMousa LA, Yahya MA. Kaempferol attenuates doxorubicin-mediated nephropathy in rats by activating SIRT1 signaling. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
31
|
Zhang Y, Liu S, Ma JL, Chen C, Huang P, Ji JH, Wu D, Ren LQ. Apocynum venetum leaf extract alleviated doxorubicin-induced cardiotoxicity through the AKT/Bcl-2 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153815. [PMID: 34781232 DOI: 10.1016/j.phymed.2021.153815] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is a broad-spectrum anti-tumor drug that has been associated with cardiotoxicity. Plant extracts have been shown to confer protection against DOX-induced cardiotoxicity. Apocynum venetum L. belongs to the Apocynaceae family. Flavonoid extracted from Apocynum venetum L. possess various biological effects, such as lowering blood pressure levels, sedation, diuresis, anti-aging, and improving immunity. PURPOSE This study investigated the mechanism by which dry leaf extract of Apocynum venetum L. (AVLE) alleviates DOX-induced cardiomyocyte apoptosis. METHODS HPLC-MS/MS and HPLC methods were used to analyze the components of AVLE. The effects of DOX and AVLE on apoptosis of H9c2 and HMC cells were assessed using the MTT assay. Calcein AM/PI, TUNEL, and flow cytometry were carried out to determine the effects of AVLE on DOX-induced apoptosis. The effect of AVLE on DOX-induced oxidative stress in cardiomyocytes was investigated using ELISA test. Mito-Tracker Red CMXRos, JC-1, and RT-qPCR assays were performed to evaluate the impact of AVLE on DOX-induced cardiomyocyte mitochondrial activity and membrane permeability. Western blot assay was carried out to determine the activation of multiple signaling molecules, including phosphorylated-protein kinase B (p-AKT), Cytochrome c, Bcl-2 family, and caspase family in the apoptosis pathway. The AKT inhibitor was used to block AKT/Bcl-2 signaling pathway to investigate the role of AKT in the protection conferred by AVLE against DOX-induced cardiotoxicity. RESULTS A total of 8 compounds, including rutin, hyperoside, isoquercetin, unidentified compounds, myricetin, quercetin, quercetin-3-O-glucuronide and kaempferol, were detected in AVLE. Of note, DOX suppressed lactate dehydrogenase (LDH) levels, aggravated oxidative stress, and promoted cardiomyocyte apoptosis. It also upregulated the mRNA expression levels of voltage-dependent anion channel 1 (VDAC1), adenosine nucleotide transporter 1 (ANT1), and cyclophilin D (CYPD), while suppressing mitochondrial activity and mitochondrial membrane permeability. Treatment with DOX altered the expression levels of apoptosis-associated proteins, Bcl-2 and Bax. However, AVLE treatment alleviated DOX-induced effects on cardiomyocytes. In addition, application of AKT inhibitors promoted DOX-induced apoptosis and reversed the inhibitory effects of AVLE on DOX-induced apoptosis. CONCLUSIONS AVLE confer cardio protection by suppressing oxidative stress and apoptosis of cardiomyocytes via AKT/Bcl-2 signaling pathway.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Shan Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Jiu-Long Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Chen Chen
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Jia-Hua Ji
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Di Wu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China
| | - Li-Qun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, Jilin 130021, China.
| |
Collapse
|
32
|
Safarpour S, Pirzadeh M, Ebrahimpour A, Shirafkan F, Madani F, Hosseini M, Moghadamnia AA, Kazemi S. Protective Effect of Kaempferol and Its Nanoparticles on 5-Fluorouracil-Induced Cardiotoxicity in Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2273000. [PMID: 35198633 PMCID: PMC8858719 DOI: 10.1155/2022/2273000] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Fluorouracil (5-FU) is the third most common chemotherapeutic agent used in the treatment of solid tumors. 5-FU-associated cardiotoxicity ranks the second causes of cardiotoxicity induced by chemotherapeutic drugs after anthracyclines. Kaempferol (KPF), a common flavonoid, possessing anti-inflammatory, antiapoptotic, antioxidative properties, and its protective effects on cardiovascular disease has been reported in various studies. The current study is aimed at appraising the effect of KPF and KPF nanoparticles (NPs) on 5-FU-induced cardiotoxicity in rats. METHODS Thirty Male Wistar rats were divided into five groups as follows: control, 5-FU, 5-FU+10 mg/kg vitamin C, 5-FU+ 1 mg/kg KPF, and 5-FU+ 1 mg/kg KPF-NPs. Cardiotoxicity was induced with an intraperitoneal injection of a single dose of 5-FU (100 mg/kg). The control group received normal saline, and the treatment groups received KPF and KPF-NPs with an intraperitoneal injection for 14 days. Each heart histopathological lesions were given a score of 0 to 3 in compliance with the articles for statistical analysis. RESULTS 5-FU resulted in a significant cardiotoxicity represented by an increase in cardiac enzymes, MDA (malondialdehyde) levels, COX-2 (cyclooxygenase-2) expression, and histopathological degenerations. 5-FU treatment also decreased body weight, TAC (total antioxidant capacity) values, VEGF (vascular endothelial growth factor) expression, blood cells, and hemoglobin (Hb) levels. Treatment with KPF and KPF-NPs reduced oxidative stress, cardiac enzymes, COX-2 expression, and VEGF expression. The number of blood cells, Hb levels, and histopathological degenerations, in cardiac tissue also body weight of animals, increased, followed by treatment with KPF and KPF-NPs. CONCLUSION Our results demonstrated that treatment with KPF and KPF-NPs significantly improved cardiotoxicity induced by 5-FU in rats.
Collapse
Affiliation(s)
- Soheila Safarpour
- 1Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- 2Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Marzieh Pirzadeh
- 1Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Anahita Ebrahimpour
- 3Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Shirafkan
- 3Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fateme Madani
- 1Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Hosseini
- 4Department of Veterinary Pathology, Babol Branch, Islamic Azad University, Babol, Iran
| | - Ali Akbar Moghadamnia
- 3Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- 3Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
33
|
Abdelghffar EA, Obaid WA, Elgamal AM, Daoud R, Sobeh M, El Raey MA. Pea (Pisum sativum) peel extract attenuates DOX-induced oxidative myocardial injury. Biomed Pharmacother 2021; 143:112120. [PMID: 34649330 DOI: 10.1016/j.biopha.2021.112120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023] Open
Abstract
The goal of this work aimed to evaluate the protective effects of pea (Pisum sativum) peels extract versus doxorubicin-induced oxidative myocardial injury in male mice. The mice were divided into seven groups (n = 7): (I) control group; (II) P. sativum 250 group; (III) P. sativum 500 group; (IV) DOX (3 times alternately of 2.5 mg/kg/week, i.p. for a continuous two-week period) group; (V) Vit. E 100 + DOX group; (VI) P. sativum 250 + DOX group, and (VII) P. sativum 500 + DOX group). Twenty polyphenolic compounds, mainly flavonoid glycosides such as quercetin, kaempferol apigenin, and phenolics compounds were characterized by LC-MS/MS analysis in the examined extract. DOX administration elevated the activities of serum biomarkers of myocardial dysfunction (ALT, AST, ALP, LDH, troponin, CPK, and CK-MB), lipid profile, and proinflammatory cytokines. Also, it decreased cardiac antioxidants (GSH, SOD, GPX, CAT) and increased myocardial markers of oxidative stress (NO and MDA) and inflammatory marker (MPO). As well as it downregulated and upregulated the Bcl-2 (anti-apoptotic gene) and the Bax (pro-apoptotic gene) expressions, respectively. Pre-treatment of DOX-exposed mice with P. sativum or vitamin E (as a reference protective antioxidant) alleviated the changes dose-dependently via DOX-induced cardiotoxicity. These data show that P. sativum has a cardio-protective impact against DOX-induced cardiomyocyte damage in mice via boosting endogenous antioxidants, decreasing inflammation, and regulating BcL-2 and Bax apoptosis pathway, which might be related to the presence of flavonoid glycosides. P. sativum peels are a by-product that could be suggested for further screening as a possible new candidate for therapeutic use.
Collapse
Affiliation(s)
- Eman A Abdelghffar
- Biology Department, College of Science, Taibah University, Saudi Arabia; Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Wael A Obaid
- Biology Department, College of Science, Taibah University, Saudi Arabia
| | - Abdelbaset M Elgamal
- Department of Chemistry of Microbial and Natural Products, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Rachid Daoud
- African Genome Center, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Mansour Sobeh
- AgroBioSciences Program, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Mohamed A El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
34
|
Xu N, Lu Y, Yao X, Zhao R, Li Z, Li J, Zhang Y, Li B, Zhou Y, Shen H, Wang L, Chen K, Yang L, Lu S. NMCP-2 polysaccharide purified from Morchella conica effectively prevents doxorubicin-induced cardiotoxicity by decreasing cardiomyocyte apoptosis and myocardial oxidative stress. Food Sci Nutr 2021; 9:6262-6273. [PMID: 34760256 PMCID: PMC8565241 DOI: 10.1002/fsn3.2586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic used in the clinical treatment of cancer, but its use is limited due to its cardiotoxic effects. Therefore, it is necessary to explore natural compounds that are effective in protecting against the cardiotoxicity caused by DOX. Neutral Morchella conica polysaccharides-2 (NMCP-2) is a natural polysaccharide with antioxidant activity that was isolated and purified from Morchella conica in our laboratory's previous study. This study aimed to investigate the possible protective effect of NMCP-2 on DOX-induced cardiotoxicity and the potential underlying mechanisms. The model of DOX-induced H9C2 cells and the model of DOX-induced mice were used in this study. In in vitro studies of H9C2 myocardial cells, NMCP-2 effectively increased the activity of H9C2 cells, reducing the levels of lactate dehydrogenase (LDH). In the mouse model of DOX-induced chronic cardiotoxicity, NMCP-2 significantly reduced the cardiac index, reduced the release of serum cardiac enzymes, and improved the pathology of murine myocardial tissues, thereby alleviating DOX-induced cardiotoxicity. Further mechanism studies showed that pretreatment with NMCP-2 counteracted the oxidative stress induced by DOX, as indicated by increasing superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) activities, and malondialdehyde (MDA) production decreased. In addition, we observed NMCP-2 inhibited the activation of the mitochondrial apoptosis pathway and regulated the disordered expression of Bcl-2 and Bax in the myocardial tissues of DOX-treated mice. These findings indicated that NMCP-2, a natural bioactive compound, could potentially be used as a food supplement to reduce the cardiotoxicity caused by DOX.
Collapse
Affiliation(s)
- Na Xu
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Yi Lu
- Key Laboratory of Zoonosis ResearchMinistry of EducationInstitute of ZoonosisCollege of Veterinary MedicineJilin UniversityChangchunChina
| | - Xinmiao Yao
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Rui Zhao
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Zhebin Li
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Jialei Li
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Yinglei Zhang
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Bo Li
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Ye Zhou
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Huifang Shen
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Liqun Wang
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Kaixin Chen
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Li Yang
- Key Laboratory of Zoonosis ResearchMinistry of EducationInstitute of ZoonosisCollege of Veterinary MedicineJilin UniversityChangchunChina
| | - Shuwen Lu
- Institute of Food ProcessingHeilongjiang Academy of Agricultural SciencesHarbinChina
| |
Collapse
|
35
|
Li C, Gou X, Gao H. Doxorubicin nanomedicine based on ginsenoside Rg1 with alleviated cardiotoxicity and enhanced antitumor activity. NANOMEDICINE (LONDON, ENGLAND) 2021; 16:2587-2604. [PMID: 34719938 DOI: 10.2217/nnm-2021-0329] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The authors aimed to develop Dox@Rg1 nanoparticles with decreased cardiotoxicity to expand their application in cancer. Materials & methods: Dox@Rg1 nanoparticles were developed by encapsulating doxorubicin (Dox) in a self-assembled Rg1. The antitumor effect of the nanoparticles was estimated using 4T1 tumor-bearing mice and the protective effect on the heart was investigated in vitro and in vivo. Results: Different from Dox, the Dox@Rg1 nanoparticles induced increased cytotoxicity to tumor cells, which was decreased in cardiomyocytes by the inhibition of apoptosis. The study in vivo revealed that the Dox@Rg1 nanoparticles presented a perfect tumor-targeting ability and improved antitumor effects. Conclusion: Dox@Rg1 nanoparticles could enhance the antitumor effects and decrease the cardiotoxicity of Dox.
Collapse
Affiliation(s)
- Chaoqi Li
- Tianjin Key Laboratory of Drug Targeting & Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Xiangbo Gou
- Tianjin Key Laboratory of Drug Targeting & Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Hui Gao
- Tianjin Key Laboratory of Drug Targeting & Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin, China.,State Key Laboratory of Separation Membranes & Membrane Processes, School of Materials Science & Engineering, Tiangong University, Tianjin, 300384, China
| |
Collapse
|
36
|
Molecular Spectroscopic (FTIR and UV-Vis) and Hyphenated Chromatographic (UHPLC-qTOF-MS) Analysis and In Vitro Bioactivities of the Momordica balsamina Leaf Extract. Biochem Res Int 2021; 2021:2854217. [PMID: 34621548 PMCID: PMC8492264 DOI: 10.1155/2021/2854217] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/09/2021] [Indexed: 11/18/2022] Open
Abstract
Momordica balsamina (M. balsamina) is a medicinal herb comprising health-promoting secondary metabolites. This study was aimed to profile bioactive compounds in the methanolic extract of M. balsamina leaves using molecular spectroscopic (UV-Vis and FTIR) and hyphenated chromatographic (UHPLC-qTOF-MS) techniques and evaluate the biological (in vitro anti-inflammatory and cytotoxicity) activities of the extract. The preliminary phytochemical screening tests revealed the presence of cardiac glycosides, flavonoids, saponins, tannins, and terpenoids. The UV-Vis profile revealed various absorption bands ranging from 200 to 750 nm, indicating the presence of flavonoids, phenolic compounds, tannins, terpenoids, carotenoids, chlorophyll, and alkaloids. FTIR spectra confirmed the presence of alkaloids, flavonoids, terpenes, anthraquinones, and phenolic compounds. A high-resolution and accurate mass spectrometer (LC-QTOF-MS model LC-MS-9030 instrument) was used, and the results confirmed the presence of flavonoid aglycones, such as quercetin, isorhamnetin, and kaempferol, as well as pseudolaroside A and dicaffeoylquinic and feruloyl isocitric acids. To the best of our knowledge, this is the first report of pseudolaroside A dimer and feruloyl isocitric acid in M. balsamina leaves. In vitro cytotoxicity assay showed that the extract was nontoxic against human colorectal adenocarcinoma (HT29 and Caco2), Vero, and RAW 264.7 cells. However, the extract showed anti-inflammatory activity on RAW 264.7 cells. The study confirmed that M. balsamina leaves contain nontoxic secondary metabolites that may play a pivotal role in human health as anti-inflammatory agents.
Collapse
|
37
|
Meeran MFN, Azimullah S, Mamoudh HH, Sharma C, Kumar S, Goyal SN, Ojha S. Nerolidol, a Sesquiterpene from the Essential Oils of Aromatic Plants, Attenuates Doxorubicin-Induced Chronic Cardiotoxicity in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7334-7343. [PMID: 34170670 DOI: 10.1021/acs.jafc.0c05667] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The clinical usage of doxorubicin (DOX), a potent anthracycline antineoplastic drug, is limited due to its cardiotoxicity. The aim of this study was to assess the possible cardioprotective effects of nerolidol (NERO) in a rat model of DOX-induced chronic cardiotoxicity and the underlying molecular mechanisms. DOX (2.5 mg/kg) was injected intraperitoneally once in a week for 5 weeks to induce chronic cardiotoxicity in male albino Wistar rats. The rats were treated with NERO (50 mg/kg, orally) 6 days a week for a duration of 5 weeks. DOX-injected rats showed a significant decline in cardiac function, elevated levels of serum cardiac marker enzymes, and enhanced oxidative stress markers along with altered PI3K/Akt and Nrf2/Keap1/HO-1 signaling pathways. DOX also triggered the activation of NF-κB/MAPK signaling and increased the levels/expression of proinflammatory cytokines (TNF-α, IL-6, and IL-1β) and expression of inflammatory mediators (iNOS and COX-2) in the heart. DOX activated NLRP3 inflammasome-mediated pyroptotic cell death along with fibrosis, mitochondrial dysfunction, DNA damage, and apoptosis in the myocardium. Additionally, histological studies, TUNEL staining, and myocardial lesions revealed structural alterations of the myocardium. NERO treatment showed considerable protective effects on the biochemical and molecular parameters studied. The findings demonstrate that NERO protects against DOX-induced chronic cardiotoxicity and the observed cardioprotective effects are attributed to its potent antioxidant and free radical scavenging properties.
Collapse
Affiliation(s)
- M F Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box-17666, Al Ain 17666, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box-17666, Al Ain 17666, United Arab Emirates
| | - Hebaallah Hashiesh Mamoudh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box-17666, Al Ain 17666, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, PO Box-17666, Al Ain 17666, United Arab Emirates
| | - Sanjay Kumar
- Division of Hematology, Department of Nephrology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, Uttar Pradesh, India 201310
| | - Sameer N Goyal
- Shri Vile Parle Kelavani Mandal's, Institute of Pharmacy, Dhule, Maharashtra 424 001, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box-17666, Al Ain 17666, United Arab Emirates
| |
Collapse
|
38
|
Ikewuchi JC, Ikewuchi CC, Ifeanacho MO, Jaja VS, Okezue EC, Jamabo CN, Adeku KA. Attenuation of doxorubicin-induced cardiotoxicity in Wistar rats by aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114004. [PMID: 33727109 DOI: 10.1016/j.jep.2021.114004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/02/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chromolaena odorata (L) King and Robinson and Tridax procumbens Linn are used in traditional medicine in the treatment of diabetes mellitus and hypertension. AIM OF THE STUDY This study investigated the potential protective role of aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens against cardiotoxicity induced by doxorubicin. MATERIALS AND METHODS To this end, their impact on plasma markers of cardiac integrity, cardiac markers of oxidative stress, cardiac lipids and electrolyte profiles, and activities of cardiac ATPases, lactate dehydrogenase and creatine kinase, were monitored in doxorubicin treated rats. Metformin (250 mg/kg body weight, orally) and both extracts (50, 75 and 100 mg/kg, orally) were daily administered for 14 days; while cardiotoxicity was induced with doxorubicin (15 mg/kg, intra-peritioneally, once on the 12th day of study). RESULTS The plasma activities of creatine kinase, lactate dehydrogenase and AST of Test control were significantly (p < 0.05) higher than those of the other groups. Also, the cardiac malondialdehyde, calcium, chloride, sodium, cholesterol and triglyceride concentrations of Test control were significantly (p < 0.05) higher than those of the others. However, the cardiac concentrations of ascorbic acid, reduced glutathione, magnesium and potassium, and cardiac activities of catalase, glutathione peroxidase, superoxide dismutase, Ca2+-ATPase, Mg2+-ATPase, Na+,K+-ATPase, creatine kinase and lactate dehydrogenase of Test control were significantly (p < 0.05) lower than those of the others. CONCLUSIONS Pre-treatment with the extracts and metformin elicited a cardioprotective effect, as indicated by the prevention of doxorubicin-induced cardiac oxidative stress and prevention of adverse alterations in plasma cardiac markers, cardiac lipids and electrolyte profiles, as well as improvement of the activities of cardiac ATPases, creatine kinase and lactate dehydrogenase.
Collapse
Affiliation(s)
- Jude C Ikewuchi
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Catherine C Ikewuchi
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Mercy O Ifeanacho
- Department of Food Science, Faculty of Agriculture, University of Port Harcourt, Nigeria.
| | - Victoria S Jaja
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Esther C Okezue
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Caius N Jamabo
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| | - Kehinde A Adeku
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, P.M.B, 5323, Port Harcourt, Nigeria
| |
Collapse
|
39
|
Kuznetsova DA, Vasileva LA, Gaynanova GA, Pavlov RV, Sapunova AS, Voloshina AD, Sibgatullina GV, Samigullin DV, Petrov KA, Zakharova LY, Sinyashin OG. Comparative study of cationic liposomes modified with triphenylphosphonium and imidazolium surfactants for mitochondrial delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Renu K, Pureti LP, Vellingiri B, Valsala Gopalakrishnan A. Toxic effects and molecular mechanism of doxorubicin on different organs – an update. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1912099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Kaviyarasi Renu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Lakshmi Prasanna Pureti
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
41
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
42
|
Elblehi SS, El-Sayed YS, Soliman MM, Shukry M. Date Palm Pollen Extract Avert Doxorubicin-Induced Cardiomyopathy Fibrosis and Associated Oxidative/Nitrosative Stress, Inflammatory Cascade, and Apoptosis-Targeting Bax/Bcl-2 and Caspase-3 Signaling Pathways. Animals (Basel) 2021; 11:ani11030886. [PMID: 33804672 PMCID: PMC8003775 DOI: 10.3390/ani11030886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The use of date palm pollen ethanolic extract (DPPE) is a conventional approach in improving the side-effects induced by Doxorubicin (DOX).DPPE mitigated DOX-induced body and heart weight changes and ameliorated DOX-induced elevated cardiac injury markers. In addition, serum cardiac troponin I concentrations (cTnI), troponin T (cTnT), and N-terminal NBP and cytosolic (Ca+2) were amplified by alleviating the inflammatory and oxidative injury markers and decreasing histopathological lesions severity. DPPE decreased DOX-induced heart injuries by mitigating inflammation, fibrosis, and apoptosis through its antioxidant effect. To reduce DOX-induced oxidative stress injuries and other detrimental effects, a combined treatment of DPPE is advocated. Abstract Doxorubicin (DOX) has a potent antineoplastic efficacy and is considered a cornerstone of chemotherapy. However, it causes several dose-dependent cardiotoxic results, which has substantially restricted its clinical application. This study was intended to explore the potential ameliorative effect of date palm pollen ethanolic extract (DPPE) against DOX-induced cardiotoxicity and the mechanisms underlying it. Forty male Wistar albino rats were equally allocated into Control (CTR), DPPE (500 mg/kg bw for 4 weeks), DOX (2.5 mg/kg bw, intraperitoneally six times over 2 weeks), and DPPE + DOX-treated groups. Pre-coadministration of DPPE with DOX partially ameliorated DOX-induced cardiotoxicity as DPPE improved DOX-induced body and heart weight changes and mitigated the elevated cardiac injury markers activities of serum aminotransferases, lactate dehydrogenase, creatine kinase, and creatine kinase-cardiac type isoenzyme. Additionally, the concentration of serum cardiac troponin I (cTnI), troponin T (cTnT), N-terminal pro-brain natriuretic peptide (NT-pro BNP), and cytosolic calcium (Ca+2) were amplified. DPPE also alleviated nitrosative status (nitric oxide) in DOX-treated animals, lipid peroxidation and antioxidant molecules as glutathione content, and glutathione peroxidase, catalase, and superoxide dismutase activities and inflammatory markers levels; NF-κB p65, TNF-α, IL-1β, and IL-6. As well, it ameliorated the severity of histopathological lesions, histomorphometric alteration and improved the immune-staining of the pro-fibrotic (TGF-β1), pro-apoptotic (caspase-3 and Bax), and anti-apoptotic (Bcl-2) proteins in cardiac tissues. Collectively, pre-coadministration of DPPE partially mitigated DOX-induced cardiac injuries via its antioxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic potential.
Collapse
Affiliation(s)
- Samar S. Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Edfina 22758, Egypt
- Correspondence: (S.S.E.); (M.S.)
| | - Yasser S. El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence: (S.S.E.); (M.S.)
| |
Collapse
|
43
|
Barreto M, Carvalho J, Michel A, Corrêa N, Silva F, Gomes D, Goes A, Melo M. Extract from Arrabidaea chica (Fridericia chica) leaves show preventive action for the mitigation of doxorubicin-induced cardiotoxicity. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | - F.C. Silva
- Universidade do Estado de Minas Gerais, Brazil
| | - D.A. Gomes
- Universidade Federal de Minas Gerais, Brazil
| | - A.M. Goes
- Universidade Federal de Minas Gerais, Brazil
| | - M.M. Melo
- Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
44
|
Hur S, Jang E, Lee JH. Beneficial Actions of Orostachys japonica and Its Compounds against Tumors via MAPK Signaling Pathways. Nutrients 2021; 13:nu13020555. [PMID: 33567572 PMCID: PMC7915109 DOI: 10.3390/nu13020555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/30/2022] Open
Abstract
Tumors are one of the most life-threatening diseases, and a variety of cancer treatment options have been continuously introduced in order to overcome cancer and improve conventional therapy. Orostachys japonica (O. japonica), which is a perennial plant belonging to the genus Orostachys of the Crassulaceae family, has been revealed to exhibit pharmacological properties against various tumors in numerous studies. The present review aimed to discuss the biological actions and underlying molecular mechanisms of O. japonica and its representative compounds-kaempferol and quercetin-against tumors. O. japonica reportedly has antiproliferative, anti-angiogenic, and antimetastatic activities against various types of malignant tumors through the induction of apoptosis and cell cycle arrest, a blockade of downstream vascular endothelial growth factor (VEGF)-VEGFR2 pathways, and the regulation of epithelial-to-mesenchymal transition. In addition, emerging studies have highlighted the antitumor efficacy of kaempferol and quercetin. Interestingly, it was found that alterations of the mitogen-activated protein kinase (MAPK) signaling cascades are involved in the pivotal mechanisms of the antitumor effects of O. japonica and its two compounds against cancer cell overgrowth, angiogenesis, and metastasis. In summary, O. japonica could be considered a preventive and therapeutic medicinal plant which exhibits antitumor actions by reversing altered patterns of MAPK cascades, and kaempferol and quercetin might be potential components that can contribute to the efficacy and underlying mechanism of O. japonica.
Collapse
Affiliation(s)
- Soyoung Hur
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Eungyeong Jang
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Internal Medicine, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Korea
| | - Jang-Hoon Lee
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: ; Tel.: +82-2-958-9118; Fax: +82-2-958-9258
| |
Collapse
|
45
|
Bakhshii S, Khezri S, Ahangari R, Jahedsani A, Salimi A. Protection of clozapine-induced oxidative stress and mitochondrial dysfunction by kaempferol in rat cardiomyocytes. Drug Dev Res 2021; 82:835-843. [PMID: 33442898 DOI: 10.1002/ddr.21790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/26/2020] [Accepted: 01/02/2021] [Indexed: 12/23/2022]
Abstract
Clozapine (CLZ) is unusually efficient in psychotic diseases. Nonetheless, its use is confined due to potentially life-threatening adverse events, including cardiotoxicity. Since the cardiotoxicity of CLZ is mediated through the generation of active metabolites, free radical, and inflammation. Here, we tested this hypothesis that kaempferol (KP) as antioxidant and anti-inflammatory agent could attenuate CLZ-induced mitochondrial/lysosomal and oxidative damages in rat ventricular cardiomyocytes. Rat ventricular cardiomyocytes were isolated by collagenase perfusion. Then isolated cardiomyocytes were simultaneously treated with different concentrations of KP (10, 20, and 50 μM) and CLZ (50 μM) for 4 h at 37°C. After 4 h of incubation, using by flow cytometry and biochemical evaluations, the parameters of cellular toxicity including: cell viability, reactive oxygen species (ROS) formation, mitochondria membrane potential (ΔΨm) collapse, lysosomal membrane integrity, malondialdehyde, and oxidized/reduced glutathione were analyzed. The results showed that CLZ (50 μM) induced a significant increase in cytotoxicity, ROS formation, mitochondrial membrane potential collapse, lipid peroxidation, and oxidative stress while KP reverted the above toxic effect of CLZ on isolated cardiomyocytes. Our data suggest that KP prevents and reverses CLZ-induced oxidative and mitochondrial/lysosomal damages in isolated cardiomyocytes, providing an experimental basis for clinical treatment on CLZ-induced cardiotoxicity.
Collapse
Affiliation(s)
- Saba Bakhshii
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Roya Ahangari
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Asal Jahedsani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
46
|
Combined Delivery of DOX and Kaempferol using PEGylated Gold Nanoparticles to Target Colon Cancer. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01961-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Samra YA, Amin MN, Said E. Cardio-protective impact of gabapentin against doxorubicin-induced myocardial toxicity in rats; emphasis on modulation of inflammatory-apoptotic signaling. Int Immunopharmacol 2021; 90:107125. [PMID: 33199237 DOI: 10.1016/j.intimp.2020.107125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Cardiotoxicity is one of the most commonly encountered adverse effects observed alongside the therapeutic use of doxorubicin (DOX), thus curbing its therapeutic utility. METHODS The current study was conducted to evaluate the cardioprotective effect of gabapentin (Gaba), a Ca + 2 channel blocker with emerging pharmacological merits, against DOX-induced cardiotoxicity. Gaba was orally administered at two dose levels (10 and 30 mg/kg) for 21 days parallel to DOX injection. RESULTS DOX induced significant functional, biochemical, and histopathological injury to the myocardium. Gaba treatment revealed a cardioprotective effect as manifested in the significant restoration of electrocardiogram parameters, including the heart rate, ST segment elevation, QRS and T wave amplitudes, and QT and PR intervals. The biomarkers of myocardial injury, namely serum creatine kinase, aspartate aminotransferase, and lactate dehydrogenase activities, significantly declined as well as the concomitant improvement of the myocardial oxidative status. Mechanistically, Gaba treatment significantly reduced the myocardial contents of c-Jun N-terminal kinase (JNK), the major modulator of inflammatory/apoptotic signaling. However, the myocardial contents of the apoptotic biomarkers caspase-8 and TRAIL also significantly declined. In isolated cardiomyocytes, Gaba treatment maintained the morphological characteristics of the cardiomyocytes and preserved their spontaneous beating characteristics. Nevertheless, the protein expression of caspase-8, JNK 1/2, and CD95L significantly declined with Gaba treatment. CONCLUSION Gaba confers cardioprotective effects against DOX-induced myocardial injury and cardiotoxicity by modulating the inflammatory/apoptotic signaling pathway.
Collapse
Affiliation(s)
- Yara A Samra
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura University, 35516 Mansoura, Egypt
| | - Mohamed N Amin
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura University, 35516 Mansoura, Egypt
| | - Eman Said
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
48
|
Navarro-Hortal MD, Varela-López A, Romero-Márquez JM, Rivas-García L, Speranza L, Battino M, Quiles JL. Role of flavonoids against adriamycin toxicity. Food Chem Toxicol 2020; 146:111820. [PMID: 33080329 DOI: 10.1016/j.fct.2020.111820] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Doxorubicin (DOX), or adriamycin, is an anthracycline antineoplastic drug widely used in the chemotherapy of a large variety of cancers due to its potency and action spectrum. However, its use is limited by the toxicity on healthy cells and its acute and chronic side effects. One of the developed strategies to attenuate DOX toxicity is the combined therapy with bioactive compounds such as flavonoids. This review embraces the role of flavonoids on DOX treatment side effects. Protective properties of some flavonoidss against DOX toxicity have been investigated and observed mainly in heart but also in liver, kidney, brain, testis or bone marrow. Protective mechanisms involve reduction of oxidative stress by decrease of ROS levels and/or increase antioxidant defenses and interferences with autophagy, apoptosis and inflammation. Studies in cancer cells have reported that the anticancer activity of DOX was not compromised by the flavonoids. Moreover, some of them increased DOX efficiency as anti-cancer drug even in multidrug resistant cells.
Collapse
Affiliation(s)
- María D Navarro-Hortal
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain.
| | - Alfonso Varela-López
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain.
| | - José M Romero-Márquez
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain.
| | - Lorenzo Rivas-García
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain; Sport and Health Research Centre, University of Granada, C/. Menéndez Pelayo 32, 18016, Armilla, Granada, Spain.
| | - Lorenza Speranza
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti-Pescara, Via dei Vestini 31, 66100, CH, Italy.
| | - Maurizio Battino
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - José L Quiles
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, University of Granada, Avda. del Conocimiento s/n, 18100, Armilla, Granada, Spain.
| |
Collapse
|
49
|
Liu C, Ma X, Zhuang J, Liu L, Sun C. Cardiotoxicity of doxorubicin-based cancer treatment: What is the protective cognition that phytochemicals provide us? Pharmacol Res 2020; 160:105062. [DOI: 10.1016/j.phrs.2020.105062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
|
50
|
Sun J, Chen L, Jiang P, Duan B, Wang R, Xu J, Liu W, Xu Y, Xie Z, Feng F, Qu W. Phenylethanoid glycosides of Callicarpa kwangtungensis Chun exert cardioprotective effect by weakening Na +-K +-ATPase/Src/ERK1/2 pathway and inhibiting apoptosis mediated by oxidative stress and inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112881. [PMID: 32311484 DOI: 10.1016/j.jep.2020.112881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/05/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Callicarpa kwangtungensis Chun (C. kwangtungensis) is a very famous herbal medicine with the function of promoting blood circulation and removing blood stasis which is beneficial for cardiovascular disease (CVD). Phenylethanoid glycosides (PGs) are the major class of active ingredients in C. kwangtungensis and present significant anti-oxidative and anti-inflammatory property related to apoptosis. Therefore, this study aimed to investigate the effects of total phenylethanoid glycosides of C. kwangtungensis (CK-PGs) on isoproterenol (ISO) induced myocardial ischemic injury (MI) and the mechanisms related to the apoptosis mediated by oxidative damage and inflammation. METHODS The myocardial ischemia animal model was established as subcutaneous injecting ISO. Echocardiography and biomarkers were employed to determine the degree of myocardial damage. Histopathological changes were observed by hematoxylin and eosin test. The TUNEL staining and activity of caspase-3 were measured to detect the level of apoptosis which is medicated by the oxidative damage detected by the level of MDA, GSH and ROS tested with the kit and the inflammation reflected by TNF-α. The activity of Na+-K+-ATPase (NKA) was detected by the commercial kits, whose expression was measured by immunohistochemistry analysis. At last, Western blot analysis was used to measure Na+-K+-ATPase/Src/ERK1/2 and Bax/Bcl-2 pathway. RESULTS CK-PGs showed cardioprotective effect against ISO-induced myocardial ischemic injury evidenced by improving heart function and lowering myocardial injury markers. CK-PGs could inhibit the level of apoptosis as shown by the decrease of the TUNEL-positive cells, the activity of caspase-3 and increase of the expression of Bax. CK-PGs also reduced oxidative stress and inflammation to suppress apoptosis by decreasing the level of ROS, MDA, and increasing GSH activity and lowering the level of TNF-α. In addition, CK-PGs exerted the protection by increasing the activity and the expression of NKA. Meanwhile, Na+-K+-ATPase/Src/ERK1/2pathway was weakened for the inhibition of apoptosis. CONCLUSIONS CK-PGs could protect cardiomyocytes from myocardial injury through suppressing Na+-K+-ATPase/Src/ERK1/2 pathway and inhibiting apoptosis mediated by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jing Sun
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Lei Chen
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Pan Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China; Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, People's Republic of China
| | - Bingjing Duan
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ruyi Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jian Xu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yunhui Xu
- Marshall Institute for Interdisciplinary Research, Marshall University, West Virginia, USA
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, West Virginia, USA
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China; Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, People's Republic of China.
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|