1
|
Liu Y, Feng R, Chen J, Yan H, Liu X. Optimizing post-transplantation outcomes: the role of multi-omics, artificial intelligence, and animal models in addressing immunosuppression-associated hepatotoxicity. Int J Surg 2024; 110:5207-5209. [PMID: 39143711 PMCID: PMC11325984 DOI: 10.1097/js9.0000000000001521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Yongguang Liu
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University
| | - Runtao Feng
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University
| | - Jianrong Chen
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University
| | - Hongyan Yan
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University
| | - Xiaoyou Liu
- Department of Organ Transplantation, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Andújar-Vera F, Alés-Palmer ML, Muñoz-de-Rueda P, Iglesias-Baena I, Ocete-Hita E. Metabolomic Analysis of Pediatric Patients with Idiosyncratic Drug-Induced Liver Injury According to the Updated RUCAM. Int J Mol Sci 2023; 24:13562. [PMID: 37686369 PMCID: PMC10487599 DOI: 10.3390/ijms241713562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Hepatotoxicity, a common adverse drug effect, has been extensively studied in adult patients. However, it is equally important to investigate this condition in pediatric patients to develop personalized treatment strategies for children. This study aimed to identify plasma biomarkers that characterize hepatotoxicity in pediatric patients through an observational case-control study. Metabolomic analysis was conducted on 55 pediatric patients with xenobiotic liver toxicity and 88 healthy controls. The results revealed clear differences between the two groups. Several metabolites, including hydroxydecanoylcarnitine, octanoylcarnitine, lysophosphatidylcholine, glycocholic acid, and taurocholic acid, were identified as potential biomarkers (area under the curve: 0.817; 95% confidence interval: 0.696-0.913). Pathway analysis indicated involvement of primary bile acid biosynthesis and the metabolism of taurine and hypotaurine (p < 0.05). The findings from untargeted metabolomic analysis demonstrated an increase in bile acids in children with hepatotoxicity. The accumulation of cytotoxic bile acids should be further investigated to elucidate the role of these metabolites in drug-induced liver injury.
Collapse
Affiliation(s)
| | - María Luisa Alés-Palmer
- Department of Pediatrics, University of Granada, 18016 Granada, Spain;
- Department of Pediatrics, “Virgen de las Nieves” University Hospital, 18014 Granada, Spain
| | - Paloma Muñoz-de-Rueda
- Research Support Unit, Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain;
| | | | - Esther Ocete-Hita
- Department of Pediatrics, University of Granada, 18016 Granada, Spain;
- Department of Pediatrics, “Virgen de las Nieves” University Hospital, 18014 Granada, Spain
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
3
|
Kolenc Ž, Pirih N, Gretic P, Kunej T. Top Trends in Multiomics Research: Evaluation of 52 Published Studies and New Ways of Thinking Terminology and Visual Displays. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:681-692. [PMID: 34678084 DOI: 10.1089/omi.2021.0160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multiomics study designs have significantly increased understanding of complex biological systems. The multiomics literature is rapidly expanding and so is their heterogeneity. However, the intricacy and fragmentation of omics data are impeding further research. To examine current trends in multiomics field, we reviewed 52 articles from PubMed and Web of Science, which used an integrated omics approach, published between March 2006 and January 2021. From studies, data regarding investigated loci, species, omics type, and phenotype were extracted, curated, and streamlined according to standardized terminology, and summarized in a previously developed graphical summary. Evaluated studies included 21 omics types or applications of omics technology such as genomics, transcriptomics, metabolomics, epigenomics, environmental omics, and pharmacogenomics, species of various phyla including human, mouse, Arabidopsis thaliana, Saccharomyces cerevisiae, and various phenotypes, including cancer and COVID-19. In the analyzed studies, diverse methods, protocols, results, and terminology were used and accordingly, assessment of the studies was challenging. Adoption of standardized multiomics data presentation in the future will further buttress standardization of terminology and reporting of results in systems science. This shall catalyze, we suggest, innovation in both science communication and laboratory medicine by making available scientific knowledge that is easier to grasp, share, and harness toward medical breakthroughs.
Collapse
Affiliation(s)
- Živa Kolenc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Pirih
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Gretic
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Safety assessment of cosmetics by read across applied to metabolomics data of in vitro skin and liver models. Arch Toxicol 2021; 95:3303-3322. [PMID: 34459931 DOI: 10.1007/s00204-021-03136-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
As a result of the cosmetics testing ban, safety evaluations of cosmetics ingredients must now be conducted using animal-free methods. A common approach is read across, which is mainly based on structural similarities but can also be conducted using biological endpoints. Here, metabolomics was used to assess biological effects to enable a read across between a candidate cosmetic ingredient, DIV665, only studied using in vitro assays, and a structurally similar reference compound, PA102, previously investigated using traditional in vivo toxicity methods. The (1) cutaneous distribution after topical application, (2) skin metabolism, (3) liver metabolism and (4) effect on the intracellular metabolomic profiles of in vitro skin and hepatic models, SkinEthic®RHE model and HepaRG® cells were investigated. The compounds exhibited similar skin penetration and skin and liver metabolism, with small differences attributed to their physicochemical properties. The effects of both compounds on the metabolome of RHE and HepaRG® cells were similarly small, both in terms of the metabolites modulated and the magnitude of changes. The patterns of metabolome changes did not fit with any known signature relating to a mode of action known to be linked to liver toxicity e.g. modification of the Krebs cycle, urea synthesis and lipid metabolism, were more reflective of transient adaptive responses. Overall, these studies indicate that PA102 is biologically similar to DIV665, allowing read across of safety endpoints, such as in vivo sub-chronic (but not reproduction toxicity) studies, for the former to be applied to DIV665. Based on this, in the absence of animal data (which is prohibited for new chemicals), it could be concluded that DIV665 applied according to the consumer topical use scenario, is similar to PA102, and is predicted to exhibit low local skin and systemic toxicity.
Collapse
|
5
|
Vega-Tapia F, Bustamante M, Valenzuela RA, Urzua CA, Cuitino L. miRNA Landscape in Pathogenesis and Treatment of Vogt-Koyanagi-Harada Disease. Front Cell Dev Biol 2021; 9:658514. [PMID: 34041239 PMCID: PMC8141569 DOI: 10.3389/fcell.2021.658514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
miRNAs, one of the members of the noncoding RNA family, are regulators of gene expression in inflammatory and autoimmune diseases. Changes in miRNA pool expression have been associated with differentiation of CD4+ T cells toward an inflammatory phenotype and with loss of self-tolerance in autoimmune diseases. Vogt–Koyanagi–Harada (VKH) disease is a chronic multisystemic pathology, affecting the uvea, inner ear, central nervous system, and skin. Several lines of evidence support an autoimmune etiology for VKH, with loss of tolerance against retinal pigmented epithelium-related self-antigens. This deleterious reaction is characterized by exacerbated inflammation, due to an aberrant TH1 and TH17 polarization and secretion of their proinflammatory hallmark cytokines interleukin 6 (IL-6), IL-17, interferon γ, and tumor necrosis factor α, and an impaired CD4+ CD25high FoxP3+ regulatory T cell function. To restrain inflammation, VKH is pharmacologically treated with corticosteroids and immunosuppressive drugs as first and second line of therapy, respectively. Changes in the expression of miRNAs related to immunoregulatory pathways have been associated with VKH development, whereas some genetic variants of miRNAs have been found to be risk modifiers of VKH. Furthermore, the drugs commonly used in VKH treatment have great influence on miRNA expression, including those miRNAs associated to VKH disease. This relationship between response to therapy and miRNA regulation suggests that these small noncoding molecules might be therapeutic targets for the development of more effective and specific pharmacological therapy for VKH. In this review, we discuss the latest evidence regarding regulation and alteration of miRNA associated with VKH disease and its treatment.
Collapse
Affiliation(s)
- Fabian Vega-Tapia
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mario Bustamante
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Núcleo de Ciencias Biológicas, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Rodrigo A Valenzuela
- Department de Health Science, Universidad de Aysén, Coyhaique, Chile.,Department of Chemical and Biological Sciences, Faculty of Health, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Cristhian A Urzua
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Ophthalmology, University of Chile, Santiago, Chile.,Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Loreto Cuitino
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Servicio de Oftalmología, Hospital Clínico Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Radko L, Śniegocki T, Sell B, Posyniak A. Metabolomic Profile of Primary Turkey and Rat Hepatocytes and Two Cell Lines after Chloramphenicol Exposure. Animals (Basel) 2019; 10:E30. [PMID: 31877810 PMCID: PMC7022860 DOI: 10.3390/ani10010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study was to assess the formation of chloramphenicol metabolites in primary turkey and rat hepatocyte cultures and human hepatoma (HepG2) cells and nonhepatic, Balb/c 3T3 fibroblasts. Additionally, the cytotoxicity of the drug was assessed through three biochemical endpoints: mitochondrial and lysosomal activity and cellular membrane integrity after 24 and 48 h exposure. The two metabolites of the drug, chloramphenicol glucuronide and nitroso-chloramphenicol, were detected to the greatest extent in both primary hepatocyte cultures by liquid chromatography-tandem mass spectrometry. Toxic nitroso-chloramphenicol was the main metabolite in the primary turkey hepatocyte cultures, but it was not in the primary rat hepatocyte cultures. The most affected endpoint in turkey and rat hepatocyte cultures was the disintegration of the cellular membrane, but in the cell lines, mitochondrial and lysosomal activities underwent the greatest change. The primary hepatocyte cultures represent valuable tools with which to study the species differences in the biotransformation and toxicity of drugs. To the best of our knowledge, this is the first report of differences in chloramphenicol metabolism in primary turkey and rat hepatocyte cultures.
Collapse
Affiliation(s)
- Lidia Radko
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (T.Ś.); (B.S.); (A.P.)
| | | | | | | |
Collapse
|
7
|
van der Sluis RJ, Depuydt MAC, Verwilligen RAF, Hoekstra M, Van Eck M. Elimination of adrenocortical apolipoprotein E production does not impact glucocorticoid output in wild-type mice. Mol Cell Endocrinol 2019; 490:21-27. [PMID: 30953750 DOI: 10.1016/j.mce.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/07/2019] [Accepted: 04/02/2019] [Indexed: 12/26/2022]
Abstract
Apolipoprotein E (APOE) deficient mice exhibit unexplained hypercorticosteronemia. Given that APOE is also produced locally within the adrenals, we evaluated the effect of adrenal-specific APOE deficiency on the glucocorticoid function. Hereto, one adrenal containing or lacking APOE was transplanted into adrenalectomized wild-type mice. Adrenal APOE deficiency did not impact adrenal total cholesterol levels. Importantly, the ability of the two adrenal types to produce glucocorticoids was also not different as judged from the similar plasma corticosterone levels. Adrenal mRNA expression levels of HMG-CoA reductase and the LDL receptor were decreased by respectively 72% (p < 0.01) and 65% (p = 0.07), suggesting that cholesterol acquisition pathways were inhibited to possibly compensate the lack of APOE. In support, a parallel increase in the expression level of the cholesterol accumulation-associated ER stress marker CHOP was detected (+117%; p < 0.05). In conclusion, our studies show that elimination of adrenocortical APOE production does not impact glucocorticoid output in wild-type mice.
Collapse
Affiliation(s)
- Ronald J van der Sluis
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands.
| | - Marie A C Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands
| | - Robin A F Verwilligen
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, 2333CC, Leiden, the Netherlands
| |
Collapse
|
8
|
Park SM, Kang SJ, Choi MS, Kim S, Yoon S, Oh JH. Comparative omics analyses of hepatotoxicity induced by oral azole drugs in mice liver and primary hepatocytes. Toxicol Mech Methods 2019; 29:531-541. [PMID: 31099283 DOI: 10.1080/15376516.2019.1619214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ketoconazole (KTZ) and itraconazole (ITZ) are antifungal agents that have a broad spectrum of activity against fungal pathogens. However, the therapeutic indications of many antifungal drugs, including those of the azole group, are restricted due to possible hepatotoxicity. We performed toxicogenomic analyses using in vivo and in vitro models to investigate the molecular mechanisms underlying the hepatotoxicity of two azole antifungal drugs. C57BL/6 male mice were treated daily with KTZ or ITZ, sacrificed at days 1 or 7, and the serum biochemistry and histopathology results showed that the KTZ-treated mice exhibited hepatotoxicity. Primary hepatocytes from C57BL/6 mice also exposed to KTZ or ITZ, and the cytotoxic effects of KTZ and ITZ were evaluated; KTZ exerted a greater cytotoxic effect than ITZ. The gene expression profiles in the livers of the 7-day-treated group and primary hepatocytes of the 24-h-treated group for both KTZ and ITZ were comparatively analyzed. Differentially expressed genes were selected based on the fold-changes and statistical significance, and the biological functions were analyzed using ingenuity pathways analysis. The results revealed that genes related to cholesterol synthesis were overexpressed in the liver in the KTZ-treated group, whereas expression of those related to acute phase injury was significantly altered in the ITZ-treated group. Causal gene analyses suggested that sterol regulatory element-binding transcription factors are key regulators that activate the transcription of target genes associated with the hepatotoxicity induced by oral KTZ. These findings enhance our understanding of the molecular mechanisms underlying the hepatotoxicity of azole drugs.
Collapse
Affiliation(s)
- Se-Myo Park
- a Department of Predictive Toxicology , Korea Institute of Toxicology (KIT) , Daejeon , Republic of Korea
| | - Seung-Jun Kang
- b New Drug Discovery Laboratory , Hyundai Pharmaceutical Co. Ltd , Yongin , Republic of Korea
| | - Mi-Sun Choi
- a Department of Predictive Toxicology , Korea Institute of Toxicology (KIT) , Daejeon , Republic of Korea
| | - Soojin Kim
- a Department of Predictive Toxicology , Korea Institute of Toxicology (KIT) , Daejeon , Republic of Korea
| | - Seokjoo Yoon
- a Department of Predictive Toxicology , Korea Institute of Toxicology (KIT) , Daejeon , Republic of Korea.,c Department of Human and Environmental Toxicology , University of Science and Technology , Daejeon , Republic of Korea
| | - Jung-Hwa Oh
- a Department of Predictive Toxicology , Korea Institute of Toxicology (KIT) , Daejeon , Republic of Korea
| |
Collapse
|
9
|
Burban A, Sharanek A, Guguen-Guillouzo C, Guillouzo A. Endoplasmic reticulum stress precedes oxidative stress in antibiotic-induced cholestasis and cytotoxicity in human hepatocytes. Free Radic Biol Med 2018; 115:166-178. [PMID: 29191461 DOI: 10.1016/j.freeradbiomed.2017.11.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/11/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) stress has been associated with various drug-induced liver lesions but its participation in drug-induced cholestasis remains unclear. We first aimed at analyzing liver damage caused by various hepatotoxic antibiotics, including three penicillinase-resistant antibiotics (PRAs), i.e. flucloxacillin, cloxacillin and nafcillin, as well as trovafloxacin, levofloxacin and erythromycin, using human differentiated HepaRG cells and primary hepatocytes. All these antibiotics caused early cholestatic effects typified by bile canaliculi dilatation and reduced bile acid efflux within 2h and dose-dependent enhanced caspase-3 activity within 24h. PRAs induced the highest cholestatic effects at non cytotoxic concentrations. Then, molecular events involved in these lesions were analyzed. Early accumulation of misfolded proteins revealed by thioflavin-T fluorescence and associated with phosphorylation of the unfolded protein response sensors, eIF2α and/or IRE1α, was evidenced with all tested hepatotoxic antibiotics. Inhibition of ER stress markedly restored bile acid efflux and prevented bile canaliculi dilatation. Downstream of ER stress, ROS were also generated with high antibiotic concentrations. The protective HSP27-PI3K-AKT signaling pathway was activated only in PRA-treated cells and its inhibition increased ROS production and aggravated caspase-3 activity. Overall, our results demonstrate that (i) various antibiotics reported to cause cholestasis and hepatocellular injury in the clinic can also induce such effects in in vitro human hepatocytes; (ii) PRAs cause the strongest cholestatic effects in the absence of cytotoxicity; (iii) cholestatic features occur early through ER stress; (iv) cytotoxic lesions are observed later through ER stress-mediated ROS generation; and (v) activation of the HSP27-PI3K-AKT pathway protects from cytotoxic damage induced by PRAs only.
Collapse
Affiliation(s)
- Audrey Burban
- INSERM U991/1241, Numecan, Rennes, France; Rennes 1 University, Rennes, France
| | - Ahmad Sharanek
- INSERM U991/1241, Numecan, Rennes, France; Rennes 1 University, Rennes, France
| | | | - André Guillouzo
- INSERM U991/1241, Numecan, Rennes, France; Rennes 1 University, Rennes, France.
| |
Collapse
|
10
|
Kawamoto T, Ito Y, Morita O, Honda H. Mechanism-based risk assessment strategy for drug-induced cholestasis using the transcriptional benchmark dose derived by toxicogenomics. J Toxicol Sci 2017; 42:427-436. [PMID: 28717101 DOI: 10.2131/jts.42.427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cholestasis is one of the major causes of drug-induced liver injury (DILI), which can result in withdrawal of approved drugs from the market. Early identification of cholestatic drugs is difficult due to the complex mechanisms involved. In order to develop a strategy for mechanism-based risk assessment of cholestatic drugs, we analyzed gene expression data obtained from the livers of rats that had been orally administered with 12 known cholestatic compounds repeatedly for 28 days at three dose levels. Qualitative analyses were performed using two statistical approaches (hierarchical clustering and principle component analysis), in addition to pathway analysis. The transcriptional benchmark dose (tBMD) and tBMD 95% lower limit (tBMDL) were used for quantitative analyses, which revealed three compound sub-groups that produced different types of differential gene expression; these groups of genes were mainly involved in inflammation, cholesterol biosynthesis, and oxidative stress. Furthermore, the tBMDL values for each test compound were in good agreement with the relevant no observed adverse effect level. These results indicate that our novel strategy for drug safety evaluation using mechanism-based classification and tBMDL would facilitate the application of toxicogenomics for risk assessment of cholestatic DILI.
Collapse
Affiliation(s)
| | - Yuichi Ito
- Safety Science Research, Kao Corporation
| | | | | |
Collapse
|
11
|
Van den Hof WF, Coonen ML, van Herwijnen M, Brauers K, Jennen D, Olde Damink SW, Schaap FG, Kleinjans JC. Validation of gene expression profiles from cholestatic hepatotoxicants in vitro against human in vivo cholestasis. Toxicol In Vitro 2017; 44:322-329. [DOI: 10.1016/j.tiv.2017.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 06/22/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022]
|
12
|
Prediction of liver toxicity and mode of action using metabolomics in vitro in HepG2 cells. Arch Toxicol 2017; 92:893-906. [PMID: 28965233 PMCID: PMC5818600 DOI: 10.1007/s00204-017-2079-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022]
Abstract
Liver toxicity is a leading systemic toxicity of drugs and chemicals demanding more human-relevant, high throughput, cost effective in vitro solutions. In addition to contributing to animal welfare, in vitro techniques facilitate exploring and understanding the molecular mechanisms underlying toxicity. New ‘omics technologies can provide comprehensive information on the toxicological mode of action of compounds, as well as quantitative information about the multi-parametric metabolic response of cellular systems in normal and patho-physiological conditions. Here, we combined mass-spectroscopy metabolomics with an in vitro liver toxicity model. Metabolite profiles of HepG2 cells treated with 35 test substances resulted in 1114 cell supernatants and 3556 intracellular samples analyzed by metabolomics. Control samples showed relative standard deviations of about 10–15%, while the technical replicates were at 5–10%. Importantly, this procedure revealed concentration–response effects and patterns of metabolome changes that are consistent for different liver toxicity mechanisms (liver enzyme induction/inhibition, liver toxicity and peroxisome proliferation). Our findings provide evidence that identifying organ toxicity can be achieved in a robust, reliable, human-relevant system, representing a non-animal alternative for systemic toxicology.
Collapse
|
13
|
Bloomingdale P, Housand C, Apgar JF, Millard BL, Mager DE, Burke JM, Shah DK. Quantitative systems toxicology. CURRENT OPINION IN TOXICOLOGY 2017; 4:79-87. [PMID: 29308440 PMCID: PMC5754001 DOI: 10.1016/j.cotox.2017.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The overarching goal of modern drug development is to optimize therapeutic benefits while minimizing adverse effects. However, inadequate efficacy and safety concerns remain to be the major causes of drug attrition in clinical development. For the past 80 years, toxicity testing has consisted of evaluating the adverse effects of drugs in animals to predict human health risks. The U.S. Environmental Protection Agency recognized the need to develop innovative toxicity testing strategies and asked the National Research Council to develop a long-range vision and strategy for toxicity testing in the 21st century. The vision aims to reduce the use of animals and drug development costs through the integration of computational modeling and in vitro experimental methods that evaluates the perturbation of toxicity-related pathways. Towards this vision, collaborative quantitative systems pharmacology and toxicology modeling endeavors (QSP/QST) have been initiated amongst numerous organizations worldwide. In this article, we discuss how quantitative structure-activity relationship (QSAR), network-based, and pharmacokinetic/pharmacodynamic modeling approaches can be integrated into the framework of QST models. Additionally, we review the application of QST models to predict cardiotoxicity and hepatotoxicity of drugs throughout their development. Cell and organ specific QST models are likely to become an essential component of modern toxicity testing, and provides a solid foundation towards determining individualized therapeutic windows to improve patient safety.
Collapse
Affiliation(s)
- Peter Bloomingdale
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Conrad Housand
- Applied BioMath, LLC, 55 Old Bedford Road, Suite 208, Lincoln, MA 01773, USA
| | - Joshua F Apgar
- Applied BioMath, LLC, 55 Old Bedford Road, Suite 208, Lincoln, MA 01773, USA
| | - Bjorn L Millard
- Applied BioMath, LLC, 55 Old Bedford Road, Suite 208, Lincoln, MA 01773, USA
| | - Donald E Mager
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - John M Burke
- Applied BioMath, LLC, 55 Old Bedford Road, Suite 208, Lincoln, MA 01773, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
14
|
Wu FL, Liu WY, Van Poucke S, Braddock M, Jin WM, Xiao J, Li XK, Zheng MH. Targeting endoplasmic reticulum stress in liver disease. Expert Rev Gastroenterol Hepatol 2016; 10:1041-1052. [PMID: 27093595 DOI: 10.1080/17474124.2016.1179575] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The accumulation of unfolded protein in the endoplasmic reticulum (ER) initiates an unfolded protein response (UPR) via three signal transduction cascades, which involve protein kinase RNA-like ER kinase (PERK), inositol requiring enzyme-1α (IRE1α) and activating transcription factor-6α (ATF6α). An ER stress response is observed in nearly all physiologies related to acute and chronic liver disease and therapeutic targeting of the mechanisms implicated in UPR signaling have attracted considerable attention. AREAS COVERED This review focuses on the correlation between ER stress and liver disease and the possible targets which may drive the potential for novel therapeutic intervention. Expert Commentary: We describe pathways which are involved in UPR signaling and their potential correlation with various liver diseases and underlying mechanisms which may present opportunities for novel therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Fa-Ling Wu
- a Department of Hepatology, Liver Research Center , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
- b Institute of Hepatology , Wenzhou Medical University , Wenzhou , China
| | - Wen-Yue Liu
- c Department of Endocrinology , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Sven Van Poucke
- d Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy , Ziekenhuis Oost-Limburg , Genk , Belgium
| | - Martin Braddock
- e Global Medicines Development , AstraZeneca R&D , Alderley Park , UK
| | - Wei-Min Jin
- f Department of Infection Diseases , People Hospital of Wencheng County , Wenzhou , China
| | - Jian Xiao
- g Institute of Biology Science , Wenzhou University , Wenzhou , China
- h School of Pharmacy , Wenzhou Medical University , Wenzhou , China
| | - Xiao-Kun Li
- g Institute of Biology Science , Wenzhou University , Wenzhou , China
- h School of Pharmacy , Wenzhou Medical University , Wenzhou , China
| | - Ming-Hua Zheng
- a Department of Hepatology, Liver Research Center , the First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
- b Institute of Hepatology , Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
15
|
Foufelle F, Fromenty B. Role of endoplasmic reticulum stress in drug-induced toxicity. Pharmacol Res Perspect 2016; 4:e00211. [PMID: 26977301 PMCID: PMC4777263 DOI: 10.1002/prp2.211] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
Drug‐induced toxicity is a key issue for public health because some side effects can be severe and life‐threatening. These adverse effects can also be a major concern for the pharmaceutical companies since significant toxicity can lead to the interruption of clinical trials, or the withdrawal of the incriminated drugs from the market. Recent studies suggested that endoplasmic reticulum (ER) stress could be an important event involved in drug liability, in addition to other key mechanisms such as mitochondrial dysfunction and oxidative stress. Indeed, drug‐induced ER stress could lead to several deleterious effects within cells and tissues including accumulation of lipids, cell death, cytolysis, and inflammation. After recalling important information regarding drug‐induced adverse reactions and ER stress in diverse pathophysiological situations, this review summarizes the main data pertaining to drug‐induced ER stress and its potential involvement in different adverse effects. Drugs presented in this review are for instance acetaminophen (APAP), arsenic trioxide and other anticancer drugs, diclofenac, and different antiretroviral compounds. We also included data on tunicamycin (an antibiotic not used in human medicine because of its toxicity) and thapsigargin (a toxic compound of the Mediterranean plant Thapsia garganica) since both molecules are commonly used as prototypical toxins to induce ER stress in cellular and animal models.
Collapse
|
16
|
The Need for Biomarkers in Diagnosis and Prognosis of Drug-Induced Liver Disease: Does Metabolomics Have Any Role? BIOMED RESEARCH INTERNATIONAL 2015; 2015:386186. [PMID: 26824035 PMCID: PMC4707380 DOI: 10.1155/2015/386186] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) is a potentially fatal adverse event and the leading cause of acute liver failure in the US and in the majority of Europe. The liver can be affected directly, in a dose-dependent manner, or idiosyncratically, independently of the dose, and therefore unpredictably. Currently, DILI is a diagnosis of exclusion that physicians should suspect in patients with unexplained elevated liver enzymes. Therefore, new diagnostic and prognostic biomarkers are necessary to achieve an early and reliable diagnosis of DILI and thus improve the prognosis. Although several DILI biomarkers have been found through analytical and genetic tests and pharmacokinetic approaches, none of them have been able to display enough specificity and sensitivity, so new approaches are needed. In this sense, metabolomics is a strongly and promising emerging field that, from biofluids collected through minimally invasive procedures, can obtain early biomarkers of toxicity, which may constitute specific indicators of liver damage.
Collapse
|
17
|
Gómez-Lechón MJ, Tolosa L, Donato MT. Metabolic activation and drug-induced liver injury: in vitro approaches for the safety risk assessment of new drugs. J Appl Toxicol 2015; 36:752-68. [PMID: 26691983 DOI: 10.1002/jat.3277] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/21/2015] [Accepted: 11/11/2015] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) is a significant leading cause of hepatic dysfunction, drug failure during clinical trials and post-market withdrawal of approved drugs. Many cases of DILI are unexpected reactions of an idiosyncratic nature that occur in a small group of susceptible individuals. Intensive research efforts have been made to understand better the idiosyncratic DILI and to identify potential risk factors. Metabolic bioactivation of drugs to form reactive metabolites is considered an initiation mechanism for idiosyncratic DILI. Reactive species may interact irreversibly with cell macromolecules (covalent binding, oxidative damage), and alter their structure and activity. This review focuses on proposed in vitro screening strategies to predict and reduce idiosyncratic hepatotoxicity associated with drug bioactivation. Compound incubation with metabolically competent biological systems (liver-derived cells, subcellular fractions), in combination with methods to reveal the formation of reactive intermediates (e.g., formation of adducts with liver proteins, metabolite trapping or enzyme inhibition assays), are approaches commonly used to screen the reactivity of new molecules in early drug development. Several cell-based assays have also been proposed for the safety risk assessment of bioactivable compounds. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
MESH Headings
- Activation, Metabolic
- Animals
- Cell Culture Techniques/trends
- Cell Line
- Cells, Cultured
- Chemical and Drug Induced Liver Injury/epidemiology
- Chemical and Drug Induced Liver Injury/metabolism
- Chemical and Drug Induced Liver Injury/pathology
- Coculture Techniques/trends
- Drug Evaluation, Preclinical/trends
- Drugs, Investigational/adverse effects
- Drugs, Investigational/chemistry
- Drugs, Investigational/pharmacokinetics
- Humans
- In Vitro Techniques/trends
- Liver/cytology
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Microfluidics/methods
- Microfluidics/trends
- Microsomes, Liver/drug effects
- Microsomes, Liver/enzymology
- Microsomes, Liver/metabolism
- Models, Biological
- Pluripotent Stem Cells/cytology
- Pluripotent Stem Cells/drug effects
- Pluripotent Stem Cells/metabolism
- Pluripotent Stem Cells/pathology
- Recombinant Proteins/metabolism
- Risk Assessment
- Risk Factors
- Tissue Scaffolds/trends
Collapse
Affiliation(s)
- M José Gómez-Lechón
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- CIBEREHD, FIS, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - M Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- CIBEREHD, FIS, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Spain
| |
Collapse
|
18
|
Jiang J, Wolters JEJ, van Breda SG, Kleinjans JC, de Kok TM. Development of novel tools for the in vitro investigation of drug-induced liver injury. Expert Opin Drug Metab Toxicol 2015; 11:1523-37. [PMID: 26155718 DOI: 10.1517/17425255.2015.1065814] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Due to its complex mechanisms and unpredictable occurrence, drug-induced liver injury (DILI) complicates drug identification and classification. Since species-specific differences in metabolism and pharmacokinetics exist, data obtained from animal studies may not be sufficient to predict DILI in humans. AREAS COVERED Over the last few decades, numerous in vitro models have been developed to replace animal testing. The advantages and disadvantages of commonly used liver-derived in vitro models (e.g., cell lines, hepatocyte models, liver slices, three-dimensional (3D) hepatospheres, etc.) are discussed. Toxicogenomics-based methodologies (genomics, epigenomics, transcriptomics, proteomics and metabolomics) and next-generation sequencing have also been used to enhance the reliability of DILI prediction. This review presents an overview of the currently used alternative toxicological models and of the most advanced approaches in the field of DILI research. EXPERT OPINION It seems unlikely that a single in vitro system will be able to mimic the complex interactions in the human liver. Three-dimensional multicellular systems may bridge the gap between conventional 2D models and in vivo clinical studies in humans and provide a reliable basis for hepatic toxicity assay development. Next-generation sequencing technologies, in comparison to microarray-based technologies, may overcome the current limitations and are promising for the development of predictive models in the near future.
Collapse
Affiliation(s)
- Jian Jiang
- a 1 Maastricht University, GROW School for Oncology and Developmental Biology, Department of Toxicogenomics , Maastricht, The Netherlands +31 43 3881090 ; +31 43 3884146 ;
| | - Jarno E J Wolters
- b 2 Maastricht University, GROW School for Oncology and Developmental Biology, Department of Toxicogenomics , Maastricht, The Netherlands
| | - Simone G van Breda
- b 2 Maastricht University, GROW School for Oncology and Developmental Biology, Department of Toxicogenomics , Maastricht, The Netherlands
| | - Jos C Kleinjans
- b 2 Maastricht University, GROW School for Oncology and Developmental Biology, Department of Toxicogenomics , Maastricht, The Netherlands
| | - Theo M de Kok
- b 2 Maastricht University, GROW School for Oncology and Developmental Biology, Department of Toxicogenomics , Maastricht, The Netherlands
| |
Collapse
|
19
|
Sido JM, Nagarkatti PS, Nagarkatti M. Δ⁹-Tetrahydrocannabinol attenuates allogeneic host-versus-graft response and delays skin graft rejection through activation of cannabinoid receptor 1 and induction of myeloid-derived suppressor cells. J Leukoc Biol 2015; 98:435-47. [PMID: 26034207 DOI: 10.1189/jlb.3a0115-030rr] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 05/06/2015] [Indexed: 12/18/2022] Open
Abstract
Immune cells have been shown to express cannabinoid receptors and to produce endogenous ligands. Moreover, activation of cannabinoid receptors on immune cells has been shown to trigger potent immunosuppression. Despite such studies, the role of cannabinoids in transplantation, specifically to prevent allograft rejection, has not, to our knowledge, been investigated previously. In the current study, we tested the effect of THC on the suppression of HvGD as well as rejection of skin allografts. To this end, we studied HvGD by injecting H-2(k) splenocytes into H-2(b) mice and analyzing the immune response in the draining ingLNs. THC treatment significantly reduced T cell proliferation and activation in draining LNs of the recipient mice and decreased early stage rejection-indicator cytokines, including IL-2 and IFN-γ. THC treatment also increased the allogeneic skin graft survival. THC treatment in HvGD mice led to induction of MDSCs. Using MDSC depletion studies as well as adoptive transfer experiments, we found that THC-induced MDSCs were necessary for attenuation of HvGD. Additionally, using pharmacological inhibitors of CB1 and CB2 receptors and CB1 and CB2 knockout mice, we found that THC was working preferentially through CB1. Together, our research shows, for the first time to our knowledge, that targeting cannabinoid receptors may provide a novel treatment modality to attenuate HvGD and prevent allograft rejection.
Collapse
Affiliation(s)
- Jessica M Sido
- *Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA; and William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, South Carolina, USA
| | - Prakash S Nagarkatti
- *Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA; and William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, South Carolina, USA
| | - Mitzi Nagarkatti
- *Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA; and William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, South Carolina, USA
| |
Collapse
|
20
|
Turner RM, Park BK, Pirmohamed M. Parsing interindividual drug variability: an emerging role for systems pharmacology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:221-41. [PMID: 25950758 PMCID: PMC4696409 DOI: 10.1002/wsbm.1302] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/08/2015] [Accepted: 04/15/2015] [Indexed: 12/25/2022]
Abstract
There is notable interindividual heterogeneity in drug response, affecting both drug efficacy and toxicity, resulting in patient harm and the inefficient utilization of limited healthcare resources. Pharmacogenomics is at the forefront of research to understand interindividual drug response variability, but although many genotype-drug response associations have been identified, translation of pharmacogenomic associations into clinical practice has been hampered by inconsistent findings and inadequate predictive values. These limitations are in part due to the complex interplay between drug-specific, human body and environmental factors influencing drug response and therefore pharmacogenomics, whilst intrinsically necessary, is by itself unlikely to adequately parse drug variability. The emergent, interdisciplinary and rapidly developing field of systems pharmacology, which incorporates but goes beyond pharmacogenomics, holds significant potential to further parse interindividual drug variability. Systems pharmacology broadly encompasses two distinct research efforts, pharmacologically-orientated systems biology and pharmacometrics. Pharmacologically-orientated systems biology utilizes high throughput omics technologies, including next-generation sequencing, transcriptomics and proteomics, to identify factors associated with differential drug response within the different levels of biological organization in the hierarchical human body. Increasingly complex pharmacometric models are being developed that quantitatively integrate factors associated with drug response. Although distinct, these research areas complement one another and continual development can be facilitated by iterating between dynamic experimental and computational findings. Ultimately, quantitative data-derived models of sufficient detail will be required to help realize the goal of precision medicine.
Collapse
Affiliation(s)
- Richard M Turner
- The Wolfson Centre for Personalised Medicine, Institute for Translational Medicine, University of Liverpool, Liverpool, UK
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- The Wolfson Centre for Personalised Medicine, Institute for Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
21
|
Nymark P, Wijshoff P, Cavill R, van Herwijnen M, Coonen MLJ, Claessen S, Catalán J, Norppa H, Kleinjans JCS, Briedé JJ. Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells. Nanotoxicology 2015; 9:624-35. [PMID: 25831214 DOI: 10.3109/17435390.2015.1017022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding toxicity pathways of engineered nanomaterials (ENM) has recently been brought forward as a key step in twenty-first century ENM risk assessment. Molecular mechanisms linked to phenotypic end points is a step towards the development of toxicity tests based on key events, which may allow for grouping of ENM according to their modes of action. This study identified molecular mechanisms underlying mitochondrial dysfunction in human bronchial epithelial BEAS 2B cells following exposure to one of the most studied multi-walled carbon nanotubes (Mitsui MWCNT-7). Asbestos was used as a positive control and a non-carcinogenic glass wool material was included as a negative fibre control. Decreased mitochondrial membrane potential (MMP↓) was observed for MWCNTs at a biologically relevant dose (0.25 μg/cm(2)) and for asbestos at 2 μg/cm(2), but not for glass wool. Extensive temporal transcriptomic and microRNA expression analyses identified a 330-gene signature (including 26 genes with known mitochondrial function) related to MWCNT- and asbestos-induced MMP↓. Forty-nine of the MMP↓-associated genes showed highly similar expression patterns over time (six time points) and the majority was found to be regulated by two transcription factors strongly involved in mitochondrial homeostasis, APP and NRF1. In addition, four miRNAs were correlated with MMP↓ and one of them, miR-1275, was found to negatively correlate with a large part of the MMP↓-associated genes. Cellular processes such as gluconeogenesis, mitochondrial LC-fatty acid β-oxidation and spindle microtubule function were enriched among the MMP↓-associated genes and miRNAs. These results are expected to be useful in the identification of key events in ENM-related toxicity pathways for the development of molecular screening techniques.
Collapse
Affiliation(s)
- Penny Nymark
- Department of Toxicogenomics, Maastricht University , Maastricht , The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Marrone AK, Beland FA, Pogribny IP. The role for microRNAs in drug toxicity and in safety assessment. Expert Opin Drug Metab Toxicol 2015; 11:601-11. [PMID: 25739314 DOI: 10.1517/17425255.2015.1021687] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Adverse drug reactions present significant challenges that impact pharmaceutical development and are major burdens to public health services worldwide. In response to this need, the field of toxicology is rapidly expanding to identify key pathways involved in drug toxicity. AREAS COVERED MicroRNAs (miRNAs) are a class of small evolutionary conserved endogenous non-coding RNAs that regulate the translation of protein-coding genes. A wide range of toxicants alter miRNA levels in target organs and these altered miRNAs can also be detected in easily accessible biological fluids. This, combined with an early miRNA response to toxic insults and miRNA stability, substantiates the potential for these small molecules to be useful biomarkers for drug safety assessment. EXPERT OPINION miRNAs are early indicators and useful tools to detect drug-induced toxicity. Incorporation of miRNA profiling into the drug safety testing process will complement currently used techniques and may substantially enhance drug safety. With the increasing interests in translational research, the field of miRNA biomarker research will continue to expand and become an important part of the investigation of human drug toxicity.
Collapse
Affiliation(s)
- April K Marrone
- FDA-National Center for Toxicological Research, Division of Biochemical Toxicology , Jefferson, AR , USA
| | | | | |
Collapse
|